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1. INTRODUCTION

The atomic and molecular spectroscopy is a powerful tool to

analyse chemical composition or structure of a substance, which may

be a pure compound or a simply mixture or solution of two or more

different phases of a crystalline or amorphous material. The chemis-

try and industry people sometimes also talk of minerals, ores, and

pollutants, but these comprise the same crystalline or amorphous

structures. They are characterized using the same instrumental tech-

niques.

The various techniques explored to characterise these materials

using the atomic and molecular spectroscopy constitute a wide sub-

ject of basic and applied sciences. Those deal with the interaction

of electric or magnetic field or electromagnetic radiation (including the

electron beam) with matter through :

(i) spin or orbital motion of valence electron(s),

(ii) excitation of an electron from a core level of an atom or

molecule,

(iii) vibration of nuclie about their equilibrium positions in the

molecule, or

(iv) rotation of molecule about the symmetry axes.

The statistical distribution of the interaction probability over

the energy scale is called the spectrum and the discipline under which

these interactions are studied is called spectroscopy. Thus, according
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to the nature or transition-energy of the interaction, the following main

branches of spectroscopy have been recognised:

(i) Vibrational (infrared) or electronic (optical) absorption

spectroscopy

(ii) Vibrational Raman scattering

(iii) Electronic Raman scattering

(iv) Emission (electronic, vibronic and robronic) spectroscopy

(v) Electronic fluorescence

(vi) Phosphorescence

(vii) X-ray scattering

(viii) X-ray photo-electron spectroscopy

(ix) X-ray fluorescence

(x) Magnetic resonance (EPR, NMR & FMR)

(xi) Mossbauer spectroscopy

(xii) Photoacaustic spectroscopy, and

(xiii) Neutron scattering

In neutron scattering spectroscopy, we measure intensity of a

neutron beans reflected from different nuclle as well as from electron

clouds of associated atoms of given crystal lattice. A neutron bean

having no electronic charge, but being a magnetic particle (with mag-

netic spin I = 1/2), easily pentrates the electron cloud and reaches

the nucleus. It is therefore more informative than the X-ray or elec-

tron scattering to provide accurate positions of different atoms in a

crystal lattice. Moreover, it measures also magnetic moments, if any,

of individual atoms in the crystal lattice.

In the following discussion, I will confine myself to basically

vibrational and electronic spectroscopy using typical examples of :

(i) inorganic or organic materials

(ii) glasses and composites, and

(iii) minerals and pollutants.



A basic advantage of these techniques is that they take into account

the short range interactions and thus successfully apply to structural

diagnosis of crystalline as well as amorphous materials, where X-

ray diffraction and most other aforesaid techniques failed. In this

sense, the vibrational or electronic spectroscopy Is very rewarding to

unambiguously determine and confirm the local stuctures, conform-

ers, hydrogen bonding vibrational or electronic coupling between the

structural units, if any, or electron-phonon coupling (including the

Jahn-Teller interactions).

II. ELECTRONIC SPECTROSCOPY

A. Atomic spectroscopy

Atomic spectrum of an element in solid, liquid or gas phase can

be studied by recording or photographing absorption, emission, fluo-

rescence or phosphorescence of the specimen, as defined in Fig-1.

Absorption
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Fig-1 Different competitive processes in electronic excitation of a valence electron.
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Atomic absorption of a liquid or gas specimen is monitored by

measuring relative intensity of a continuous radiation transmitted

through the specimen as a function of wavelength, as shown in Fig.2.

The device is set-up and callibrated in a fashion that it measures the

absorption or transmission as a function of X. The spectrum of a solid

specimen can be measured in similar way but one has to optimise

with the absorption or transmittance of the specimen within the range

of the spectrophotometer, i.e. the sample should be appropriately thin

of less than - 1 mm or it should be diluted by mixing with certain

(transparent) additives to allow measurable transmission of the inci-

dent radiation through it.

Monochromator
Source

Fig-2 Schematic diagram of measuring absorption spectrum

The emission spectrum is recorded in similar fashion but excit-

ing the specimen in a gap by Arc, spark or discharge. In the fluo-

rescence or phosphorescence, the specimen is excited in a particular

electronic state, usually by a laser beam at a given X. and the spec-

trum in the transitions from that or lower energy levels to the ground

state levels is measured through a monochromater. This technique

is usually limited to insulators, i.e. oxides, halides, etc. It can not be

applied to metals or other conductors with electrons or holes as the



highly mobile charge carriers. They very rapidly (within 10-9s return

from an excited state to the grand state (through electronic conduc-

tion and non-radiative transitions) prior to the radiative transition (fluo-

rescence or phosphorescence) is recorded on a monochromator.

B. Hydrogen atom (IS')

Hydrogen is the simplest example to understand the electronic

spectrum of an atom or molecule having one or more free (or non-

bonding) electron(s). Such a system exhibits stationary states of

energies E„ of the free electrons, following the schrodinger relation

Hcp = Ecp (1)

where

1-I = (P2/8n2m) A2 + V (2)

is the Hamiltonian. The solution of relation (1) gives

E = Rz2ch/n2, (3)

with R = 27E2 me 4/ [ch,'(4nc)1]

the Rydberg constant. Other terms have their usual meanings.

Thus a moving electron in a stationary state cpn radiates an

energy

AE = E - En m (4)

= Rz2ch (1 /n2 -1/1112), or
=Rz2( 1/n2-1/m2) (v = E/ch) (5)

when it jumps from a state cpn to another state cp,n. Here, u is wave-

number (expressed in cm--1) and n and m are principal quantum num-

bers.

For hydrogen, with atomic number 1, z=1 and n=1 in the
>n

ground IS' ('S.) electronic state. In excited states T,,,./can assume any



integral values m=2,3,4 .... oo. Thus for n=1 and m = 2,3,4.... etc.,

i.e. If an electron jumps from an excited 'Pm state to ground state cpa ,

in eqn . (4) we get a series of different lines , called Lyman series. Simi-

larly, the cpm r...^,. (p. transitions result :

T. } (p5

Balmer series

Paschen series

Brackett series, and

Pfund series,

with m= n+1, n+2 .... etc., respectively. Other details are shown

in Fig.3.

Pfund

H(isi)

Fig.3 Emission spectrum of hydrogen.



C. Transition Metals

(i) Cr3+/Cr6+ spectrum

Most of the minerals, in which we might be interested for prac-

tical purposes, contain transition metals, rare-earths and actinide

series. These having 3d", 4f- & 5f'n (with n = 1--* 10 and m = 1

14) unfilled subshells of valence electrons exhibit d -4 d and f

f transitions lying in the region extending from far infrared to ultra-

voilet region of the electromagnetic spectrum. Unlike to hydrogen or

alkali and alkaline series, here the electron exclusively does not un-

der go a transition from a given subshell to another subshell but

exhibits well-resolved spectrum owing to transitions within the subshell

itself. In fact, these transitions are forbidden by the basic selection

rules. They become allowed in these particular examples due to

pecularly strong spin-lattice interactions, and thus exhibit reasonably

intense spectrum,

For example, Fig.4 shows absorption spectra of virgin and heat-

treated 50PbO-20Cr203-30B203 glasses. Two characteristically broad

bands, marked by arrows at (i) 890 nm and (ii) 694 nm, are observed

in the virgin glass (a). Annealing few hours at 500°C or 700°C in-

duces the absorption in the visible and uv regions (starts from 800

nm and grows continuously towards the uv region) at the expense of

the absorption in the near 1R region. This markes these glass-

ceramic products practically useful for opticl glasses/filters or

coating materials of different absorption grades for the visible

radiation and with almost transparent behaviour for the near

infrared radiation. Glasses (b) and (c) provide a sufficiently wide region

of practically constant absorption between 740 and 540 u n which was

not affected considerably on further heating at temperatures as high

as 700°C.
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Fig.4 absorption spectra of 50PbO- 20Cr203 -30B203 glasses; (a) as-prepared
and (b ) and (c ) recrystallized 2h at. 500°C and 700°C respectively. Arrows
indicate aver --avege positions of the absorption maxima analysed using
Lorentzian shapes.

The two bands observed at 890 and 690 nm in the virgin glass

are assigned to two d-d transitations of Cr3+ (3d3) excited from ground

state 4A2 to first excited states 4T2and 2E, 2T2, respectively . Here, the

4A2 . - > 2E, 2T2 transitions are spin -forbidden but they surprisingly ex-

hibit ambiguously much stronger intensity than in the spin -allowed

4A2 _12 transition'.

It Is likely that the chromium in the present glasses exists in a

thermodynamic Cr3+ T ` Cr6+ equilibrium, with Cr3+ and Cr6+ oxidation

states. The presence of chromium in the different oxidation states

allows their intermixing, through the spin-couping, to reveal modified

energy levels of the coupled "Cr3+-Cr6+" ion-pairs. The energy levels

of the ground and excited states of isolated Cr3' and Cr6+ are

portrayed in Fig-5. The transition between ground state 4A2 and the

excited state 2E or 2T1 of Cr3+ or that between ground state 'Al

and the first excited state 3A2 of Cr6+ is forbidden by both symmetry



as well as spin . As the electrons of Cr3+ couple with those of Cr6+,

the transition between the excited and ground states becomes spin

allowed , as shown in Fig-5 for the "Cr3+- Cr6+ " compled pair, ac-

counting for the large intensity of the 694 nm bandgroup observed

in the present samples.

VZrr17r

I it)-" Schema tic diagram fur spin coupling between the ground
and 'A and 'F, 'T, excited stales of isolated Cr" ' and Cr'
'file slhaded area indicates the overlapping region between 'E and
'T, excited states of Cr"

Formation of similar coupled " ion-pairs " in Mn2+ doped RbMgF3

crystals2 led to the intensity of a spin forbbiden 6A1---4T1 transition of

Mn2+ enhanced by a factor of 105. In these crystals , the Mn2+

occupy two crystallographically different Mg2+ sites , and therefore

exhibit two distinctly different emission and excitation spectra. The

energies of the absorption and emission bands associated with these

sites are summarized in Table -I. These spectra are reproduced in Fig.6.



Fig.6 (a) shows a 710 n m emission band (dashed line) and its exci-

tation spectrum (solid line) with peaks at 420 and 600 rim. Fig 6(b)

shows an 870 urn emission band and its excitation spectrum with

peaks at 430 and 700 nm. Lifetimes ( i) measured for both transi-

tions are found to be ti - 20 ms. This is consistent with an oscilla-

tor strength of f - 10.3 determined using the relation :

f = 4.32 x 10-9 J E dv (6)

where the integral defines the area under the absorption curve.

Table-I. Absorption and emission bands of Mn2+: RbMgF3 crystals

Irradiated Irradiated & annealed

Site-I Site-II (in nm)

(in nm)

Absorption :

6A1 - > 4E.
4AI

420 430 410

'Al "T 1 600 700 700

Emission

4TI
- -> `'A1 710 870 870

A required condition for mixing of the free-ion wavefunctions with

those of the neighbour ions or the lattice vibrations is that the

symmetry associated with the centre of inversion be destroyed by the

neighbours. This is evident from our vibrational analysis of the

various glasses, shown in Table-II, where the degeneracies of v2(E)

and v3, v4(F2) vibrational modes of CrO42- are completely removed,

confirming a site symmetry for CrO42- lower than a Td symmetry3. This

can be accomplished both dynamically (via odd parity vibrations) and

statistically (as a result of the odd-parity distortions present in the
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system ). A small 1 - 5 mol% addition of A1203 (acts as a glass network

modifier ) in these glasses causes non-bridging oxygens and produces

heterogenous nucleation centres in the glass, reducing locally ordered

structure of CrO42- (and also borate) groups. It is clearly reflected in

significantly enhanced bandwith as well as the Intensity of absorp-

tion maximum at - 700 nm. This provides a good example of dynami-

cally induced intensity mechanism.

(a)

4(E, A1) I
4T1

30000 10000
4f

(b)

(E, Al )

1

30000

Wavenumber (cm-)

I

4T1
I

Fig.6. (a ) 710 nni emission band (dashed line) of Mn2': RbMgF3 . Its excitation

spectrum is shown by the solid line. (b) shows excitation spectrum of an

870 nm emission band.

Crystalline PbCrO4 or Pb2CrO5 developed in the heat-treated

glasses exhibit charge transfer bands of Cr042- chromophore, but they

lie far below in the uv region4. Moreover, Toda and Morita5-' reported

that Pb2CrO5 shows photoconduction with an optical bandgap-energy

EP - 2.1 eV (or 570 nm). Indeed a strong absorption band group

occurs around 600 nm, especially in Al203 added glasses, due to an

electronic excitation through this optical bandgap. The position of this



Table- II. IR and Raman bands (cm-') observed in Pb2CrO5 microcrys-

tals precipitated in PbOCr2O3,-B203 glasses*

IR Raman Cr02- bands Assessment

In H2O solution**

325 (vw) 330( w) 348

375 (ms) 373 ms) 368

380 (w)

865 (vs) 860 (vs) 847

890 (s) 890 (w)***

905 (ins) 884

935 (sh)*** 933(vs)

v2(E)

v4(F2)

)V1 (Ad

v3(F2)

* Samples are bleached in weak hydrochloric acid.

** Raman bands observed in aqueous K2CrO4 solution.

*** Bands are too weak and could be observed only at low (liquid

N2) temperatures. Relative intensities are given in the parenthe-

ses : w = weak, uw = very weak, s = strong, ms = medium

strong, vs = very strong, sh = shoulder.

bandgroup is very sensitive to the impurities incorporated in these

crystals during their crystallization from these glasses. A glass speci-

men achieved a significantly large 80% crystallized volume fraction of

Pb2CrO5 as the only crystallise phase thus exhibited an absorption

maximum at 578 nm, fairly consistent with the optical bandgap

determined by the photoconduction measurements on Pb2CrO5 single

crystals.



(ii) Fe2+ (3d6) spectrum

The d6 - electron spectrum of Fe2' ion In metals or metal salts

has been extensively studied". The ground state 5D (L = 2 and S =

2) of the free Fee` ion in Td symmetry is split into an orbital doublet

5E and a triplet 5T2 (separated by 0 = 10/Dq) by the crystal field.

Furthermore, the spin - orbit interaction removes degeneracy of the

ground state 5E, which Is ultimately spilt Into five different nearly

equally spaced levels (I , l4 , I - , , r5 and 12) separated by 6X 2/A,

with . _ -100 cm'' the spin-orbit interaction parameter, as shown

in Fig.7.

Fig-7 Crystal field splitting of Fee` free ion in Td symmetry

Optical transitions from the singlet F, ground state to levels of 5T2

have been seen near 2500cin-'. The transitions among the 5E split

levels (allowed by electric dipole are marked by the arrows in Fig.7)

appear in far IR region. For example, Fig.8 shows a typical spec-

trum of Fe2+ : Cd0 .99 Fe0 0,Te. The lowest energy line in T-i _3 r4 transition

occurs at 18.6 cm-1. Electronic transitions inside the 5E multiplet are

strong function of the interaction (Jahn-Teller effect) between the

ds(Fe21) electrons and the lattice vibrations.
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Fig.8. Far IR spectra of Cd,_XFe Te (x = o and 0 . 01 at 5K.

( iii) Fe3+ (3d5) spectrum

The ground state of iron in Fe3+ state is 6A1(S). It exhibits the

first absorption band at around 690 nm in the transition to the first

excited state 4T1(G). Obviously, the Fe 3+ is transparent to IR and near

IR radiations but strongly absorbs in visible region and very strongly

in the uv region with cut-off energy at about 350 nm. Thus it is

very easy to anambiguously distinguish from Fe 2+ centres.

4T1(G) excited state of Fe 3+ has a reasonably long lifetime of 25.2

ms. It therefore exhibits very intense fluorescence to the ground state

and associated vibronic states. The possible transitions of Fe 3+ are

therefore well-resolved in Fe3+ doped crystals such as ZnO (which does

not have its own absorption in this region9). These allowed accurate

analysis of the fine structure of T1(G) state and in-turn site symme-

try of Fe 3+ in the associated crystals.



(iv) Cu2+ (3d9) spectrum

I think there is no need to point out unlimited applications of

copper and copper materials in industry, technology as well as in basic

research. We have been using the copper in one or the other way

since the copper age. Their optical spectroscopy, with characteristi-

cally sharp and well-resolved d-d electronic transitions, is very sensi-

tive to unambiguously detect them in the minerals and salts even if

they are present at trace levels.

Of the 3d transition metals, Cu+2 (3d9) has one of the most simple

electron systems and is most amenable to testing posulates of crys-

tal field theory and the Jahn-Teller effect. It exhibits very low lying

energy levels in the infrared region. Those are useful to control and

vary the optical and electrical properties of the Cu+2 doped ZnO'o,

ZnS", CdS12, CdTe13 or ZnTe14 semiconductors. The Cu+2 doped lasers,

sensors and optical storage materials of the present decade are the

best cmpliments of these d-d electron transitions.

Figure 9 shows a typical absorption spectrum of Cue+: ZnTe, as

recently reported by Volz et al14 . The most intense peak at vo = 1069

cm-' is attributed to a zero-phonon transition from spin -orbit split

ground state 2T2 (F",) to the first excited state 2E ( fie), schematically

portrayed in Fig . 10. The set of absorption lines A begining at

1069cm- ' and ending at approximately 1200 cm-' is repeated in sets

B and C by a constant energy interval of 210 cm -'. This energy

interval corresponds to the a mode of the lattice vibration and com-

pares well with a value of 207 cm-' obtained from neutron, scattering

data's

The integrated (total area) intensities of the first peaks of each

set follow a Poisson distribution, expected for electron-phonon cou-

pling. The strength of the electron (LO)-phonon coupling measured

here is given by a Huang-Rhys factor S=0.8. However, the absorption

peaks under each set do not so satisfactorily follow the Poission dis-

tribution of their intensities.
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Fig. 8. Infrared spectrum of Cu2+:ZnTe at 4.6 K.

Another set of absorption lines has been observed between 850

and 950 cm-1. It has same internal spacing as does the set of lines

A between 1050 and 1200 cm-'. These lines are attributed to the

anti-Stokes portion of the spectrum. Two zero-phonon lines are also

identified. In addition to the prominent zero-phonon line at 1069 cm',

a second zero-phonon line of considerably much lower intensity is

confirmed at 1002 cm-1. This zero-phonon line is assigned to the

transition 2T2 ()'8) 42E (r8). A complete diagram of these two transi-

tions is summarized in Fig.10.

The absorption spectrum measured on a rather high resolution

between 1050 and 1200cm-' is shown In Fig.11. It comprises six dif-

ferent irregularly spaced phonon modes. The third one lies only 4

cm-' away from the second. The bands observed in this region are

not in a sequence of constant-energy differences and do not exactly



1069 c.n- I

Spin
Orbit

F ig.1u Energy-level diagram of the2D term split by a crystal

field of T1 syinnietry and spin-orbit coupling.

match with the lattice phonons. For example, the energy difference

between the zero-phonon line at 1069 cm--1 and the first su _ cecding

absorption line within the set is 32 cm', considerably less than the

value of a nearest phonon mode of 42 cm-1, determined by the

neutron scattering. This irregular nature of these phonon lines can

be understood by invoking the contribution of dynamic Jahn-Teller ef-

fect on these phonons.

D. Rare-earth cations

In this example, I discuss some peculiar features of rare-

earth compounds. The rare-earth(R) elements, which of course are

not rare in our country (we are the third largest producer of rare-

earth minerals in the world), have unfilled 4f subshells of electronic

configuration

R : 4P,(5S25P')6S2 (7)
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Fig.11. High resolution IR absorption spectrum of Cus+: ZnTe (after Volz et.al 1992)

with n = 1414. They usually (except cerium which exists as Ce4+ and

Ce2+) exist in R3+ oxidation state having the electronic configuration

R3+: 4f ' (5S25P6) (8)

i.e. the 4P-1 electrons are shielded by 5S25P6 electrons and this is the

reason that the rare-earth salts (unlike the transition metal salts) usu-

ally exhibit characteristically sharp and well-resolved electronic tran-

sitions in absorption as well as in the emission spectrum. Also the

actinide series exhibits similar valence electrons (5?) and similarly

sharp 5f - 5f transitions.

(i) Eu9+ (4_F) spectrum

Fig.12 shows absorption spetrum of Eu3+ of a N, N- dimethyl-

diphenyl-phosphinamide (DDPA) adduct of europium perrhenate,

which is written as Eu(ReO4)3. 2DDPA. Some vibronic bands

associated with the eletronic transitions are accompanied by blue

shifted broad bands. These are makred by the plus (+) sign. The band

V-18



positions and oscillator strengths of the principal bandgroups

assigned for a few low-lying energy transitions are given in Table-III.

460 500 540 580

WAVELENGTH (nm)

Fig.12 Absorption spectrum (600=100 nm) of the
Eu(111) ion in Eu (ReO4)3 - 2DDPA at 300 K. (*) Ab-
surption of Re", ((D) vibronic bands.

The oscillator strengths of the bands have been calculated using the

integral area under the absorption curves (for details see Feuerhelm

et. al.16). Their values so obtained for the 7F --.i 5DJ (J = 0 - 4) bands

are of particular interest in elucidating the electric /magnetic dipole

characters and hence the 4f --- 4f radiative transition probabilities.

Amongest these transitions , only 7Fo -5D , satisfies the magnetic

dipole selection rules AJ = o, ± 1, with J = o k/-> o) in an intermedi-

ate coupling schemer7. The 7Fo-* 5D2 4 transitions are believed to be

primarily electric dipole in character. Their intensities are therefore

strongly dependent on crystal field effects. The 7F0-5D3 transition has

a mixed character, while the remaining 7F0-5D0 transition is regorously

forbidden for any magnetic/ electric dipole or electric quadrupole

transition. This transition usually appear in non-centrosymmetric

europium compounds.



Table-III. Principal absorption bands of Eu(III) In Eu(ReO4)3.2DDPA

observed at 300 K

Wavelength Oscillator strength Transitions

(nm) (f x 108)

590.0(16,950) 0.023 7Fl-5D0

588.0(17,007)

578.4(17,.289) 0.010 7Fo_5 Do

570.0(17, 544) 0.013 Re4+ band

536.0(18,656) 1.014
1
_5D1

525.0(19,048) 0.50 7F 5D1

472.0(21,186) 0.010 5
1' D2

465.0(21,505) 0.35 7F
5D2

464.0(21,552)

459.0(21,786) vibronic bands

432.0(23,148)

420.0(23,895) 0.34 7 F1-5D3

416.0(24,038)

412.0(24,272) 0.005 7F
5D3

393.0(25,445) 35 7F - 5L6

384.0(26,042) 4.5 7F o 5L7

381.0(26,247) 2.5 7

F0- 5G 2.3.4

377.0(26,525)

365.0(27,397) 5.0 7Fo 5D4

Transition energies in cm-1 are given in the parentheses.



Thermally excited 7F1 5D3 bandgroup at 420 nm exhibits -70

times larger intensity than in the 7F0 5D3 band excited from the ground

state 7F0 at 300 K. The intensity in the former band increases

exponentially and decreases in the latter following the Boltzmann

population distribution

N = N. exp (-AE/KT), (9)

with increasing temperature between 77 and 650K, confirming their

present assignments. Thermally excited bands to 5D 2 levels have also

been noted (cf. Table-III) but those are not so pronounced18.

2J+1 - fold degeneracies of 5D1 and 5D2 states are completely lifted-

up in the present compound as evident by the high resolution spec-

tra shown in Fig-13 . It means the Eu3+ in this compound bears a

sufficiently low site symmetry of C2,. C2, C. or C,.

20

(A) E /a

0

- 1. 11 3. A4

(B) E/b 20 i

(A) H la

(C) E/c
) bLj L(d H /I

) 0
21550 21500 19060 19j1 '

PHOTON ENERGY ( cn ' )

40

30

10

'Fa
r

D1 lPe
P7 ,

Fig-13 Polarized absorption spectra of the „-^ `D1
and 'h,) -► SD, bands of the Eu(III) ion at -77 K. The
electric vector E for the 7F,) --+ `D, transition and the
magnetic vector 11 for the 7F11 -->• 5D, transition were
kept parallel to a, b, and c crystal axes in (A), (B), and
(C), respectively.



It is interesting to note that intensity of absorption from ground

state 7F0 to first excited state 5D0 is very poor or zero but the most

intense fluorescence always occured from this (5D0) state to various

7FF (J = 0-6) levels as shown in Figs.14 and 15. Hence one should

be very careful in analysing concentration of Eu3+ cations in unknown

samples using these intensities.

(0.1)

0

Cm 1

17500 17000 16500 16000 15000 15000 14500 14000

IOt- I

50,0)

(0,2)

(0,3)
(0,4)

_} 1_
575 595 615 635 655

WAVELENGTH (nm)

Fig.14 Fluorescence spectrum of the EL(M) ion in Eu(12e(D.)) - 2UUPA at 77 K with the

emitting state W . \cxc = 488.0 nm Ar' laser.

c r,1

19500 19000 IB500 18000 17500

0.50

z

0 -I^ I I I l
515 535 555 575

WAVELENGTH (nm)

Fi(.15 Fluorescence spectrum of the Et(III) ion
corresponding to that of Fig.T3 with the principal emit-
ting state 1D1. Vibronic bands.
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Figure 16 summaries crystal-field levels splitant of 7FJ multiplets

deduced in the fluorescence from 5DJ (J=0,1,2 & 3) excited states.

Intensity distribution over them did not significantly differ in the dif-

ferent excitations. The fluorescence from 5DJ (J=0-3) levels exhib-

ited optimum intensities for the excitations made with 545.5, 488.0,

465.8 and 457.9 nm Ar+ laser lines respectively. None of the 5DJ

crystal field levels matches completely with any of these laser lines

and the fluorescence in each case was induced through excitation of

associated vibronic levels. The 5D0 remains the prominent fluorescence

state with all the excitations.
24380
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V iq.16 Stark energy levels (not to scale) of the Eu(Ill) ion in Eu(ReO4)1 • 2DDPA at 77 K. (`) Data
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A plot of the fluorescence intensity from various 5D, states

as a function of temperature is given in the inset Fig-16. The fluo-

rescence originating from 5D3, 5D2 and 5D, levels show large decrease

of intensity with increasing temperature. The rates at which the

intensities decrease fall in the order 5D3 > 5D2 > 5DI. On the other

hand, the intensity from 5Do state regularly increases with increasing

temerature. Obviously, the higher 5D.1>> levels release the associated

energies by a combination of radiative (to 7F. multiplet) and non-

radiative (to 5Do) transitions. The non-radiative transition responsible

for thermal quenching of 5DJ>1 states increases with increasing

temperature and leads to population of 5Do level, and results in the

enhanced 5D.7F. fluorescence.

The mechanism of fluorescence from a particular level is a

strong function of vibronic coupling. The vibronic coupling governs

radiative and nonradiative processes, as summerized in Fig.17 for

Eu2(SO4)3. 8H 20- Addition of a few drops of KI in aqeuous solution

of Eu2(SO4)3. 8H 20 quenches the fluorescence and manifested the elec-

tronic Raman transitions through the low lying 7FJ electronic-energy

levels. The H2O molecules in the aqueous solution are strongly

hydrogen bonded. The hydrogen bonding (inter as well as intramol-

ecular) is considerably reduced on the addition of KI due to the

formation of

K-1-I...H-0 I-I

1-1---0

H-..

bonds18. The effect has been directly reflected in - 3% increased

0-H strectching frequencies in the range 3130 - 3640cm-'.



(ii) Nd3a (4f3) Lasers

Neodymium is one of the most demanded rare-earth (R) element,

especially after the discovery of the high T,, superconductors and

high-energy-density R2Fe14B or R2T17N (where T is a transition

metal) magnets during the present decade. Nd3+ : YAG lasers and

502 ^2v

v v
-_ 20720 ccm-101 1 -2

- -v2(H2O)1
^ f l•[tr^ll ^j

7F6 7F6

17270

C
H2O

19435 cm-1 V1 41(SOI)1

5 0t)

9

*iT V2(HZQ)4

Q Cr
d

o^or
ix I

E
C

4
7F6

7F0

F i(1.17 Schematic energy level diagrams (not to scale ) showing
the Eu3+ fluorescence emission, electronic Raman scattering and
several non-radiative processes operative simultaneously in the
Eu2(SO„ )3 solutions. The emitting states 6D, • or 6Do are excited
through the associated vibronic levels, showing a prominent
fluorescence in (A) D20 for X.,C=465.8 nm and (B) H2O for K,, .c--
488.0 nm. (C) The fluorescence only from the 6Do is excited with
X,xc=514.5 nm. The vibronic levels are shown by the broken lines.
A subscript 0 or 1 outside the parentheses, e.g. v,(H20)0 or v;(H2C')1,
refers to the J value of the associated 6Dj electronic level. The
shaded region shows the spread of the vibronic levels.

R3Fe5o12 (RIG) garnets stem other thrust areas of advanced technol-

ogy of optical, magnetic and electronic devices. We are very fortunate

to have a plenty (about 0.4 M tonnes) of neodymium reserves in our

country. Table-IV compares world-wise reserves of neodymium.

Thus we are among the three richest countries of neodymium

resources. However, we are far away from competiting the aforesaid

technologies.

I CAS v1 u3%"2ur0v

^38 1 G_ N
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Table - IV

Estimated reserves of neodymium in different countries

Country Reserves

(in tonnes)

China 4,600,000

U S A 640.000

India 400.000

USSR 64.000

South Arfica 13,000

Brazil 4,000

Malaysia 4,000

Others 58.000

Figure 18 shows optical absorption spectra of singly or codoped

30BaF2-181nF,3-12GaF3-2OZuF2-(10-x-y)YF3-6ThF4-4ZrF4-xCrF3- yNdF3

(I3IGaZYTZr ) fluoride glasses with Cr3+ and Nd3+. The spectrum of

Cr3+ (0.2% singly doped glass (a) is characterized by two spin-allowed

broad bands, which can be identified as the vibronically broadened

transitions 4A2 -4T2 at - 655 nm and 4A2- "T1 at - 450 nm. The for-

mer band contains a fine structure due to the spin-forbidden 4A2_2 E,

2T1 transitions. This glass exhibits a broad structureless fluorescence

band centred at - 890 nm in 4T2 4A2 transition. This fluorescence

band exhibits a large Stokes shift - 4000cm-' and that strongly de-

creases with increasing temperature.

The decay kinetics of the broad fluorescence of Cr3+ in the fluo-

ride glass were studied as a function temperature and emission wave-

length. The decay of the intensity measured along the fluorescence



band using (1 "C - 655 rim, i.e. exactly the centre of the 4A2 -4T2 ab-

sorpt.lon, can be described by a double exponential function through-

out the studied temperature range 320-70K. This behaviour

persists even for lower Cr3+ concentrations upto 0.05%, demonstrat-

ing that Cr3+ .---- Cr3+ interactions are not very important here. The

intensity basically depends on the lifetime and population of the

fluorescent species in the fluorescent state. Both these parameters

exponentially decrease with increasing temperature in this range and

thus account for the observed variation of the fluorescence intensity

with the temperature.

0.2

0.1

r-.
.^J

C 0.0
D

.f)
O,4

ti
.^l

4T,

- 1 4T, (a)

G5
1 2

(c)

0.5 -

0.0

r

U

300 500 700 900
Wavelength (nm)

I i(J.1l1 Room-lcn)pcralure absorption spectra of (a) Cr3+

(0.2%) singly-doped Ill(iaZY'I7r fluoride glass, (b) Nd'+ (1%)

singly-duped III(iaZY'1"Zr fluoride glass, and (c) Cr3+

(0.2%):Nd'' (I %) codopcd fluoride glass.
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A small 0.05% addition of Nd3+ (of 2-3 times larger lifetimes 100-

500 is than for Cr3+) in this glass stabilizes the strong fluorescence

From ^'1'2 state of Cr"' adequate to use as a tunable laser. Nd3+ (4P)

exhibits characteristically sharper (reflects large lifetime) 4f - 4f tran-

sitions in the near IR and visible regions, as demonstrated by the

spectra of a purely Nd3+ (1%) doped fluoride glass in Fig.18b and a

codoped fluoride glass with 0.2% Cr3+ (1% Nd3') in Fig.18c. These

lines are useful to induce efficient lasers at selected wavelengths.

III. VIBRATIONAL SPECTROSCOPY

Polyatomic molecules exhibit vibrational as well as rotational

spectrum in addition to the electronic spectrum. Each electronic state

accompanies 3N-6 (or 3N-5 for linear molecules) fundamental modes

of vibration of a molecule of N atoms. In addition, the combination

and overtones of these fundamental vibrations also occur sometimes

but they usually present very low intensities. Resonance of frequency

(energy) as well as symmetry of a combination or overtone with those

of a fundamental vibration, or electron-phonon coupling, or Jahn-Teller

interactions quite often influence their expected intensity distribution.

Each vibrational state in a. given electronic state contains a cer-

tain number of rotational levels according to the J values. These are

rather closed spaced and can be resolved only at reasonably high

resolutions. Obviously, their analysis very precisely predicts the

electronic structure, isotope shifts, and site symmetry as well as point

group symmetry of the molecule (or the crystal unit cell) in the ques-

tion. However, there are several other constraints because of which

it is not in usual practice. It is mostly limited to basic research only.

Vibrational ( IR or Raman ) spectra of polyatomic molecules

usually lie in the range 10-4000 em -1. The low frequency range

10-600 cm' is called far infrared region and that between 200

and 4000 cm ' the mid infrared region. Organic molecules containing

closed rings or > CHO, >C=O, -OCH3, -CH3, >NH , -NH2, or -OH chro-

rnol elhores
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strongly absorb over 300-4000 cnr-' through the characteristic group

frequencies. Inorganic molecules with no such functional groups

absorb over lower frequencies 100-800 emr'. Borate, silicate or

phosphate glasses, which form network structure, strongly absorb over

800-1500 cm-1.

(1) IR and Raman spectroscopy of 1-formyl -3-thiosemicarbazide

Figures 19 and 20 show infrared and Raman spectra of a typical

organic system of 1-formyl -3-thiosemicarbazide (FTSC) in the range

300-4000 cm-1. Its molecular structure is shown in Fig.21. This

particular compound is famous for exhibiting tuberculostatic, fungis-

tatic and antibacterial effects20. The C-H group vibrations are

unambiguously distinguished by studying deuterated compound

under the same conditions.
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FTSC-d0, in principle, exists in four planar conformers shown in

Fig.22. The prescnl. vibrational analysis confirmed the (aa) and (ba)

S

OIIC\ /I\ /Nil)

.4 N

I

S

it C Nil,

N

I I

S

OIIC 11

I I
H N11,

(b2) (°b)

F iq.22 Planar configurational isomers of FTSC-do

(bb)

conformers to be the most stable ones. Those are peculiarly stabilized

by intermolecular H-bonded dimer.

I I -hoiolcd diiri'r,

it

21I1---! ,cllol
I, cFIS(

Its
/C-o....II

R -N `-- R

H
Cyclic FTSC dime+

5
1 ,.II

where R-> -C - NH - NH2" part of FTSC. Other details about the

cyclic or open dimers can be found in Refs. 20-22.

1-i

To speculate on the dimer structure we make use of the -C=O

group vibration . The V(C=O) bands observed with considerable

intensities at - 1650 cm-' in the Raman spectrum (g-species charac-

ters ) do not show their IR counterparts and vice-versa ( u-species
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characters). This suggests a prominent abundance for the cyclic FTSC

dimer (a pseudo D2h molecular symmetry). The prominent Raman

band at 1666 cm-' (a band of lowest frequency among the four v(C=O)

bands) then can be assigned to the v(C=O) vibration in the cyclic

dimer. A large Raman intensity (75 units) as observed for this band

is expected for C=O bond oscillation in the above model structure.

The cyclic dimer is not so pronounced in the deuterated FTSC-d4,

showing a single and weak Raman band at 1658 cm-1. The bands

for open-cyclic dimer (a reasonably weak H-bonded system) would fall
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I hhi.25 Typical i.r. spectra (I 500-1900 cni -') of FTSC in
ethanol solution . - I'he solution in (b) and (c) is diluted by -2
and 10 limes, respecticly , of that of a highly concentrated
solution in (a). Intensity is normalized to unity in each case.
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at higher frequencies than for the cyclic dimer. These appear to be

stabilized in the nr.iJol samples [only one V(C=O) band at 1685 cnr-'

and two v(NII„) bands at 3100 and 3138 cnr-' are noticed).

Figure 23 shows IR spectrum of FI'SC studied in ethanol solu-

tion. The system basically exists in monomer dimer equilibrium

showing two V(C=O) bands at 1725 and 1650-1670 cm-1, respectively.

The half-bandwidth and peak intensity successively decreases for the

dimer band as the concentration of the solution decreases. In view

of the symmetry consideration, a.sharper (and weak) band is expected

to arise in the cyclic dimer (comprising an inherently higher symme-

try) structure. It is likely that both the open and cyclic FTSC dimer

structures exist in the solution, and the latter structure essentially

stabilizes on the lower concentrations.

(ii) Raman spectroscopy of metal -a semiconductor transition

in BaPb ,-,B1.03

BaPb,_x13i,O, displays a very interesting phenomenon. It under-

goes metal to semiconductor transition at x- 0.35. Here, Raman spec-

troscopy is very helpful to understand the structural transformation

taking place as a function of x.

Figure 24 summarizes Raman spectra of BaPb,_XBiXO3 single

crystals at low temperatures 26-31K. The crystal structure is orthor-

hombic for x < 0.95 and monoclinic for x > 0.95. The variation of

intensities of the characteristic peaks against x is given in Fig.25.

The peaks in the range 500-600 cm-' are assigned to ring breath-

ing mode of Pb(Bi)O6/2 octahedron as proposed by Suga123. In the

semiconducting region x > 0.4, two peaks are observed. The intensity

in the higher-frequency peak at - 600 cm-' regularly decreases with



increasing x between 0.4 and 1.0, while regularly increases in the

lower frequency peak at - 560 cm-1. Peculiarly enhanced intensity

in 560 cm-' band occurs due to resonance Raman effect with the op-

tical bandgap at 2.15 eV. Fig.26 shows Raman spectrum of BaBiO3

at 39K measured with Xe= 514.5 nm (2.14 eV) Ar' laser line. As

expected, resonant peaks for multiple transitions of 566 cm-' pho-

non are observed upto the fifth order.

600

500

F ig-24

tures.

fln

Raman spectra from BaPbl-.. Bi,O3 at low tempera-

7C' 300 400 500 600

ENERGY SHIM (cm-')
700 100

0 07 0& 06 06 1

Fig.25 Phonon energies in BaPbi-zBi.O3 as a function of x.
The filled circles indicate the energies of Raman active modes at

about 27 K and the open circles at 273 K. The thick arrows

show the direction of increasing scattering intensity. The upper
edges of the shaded areas show the LO phonon energies and the

lower edges the TO phonon energies.
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I i(J.26 Resonant Roman spectra in BaBiO3 at 39 K.

(iii) IR and Raman spectroscopy of glasses

IR or Raman spectroscopy successfully applies to inorganic or

organic glasses (including the polymers), which do not have any or-

dered structures. For example, Fig.27 shows a typical IR absorption

spectrum of amorphous Si02 film begween 900 and 1400 cm''. Two

well resolved bandgroups at 1080 and 1240 cm-', assigned to TO and

LO modes of Si02 network, have been observed.

29^t^



Sputtered S:02
Annealed p pcl. (TO+LO)

D _ at 80011C ---- s pol. (TO)
-- after subtraction (LO)

900 1000 1100 1200 1300

WAVE NUMBER (cm")

1400

i()-27 1R-absc^rhtion spectra of a pure Si O2-sputtered film

in ea sured under 45° obliq ue incidence. Solid and broken lines

represent the spectra obtained with p- and s-polarized incident

liL,ht, respectively. The do tted line is obtained by subtracting

t he spectrum for the s p o larization from that for the p p olariza-

t1C)11.

Figure 28 describes influence of a small addition of Ag20 or P205

additives in a 40BaO -25Fe2O3 - 35B203 glass . These additives help

formation of a purely amorphous structure of the present composi-

tion by reducing number of nonbridging oxygens (Fig.29 ) on boroxol

rings in the associated network . As a result , the frequencies of all

characteristic B-O stretching modes are enhanced by 3-4% while the

corresponding B-O bending frequency at - 740 cm-' (in Fig.30) is

consistently lowered by the same factor.
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Fig.28 IR spectra of borate glass in 800-1800 cm-1 region.

Fig.29 Network structure of borate glass.
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FIg.30 IR spectra of Fig.28 In 320-800 cm-' region.

Obviously, the IR or Raman spectroscopy of these glasses is very

rewarding in unambiguously determining their structures, and hence

provides accurate analysis of their traces in minerals or other mate-

rials, not possible to trace out by X-ray diffractometry or other

techniques. It applied together .with differential scanning colorimetry

provides the kinetics and the kinetic parameters of impurity induced

structural transformation or thermal induced recrystallization of these

structureless materials. It is also useful to study the oxides inclu-

sions (which usually occur in finely dispersed amorphous or nanoc-

rystalline material) in metals and alloys.
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