

Issues involved in Coal Processing

- > 30 Million tonnes of coal is washed every year in Indian coal washeries.
- 20 30% of coal in the form of fines are produced and are being lost as tailings.
- Very few washeries have the facilities to treat these coal fines.
- The standard existing coal beneficiation techniques are not effective to recover fine coal from these coal washery tailings.
- Less overall coal recovery due to loss of fines with tailings
- Environmental pollution generated in the downstream.

Importance of flotation in coal processing

- Modern mining methods increase fines in coal
- Coal fines (< 500 microns) consisting 20-30% of feed
- Conventional methods heavy media separation, shaking tables, cyclones not effective for fine coal processing
- Flotation is the best alternative
- Approx. 145 million tonnes are beneficiated by flotation world wide annually
- Flotation is the only process which alters the surface properties of coal particles leading to separation

Advantages of flotation column.....

Less entrainment and entrapment through froth washing

- Independent control of operating variables
- Flotation of coarse and slimes particles
- Used as roughers and scavengers
- *Reduced running costs as a result of*No moving parts
 Lower reagent consumption

Silica from Iron ore

- Lower energy consumption (40 50% lower)
- Reduced downtime
- Low maintenance and inventory requirements.

22/02/2013

Comparison of the costs for an iron ore flotation project utilizing two different types of equipment mechanically agitated cells and column cells.

Investment Requirements: Mechanical Cells Vs. Column Cells (Salim, 1996)

Description		Mechanical Cells		Column Cells	
		Quantity	Cost (\$ US)	Quantity	Cost (\$ US)
Equipment	Flotation Cells	44	1,760,000	4	380,000
	Compressor	-	-	3	240,000
Metal Structure (Fabrication & Erection)		200t	500,000	65t	162,000
Civil Works	Concrete	416m ²	232,000	416m ²	240,000
	Foundations	144t		83t	
Total		2,492,000		915,000	

Stages of flotation column development at NML

1987	Exploratory project on fine particle processing by new techniques			
1988	Development of 3 types of cells – conventional column, electro-column & combination.			
1989-91	Design & development of fully automated flotation column with state-of-the instruments			
1992-93	Amenability studies at Malanjkhand copper project – copper ore			
1993-94	Feasibility studies at Kudremukh Iron Ore Company Ltd.			
1994-95	Fluorspar beneficiation at Gujarat Mineral Development Corpn.			
1995-96	Column flotation of Pb-Zn ore at Agucha, HZL			
1996-97	Column flotation of Pb-Zn ore at Dariba, HZL			
1997-98	Beneficiation of multi metal ore at Ambaji, GMDC – Cu-Pb-Zn ore			
1998-99	Amenability studies at Bharat Gold Mines Ltd. – Gold ore			
2000	Design & development of semi-commercial, 0.5m dia column with automatic controls.			
2000-01	Demo of 0.5M dia flotation column for gold ore beneficiation at BGML			
2001-02	Field testing of 0.5M dia column at Kadipani, GMDC, for fluorspar beneficiation			
2002-03	Column flotation of sillimanite beneficiation at OSCOM, Orissa			
2003-04	Demo of 0.5M dia flotation column for the beneficiation of Limestone at Salem			
2004-05	Column flotation of iron ore fines at Fomento, Goa			
2005-06	Design and commissioning of 1.30M dia commercial column – OSCOM. IREL			
2006-07	Design and commissioning of 1.20M dia commercial column – Limestone, Salem			
2006-07	Amenability studies at JSW Steel Ltd. 0.5M dia semi-commercial column			
2007-08	Design and commissioning of 1.25M dia commercial column – IREL, Chavara			

Demonstrations (0.5m dia column)

S.No	Plant	Ore	
1	Bharath Gold Mines Ltd. K.G.F., Karnataka	Gold ore	
2	Gujarat Mineral Development Corpn. Ltd., Kadipani	Fluorspar	
3	Indian Rare Earths Ltd., Orissa Sands COMplex, Chatrapur	Sillimanite	
4	Fomento, Goa	Iron ore	
5	Calpro Mineral Technology India (Pvt) Ltd., Salem, Tamilnadu	Limestone	
6	Indian Ocean Garnet Sands, Tuticorin, Tamilnadu	Garnet	
7	JSW Steels Ltd., Jindal Vijayangar, Karnataka	Iron ore	
8	TATA Steel Ltd., (Joda East Iron Mines, Orissa)	Iron ore	

Commercial Installations

- 1 Indian Rare Earths Limited, OSCOM, Chatrapur (Beneficiation of Sillimanite) Commissioned in November 2005
- 2 Calpro Mineral Technology India Pvt Limited, Salem (Beneficiation of Limestone) Commissioned in December 2006
- 3 Indian Rare Earths Limited, Chavara, Kerala (Beneficiation of Sillimanite) Commissioned in July 2010
- 4 Andhra Barytes & chemicals Ltd, AP (Beneficiation of Baryte) Commissioning in progress

150tpd flotation column at OSCOM

Spargers Arrangement

Specification of Column			
Column diameter:	1.25 m		
Column height:	8.0 m		
Column cross sectional area:	1.23 m2		
Column volume (including sparger	section):	9.85 m3	
Collection zone height (sparger to	feed point):	5.25 m	
Cleaning & froth zone height (feed	point to column li	ip): 2.25 n	
Compressor settings:	Max. 9.5 kg/cm2		
No. of spargers	a) 260mm 16 nos.		
	b) 500 mm 12 nd	os.	
	c) 600 mm 4 nos.		
Control valve pressure settings: I/F	converter (A kg/c	m2)	

Control valve pressure settings: I/P converter (4 kg/cm2 Actuator (1.2 kg/cm2) Column Controller settings/definitions:

Controller calibrated for 0-2000mm water column SV (Set Value)-0-2000mm PV (Process Variable)-0-2000mm Froth zone height in= 2000 mm – SV/PV MV (Manipulated Variable i.e. discharge valve opening in (%) Wash water system - 200 rpm, max, can be varied through VFD Solids feed rate, maximum 8 tons/hr on dry basis Slurry feed rate, maximum 40 m³/hr Column-16/12/2011

Limestone beneficiation at Calpro Mineral Technology India Pvt. Ltd., Salem

Column flotation studies on Non-Coking coal supplied by GE, Bengaluru

Diesel : 2.87 kg/t; MIBC : 0.65 kg/t

Product	Non coking Coal (Head ash: 34.6%)				
	Yield, %	Ash, %	Ash Dist.,	Comb.	
			%	Rec., %	
Float	61.44	12.98	21.75	84.4	
Tailings	38.56	74.41	78.25		
Float	70.78	14.50	31.48	89.8	
Tailings	29.22	76.45	68.52		

Column flotation studies on Coking coal fines supplied by M/s TATA Steel, Jamadoba

Diesel : 1.067 kg/t; NF : 0.069 kg/t

Product	Coking Coal (Head ash: 26.75%)			
	Yield, %	Ash, %	Ash Dist., %	Combustibles
				Rec., %
Float	58.98	14.41	34.62	68.92
Tailings	41.02	39.12	65.38	

OUR COLLABORATIONS

NML Reagent Evaluation, Process Development & Column Design

SOCPL

Reagent Development for Ores, Minerals & Coal

MBE

Engineering, Manufacturing, Erection & Commissioning

Column Flotation Technology is a potential & effective method for Processing of coal fines

