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INTRODUCTION

Over the last two decades, chemometrics has carved out a firm

niche in the field of analytical chemistry. This term was supposedly

coined by the Swedish Physical Organic Chemist S.Wold in 1972.

Together with the Americal Analytical Chemist B.R.KowaLski, Wold

formed the International Chemometrics Society. Subsequently, there

have been several major reviews 11-71, ACS symposia'8'91, a National

Bureau of Standards Conference (10 a NATO School I'll a series of

monographs 1121 and several textbooks 113.141. Acceptace of chemometrics

as a growing discipline has also been emphasized by 115,161 two

international journals devoted to chemometrics.

Chemometrics in analytical chemistry is essentially application

of the basic statistical methods for analysing the analytical data albelt

with a much broader scope. Similar methods, however, were used for

many years by biologists, geologists and numericaL taxonomists.

Ability of the modern analytical instruments to generate large

amounts of data rapidly made it imperative that new approaches are

needed to interpret what may be described as large multivariate data

matrices.

This definition of chemometrics has generated further debate on

the scope of the subject. It is argued that since the statistical pack-

ages are also linked with the expert systems, library searching, gra-

phical and databasing routines etc., chemometrics should encompass

a much broader gamut of methods rather than mere application of

the statistical methods to analytical data. The central theme of che-

mometrics, must, however, be the laboratory instrument and how com-

putational methods can increase the productivity of the experiments.
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This essay attempts to provide on overview of the chemometric

methods within the ambits of analytical chemistry. There is no

attempt to derive the results mathematically, though citations have

been made wherever appropriate. This article will concentrate, prin-

cipally, on gaining an understanding as to how chemometrics can be

useful in the modern analytical laboratory.

SAMPLING METHODS

The job of an analyst in an analytical laboratory starts with

sampling. These samples may be physical entities, or analytical para-

meters. Several statistical texts have been written over the last three

decades aiming to help the experimenter optimise sampling methods

11-191 and arrive at the representative sample. Following subsections

will describe in what way chemometrics can help the experimenter

optimise his time and instrumentation more.

Sampling Theory : Sampling Theory in analytical chemistry has been

described in detail by Kateman and PiJpers'201. The chemist frequently

encounters continuous processes often described as time series.

Examples are continuous industrial processes where deviations from

pre-set limits can result in poor quality of a product or sometimes

industrial accidents. Naturally occuring time series found in geochem-

istry when measuring compounds down the core, in environmental

chemistry when monitoring seasonal diurnal changes in composition,

in clinical chemistry when monitoring biorhythm and finally when

tracking reaction kinetics by methods such as stopped-flow.

Frequency of sampling is the most important parameter, which,

in turn, depends on the type of question to be addressed. In some

instances, an exact future trend is anticipated which is normally

a cyclic trend. Cyclical time series are well known in spectroscopy,
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economic forecasting and geological palaeoclimatic studies where

the effect of the changing orientation of the earths orbit around

the sun changes the sea surface temperature and influences the

proportion of varius chemicals in geochemical samples of different

ages. In time series analysis, the regular spacing of samples is

extremely important. tthough irregular spacings can also be negoti-

ated. Depending upon the sample size, frequency of sampling and

the sample spacing, the analyst chooses his next course of action

which might be a fourier transform, curve fitting or the method of

interpolation, linear, spline, rectangular etc.

Simplex Method : In sampling a time series, normally a single

variable is measured as a function of time. However, the analyst is

often interested in more complex processes, where more than one in-

dependent variables are involved. These may be, for example, the at-

mospheric corrosion as a function of humidity, temperature, rainfull

and sulfur-dioxide concentrations or the yield of a synthetic reaction

as a function of temperature, solvent, catalysts etc. These problems

require optimisation techniques. The traditional approach is to per-

form an experiment under certain conditions, measure the perform-

ance of one variable and optimise, change the second variable keep-

ing the first variable at the optimum value and continue till all the

variables are optimised. However, it is possible to model this proc-

ess by considering the experiments as samples in multidimensional

space, the dimensions being the number of independent parame-

ters. The resultant model is also known as the objective function

or the response surface. However, there is a potential risk of miss-

ing this response surface if the variables are optimised one by one.

Simplex optimisation is a method for searching these,

surfaces12 1231 and is based on the observation that most experimental

surfaces are likely to be relatively smooth and not contain sudden
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discontinuities. The first step in the analysis is to define an allowed

region within which to search for the response. The second stage is

to choose a step size, which a reasonable amount by which to change

each variable, when searching for an optimum. The third step is to

define the response surface and establish initial condition. The sim-

plex terminates when all possibilities of making extra measurements

yield a worst response. Provided that the response surface is well

behaved and the initial conditions and step size have been well cho-

sen, simplex methods should yield the best conditions using a small

number of experiments.

Factorial Methods : Factorial approaches to experimental design

contrast with simplex approaches in that several experiments can

be performed simultaneously. There are many types of design, but

the overall philosophy is to sample a number of points on the

response surface : regression analysis can thus be used to fit this

surface, and find the maximum if there is one.

There are many possible designs, but they are all depend-

ent on an intuitive estimate of the shape of the response surface in

advance. The region of most variability is that in which most ex-

periments should occur. A four factorial experiment is one in which

four factors which may be temperature, pressure, concentration and

pH, for example, are to be varied.

Factorial methods have the advantage over simplex ap-

proaches in that they enable the entire response surface to be con-

structed. They are not only used to find optimum, but can also be

used to examine how variables interact, which conditions are the most

crucial and so on, and tend to give a much better idea of the over-

all effect of experimental conditions on an analytical process.
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CHOICE AND OPTIMISATION OF ANALYTICAL CONDITIONS

Once the sampling is done, the next job of the analyst is to

analyse the sample by the best possible means that he has. This

necessitates the choice of the right instrument from an array of

instruments, minimise the number of experiments and decide upon

how many replicate measurements are necesary. In all such

instances, there are established chemometric techniques.

Choice of Masuring Techniques : Same sample may be analysed

by more than one techniques. The analyst must make a pragmatic

and judicious choice. For example, if the objective of a series of

measurements is to detect outliers, then the question to be addressed

is "which technique detects outliers most efficiently 7' If several tech-

niques are used, can the number of measurements be reduced as

more than one provide similar informations ? Procrustes 124-251 is one

approach to comparing the information in two or more sets of meas-

urements. Principal Component Analysis (PCA), is also used for

reducing the dimensionality of the data. This enables the analyst to

look at the data more conceptually. An alternative approach is

Partial Least Squares (PLS) 1261. Canonical correlations (27) could also

be employed. A radically different approach to comparison of tech-

niques comes from information theory 1281. However, the informa-

tion theoretical approach has come under considerable critiism (29)

Replicate Measurements : Replicate measurements fall under

routine practice. The normal reason for replicate analysis is to pro-

vide confidence in the analytical method and sampling strategy.

The replicate analysis, however, can be used in a far more use-

ful manner. The replicate analysis may be used for investigating in-

ter-laboratory, inter-analyst and inter-machine variability. The ANOVA,

X-5



analysis of variance, method 1301 can be employed for the analysis of

internal variability, and can be used to anwser question such as which

instrument is more reliable ? A more sophisticated approach includes

multi dimensional ANOVA (MANOVA) 1321. After ANOVA, the analyst

can use replicate informations to establish the accuracy of his meth-

ods and determine which techiques are the most efficient. And once

the analyst finds his answers with the ANOVA, he dispenses with the

replicate measurements, preferring instead to use mean readings in

the subsequent analysis.

DATA PROCESSING

Conventionally there is a tendency to confuse chemometrics with

chemical pattern recognitions, whereas, chemical pattern recognition

is only a small part of chemometrics. At the end of sampling and

experimentation, the analyst is left with a vast array of numbers.

Unless a problem is fairly simple, chemometrics methods can be used

to interpret these large multivariate data sets. Four excellent books

on pattern recognition are available 133-361 and together they provide

comprehensive summaries of the literature over the last 15 years.

Class >lcation and clustering : Classification of samples is one of

the principal goals of pattern recognition. Methods of classification

can be divided into unsupervised and supervised approaches. The

difference between these methods is that for supervised approaches

a test (training) set is required to set up a model. In unsupervised

methods no prior test set is required. Cluster analysis (an unsuper-

vised approach) was described in detail by Massart and Kaufman 1371

There are a very large number of computer packages available

to perform the cluster analysis. The result Is normally displayed

graphically as a dendrogram. The majority of commercial softwares,
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CLUSTAN, SAS, SPSS give the user the opportunity of a wide variety

of options. More sophisticated softwares, however, have been devel-

oped. MASLOC is an agglomerative method 1381 based on location

theory. CLUPLOT 1391 is a method for detection of the number of sig-

nificant clusters rather than thinking of individual objects.

In the supervised approach, SIMCA 140-421 (Soft Independent

Modelling of Class Analogy) is, perhaps, the most popular. In SIMCA

a principal component model is established for each class. Principal

component analysis aims to reduce the data from a large number of

original measurements to a small number of principal trends. SIMCA

method has been implemented in packages such as SAS 1431. NIPALS

algorithm is used to calculate principal components rapidly 1441. Other

approaches include SPHERE 145.461, UNEQ1411 AND PRIMA 1481.

Correlation : Another problem frequently encountered by the analyst

is to relate different sets of data. This problem can be solved by

multivariate calibration. The relationship is unlikely to be simple.

There are a large number of techniques in this area, but PLS

(Partiod Least Squares) is the best known method 149 521. Recently the

method has been extended to version PLS2 1531. A further sophistica-

tion is n-dimensional PIS1441.

There is considerable debate as to whether PLS really is the best

approach to multivariate calibration. Historically, this method was one

of the first chemometric techniques to become available as a user

friendly microprocessor based package. However, there is no guar-

antee that the PLS approach theoritically extracts the most reliable

information. Other methods such as principal component regression

and canonical correlation can also be employed but are less readily

available to the analyst. PLS is only really useful if it predicts new

trends in analytical data. However, if PLS is misapplied, their ap-

parent trends could only be artifacts of the data processing technique.

X-7



USE AND ABUSE OF CHEMOMETRICS

In previous sections, a formidable array of methods have been

considered , nothwithstanding that many have been omitted and the

descriptions are only subjective. Nevertheless, this has been clearly

demonstrated that chemometrics can aid the analyst in a large

variety of different ways. As instruments become more and more

sophisticated and data become easier to obtain, the analyst is

confronted with an even more awesome task. Chemometrics is bound

to become essential to the analytical laboratory of 1990's. However,

the reader must be aware that if improperly applied, chemometric

yields meaningless results.

One of the common problem to confront the chemometrician is

poor data. Chemometrics can only reveal the trends that are actually

burried within the data. If the experiment is not well designed, meas-

urements are not replicate, instrument Is not turned properly, che-

mometrics is bound to arrive at a wrong conclusion. Another prob-

lem is the misinterpretation of output. An obvious example includes

the use of correlation coefficient to assess the goodness of the fit to

a given model. If an incorrect number of experiments are performed,

it is possible to obtain almost unit correlation coefficient from any

data.

Several user-friendly softwares are available for pattern recogni-

tion in commercial instrumentation. This does not, however, mean

that any particular package is an automatic choice for solving any

particular problem.

Another common misapprehension is that the chemometrician

prefers computation approaches to traditional "eyeballing". If equiva-

lent information can be obtained by visual inspection of data or simple

methods of analysis, the sophisticated statistic) methods are likely to

be redumdant.
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Finally, chemometrics is not magic. Chemometrics aims to increase

the efficiency of the analytical process. If it has failed to save time,

money manpower, machine time or whatever, then it has been misap-

plied.

FUTURE

The Automated Library : As instruments become more and more

sophisticated, the generation of data becomes easier, it is visualised

that chemometrics will be at the heart of the automatic library. It is

not possible to interpret huge voluminous data manually, expecially

where time is a constraint. Chemometric methods are surely going to

take over the charge.

Mathematical Chemistry : Chemoinetrics is a part of mathematical

chemistry but only a small part of it. Mathematics and statistics have

been heavily used for solving problems in quantum mechanics,

statistical mechanics, spectroscopy, kinetics the structure of matter

and so on. Chemometrics is only a recent development Analytical chem-

ists have only recently had large data sets available to them, and so

comparitively little time to develop their techniques. Thus chemom-

etrics is slowly moving along parallel line to those already developed in

physical chemistry. Matrix algebra and optimisation are the key to

quantum mechanics and are now similarly being used in chemom-

etrics.

CONCLUSION

This essay had attempted to present an overview of the applica-

tion different statistical methods in an analytical laboratory. Starting

from sampling to design of experiments and data processing, there are

techniques available to negotiate them. This essay is by no means an

exhaustive one and many methods have been omitted. Only those

aspects have been discussed which are of direct interest to the

analyst. The future is excitingly bright and the coming century should

see the growth and development of chemometrics into a mature

subject.
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