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Abstract 

One of the promising ways for mitigation of Type IV cracking – a failure by cracking at the 
intercritical /fine grained heat affected zone, a life limiting problem in advanced 9–12 Cr ferritic 
steel weld like that of P91 is through modification of alloy composition by addition of boron. 
Addition of boron was observed to improve the microstructure at the weld zone and hence the 
creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel 
after normalizing at 1050C and 1150C and tempered at 760C were studied for the creep 
behavior in the base metal and welded condition in the temperature range of 600–650C. Creep 
strength was characterized in terms of stress and temperature dependence of creep rate and 
rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at 
the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep 
crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the 
base and weld in the boron containing steel when higher normalizing temperature is used. 
Estimation of 105 h was attempted based on short term rupture data available and weld strength 
factors were calculated. Observed values are better for P91BH condition than the values for 
P91BLcondition as well as those available for P91 in open literature 

Introduction 

The advent of ultra super critical plants has resulted in development of 9–12% Cr ferritic–
martensitic steels with better resistance to high temperature creep and corrosion in addition to 
thermal conductivity and lower cost than austenitic stainless steels [1–3]. Modified 9Cr–1Mo 
(P91) steel derives higher creep strength from the presence of stable carbides and carbo-nitrides 
which provide resistance to motion of free dislocations [3]. However, premature failures of 
weldments have been reported [4] in the intercritical/ fine grain regions of heat affected zone 
(HAZ) which is popularly known as Type IV cracking, and has been commonly attributed to the 
lower creep strength of these regions when compared to base metal. There are studies that show 
[5–7] that the addition of boron improves resistance to creep and type IV cracking in ferritic 
steels. The observed beneficial effect was attributed [6] to the microstructural changes like 
uniform prior austenitic grain size in HAZ and stabilization of precipitates which delays the 
substructure development.  

Das and co–workers [8–11] have observed that 100 ppm boron containing P91 steel (P91B) 
exhibited lower minimum creep rates and enhanced creep–rupture lives compared to boron free 
P91 steel at 600–650C for normalized (1050C/1h) and tempered (760C/3h) condition. The 
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effect of different normalizing temperatures on creep properties was also investigated [8–11] and 
it was observed that unlike P91 steel, the P91B steel showed improved creep strength at higher 
normalizing temperature of 1150C/1h compared to 1050C/1h. In this paper, 1150C/1h is 
designated as P91BH whereas 1050C/1h is referred to as P91BL. Encouraged by the beneficial 
effect of higher normalizing temperature for P91B steel, a systematic study has been carried out 
to characterize the creep behavior of P91BL and P91BH for base and weldments at creep test 
temperatures of 600, 625 and 650C. This paper discusses the results of creep tests along with 
microstructural analysis 
 
2. EXPERIMENTAL PROCEDURE 
 
2.1 Material 
The material used in this study is modified 9Cr–1Mo steel containing 100 ppm boron and 20 
ppm nitrogen and the steel was melted in vacuum induction furnace followed by vacuum arc re-
melting. Hot rolled plates were tempered at 760C/3h. Two types of heat treatment (differing in 
normalizing temperature) were given to the as-received plates. One was normalizing at 
1050C/1h (i.e., P91BL) and another at 1150C/1h (i.e., P91BH) followed by air cooling. All the 
plates were tempered at 760C/3h and cooled in furnace. The weld joints were fabricated from 
these plates.  
 
The chemical composition of P91B steel is listed in Table 1. Nitrogen level in this steel was 
deliberately lowered to avoid formation of boron nitride as boron has a strong affinity for 
nitrogen. Manual metal arc welding (MMAW) process was used for welding. Due to non-
availability of boron containing P91 welding consumable, modified P91 steel electrodes were 
used. Preheating and inter–pass temperature of 200–250°

C was maintained during the welding. 
Welding parameters employed are given in Table 2. To improve ductility, reduce residual stress 
and to increase thermal stability of microstructure the weldments were subjected to post weld 
heat treatment (PWHT) at 760°C for 3h. 
 

Table 1 Chemical composition of P91B steel (in Wt. %) 

 
Table 2. Welding parameters used for P91B steel weld joints 

 
 
 
 
2.2 Microstructural Characterization 
Microstructure was examined using optical and electron microscope (SEM, TEM). Optical 
microscopic specimens were etched with Villella‟s reagent (1g Picric acid + 5ml HCl + 100ml 
methanol). 
2.3 Creep test 
Constant load creep tests were performed on MAYES machine (Model TC 30). Cylindrical creep 
test specimens with 6 mm in diameter over 50 mm gauge length were machined from the base 

C Si Mn P S Cr Mo V Nb Ni 
0.10 0.40 0.30 0.005 0.002 8.50 1.04 0.090 0.10 0.020 
Al N B Fe   
0.030 0.0021 0.010 Bal.   

Welding method Current (A) Voltage (V) Heat input (kJ/mm) 

MMAW 100 25 1.0 
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and weld joints of 12 mm thick plate of P91B steel. Specimens were fabricated in such a way 
that the weld metal was located in the center of specimen. The strain was measured by an 
extensometer–LVDT assembly. Creep tests were conducted on base metal and weld joints for 
both P91BL and P91BH in the stress range of 210-70 MPa at temperatures 600, 625 and 650C. 
The test temperature was controlled with an accuracy of ±2C 
 
3. RESULTS 
 
3.1. Microstructure and hardness 
Microstructure of P91BL and P91BH base metals are shown in Fig.1 (a,b). It is observed that the 
prior austenite grain boundaries as well as packet, block and lath boundaries are decorated with 
precipitates, formed during tempering. It also shows that the precipitates are aligned along the 
lath boundaries, in addition to packet and prior austenite grain boundaries 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1 Secondary electron image of N&T P91B steel: (a) P91BL (1050C) 
and (b) P91BH (1150C). 

 
The frequency distribution plots of precipitate sizes, measured from the secondary electron 
images for P91BL and P91BH are shown in Figures.2 (a) and (b), respectively. Higher fraction 
of fine precipitates in P91BH than in P91BL is apparent from Figure.2. Though, M23C6 
precipitates are larger compared to MX type, it may be mentioned that the frequency distribution 
plot as shown in Figure.2 is obtained without considering the type of precipitate. This is because; 
it is difficult in SEM to identify the precipitate. Precipitates below 40 nm were not considered for 
estimating the size. It is well known that MX type precipitates are stable and provide high 
temperature creep strength in P91 steel 
 
3.2 Creep behavior 
Typical creep curves for P91BL and P91BH are shown in Figure.3 (a) and (b), respectively for 
different test temperatures for both base and weldments. Whereas, creep rate vs. time plots for 
base and weldments at low and high temperature normalizing conditions are shown in Figure.3 
(c) and (d). For base and weldment, at all test temperatures and stresses, creep curves of P9BL 
and P91BH showed a brief normal transient creep regime followed by minimum creep rate and 
tertiary creep region leading to failure. Distinct steady–state creep region was not observed. At 
all test conditions, creep ductility was found to decrease with decrease in stress.  
 
 
 

10 m 

(b) 

10 m 

(a) 
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Figure. 2 Frequency distribution of precipitate size in (a) P91BL and (b) P91BH steels 
 
For the base metal, Figures 4a and 4b shows the stress dependence of minimum creep rate for 
base metal and cross weld specimens of P91BL and P91BH at test temperatures. For P91BL and 
P91BH, the variation of creep–rupture life with stress is shown in Figures 5a and 5b for the base 
metal and for cross weld specimens at test temperatures for both P91BL and P91BH conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. 3 Typical plots of (a), (b) strain–time ((c), (d) creep rate–time for P91BH and 
P91BL at test temperatures 
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Figure. 4 Stress dependence of minimum creep rate for P91BL and P91BH (a) 
base metal (b) cross weld specimens 

 

 
 
Figure.5 Stress dependence of rupture life for P91BL and P91BH  (a) base 
metal (b) cross weld specimens 

 
Comparative creep behavior of base and weldments for P91BL and P91H revealed higher 
minimum creep rates (and shorter lives) for weldments than that for the base metal. The extent of 
decrease in creep life for weldments is found to be higher at longer rupture lives (i.e., at lower 
stresses). This observation was pronounced at test temperature of 650°C compared to other 
temperatures. For both base and weldments, minimum creep rates were found to be higher for 
P91BL than P91BH and in other words, P91BH exhibited longer creep–rupture lives. The 
observations in the present work are similar to those reported by others for P91 steel [12–14]. 
 
3.3. Creep rate and rupture life behavior 
Stress dependence of minimum creep rate for base (Figure. 4a) and cross weld specimens 
(Figure.4b) of P91BL and P91BH obeyed power–law creep equation of the form 

)/exp(min RTQA n   ,   (1) 
Where A is a constant, n is the power–law creep exponent, T is the temperature in Kelvin and R 
is the universal gas constant. At a given stress, the variation of minimum creep rate ( min ) with 
temperature was represented by ln( min ) vs. 1/T plots, where T is in K. The activation energy Q 
from these plots was obtained as Q = slope × R, where R = 8.314 J mol–1. The values of n and Q 
are summarized in Table 3, for base and weldments of P91BL and P91BH 
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Table 3 Value of stress exponents for the P91BH and P91BL steel tested. 
 
Parameter 

Material condition 
P1BH-
base 

P91BH-
Weldment 

P91BL-
base 

P19BL-
Weldment 

Creep exponent n 14 11 11 7.2 
Activation energy (kJ 
mol-1) 

651 448 637 427 

 
Observed values of n and Q for the P91BL and P91BH are comparable to that reported [12–14] 
for P91 steel. It may be noticed from Table 3 that n is higher for P91BH compared to P91BL. 
Further, n is higher for base metal compared to weldment. Though the observed Q is almost the 
same for P91BL and P91BH, Q is found to be higher for the base metal than that of the 
weldment. It may be mentioned that the unrealistically higher values of n and Q have been 
generally observed for particle/precipitation hardened alloys [16-18]. The detailed analysis 
incorporating corrections for modulus, diffusivity and resisting stress for dislocation motion 
(precipitate–dislocation interaction) is required to be performed for rationalizing the higher 
values of n (than n = 5) and Q (than Q for lattice diffusion in -iron, Ql = 250 kJ mol–1). The 
differences in „n‟ and Q between the base and weldment may possibly be related to the fine 
precipitates for base metal compared to coarse precipitates for the weldment. However, it may be 
suggested that creep behavior of P91B steel is governed by the dislocation climb over 
precipitates.   
 
Minimum creep rate and rupture life is generally described by the well known Monkman–Grant 
relationship of the form 

MGr CCt min ,    (2) 
Where C (i.e., CMG is Monkman–Grant constant). The Monkman–Grant plots for both P91BL 
and P91BH are shown in Figure.6. It was observed that the slope in these plots is nearly equal to 
unity implying that the Monkman–Grant relationship is valid. The value of constant C is given in 
the figure for various conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Monkman-Grant relationship for base metal weldments of 
P91BL and P91BH. 

 
The Monkman–Grant relation is helpful in extrapolation of creep–rupture life at longer 
durations, knowing the value of minimum creep rate. Extrapolation of long term creep life from 
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short term tests data can be achieved by the well known Larson–Miller parameter (LMP) which 
is given as 

)log( rtCTLMP   ,    (3) 
Where C is a constant. It has been observed that the value of constant C varies from 20–40. For 
the results in the present work, C was obtained experimentally that was found to describe the 
LMP plots adequately. The values of C are given in the LMP plots. For base metal and cross 
welds of P91BL and P91BH, LMP plots are presented in Figure 7 and Figure 8 for, respectively. 
Based on Figures. 9 and 10, it can be seen that the variation of stress () vs. LMP can be 
represented as  

log10 aaLMP  ,    (4) 
 

 
 
 
 
 
 
 
 
 
 

Figure.7. Stress vs. LMP plots for P91BL: (a) base metal and (b) weldment. The value 
of C = 30 for base metal and C = 23.4 for weldment were obtained based on the 
regression analysis of test data.  

 

 
Figure.8. Stress vs. LMP plots for P91BH: (a) base metal and (b) weldment. The value 
of C = 30 for base metal and C = 34 for weldment were obtained based on the 
regression analysis of test data.  

 
Where a0 and a1 are coefficients. The above equation can be rearranged as the equation of the 
form given below. This rearranged equation could be employed for evaluating stress values for 
long–term creep rupture life of 105 h and the equation is given as  
   )log)(/1(log 10 aaTCtr  .  (5)  
Knowing a0, a1 and C, stress to cause a given tr (say 105 h) could be determined at a specified 
temperature. In other words one can determine the creep–rupture strength (stress to cause known 

b a 

a a b 
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tr) values. The obtained values of stress for 105 h of rupture life (i.e., creep–strength) are listed in 
Table 4. The values got for P91BH base and weldments are better than that for P91BL.  
 
3.4. Weld strength reduction factor 
Weldments showed much reduced life compared to the base metal for P91BL and P91BH. This 
is generally expressed by the weld strength reduction factor. Weld strength reduction factor is 
given by the ratio of rupture strength of the weldment to that of the base metal. Using Eq. (5), the 
rupture strength values for 105 h can be obtained for both base and weldments for P91BL and 
P91BH in the temperature range of 600–650C.  The obtained weld strength factors calculated 
for temperature range 600–650C are shown in Fig.9. It can be seen that the strength reduction 
factor is higher for P91BH. 
 

Table 4.Strength values for 105 h calculated from experimental data compared 
with literature values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Plot of weld strength reduction factor for P19BL and P91BH at 
different temperatures. 

 
3.5. Microstructure of P91BH weldments after creep 
Similar to that observed for the base metal (Figs. 1 a,b), the cross weld specimens of P91BH also 
showed the finer precipitates compared to P91BL weldments. This would imply that the 
microstructure of P91BH weldment is more stable when compared to P91BL weldment. After 
creep testing, it was observed the precipitates size increased and this increase was pronounced at 
higher creep test temperatures and at lower stresses for both P91BL and P91BH weldments. 
Microstructure in the HAZ (for P91BL and P91BH) revealed that the precipitates were found to 
be coarser in ICHAZ than in the other regions of HAZ. Figure 10 (a,b) shows the SEM image of 
ICHAZ for P91BH weldment after creep test at 600C and 130 MPa. Prior austenite grain 

 
 
Temperature 

Stress (MPa) 
P1BH
-base 

P91BH-
weldment 

P91
BL-
base 

P91BL-
weldmen
t 

P91 
base 
ECCC
-2009 

P91 
base 
[16] 

P91 
weldment 
[16] 

600 112 92 79 62 90 91 74 
625 93 71 61 45 - 68 53 
650 77 56 48 33 48 47 37 
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boundary and triple point shown as circled is clearly evident in Fig. 10(a). The high 
magnification image of the circled region is depicted in Fig. 10(b) which clearly reveals the 
evidence for creep cavitation observed at the precipitate– matrix interface. An important point to 
make here is that for P91BH weldments, the failure mode was found to shift from Type IV 
(ICHAZ) to Type II (from weld to HAZ) when the increasing creep test temperature and/or 
decreasing stress. Whereas for P91BL weldments, the failure was type IV thus illustrating the 
beneficial role of higher normalizing temperature (i.e., P91BH) in resisting Type IV cracking in 
P91B steel. This also suggests that the utilization of boron was more effective for P91BH. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Microstructure of ICHAZ of P91BH weldment after creep test at 600C 
and 130 MPa. 

 
An important point to make here is that for P91BH cross weld specimens, the failure mode was 
found to shift from Type IV (ICHAZ) to Type II (from weld to HAZ) when the increasing creep 
test temperature and/or decreasing stress. Whereas for P91BL cross weld specimens, the failure 
was type IV thus illustrating the beneficial role of higher normalizing temperature (i.e., P91BH) 
in resisting Type IV cracking in P91B steel. This also suggests that the utilization of boron was 
more effective for P91BH. Such an observation is seen in Fig. 11. Detail study on crack location 
is in progress. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 The photomicrographs of cross weld specimen of (a) P91BL 
and (b) P91BH creep tested at 600°C and 120 MPa 

 
4. DISCUSSION 
 
Formation and coarsening of subgrains is observed during creep of P91 steel [12–15] which lead 
to the reduction in dislocation density and it is well known that the subgrain size is inversely 
related to the stress [5]. Any microstructural changes that resist the dislocation motion and bring 

 
2 µm 

(b) (a) 

 
20 µm 

Prior austenite 
grain 
boundary 

Cavity 

(b) 

Weld metal 

(a) 

(b) 
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down the growth of subgrains can cause creep rate to decrease. During creep in P91 steel, M23C6 
precipitates grow and coarsen. Whereas in P91B, replacement of carbon by boron in M23C6 
precipitates during creep reduces coarsening of precipitates [5–7, 15-18]. Hence precipitates 
observed will be less coarse in P91B steel compared to P91. Finer the precipitate, the stability of 
microstructure is enhanced. In this study, the finer precipitates observed for P91BH (Figure.1) 
compared to P91BL can be attributed to the reduction in lath size [8] and increased nucleation 
sites for precipitation. It has been observed that the prior austenite grain size is higher for P91BH 
than for P91BL [8,9] and this increase in prior austenite grain size is accompanied by increase in 
block size [9]. Inverse pole figure maps of P91BL and P91BH base metal show smaller block 
size for P91BL compared to P91BH (Figure.12 a,b). Block size is observed to be larger for 
P91BH (7 µm) condition compared to P91BL (4.3 µm) [19] and was measured based on 10 
misorientation [9]. The lower creep rates observed for P91BH can be related to the block size, 
since block size can considered as an effective grain for Ferritic/martensitic steel. This is in line 
with coarse grain size is preferred for creep at high temperatures 
 
In the P91 cross weld condition, microstructure varies in different regions of HAZ and during 
creep failure generally occurs in the ICHAZ since this region is prone to creep cavitation damage 
[5] and strengthening ICHAZ improves creep–rupture life [5,8,9]. For P91B weldments, prior 
austenite grain size is observed to be almost similar across the HAZ [8] and is closer to that of 
base metal. In other words, microstructure is more uniform in the weldments of P91B steel as 
reflected by a smaller difference in the hardness between CGHAZ and ICHAZ implying that the 
localization of creep strain is less pronounced in P91B steel. This difference in hardness between 
CGHAZ and ICHAZ gets further reduced for P91BH compared to P91BL condition illustrating 
the combined beneficial role of boron and higher normalizing temperatures. This is the reason 
for higher creep– rupture lives and lower minimum creep rates for P91BH as observed in the 
present study. The higher weld strength factors for P91BH are also related to the uniform and 
stable microstructure in the HAZ of P91BH weldments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 12 IPF map obtained from the normalized and tempered (760°C/3h) steels 
(a) P91BL and (b) P91BH base metal 

 
5. CONCLUSIONS 
 
The following principal conclusions are drawn from this study.  
1. P91BH steel showed better creep properties than P91BL in terms of lower minimum creep rate 
and rupture life for both base metal and weldments.  
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2. Weld strength reduction factor is found to be higher for P91BH compared to P91BL. 
3. Based on the beneficial effect of P91BH steel on creep properties, higher normalizing 
temperature of 1150C can be recommended for P91B steels.  
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