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ABSTRACT 

 

Sustained Coal R&D activity has been crucial to the many successful 

clean coal technology developments that have been achieved globally. The aim 

has been to enhance the competitiveness of coal by providing technical and 

environmental improvements whilst at the same time reducing capital and 

operating costs.  In coal preparation, simpler lower cost alternatives to froth 

flotation, such as the coal dense medium separator and spiral separators, have 

been adapted for cleaning of fine coal. A mathematical model has been 

developed  to characterize  the separation behavior of a typical high ash coal in a  

spiral. The modeling framework consists of parametric representation of 

geometry of the spiral and its trough, particulate flow along the helical path and 

principal forces acting on a particle during its motion. The elements have been 

combined seamlessly by assuming that the particles eventually attain dynamic 

equilibrium in the forward longitudinal direction and static equilibrium in the 

transverse direction. The resulting force function provides a spectrum of the 

particles' radial location on the trough according to their size and relative specific 

gravity. The model predicts relative specific gravity distribution and particle size 

as a function of equilibrium radial position. Sensitivities of radial equilibrium 

distribution of particle size and relative specific gravity with respect to mean flow 

depth have also been investigated. Simulation results are encouraging and 

validated with the published data. The model provides an analytical tool for better 

understanding of the separation behavior of particles in a coal-washing spiral.
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1.INTRODUCTION 
Cleaner production and eco-efficiency are complimentary strategies, 

essentially dealing with the use of minerals, materials, energy and water. Both 

are generic improvement and innovation strategies with well established track 

records in many industries, in particular in processing and extraction of minerals 

and metals.  

Coal plays a central role in the economy of the country. It has accounted 

for 75 % of annual energy use over the years. Whilst it is cheap and plentiful, the 

environmental and health effects of usage of coal are becoming more and more 

severe as the economy continues to grow at a rapid rate. There is an increasing 

need to find ways of limiting pollution of the air and water through the use of 

cleaner technologies and more efficient processes. Clean coal technologies have 

the potential to reduce emissions of the gases, in the user industries which cause 

urban smog, high level of particulate emission   and acid rain. Further, power 

plants that use fossil fuels to generate electricity currently face a myriad of 

environmental regulations intended to restrict releases to the air, water and land. 

The regulatory measures are stringent for controlling NOx ,SO2 and fly ash 

contents in the emissions.   

 

Gravity concentration of minerals has traditionally been recognized as a 

low cost and environmentally friendly process for the separation of minerals. In 

recent years a number of new process technologies have emerged allowing 

ever-finer materials to be successfully processed. Spirals separators are simple, 

low energy consuming devices that separate minerals based on their respective 

densities and have proven to be metallurgically efficient and cost effective since 

their widespread commercial introduction more than 50 years ago. Most 

bituminous coal is cleaned by conventional methods that have been slowly 

improved over the years and  truly few new beneficiation technologies have 

made any significant inroads in the past 10-20 years. This is particularly true of 
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processes for cleaning the coarse and intermediate sizes of coal (////down to 

about 0.5 mm) where highly efficient dense-media processes predominate. For 

particle sizes in the range of about 1.0 mm down to about 0.1 mm that straddle 

the lower end of the intermediate size and the upper end of the fine size, recent 

improvements in the design of spiral concentrators and the re-engineering of 

spiral circuits have resulted in improved performance and a resurgence usage of 

the spiral in washing high ash coal for power plant and blast-furnace applications.  

The generic geometry of spiral concentrators consists of an open trough 

that spirals vertically downwards in helix configuration about a central axis. 

Employed in the fine coal, a slurry mix of fine particles is fed to the top of the 

spiral and, as it gravitates downwards, particles are segregated radially across 

the trough by the centrifugal force. Separation occurs as light suspended 

particles travel to the outer trough regions whilst heavy particles settle and tend 

to move inwards towards the central column. Historically, evolution of the design 

has been almost exclusively based on empirical development of the appropriate 

geometry.  Fig.1 shows a sectional view of spiral trough flow.  

       In recent years, because of the industrial demand, there has been an 

upsurge of interest in usage of spirals primarily for processing of coal in the 

intermediate size range of 0.01mm to 3 mm [1-4]. These coal particles are 

neither large enough for heavy media separation nor small enough for froth 

floatation. Several improvements in coal spiral performance have been seen over 

the years. Recent studies have concentrated on optimizing the number of turns 

required on a spiral. This effort is an attempt to standardize the required number 

of turns needed on a spiral for different minerals. As recent as the 1960’s, 

Australian coal spirals had as few as two full turns, while modern spirals can 

employ as many as seven turns to achieve the required separation [5-6]. 

 
  Studies have also shown that the feed rate, especially the total volumetric 

flow, introduced onto a spiral can greatly affect its performance. It has been 

stated in the investigation by Holland-Batt [6] that the total mass feed rate is 

among one of the most important factors for determining coal spiral capacity. 
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Their work indicates that, for any feed pulp density, there exists an optimum feed 

rate. Further studies [7] show that spiral performance that is considerably 

affected by slurry density, and further indicates that a more dominant control of 

spiral performance has been observed when combining slurry density with the 

solid flow rate (i.e. volumetric feed rate). As volumetric feed rate is increased, an 

increasing amount of entrained material will report to the outer wall and 

effectively reduce efficiency.  

Current theoretical understanding of coal-processing spirals is mostly 

empirical. Until recently, modeling and analysis of spiral performance have met 

with only limited success, since their introduction in mineral processing 

operations [5-8]. There exists a genuine need for improving the efficiency of 

spirals. It is well known that sharpness of separation, size, density, range of feed 

particles (coal) and throughput capacity of spirals have a direct bearing on the 

efficiency and productivity of the coal cleaning. 

 A mathematical model has been developed for coal processing spirals to 

study the sensitivity of the operating parameters on the separation   behavior of 

the particle during its descent along the helical path. It is expected that the model 

can reasonably mimic the behavior of the particle during its motion along the 

spiral with a reasonable degree of realism. The model comprises of three 

important aspects of spiral separator which has been incorporated to formulate a 

reasonably hybrid methodology using first principle based approach coupled with 

semi-empirical correlations. This comprises of modeling of spiral geometry, fluid 

flow based on sediment transport concept and force balance on coal particles 

moving down the spiral based on conservation principle. This model has been 

used to analyze the separation characteristics of a typical high ash content coal 

(Patherdih , Jharkhand) .  

2.MATHEMATICAL MODEL  

 The mathematical model comprises of the sub-models addressing the 

aforesaid components. These are seamlessly integrated to characterize the 

separation characteristics of the particles in terms of distribution of relative 

specific gravity and particle size along the radial equilibrium position. Mean flow 
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depth sensitivity has been studied with respect to relative specific gravity 

variation at various equilibrium position. 

2.1. Sub-model for spiral geometry. 

 It is evident that the performance of coal processing spiral would depend 

critically on design parameters such as diameter, height, number of turns, pitch 

and slope as well as the shape of the trough and its dimension. Geometrically, 

the channel may be visualized as comprising of an infinitely large number of 

axially adjacent non- intersecting helical curves.  

The parametric equations of a helix in Cartesian coordinate system can be 

represented in the following manner [6-7, 15];   

 

]sin[ηrx =                                                                             (1) 

          πηη Nry ≤≤= 0];cos[                                                            (2)           

         Hz
U

z ≤≤= 0;
*2

η
π

                                                                (3) 

where, N is twice the number of turn, H is spiral height and r is the radial distance 

from the central line. Here η is the parameter used for parametric representation 

of the co-ordinates in eqns.(1)-(3). Figure 2 shows the geometric parameters of 

the spiral. From these equations the longitudinal tangential slope, S at any point 

on the trough may be derived by the following equation; 

 
r

U
S

π
α

2
]tan[ ==                                                                                    (4) 

Where U is the pitch of the spiral, and α is the slope angle. The local slope of the 

channel  in the radial or transverse direction may be determined by the following 

equation; 
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Where θ is the local slope angle in the transverse direction, cy is the maximum 

depth of the trough and ri and ro are respectively inner and outer radii of the 

trough from the central line /symmetry axis of the spiral and, ri  ≤ r ≤   ro. 

2.2. Semi-empirical modeling of fluid flow 
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   The spirals exhibit one of the most complex flow regimes among 

gravity separators used in mineral /coal processing operations. Spiral 

concentrator flows possess a free-surface, have shallow depths of <10 mm 

typically, and display laminar to increasingly turbulent behavior radially outwards 

with velocities reaching 3 m/s [3-6].  

Current understanding of the mechanism of separation on spiral 

separators involves primary and secondary flow patterns [6]. These flow patterns 

allow for dilation of the particle bed and provide opportunities for separating 

mechanisms to occur. The primary flow is that of the slurry descending the 

incline of the trough. Secondary flow occurs radially across the trough. The 

upper, more fluid layers move away from the center while the lower, more 

concentrated layers (especially where particles are in contact with the solid 

surface)move towards the centre. Stratification occurs and the secondary flow 

causes shearing of the strata, resulting in bands of higher density particles 

reporting to the inner region of the trough. A secondary circulation current in a 

plane perpendicular to the mainstream flow direction, induced by the spiral 

curvature and resultant centrifugal force, travels outwards near the free-surface 

and back inwards towards the central column near the trough base.  

To model this flow, it is imperative to consider the fluid phase to be 

Newtonian, and possess constant physical properties. The fluid dynamics is 

essentially represented by the Reynolds-averaged turbulent Navier±Stokes 

equations. For a coal processing spiral, the steady-state equations for the 

conservation of mass and momentum in generalized curvilinear form, are 

respectively given by: 

 

                                                                                                                       (6) 

 

 

                                                                                                  (7) 
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where ρ is the fluid density, µeff  the effective (molecular µ plus turbulent µt) 

viscosity, P the static pressure, and uij, and gi the mean velocity and gravitational 

acceleration, respectively. To consider the effects of turbulence, appropriate 

turbulence model, such as (K-ε) model or RNG based (K-ε) model can be applied 

in conjunction with Navier-Stokes equations,(6) and(7). Computational Fluid 

Dynamic (CFD) analysis of the spiral particulate flow behavior and particle 

dynamics is a formidable task which requires commercial CFD software for flow 

simulation and mapping. The fundamental approach through the solutions of 

Navier-Stokes equations with appropriate boundary conditions has not yet been 

reported in the literature for comprehensive two-phase particulate flow prevailing 

in the spiral. Without the multiphase analysis, the computational results are 

unlikely to be commensurate with the enormous computational times required. 

2.2.1 Power law treatment of the flow  

            A more practical approach for flow modeling in spiral relies on velocity 

profiles as predicted by assuming appropriate flow regimes [8-11]. The action of 

centrifugal force on water as it flows down in a spiral channel has two important 

consequences. First the water level at the outer concave wall of the trough 

exceeds that at the inner convex is generated in the form of a vertically flattened 

helical spiral that moves forward in a corkscrew fashion. The angles that the 

inward and outward-bound flows make with the mean axial flow vary with depth 

and radial distance.  Holland-Batt[3] and Holthman[12]  have reported  

measurements of these angles obtained in pure water which  are typically 

applicable analysis of  heavily loaded slurries. An expression widely quoted in 

hydrology literature [14-15] for determining the mean deviation angle,δ. 

              [ ]
r

h f
11tan =δ                                                                                (8) 

 Where, δ is the mean deviation angle, hf is the depth of the flow and r is the 

radial equilibrium position. In this analysis an averaging approach [12-13] has 

been employed as a matter of practical expediency and with no pretensions for 

describing the flow either precisely or in detail. Flow of fluids and sediments in 
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open channels are commonly described by a plethora of power laws whose 

general form is: 

               ba SRV γ>=<                                                                                  (9) 

 Where <V> is the mean flow velocity, R is hydraulic radius and γ is a composite 

resistance coefficient. The exponents ‘a ‘and ‘b’ depend on the nature of flow 

such as laminar, Maning laminar, Lacey rough channel, Blasius turbulent, 

Blagnold suspension, transitional or mixed type or a combination thereof [9]. The 

transitional or mixed flow equation has been employed to describe the flow 

behaviour [14-15]. The mean flow velocities computed with these equations are 

comparable with the measured data, even though the computed flow depths turn 

out to be greater than reported values. The power law for transitional or mixed 

flow is described by the following semi-empirical equation [12-15]; 

           SR
d

V
p

6/1

4.26
>=<                                                                                 (10)                                                                  

Where dp is a percentile size in the solid feed. Another expression for the mean 

velocity is: 

           
A

Q
V >=<                                                                                           (11)                                                                                         

 Where, Q is the volumetric feed rate and A is the cross-sectional area of flow.  

Measurements on water only spiral by Holtham [12-13] demonstrated that the 

depth of flow increases from about 1mm at the inner end of the spiral to 8-10mm 

or more depending upon the feed rate and spiral type near the outer end just 

before dropping to zero at the waiting limit. 

  The tangential slope, S in equation (10) is re-designated as Sm, which 

represents the channel tangential slope at the mid point. This has been 

substituted along with appropriate expressions for R and A in terms of the trough 

geometry and mean flow depth, hm   and finally <V> has been eliminated between 

equations (10) and (11 ) and the following equations for calculating total flow rate 

has been  arrived at: 
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Where x’ and y’ are derivatives of x and y with respect to η i.e x’ =dx/dη, y’=dy/dη     

  and cx=ro -ri  is the radial width of the trough. .Equation(12) can be solved for 

mean flow depth which will be required for implementation of the force 

equilibrium model. 

          The integral in eqn.(12) can be evaluated and substitution of the same 

gives  the final expression of the volumetric feed rate(Q) as: 

 

                                                                                                                (13)             

                                                                                            

                                                                                                                 (14) 

 

The governing equation for calculation of mean flow depth, hm , has been derived 

using  eqn.(14) and given as: 
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Where rm is the mean radial position from the central line i.e, (ro +ri )/2  .        

       

2.3. Force equilibrium sub model 

The forces acting on the particle during it’s motion in the spiral separator 

are critical to dictate the dynamics of the particle and performance of the system. 

It is not easy to identify and quantify most of these forces precisely. In general, 

only rough estimates of the five principal forces involved, namely gravity, 

centrifugal, hydrodynamic drag, lift and friction forces can be made [14-15]. In 

addition, "Bagnold effect" arises at high pulp densities of the feed . It is attributed 

to the existence of velocity distribution along the depth of flowing film, giving rise 
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to a distribution of shear rate along the  flow depth . As a result the Bagnold 

forces, acting on particles located at different depths and having different sizes 

and densities, will be different in magnitude for each particle in the pulp[15]. 

 In particulate flow system, fluid driven particles move by one or more of 

the following modes: sliding, rolling, saltation. How ever, trajectory simulation of 

particles in a particulate flow system is a arduous task and such work has not yet 

reported in the literature. Under steady state condition, it is presumed that, 

particles are in dynamic equilibrium in the longitudinal direction and in static 

equilibrium in the transverse direction. The static equilibrium analysis provides an 

understanding of segregation of particles according to their density and size 

during their descent along the helical path of the spiral. Neglecting the "Bagnold 

effect”, the longitudinal component of all forces (FL) acting on a particle in steady 

motion is [14-15] : 

[ ] [ ] [ ] [ ] [ ] [ ] 0tancossincossinsin =−+−= φδαθαθ
NdcgL

FFFFF
                   (16) 

Where Fg is the gravity force, Fc is the centrifugal force, Fd is the drag force and      

FN is the normal component of all forces. The normal component of the force is 

given as: 

[ ] [ ] 1sincos FFFF cgN −+= θθ                                                                       (17) 

where ,Fl is the lift force acting on the particle. The transverse component of 

forces acting on a stationary particle is: 

  [ ] [ ] [ ] [ ] [ ] 0cossinsincoscos =−+= αθδαθ gdcT FFFF                                   (18) 

 

Combining these expressions with the elimination of centrifugal force term yields 

a force function given bellow: 

 

 
                                                                                                                  (19)  
                                                                                                              
 
 

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ]x

FF

FFF

gd

gd
θα

θαδ

θφαθ

θαθφδφ
secsec

)sincossin(

sintansincos

sinsincos(tancostan
1

=

−

+

−−+



International Symposium on Environment Friendly Technnology in Mineral Processing & 
Metal Extraction (AETMME-2006), Bhubaneswar, India, 1-3  November, 2006. 

 

 10 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]







+

+−
=










+

+++

+

θφαθ

θθθρσφ

θφαθ

θδαφαδδφρ

sintansincos

tansincos

6

)(tan

sintansincos

tansinsectantansincostan

14

1

2

gd

k

S

hS

p

Substitution for gravity, drag and lift forces results in the following equation 
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Substitution of S and angles α,θ,δ as given in equations (4),(5),(6) respectively 

and hm  from equation (14) result in the following expression :                                                                                                                 

                                                                                                                         (21)                                                               

  and, the expression for particle size is, 
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available in the literature [14-15], have been incorporated in the model for 

prediction of relative specific gravity and particle size for a typical spiral data. 

 2.4.Numerical Implementation  

In order to solve the governing model equations (15), (21) and (22) by an 

iterative scheme; a C++ code is developed to compute geometric parameters, 

flow parameters involving mean flow depth, distribution of relative specific gravity 

and particle size as a function of equilibrium position. The design data of a typical   

coal-washing spiral, located in the pilot plant of the laboratory(NML), has been 

used in this simulation. The data are given in Table-1.The volumetric feed rate 

(Q) is taken in the range of 0.3 to 0.6m3/hr .  Patherdih (Jharkhand) coal fines are 

used for the washability studies. 

TABLE-I   

Design data of the coal-washing spiral (NML) 

   

(i) Height (H)=2.5m                                         (ii) Pitch(U)=0.425m 

 (iii) Slope (S)=(tan α)=0.17                            (iv) Outer Radius (ro)=0.48m 

(v) Inner Radius (ri)=0.08m                             (vi) Trough slope(tan θ)=0.2 

(vii) Max. depth(cy)=0.15m                              (vii) Radial width(cx)=0.4m                            

 

3.RESULTS AND DISCUSSION 

        Figures (3-5) show the distribution of relative specific gravity as a function of 

equilibrium radial position, (ro-ri) for different particle sizes, namely 1mm, 

1.25mm, 1.5mm, 1.75mm and 2mm respectively. Sensitivity of distribution of 

relative specific gravity with respect to mean flow depth (hm) has also been 

studied. Figures (3),(4)and( 5) refer to mean flow depth 5mm, 4mm and 3mm 

respectively. In each of these figures distribution of relative specific gravity as a 

function of equilibrium position monotonically decreases with the increase in 

particle size. The negative slope of these curves, i.e the gradient of relative 
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specific gravity per unit radial distance )(
ρ

ρσ −

dr

d
, is a measure of the separation 

efficiency. This means, the lower the slope, the greater is the efficiency.        

Figures (6-8) show the distribution of particle sizes as a function of equilibrium 

radial position,(ro-ri)for different relative specific gravity  , namely 0.75,1,1.25 and 

1.5 respectively. Sensitivity of distribution of particle size with respect to mean 

flow depth (hm) has also been investigated. 

 As observed in actual spiral operation, as well as in this simulation results 

that lighter particles are segregated in the outer region while the heavier particles 

are concentrated in the inner region of the trough for all considered values of 

particle relative specific gravity.  The present force equilibrium spiral model, even 

without tuning the adjustable parameters, yields reasonably realistic values for 

both particle-fluid relative specific gravity and particle size.  

 Figures (9-11) show the particle relative specific gravity variation   as a 

function of mean flow depth at various equilibrium positions (100mm, 200mm, 

300mm and 400mm) for different particle sizes, namely, 1mm, 1.5mm and 2mm 

respectively. It may be observed that for all radial equilibrium positions, the 

relative specific gravity between the particle and water decreases with increase 

in particle size as a function of mean flow depth. However relative specific gravity 

between the particle and water increases almost linearly with increase in mean 

flow depth irrespective of particle size. This is valid for all equilibrium radial 

positions as depicted in these figures. 

 The simulation results generated by this   model have been verified with 

the literature [12-15]. The order of magnitude and characteristics of the 

equilibrium radial distribution of spiral process variables (relative specific gravity 

and particle size) are found in good agreement.    

4.CONCLUSION 

 The model presented here incorporates three principal components of 

equilibrium force balance formulation. They are; spiral geometry, flow 

characterization and forces acting on the particle. This investigation has also 

vindicated that it is feasible to characterize the hydrodynamic behavior of an 
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industrial spiral (involving calculation of mean flow depth) using power law 

formalism of hydrology without resorting to the solution of the Navier-Stokes 

equation for the complex spiral geometry. The present model provides better  

understanding of the separation behavior  of high ash coal based on its  specific 

gravity distribution along the equilibrium position. Although the steady state 

attainment of the flow field is a debatable issue, nevertheless, the simulation 

results suggest that the force equilibrium methodology could provide a useful 

simulation framework provides a quantitative picture of the particle behavior and 

separation characteristics in an operating spiral. The semi-empirical approach for 

fluid dynamic analysis is justified by the need for developing a working 

hydrodynamic model for an operating spiral with a complex spectrum of flow 

regimes. Further refinement of the quantitative hydro-dynamical description of 

spiral, without intensive and time consuming computations still remains a 

challenging task. Future attempts will be made to calibrate the adjustable 

parameter with the plant data for implementation of the model.  The results are 

encouraging to infer that the model presented here does have a predictive 

capability for analyzing separation characteristics of coal grades with varying ash 

content by a water only spiral. It is expected that the calibrated model will  

provide useful guidelines to optimize the operating parameters for improving  

washability performance of spiral in view of growing demand for usage of low ash 

coal in power plant and steel sectors  to meet the environmental regulatory 

requirements. 
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                         Fig1.A sectional view of the a spiral trough flow 

 

                                

                            Fig.2 Geometric / design parameters of spiral [15] 
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Fig.3 Effect of particle size variation on the radial distribution of relative specific    

          gravity (feed mean flow depth =5mm) 
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Fig.4 Effect of particle size variation on the radial distribution of relative specific   

          gravity (feed mean flow depth =4mm) 
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Fig.5 Effect of particle size variation on the radial distribution of relative specific   

         gravity (feed mean flow depth =3mm) 
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Fig.6 Effect of relative specific gravity on the radial distribution of particle size 

          (feed mean flow depth =5mm) 
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Fig.7 Effect of relative specific gravity  on the radial distribution of particle size 

          (feed mean flow depth =4mm) 
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Fig.8 Effect of relative specific gravity   on the radial distribution of particle size 

         (feed mean flow depth =3mm) 
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Fig.9 Sensitivity of relative specific gravity  with mean flow depth at various  

         equilibrium positions ( particle size =1mm) 
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       Fig.10. Sensitivity of relative specific gravity with the mean flow depth at  

                     Various   equilibrium position (particle size=1.5mm) 
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           Fig.11. Sensitivity of  relative specific gravity  with mean flow depth     

                       at various  equilibrium position (particle size =2mm) 

 

 


