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Abstract: This paper deals with the simplest fuzzy PID controllers which employ two fuzzy sets
for each of the three input variables and four fuzzy sets for the output variable. Mathematical
model for a fuzzy PID controller is derived by using asymmetric Γ-function type and L-function
type membership functions for each input, asymmetric trapezoidal membership functions for
output, algebraic product triangular norm, bounded sum triangular conorm, Mamdani minimum
inference, nonlinear control rules, and center-of-sums (COS) defuzzification. The effectiveness
of the simplest fuzzy PID controller is demonstrated by means of a numerical example along
with its simulation results.

1. INTRODUCTION

Proportional-integral-derivative (PID) control is exten-
sively used in industrial control. PI controllers are pre-
ferred more to PD controllers as PD controllers are not
able to eliminate steady state errors. However, PI con-
trollers show poor performance during the transient state
for higher order processes. To obtain overall improved
performance, PID controllers are preferred. Conventional
PID controllers are usually not effective if the processes to
be controlled are higher order and time delay systems, non-
linear systems, complex and vague systems without pre-
cise mathematical models, and systems with uncertainties.
However, it is apparent from the current literature[5, 8]
that fuzzy PI and fuzzy PD controllers can handle the
dynamical systems better than their conventional coun-
terparts.

As it appears from the literature, so far two different
configurations have been reported for fuzzy PID control
as shown in Fig. 1. It was proved [1] that PID controllers
could be obtained by using fuzzy control methods like
product-sum-gravity method and simplified fuzzy reason-
ing method . However, PID controller could not be con-
structed by min-max-gravity method as this method had
given a complicated inference result in nonlinear form for
a simple fuzzy reasoning, see Fig. 5 in [1].

A fuzzy PID controller structure, based on configuration
1 [2] in Fig. 1, has been proposed. A parameter adaptive
method via peak observer has been presented to tune the
parameters of the fuzzy controller on-line.

Fuzzy PI and fuzzy PD controllers have been combined
to get a fuzzy PID controller according to the configuration
2 [3] in Fig. 1. Its knowledge base consists of two two-
dimensional rule bases for PI and PD controls. It has been
shown that this fuzzy controller is equivalent to a nonlinear
PID controller. A tuning method, based on gain margin
and phase margin specifications, has been proposed [4]

for determining the parameters of fuzzy PID controller of
configuration 2. With this formula, the weighting factors
of fuzzy logic controllers can be systematically selected
according to the plant under control.

Often fuzzy control applications call for asymmetric
input and output fuzzy sets for controlling complex or
vague systems. Therefore mathematical models for fuzzy
PID controllers with asymmetric input and output fuzzy
sets need to be derived.

With the assumption that the membership sum of two
neighbouring fuzzy sets is equal to unity, a mathematical
model of the simplest fuzzy PID controller (configuration 3
in Fig. 1) is derived by employing algebraic product trian-
gular norm, bounded sum triangular conorm, asymmetric
Γ-function type and L-function type membership functions
for inputs, asymmetric trapezoidal membership functions
for output, nonlinear control rules, Mamdani minimum
inference method, and COS method of defuzzification.
Simulation results of a numerical example are presented to
demonstrate the superiority of fuzzy PID controller over
the conventional PID controller.

A broad outline of this paper is as follows: The next sec-
tion describes the principal components of a typical fuzzy
PID controller. Section 3 presents a mathematical model of
the simplest fuzzy PID controller with asymmetric fuzzy
sets. Section 4 includes simulation results while the last
section consists of concluding remarks.

2. COMPONENTS OF A FUZZY PID CONTROLLER

The incremental control signal generated by a discrete-
time PID controller is given by

∆u(kT ) = u(kT )− u[(k − 1)T ]

=Kd
P v(kT ) +Kd

I d(kT ) +Kd
Da(kT ) (1)

where Kd
P , Kd

I , and Kd
D are respectively the proportional,

integral and derivative constants of digital PID controller,
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Fig. 1. Fuzzy PID controller configurations

v(kT ) = {d(kT )− d[(k − 1)T ]}/T, the velocity (2)

d(kT ) = e(kT ), the displacement (3)

a(kT ) = {v(kT )− v[(k − 1)T ]}/T, the acceleration (4)
e(kT ) is the error signal, and T is the sampling period.

Eq. (1) is known as ‘velocity algorithm’ and it is a widely
used form of digital PID control. The principal structure of
the fuzzy PID controller is shown in Fig. 2 and it consists
of the following components.

2.1 Scaling factors

Nd, Nv, Na and N∆u are the normalization factors for
the inputs d, v, a, and the output ∆u respectively. N−1

∆u
is the reciprocal of N∆u, called denormalization factor.
These scaling factors play a role similar to that of the
gain coefficients Kd

P , Kd
I and Kd

D in a conventional PID
controller.

2.2 Fuzzification

The fuzzy PID controller employs three inputs: the error
signal e(kT ) (displacement d(kT )), the first-order time
derivative of e(kT ) (velocity v(kT )), and the second-order
time derivative of e(kT ) (acceleration a(kT )).

Let d∗, v∗and a∗ be the three crisp inputs. Then the
fuzzified version of d∗ is its degree of membership in

µD(d∗), the fuzzified version of v∗ is µV (v∗) and the
fuzzified version of a∗ is µA(a∗) where D, V and A
are the linguistic values taken by dN , vN and aN . The
inputs are fuzzified by Γ-function type and L-function
type membership functions, illustrated in Fig. 3, whose
mathematical description is respectively given by

µ−X =

{ 1, xa1 ≤ x ≤ xb1
−αx(x− xb2), xb1 ≤ x ≤ xb2

0, xb2 ≤ x ≤ xa2

(5)

µ+X =

{ 0, xa1 ≤ x ≤ xb1
αx(x− xb1), xb1 ≤ x ≤ xb2

1, xb2 ≤ x ≤ xa2

(6)

where αx =
1

xb2 − xb1

(7)

Notice that µ−X + µ+X = 1 (8)
The fuzzy controller has a single output, called incremental
control output ∆u(kT ). The membership functions for the
normalized output ∆uN are shown in Fig. 4. The various
design parameters xa1 , xb1 , xb2 and xa2 in Fig. 3, and a−,
c−, d−, b−, e, f , a+, c+, d+ and b+ in Fig. 4 are to be
chosen by the designer.

2.3 Control rule base

The following control rules are considered [5] in terms of
the abovementioned input and output fuzzy sets.
(R1) If dN=−D & vN=−V & aN=−A then ∆uN= O−2.
(R2) If dN=+D & vN=−V & aN=−A then ∆uN=O−1.
(R3) If dN=+D & vN=−V & aN=+A then ∆uN = O+1.
(R4) If dN=−D & vN=−V & aN=+A then ∆uN=O−1.
(R5) If dN=−D & vN=+V & aN=+A then ∆uN=O+1.
(R6) If dN=−D & vN=+V & aN=−A then ∆uN=O−1.
(R7) If dN=+D & vN=+V & aN=−A then ∆uN=O+1.
(R8) If dN=+D & vN=+V & aN=+A then ∆uN=O+2.
where the & symbol in the antecedent part represents

Fig. 3. Fuzzification of crisp values d∗, v∗, and a∗

Fig. 4. The output membership functions

the fuzzy “AND” operation which is considered here as
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Fig. 2. The fuzzy PID control system

algebraic product triangular norm, and this triangular
norm is defined as:

µ̂(dN , vN , aN ) = µi(dN ) · µj(vN ) · µk(aN ) (9)

where i, j and k are the ith, jth and kth fuzzy sets on dN ,
vN and aN respectively. Notice that the control rules are
nonlinear as the output fuzzy sets are not linearly related
to the input fuzzy sets.

2.4 Inference engine

The inference engine first computes the degree of match µ̂
from the crisp input values by using algebraic product tri-
angular norm in Eq.(9). Then the degree of match is used
to determine the inferred output fuzzy set using Mamdani
minimum inference method, defined as min(µ̂, µ(∆u)).
The reference output fuzzy set (trapezoid), and the in-
ferred output fuzzy set (shown with hatching) are shown
in Fig. 5.

As there are three inputs to the fuzzy PID controller,

Fig. 5. Mamdani minimum inference method

it is necessary to consider all possible combinations of
these variables in a 3D space. A point, say (x1,y1,z1), in
a 3D space can always be distinctly shown by taking its
projection on the xy-, yz -, and zx - planes. So, as shown in
Fig. 6, twenty input combinations are considered in each
(dNvN−, dNaN−, and vNaN−) plane so that the state
point (d∗N , v∗N , a∗N ) can be uniquely located in the 3D
cell (subspace) represented by the triplet (nI , nII , nIII)
where nI , nII , nIII = 1, 2, . . . , 20. For example, the triplet
(9,18,12) represents the 3D cell with 9 from I, 18 from II,
and 12 from III of Fig. 6.

The control rules (R1) to (R8) of the fuzzy PID con-
troller are used to evaluate appropriate control law in each
valid cell (nI , nII , nIII). By using the algebraic product
triangular norm the outcome of premise part of each rule
is found for all valid cells and is shown in Table 1. There
are altogether 20 × 20 × 20 = 8000 cells in the 3D input

space. Not all 8000 cells are valid cells; only a few of them
are valid. A cell (nI , nII , nIII) is said to be valid if and
only if the relations between dN and vN , and dN and aN

produce the relation between vN and aN .

It may be seen from the control rules that the output
fuzzy sets O−1 and O+1 are fired three times. In such a
situation, bounded sum triangular conorm is used [6, 7]
to evaluate combined output fuzzy sets corresponding to
the rule sets {(R2), (R4), (R6)} and {(R3), (R5), (R7)}.
This triangular conorm is defined as min{ 1, µA(∆uN ) +
µB(∆uN )} where A and B are the fuzzy sets on the
normalized output ∆uN .

Since the fuzzy controller is having three inputs, when
algebraic product triangular norm is used, sum of all the
outcomes corresponding to either rule set is less than unity.
Therefore the combined membership using bounded sum
triangular conorm is given by µ(R2) + µ(R4) + µ(R6) < 1
or µ(R3) + µ(R5) + µ(R7) < 1

2.5 Defuzzification

The most commonly used COS method is employed to
defuzzify the incremental control output. This is expressed
as

{A(µ̂1)(h1) +A(µ̂2)(h2) +A(µ̂3)(h3)

+A(µ̂4)(h4) +A(µ̂5)(h5) +A(µ̂6)(h6)

∆uN (kT ) =
+A(µ̂7)(h7) +A(µ̂8)(h8)}

8∑
i=1

A(µ̂i)

(10)

where A(µ̂i) is the area of the inferred output fuzzy set
corresponding to the rule Ri and hi, i = 1, 2, · · · , 8, is the
centroid of inferred output fuzzy set (shown with hatching
in Fig. 5) corresponding to the rule Ri. As mentioned in
Section 2.4, the output fuzzy set O−1 is fired three times
for the rule set {(R2), (R4), (R6)} and O+1 is fired three
times for the rule set {(R3), (R5), (R7)}. In this situation,
using the bounded sum triangular conorm, Eq.(10) can be
written as

{A(µ̂1)(h1) +A(µ̂2/4/6)(h2/4/6)

∆uN (kT ) =
+A(µ̂3/5/7)(h3/5/7) +A(µ̂8)(h8)}

{A(µ̂1) +A(µ̂2/4/6)
(11)

+A(µ̂3/5/7) +A(µ̂8)}
where µ̂2/4/6 and µ̂3/5/7 are the outcomes obtained using
the triangular conorm. The area of the inferred output
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Fig. 6. Regions of fuzzy PID controller input combinations

Table 1. The outcomes of ‘algebraic product’ operation of premise part of fuzzy control rules
(R1)− (R8) for valid 3D cells

Cells (R1) (R2) (R3) (R4) (R5) (R6) (R7) (R8)

µ̂1 µ̂2 µ̂3 µ̂4 µ̂5 µ̂6 µ̂7 µ̂8

(1, 1, 1) µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

to (8, 8, 8)‡

(9, 17, 9), (16, 17, 16) 0 µ−V 0 0 0 0 µ+V 0

(9, 18, 12), (16, 18, 13) 0 0 µ−V 0 0 0 0 µ+V

(10, 11, 18), (11, 12, 18) 0 0 µ+D µ−D 0 0 0 0

(10, 16, 17), (11, 15, 17) µ−D µ+D 0 0 0 0 0 0

(12, 19, 12), (13, 19, 13) 0 0 0 µ−V µ+V 0 0 0

(12, 20, 9), (13, 20, 16) µ−V 0 0 0 0 µ+V 0 0

(14, 12, 19), (15, 11, 19) 0 0 0 0 µ−D 0 0 µ+D

(14, 15, 20), (15, 16, 20) 0 0 0 0 0 µ−D µ+D 0

(17, 9, 10), (17, 10, 11) 0 µ−A µ+A 0 0 0 0 0

(17, 17, 17) 0 1 0 0 0 0 0 0

(17, 18, 18) 0 0 1 0 0 0 0 0

(18, 13, 11), (18, 14, 10) µ−A 0 0 µ+A 0 0 0 0

(18, 19, 18) 0 0 0 1 0 0 0 0

(18, 20, 17) 1 0 0 0 0 0 0 0

(19, 13, 14), (19, 14, 15) 0 0 0 0 µ+A µ−A 0 0

(19, 19, 19) 0 0 0 0 1 0 0 0

(19, 20, 20) 0 0 0 0 0 1 0 0

(20, 9, 15), (20,10,14) 0 0 0 0 0 0 µ−A µ+A

(20, 17, 20) 0 0 0 0 0 0 1 0

(20, 18, 19) 0 0 0 0 0 0 0 1

where µ1=µ−Dµ−V µ−A, µ2=µ+Dµ−V µ−A, µ3=µ+Dµ−V µ+A, µ4=µ−Dµ−V µ+A,
µ5=µ−Dµ+V µ+A, µ6=µ−Dµ+V µ−A, µ7=µ+Dµ+V µ−A, and µ8=µ+Dµ+V µ+A

‡ only valid cells in (1, 1, 1) through (8, 8, 8)

fuzzy set shown in Fig. 5 is given by µ̂(b+− a+)[2− µ̂(1−
θ+2)]/2, and the expression for centroid of the inferred
fuzzy set of reference fuzzy set O+2 in Fig. 4 is given by

{3(b2+ − a2
+)− 3µ̂8[a+(c+ − a+) + b+

h =
(b+ − d+)]− µ̂2

8[(c+ − a+)2 − (b+ − d+)2]}
3(b+ − a+)[2− µ̂8(1− θ+2)]

(12)

where θ+2 = (d+ − c+)/(b+ − a+) (13)

3. MATHEMATICAL MODEL OF THE SIMPLEST
FUZZY PID CONTROLLER WITH ASYMMETRIC

FUZZY SETS

In the following, mathematical model of fuzzy PID con-
troller is derived by employing asymmetric L-function
type and Γ-function type input fuzzy sets and asymmetric
trapezoidal output fuzzy sets. Here we consider the sam-

pling time ‘kT ’ to be ‘k’ for simplicity.
Case (a): xb1 ≤ dN (k), vN (k), aN (k) ≤ xb2

∆u(k) =
1

3N∆u

(
Num

Den

)
(14)

where Num= 3{µ̂1(b2− − a2
−) + (µ̂2 + µ̂4 + µ̂6)(f2

−d2
−) + (µ̂3 + µ̂5 + µ̂7)(c2+ − e2)

+µ̂8(b2+ − a2
+)− µ̂2

1[a−(c− − a−)

+b−(b− − d−)]− (µ̂2
2 + µ̂2

4 + µ̂2
6)

[d−(b− − d−) + f(f − e)]− (µ̂2
3

+µ̂2
5 + µ̂2

7)[e(f − e) + c+(c+ − a+)]

−µ̂2
8[a+(c+ − a+) + b+(b+ − d+)]}

−µ̂3
1(c− − a−)2 + (µ̂3

1 − µ̂3
2 − µ̂3

4

−µ̂3
6)(b− − d−)2 + (µ̂3

2 + µ̂3
4 + µ̂3

6
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−µ̂3
3 − µ̂3

5 − µ̂3
7)(f − e)2 + (µ̂3

3 + µ̂3
5

+µ̂3
7 − µ̂3

8)(c+ − a+)2 + µ̂3
8(b+ − d+)2

and Den= µ̂1(b− − a−)[2− µ̂1(1− θ−2)]

+(f − d−)[2(µ̂2 + µ̂4 + µ̂6)

−(µ̂2
2 + µ̂2

4 + µ̂2
6)(1− θ−1)]

+(c+ − e)[2(µ̂3 + µ̂5 + µ̂7)

−(µ̂2
3 + µ̂2

5 + µ̂2
7)(1− θ+1)]

+µ̂8(b+ − a+)[2− µ̂8(1− θ+2)]

with µ̂1, µ̂2, µ̂3, µ̂4, µ̂5, µ̂6, µ̂7, µ̂8 as defined in Table 1,

θ−2 =
d− − c−
b− − a−

, θ−1 =
e− b−
f − d−

, θ+1 =
a+ − f
c+ − e

(15)

and θ+2 is given in Eq.(13)

Case (b): One normalized input is in the interval [xb1 , xb2 ]
and the remaining two normalized inputs are not in the
interval [xb1 , xb2 ], see Fig. 3.
For cells (10, 11, 18), (11, 12, 18), (14, 15, 20),(15, 16, 20):

In Eq. (14) Num= 3{µ−D(f2 − d2
−) + µ+D(c2+ − e2)

−µ2
−D[d−(b− − d−) + f(f − e)]

−µ2
+D[e(f − e) + c+(c+ − a+)]}

−µ3
−D[(b− − d−)2 − (f − e)2]

−µ3
+D[(f − e)2 − (c+ − a+)2]

and Den= µ−D(f − d−)[2− µ−D(1− θ−1)]

+µ+D(c+ − e)[2− µ+D(1− θ+1)]

For cells (9, 17, 9),(16, 17, 16), (12, 19, 12), (13, 19, 13):

In Eq. (14) Num= 3{µ−V (f2 − d2
−) + µ+V (c2+ − e2)

−µ2
−V [d−(b− − d−) + f(f − e)]

−µ2
+V [e(f − e) + c+(c+ − a+)]}

−µ3
−V [(b− − d−)2 − (f − e)2]

−µ3
+V [(f − e)2 − (c+ − a+)2]

and Den= µ−V (f − d−)[2− µ−V (1− θ−1)]

+µ+V (c+ − e)[2− µ+V (1− θ+1)]

For cells (17, 9, 10), (17, 10, 11), (19, 13, 14), (19, 14, 15):

In Eq. (14) Num= 3{µ−A(f2 − d2
−) + µ+A(c2+ − e2)

−µ2
−A[d−(b− − d−) + f(f − e)]

−µ2
+A[e(f − e) + c+(c+ − a+)]}

−µ3
−A[(b− − d−)2 − (f − e)2]

−µ3
+A[(f − e)2 − (c+ − a+)2]

and Den= µ−A(f − d−)[2− µ−A(1− θ−1)]

+µ+A(c+ − e)[2− µ+A(1− θ+1)]

For cells (14, 12, 19), (15, 11, 19):

In Eq. (14) Num= 3{µ−D(c2+ − e2) + µ+D(b2+ − a2
+)

−µ2
−D[e(f − e) + c+(c+ − a+)]

−µ2
+D[a+(c+ − a+) + b+(b+ − d+)]}

−µ3
−D[(f − e)2 − (c+ − a+)2]

−µ3
+D[(c+ − a+)2 − (b+ − d+)2]

and Den= µ−D(c+ − e)[2− µ−D(1− θ+1)]

+µ+D(b+ − a+)[2− µ+D(1− θ+2)]
For cells (9, 18, 12), (16, 18, 13):

In Eq. (14) Num= 3{µ−V (c2+ − e2) + µ+V (b2+ − a2
+)

−µ2
−V [e(f − e) + c+(c+ − a+)]

−µ2
+V [a+(c+ − a+) + b+(b+ − d+)]}

−µ3
−V [(f − e)2 − (c+ − a+)2]

−µ3
+V [(c+ − a+)2 − (b+ − d+)2]

and Den= µ−V (c+ − e)[2− µ−V (1− θ+1)]

+µ+V (b+ − a+)[2− µ+V (1− θ+2)]
For cells (20, 9, 15), (20, 10, 14):

In Eq. (14) Num= 3{µ−A(c2+ − e2) + µ+A(b2+ − a2
+)

−µ2
−A[e(f − e) + c+(c+ − a+)]

−µ2
+A[a+(c+ − a+) + b+(b+ − d+)]}

−µ3
−A[(f − e)2 − (c+ − a+)2]

−µ3
+A[(c+ − a+)2 − (b+ − d+)2]

and Den= µ−A(c+ − e)[2− µ−A(1− θ+1)]

+µ+A(b+ − a+)[2− µ+A(1− θ+2)]
For cells (10, 16, 17), (11, 15, 17):

In Eq. (14) Num= 3{µ−D(b2− − a2
−) + µ+D(f2 − d2

−)

−µ2
−D[a−(c− − a−) + b−(b− − d−)]

−µ2
+D[d−(b− − d−) + f(f − e)]}

−µ3
−D[(c− − a−)2 − (b− − d−)2]

−µ3
+D[(b− − d−)2 − (f − e)2]

and Den= µ−D(b− − a−)[2− µ−D(1− θ−2)]

+µ+D(f − d−)[2− µ+D(1− θ−1)]
For cells (12, 20, 9), (13, 20, 16):

In Eq. (14) Num= 3{µ−V (b2− − a2
−) + µ+V (f2 − d2

−)

−µ2
−V [a−(c− − a−) + b−(b− − d−)]

−µ2
+V [d−(b− − d−) + f(f − e)]}

−µ3
−V [(c− − a−)2 − (b− − d−)2]

−µ3
+V [(b− − d−)2 − (f − e)2]

and Den= µ−V (b− − a−)[2− µ−V (1− θ−2)]

+µ+V (f − d−)[2− µ+V (1− θ−1)]
For cells (18, 13, 11), (18, 14, 10):

In Eq. (14) Num= 3{µ−A(b2− − a2
−) + µ+A(f2 − d2

−)

−µ2
−A[a−(c− − a−) + b−(b− − d−)]

−µ2
+A[d−(b− − d−) + f(f − e)]}

−µ3
−A[(c− − a−)2 − (b− − d−)2]

−µ3
+A[(b− − d−)2 − (f − e)2]
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and Den= µ−A(b− − a−)[2− µ−A(1− θ−2)]

+µ+A(f − d−)[2− µ+A(1− θ−1)]

Case (c): Normalized inputs dN (k), vN (k), aN (k) are not
in the interval [xb1 , xb2 ].
For cells (17, 17, 17), (18, 19, 18), (19, 20, 20):

{3(f2 − d2
−)− 3[d−(b− − d−)

∆u(k) =
+f(f − e)]− [(b− − d−)2 − (f − e)2]}

3(f − d−)(1 + θ−1)N∆u
(16)

For cells (17, 18, 18), (19, 19, 19), (20, 17, 20):

{3(c2+ − e2)− 3[e(f − e)

∆u(k) =
+c+(c+ − a+]− [(f − e)2 − (c+ − a+)2]

3(c+ − e)(1 + θ+1)N∆u
(17)

For cell (18, 20, 17):

{3(b2− − a2
−)− 3[a−(c− − a−) + b−(b−

∆u(k) =
−d−)]− [(c− − a−)2 − (b− − d−)2]}

3(b− − a−)(1 + θ−2)N∆u
(18)

For cell (20, 18, 19):

{3(b2+ − a2
+)− 3[a+(c+ − a+) + b+(b+

∆u(k) =
−d+)]− [(c+ − a+)2 − (b+ − d+)2]}

3(b+ − a+)(1 + θ+2)N∆u
(19)

4. ILLUSTRATIVE EXAMPLE

Comparison of the performances of linear PID controller
and the simplest fuzzy PID controller is done here by
considering the following example:
A nonlinear first-order system

ẏ(t) = y(t) + sin2(
√
|y(t)|) + u(t) (20)

with step input of magnitude 4 as the reference signal.
Based on the design methodology in Section 4.7 in [9] the
controller parameters are selected. For the above process,
the values of sampling period T=0.1sec, proportional gain
Kd

P = 1.8T , integral gain Kd
I = 1.8T , derivative gain

Kd
D = 0.008T , maximum absolute displacement(error)
|d|max = 4, maximum absolute velocity |v|max = 4.10676,
and maximum absolute acceleration |a|max = 994.592.

For the fuzzy PID controller, the parameters Nd = 3.0,
Nv = 3.0, Na = 0.045, N∆u = 2.1, and l = M =
20 gave rise to the response in Fig. 7, in which peak
overshoot Mp = 0.184%, rise time tr = 1.164 sec, and
settling time ts = 1.6 sec. Fig. 7 also shows the response
with conventional PID controller, in which peak overshoot
Mp = 37.4442%, rise time tr = 1.0 sec, and settling
time ts = 5.6 sec. Upon comparison, it is evident from
the plots that the fuzzy PID controller performs better,
demonstrating its superiority over the conventional PID
controller.

5. CONCLUSION

In this paper, mathematical model for fuzzy PID controller
has been derived analytically using asymmetric L-function

Fig. 7. Step (magnitude 4) response of the closed loop
system with nonlinear process

type and Γ-function type input fuzzy sets, asymmetric
trapezoidal output fuzzy sets, algebraic product triangular
norm, bounded sum triangular conorm, Mamdani mini-
mum inference method and COS defuzzification method.
The superiority of fuzzy PID controller over the linear PID
controller has been demonstrated through a simulation
study on a nonlinear first-order system.
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