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Abstract 

The scatter observed in creep deformation and failure data is of considerable technological 
importance because it greatly complicates the task of making accurate deformation and 
lifetime estimates for high temperature components. In this work a  stochastic model for the  
creep damage evolution and associated scatter has  been developed in terms of a 
discontinuous Markov process. The magnitude of damage has been described in the form of a 
probability distribution function whose evolution in time characterizes the nondeterministic 
nature of the damage accumulation process. The model is able to describe the state of 
damage along with the associated scatter at a given time at any stress level. The validity of 
the model has been established by comparing the predicted creep curves generated for a 
specific loading condition with those experimentally obtained for an austenitic stainless  steel 
(Type 316, 18Cr 8 Ni 2Mo). 
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1. Introduction 
Creep tests conducted on  engineering materials at a given stress and temperature exhibit 
considerable scatter in creep strain time data. This is often attributed to material variability. It 
is well known that modest variations in chemical composition, thermo-mechanical 
processing and  heat treatment can lead to substantial variations in mechanical properties [1]. 
This variation or scatter is primarily responsible for the gap that exists between theoretical 
predictions of existing continuum damage model and experimental observations. Several 
studies employing the concept of probability  have been developed to predict and 
characterize the variation in the evolution of creep damage [2]. Most of these are  extensions 
of  the existing deterministic models [3] with the assumption that the  parameters are random 
variables. These are estimated from test data using statistical parameter estimation 
procedures. 
The Weibull distribution function [4,5] frequently provides a reasonable fit to the probability 
distributions of life times (time to rupture) obtained from such tests. This explains to some 
extent the  variability in life time. However the probability distribution of damage as it 
evolves during the test  can  not be reasonably represented by Weibull distribution in many 
cases. This is because it looks only at two limiting states, viz., the initial state when material 
is virgin and the final state when the material has failed (ruptured). This imposes severe 
limitations as it can not predict any intermediate states of damage accumulation. 
Bogdanoff [6] and  Ganeson [7] have developed an evolutionary probabilistic model  for 
fatigue life time prediction. This gives the evolution of the probability distribution as a 
function of  number of cycles.  
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This method has been suitably modified to develop a computationally simplified approach to 
represent creep damage evolution along with the associated scatter. The model developed has 
been  applied to creep strain accumulation data on austenitic stainless  steel (Type 316, 18Cr 
8 Ni 2Mo) for different loading conditions. 
 
2. Creep as a discrete Markov process: 
Cavitation is one of the most common forms of creep damage. This has been correlated with 
creep stain accumulation by direct metallographic examination of power plant components 
exposed to creep. Figure1 shows a schematic representation of the nature and distribution of 
cavities during various stages of creep strain accumulation in a component. On the basis of 
this plot Neubauer and Wedel [8] proposed a method of monitoring creep damage in ageing 
power plant components by periodic metallographic examination. The process truly consists 
of both nucleation and growth, the former is probabilistic where as the latter is deterministic. 
A probabilistic mechanism is best represented as a discrete process whereas growth is 
continuous by nature.  
With creep damage accumulation the distance between cavities keep decreasing and 
ultimately some of these may join together producing a micro-crack. This happens as and 
when a cavity nucleates in between two adjacent cavities. The process continues leading to 
the formation of macro-cracks. Ultimately the component fails as and when its load bearing 
cross section area is full of cavities/cracks. There are four distinct stages of cavitation. A 
virgin material passes through each of these before failure occurs. Let us represent these 
states by S1, S2, S3, S4, S5 and S6. Here S1 represents the virgin material and S6 denotes 
failure. Intermediate stages of damage are represented by S2 to S5. The time between the two 
consecutive states is the average inspection interval. Let us assume that damage 
accumulation starts from S1 and moves successively from one state to another. Here each 
move represents a step. In this case it denotes inspection interval. If the material is currently 
in state Si, it moves to state Sj with probability pij in the next step. This probability does not 
depend upon which state the material had been before its current state. This indeed is quite 
logical that it will be applicable for creep damage accumulation. The process of damage 
accumulation during creep depends only on its current state. Therefore it is possible to 
simulate this by a Markov chain process. 
The transition probabilities (pij) for moving from one state to another could be represented by 
the following transition matrix; 
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The elements of row 1 of the matrix represents probability of the material moving over to any 
of the states S1 to S6 if its current state is S1. pii is the probability of remaining in current state 
at time t and pii+1 is the probability of shifting to the next state i+1 at time t+1. These are the 
characteristic parameters determining the damage accumulation rate in this model. Let us 
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assume for simplicity that the elements of the transition matrix does not change with time 
and incorporate some of the constraints imposed by mechanism of creep damage 
accumulation by nucleation of cavities. The process of cavitation is irreversible. It can not 
heal. This means if it is in state Si it can not move to Sj where j < i. This is represented 
mathematically as: 

ijifpij <= 0                                                                                                        (2) 
Likewise even though the process of damage accumulation during creep is discrete it can not 
bypass a particular state. This means a virgin material (S1) before failure must pass through 
each of the successive steps from S1 to S6. This means if a material is in state S1 now it can 
either remain in its present state or move to state S2. Its probability of moving to state S3 and 
beyond is zero. This is mathematically expressed as: 

10 +>= ijifpij                                                                                           (3) 
If one imposes the conditions given in Eq.(2) or Eq.(3), many of the elements of P matrix 
will be zero. Therefore it is more convenient to represent this as in Eq.(4). Now onwards  pii 
is referred as pi and pii+1 as qi. 
With these constraints the transition matrix representing creep damage accumulation in a 
material becomes as follows:      
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The Eq.(4)  thus represents a transition matrix that could simulate accumulation of damage 
during creep. Here only four intermediate states of damage have been considered. Figure 2 
gives a pictorial representation of the process. This can easily be extended by adding more 
number of intermediate states. This matrix can now be used to predict the state of the 
material after nth step or during nth inspection interval. Assuming that the elements in the 
matrix does not change with time, this is represented by: 
Pn = poPn, n = 0,1,2,…….       (5) 
 
where  po is a probability vector which represents the initial distribution of damage specified 
by the (1 x b) row vector  

po = { π1 ,…….., πb} and   1
1

=∑
=
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For virgin material there is no damage. Therefore initial damage vector po should have 
components given by Eq. (7). 
po = { 1,0 ,…….., 0}         (7) 
In cases where elements of transition matrix changes with time this is given by 



 4 
 

∏=
n

k
kon PpP           (8) 

Often in stead of representing the state of damage as features describing its characters it is 
possible to assign a numerical value to it. In damage mechanics it is customary to represent 
damage as the ratio of current creep strain to its rupture strength. Therefore S1 = 0 represents 
a virgin material where as S6 = 1 represents failure or fracture. Following the same analogy 
we could assign numerical values to each of the intermediate damaged states S2, S3, S4, and 
S5 as 0.2, 0.4, 0.6 and 0.8. Let the vector V represent a set of numeric values for the damage 
set S. Therefore at nth time step it is possible to estimate the average magnitude of damage by 
the following expression. 
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The model developed here considers only six distinct stages of cavitation i.e., damage. To 
obtain a better accuracy in prediction, additional number of intermediate states can be 
incorporated. In that case, the damage is indexed by a finite set of states 1, 2, ..., b. State 1 
means the initial state with no  damage and state b means the final damage  state, i.e. failure 
or  replacement.  
Estimation of the elements of the transition matrix is a major step in any attempt to simulate 
the evolution of creep damage at a given stress and temperature. Depending on the number of   
intermediate states to be considered and the magnitude of time to failure it can indeed be a 
computation intensive process. Bogdanoff [9] has suggested a simple procedure for 
estimating these elements to simulate fatigue damage evolution where as in this work it  has 
been used to represent creep damage evolution. 
To determine the probability transition matrix P, we introduce a random variable  W in 
which W1,b denotes the time to failure at state b given that the process starts in state 1. The 
mean and the variance of W1,b according to Bogdanoff [6] are 
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If  =jr  r, a constant, the mean time to failure Wm and its standard deviation Sm can be 
expressed in terms of r and b as 
Wm   =  (b-1)(1+r)         (12) 
S2

m    =  (b-1)r(1+r)         (13) 
In the case of rj is not equal to r, Eq.s(12,13) is not valid. Then dividing Wm into certain 
number of states, W1, W2,.. Wm with constant rj , mean time to reach a specific state and its 
standard deviation can be estimated by the following equations 
W1   =  (b1-1)(1+r1) 
S1

2
    =  (b1-1)r1(1+r1)         (14) 

W2   =  (b2-1)(1+r2) + W1 
S2

2
   =  (b2-1)r2(1+r2) + S1
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Then from Eq.(14) , 
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Using the definition of 
j
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p
r =  and Eq.(15), the probability transition matrix P is completely 

obtained.  
 
3. Result & Discussion 
The experimental results of Garofalo et al. [1] have been used to validate the proposed 
stochastic model. A number of replicated creep tests until rupture was performed on AISI 
type 316 stainless steel at several temperatures and stresses. These were constant load creep 
test data at 593 oC, 704 oC and 815 oC. Six repeat tests were conducted at each stress level at 
a given temperature. We have used these data to estimate the values of  mean (Wm) and 
standard deviation (Sm) of time to reach a specified damage state. Using these, elements of 
the transition matrix were determined following the expression developed  by Bogdanoff [6]. 
Table 1 gives estimates of mean time to reach a damage state and its standard deviation at 
593 oC for two different loading conditions.  
The transition probability matrix P for some of the test conditions (593 oC,218 MPa; 704 
oC,66 MPa; 815 oC,49 MPa) are  listed in Table 2. By substituting the values of P into the 
MC model, the probabilities of damage accumulation were determined at any instant of time 
for various test conditions. Figure 3 shows the probability distribution of damage 
accumulation at 593 oC, 218 MPa. This plot represent probability of the test sample being in 
a particular state of damage as a function of time. The states of damage (0, 0.2, 0.4, 0.6, 0.8, 
1) are denoted by a set of lines having different symbols. For example, it is  seen  that at 200 
hrs, the probabilities of the sample being in state 0, 0.2, 0.4, 0.8, 1 are 0, 0.416, 0.212, 0.044, 
0.23 and 0.1  respectively. This implies that at 200 hrs, probability of remaining in state of 
damage 0.2 is maximum. Therefore this may be taken as the most likely state of damage in 
this test condition at 200 hrs.  Similar kind of interpretation  can be made  from  other test 
conditions. 
 The model has been used to simulate creep damage evolution as a function of time. Since the 
probability of reaching a specific state of damage at any instant of time is known, a random 
number generator can be used to estimate the  time to reach a specific state. From this a set of 
normalized strain vs. time data is obtained. By repeating the method, several sets of predicted 
normalized strain vs. time data have been  generated. The experimental and predicted sample 
data are shown in Fig.4(a-b). The predictions fall well within the scatter band of experimental 
data.  
The number of intermediate stages of damage was arbitrarily selected. For example, in Table 
1 we have used six levels of state of damage at which the model was made to fit mean and 
variance. It is possible to select any number of intermediate states. Higher number of 
intermediate states is likely to give smoother plots.  
This  model can also be used  to predict creep damage evolution even under conditions not 
covered by test data. It is well known that stress rupture data are more readily available than 
creep strain time data. This procedure gives us a clue to generate the likely normalized creep 
strain time plots using these data. This will be of considerable help wherever creep strain 
based life prediction is required from more readily available stress rupture data. 
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In the present work the virgin material having no damage has been described in terms of a 
probability mass function represented by Eq.(7) where the first element is 1 and the rest of 
the elements are 0. This may be valid for a virgin sample. It is also possible to have more 
than one non zero elements in this mass function. These elements can be so chosen to 
represent the initial state of damage of the test sample. Such a situation can arise if one is 
performing a creep test on samples drawn from service exposed high temperature 
components. The procedure suggested provides a method of assessing the state of damage in 
service exposed components by comparing the shape of its creep curve with those simulated 
by assigning a suitable initial probability mass function. 
 
4. Conclusions 
In the present study a stochastic model based on Markov process has been developed to 
describe creep damage evolution. The damage state at any time can be estimated if the initial 
state and the probability transition matrix are known. The model is able to describe the state 
of damage along with the associated scatter at a given time at any stress level. This can be 
used for creep strain based life prediction even if only stress rupture data are available. 
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0.0 0 0 
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0.0 0 0 
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 1 13.3 5.574226 

Probability T  :  593, oC 
σ  : 218 
MPa 

T  :  704, oC 
σ  : 66 MPa 

T  :  815, oC 
σ  : 49 MPa 

p1,q1 
0.889 0.111 0.99 0.01 0.368 0.632 

p2,q2 0.995 0.005 0.982  0.018 0.619 0.381 
p3,q3 0.989 0.011 0.992  0.008 0.653 0.347 
p4,q4 0.946 0.054 0.994 0.006  0.682 0.318 
p5,q5 0.994 0.006 0.994  0.006 0.704 0.296 
p6,q6 0.889 0.111 0.99  0.01 0.368 0.632 
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 q1 q5  q4 

S5 

p4 
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Fig. 2 A pictorial representation of Markov chain. 

Table 2   
Transition Probability Matrix for various 
test conditions (listed only for pj,qj) 

Table 1 
Mean and Standard deviation of time  
to reach a specified state of damage  
at  593 oC. 

Damage State Description
S1 Virgin
S2 Isolated cavities
S3 Aligned cavities
S4 Linked cavities
S5 Macro crack
S6 Fracture

Fig. 1  A schematic representation of the nature of damage evolution in material subjected 
to creep loading and the phases used to represent the same. 
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Fig. 3 Probability distribution of time to reach a specific damage state (0,0.2, 0.4, 0.6, 0.8, 1) 
at 593 oC, 218 Mpa. 

(a) 
(b) 

Fig. 4 Sample curves generated by model at (a) 704 oC ,91 Mpa and (b) 593 oC ,218 Mpa.  


