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Abstract

In continuum damage mechanics (CDM) approach, damage accumulation takes place through
void nucleation, growth and coalescence. It is controlled by the chemistry of the material,
initial inclusions or second phase particles' fractions with their size/shape distribution, stress
triaxility, strain, stress, strain rate, strain path, grain size, initial crystallographic microtexture
and temperature of deformation. In this study, a model has been developed to calculate the
complex relationship between the extents of damage accumulations (i.e. void area fraction)
with its influencing parameters in a variety of high strength low alloy steels under tension.
The model has been applied to confirm that the predictions are reasonable in the context of
metallurgical principles.

Key words: void volume fraction, high strength low alloy steels, Bayesian neural network,
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1.0 Introduction

Ductile fracture progresses through three stages namely void nucleation, void growth and
coalescence under the influence of favourable plastic strain and hydrostatic stress, which is
well established [1]. Considerable analytical and experimental research work on the
nucleation, growth and coalescence of voids has been performed. The preferred sites for void
nucleation are inclusions, second phase particles, or fine oxide particles.

There are extensive amount of theoretical, experimental and modelling work on the topic,
ductile fracture micro-mechanisms by several pioneer researchers; some are required to
mention in this context. Rice and Tracy [2] had shown that void growth increases
exponentially with the hydrostatic stress. McClintock [3] investigated that fracture by
coalescence of voids would be promoted by a high level of stress triaxility. Gurson [1]
developed a constitutive model where a yield occurs for porous ductile material. Tvergaard
[4] used constitutive model for describing ductile failure and void growth is the Gurson-
Tvergaard model. Garrison and Moody [5] explained that low strength material exhibit very
low tensile ductility if the volume fraction of a void nucleating second phase is sufficiently
high.
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There are many studies monitoring the accumulation of voids during the tensile deformation
(i.e. just after UTS) of published data which are, in principle, effected by both the applied
stress and the resulting plastic strain. It is not clear in these circumstances whether the
damage accumulation is stress induced or whether the generation of defects during
deformation helps nucleate void described as strain induce damage accumulation. Damage
accumulation inside any material depends upon the chemistry of the material, initial
inclusions or second phase particles' fractions and distribution, stress triaxility, strain, stress,
strain rate, strain path, grain size, initial crystallographic microtexture and temperature of
deformation. Hence the problem of damage accumulation clearly involves many variables
and complex.

The objective of this study is to investigate the parameters which control the deformation and
fracture and their isolated influence. A Bayesian neural network model has been developed to
correlate the extent of damage accumulation with its influencing parameters for high strength
low alloy steels under tensile deformation.

2.0 Method

As it is well established that neural network is a simple regression analysis in which a flexible
non-linear function is fitted with the experimentally measured data, the detail of which have
been reviewed extensively [6]. MacKay [7 — 10] has already explained the theory of Bayesian
Neural Network and its application in his pioneer studies.

This Bayesian framework for neural networks has two advantages [7 — 10]. First, the
significance of the input variables is quantified automatically. Consequently, the model
perceived significance of each input variables can be compared against established
metallurgical theory. Second, the network's predictions are accompanied by error bars which
depend on the specific position in input space. This quantifies the model's certainty about its
predictions. A potential difficulty with the use of regression analysis is the possibility of the
over fitting. To avoid this, the experimental data can be divided into two sets, a training data
set and a testing data set.

The Bayesian neural network model is produced using only the training data. Later the testing
data are used to check that the model behaves itself when presented with previously unseen
data. The training process involves a search for the optimum non-linear relationship between
the inputs and the output data and is computer intensive. Once the network is trained,
estimation of the outputs for any given set of inputs is fast.

3.0 Parameters

Extensive literature study has been carried out to understand the ductile fracture micro-
mechanisms and their interpretations while explaining the mechanical behaviour of high
strength low alloy steels under various operating conditions. Damage accumulation inside a
material under tensile deformation strongly depends upon chemistry of the material, stress,
strain, initial inclusion volume fraction, its size, shape, distribution, temperature of
deformation, strain rate, stress triaxility, grain size and initial crystallographic microtexture of
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the material. Two kinds of steels are chosen for this analysis (i.e. HSLA 100 and HY 100
steels). Huge amount of research work about these steels is available elsewhere [11 — 17].

The inputs parameters for the model are: stress, strain, stress triaxility, strain rate and
temperature and the output is the extent of void area fraction. The other influencing
parameters for damage accumulations are initial microtexture and grain size, which were not,
included as input parameters because there is lack of published data available. A total 536
experimental data were collected from published sources [11 - 17] and tabulated in a
spreadsheet. The statistics of the whole database are given in Table 1. It is noted from Table 1
that the output has been converted to LN (1/VAF) to get rid of complexity in calculations.
This has been done because the extent of void area fraction is very small. Yescas et al. [18]
has demonstrated the similar kind of neural network analysis in their pioneer study for the
calculation of retained austenite in austempered ductile irons.

Table 1: Statistics of the database used for neural network analysis. SD: standard deviation, VAF: void area
fraction.

Inputs Unit Maximum | Minimum Mean SD Example
Stress MPa 1365.7 763.4 1128.4 126. 959.4

6
Triaxility - 1.4 0.8 1.14 0.22 0.8
(Om/Geq)
Strain rate s 1.0 0.0001 0.60 0.49 0.001
Temperature ’c 298 188 233.2 427 | 298
Strain - 0.51 0.01 0.14 0.10 0.179
Output Unit Maximum | Minimum Mean SD -
LN (1/VAF) - 9.16 3.63 6.33 1.06

4.0 Bayesian neural network

All the experimental data digitized have been tabulated in a single spreadsheet and
randomised and partitioned equally into test and training sets. The later was used to create a
large variety of neural networks models whereas the test data was used to see how the trained
models generalised on unseen data.

The training involves a minimisation of the regularised sum of squared errors. The term, o,
used below is the framework estimate of the noise level of the data, which has been discussed
elsewhere [11 - 17]. The complexity of the model is controlled by the number of hidden units
(Figure 2 (a)). Figure 2 (a) shows that the inferred noise level decreases as the number of
hidden unit increases. The number of hidden units is set by examining the performance of the
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Figure 2: (a) Variation in o, as a function of the number of hidden units. Several values are presented for each
set of hidden units because the training for each network was started with a variety of random seeds, (b) the test
error as a function of the number of hidden units.

model on unseen data. The test set error tends to go through a minimum at an optimum
complexity (Figure 2 (b)). It is possible that a committee of models can make a reliable and
reasonable estimate than an individual model [7 - 10]. The best models are ranked using the
values of the test errors. Committees are then formed by combining the predictions of the best
models. MacKay [7 — 10] has shown when making predictions with error bars, the best model
should be decided according to a quantity the log predicted error. However, the committee
with three models was found to have an optimum membership with the smallest test error.
Once the optimum committee is chosen, it is retrained on the entire dataset without changing
the complexity of each model, with the exception of the inevitable and relatively small
adjustments to the weights. Figure 3 (a) and 3 (b) shows the normalised predicted values
versus experimental values for the best model in the training and test datasets.
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Figure 3: (a) Plot of the estimated versus measured void area fraction - training dataset, (b) testing dataset, (c)
committee model (best model) and (d) model perceived significance. It is noted that output = LN (1/VAF).
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5.0 Prediction

The predictions made using the optimum committee of models are illustrated in Figure 3 (c).
Figure 3 (d) illustrates the significance of each of the input variables, as perceived by the
analysis. From this analysis, it is investigated that the stress triaxility is having tremendous
influence in damage accumulation. After that strain comes. Figure 4 (a) shows that with the
increase in stress, damage accumulation increases drastically and beyond a certain stress
value (i.e. 1000 MPa), it decreases drastically. Figure 4 (b) shows that with the increase in
strain, void fraction increases drastically towards higher strain. At strains very near to
fracture, but at void volume fraction levels of 0.01, these results show void growth accelerates
rather abruptly into a second, very rapid growth stage and imminent material failure,
consistent with the deformation localization process associated the void sheet coalescence [11
- 17]. Figure 4 (c) demonstrate that with the increase in strain rate damage accumulation
suppresses drastically. Increasing strain rate promotes void sheet mode of coalescence
abruptly. This is in agreement with the published theory [11 — 17]. A well known
characteristic of void growth is its strong sensitivity to the stress triaxiality which is
investigated in Figure 4 (d). Figure 4 (e) explains that with the increase in testing temperature
void area fraction increases drastically. This is in agreement with the published theory.
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Figure 4: Predictions of damage accumulation in high strength low alloy steels as a function of: (a) stress, (b)
strain, (c) strain rate, (d) stress triaxility and (e) temperature of deformation. It is noted from these figures that
when we see the individual influence of variables on damage accumulation, other parameters are kept constant.

6.0 Conclusions

A Bayesian neural network model has been developed to estimate the fraction of void in high
strength low alloy steels as a function of stress, strain, stress triaxility ratio, strain rate and
temperature of deformation. In is concluded that the stress triaxility is having strong influence
on damage accumulation rather strain and stress. Nevertheless, it would have been better
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model if we could have included initial inclusions fraction and its shape factor and
distribution which also play a major role in damage accumulation.
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