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ABSTRACT

Helicopter UAVs can be extensively used for military missions as well as in civil operations, ranging from multi-
role combat support and search and rescue, to border surveillance and forest fire monitoring. Helicopter UAVs
are underactuated nonlinear mechanical systems with correspondingly challenging controller designs. This paper
presents an optimal controller design for the regulation and vertical tracking of an underactuated helicopter
using an adaptive critic neural network framework. The online approximator-based controller learns the infinite-
horizon continuous-time Hamilton-Jacobi-Bellman (HJB) equation and then calculates the corresponding optimal
control input that minimizes the HJB equation forward-in-time. In the proposed technique, optimal regulation
and vertical tracking is accomplished by a single neural network (NN) with a second NN necessary for the virtual
controller. Both of the NNs are tuned online using novel weight update laws. Simulation results are included to
demonstrate the effectiveness of the proposed control design in hovering applications.

Keywords: Nonlinear optimal control, helicopter UAV, neural network (NN), online approximator (OLA), HJB
equation, hovering

1. INTRODUCTION

Helicopter UAVs have many capabilities such as vertical take-off, hovering, low-speed flight at low alti-
tude, and landing. For control of a helicopter,1 it is necessary to produce moments and forces on the vehicle with
two goals: first, to position the helicopter in equilibrium such that the desired trim state is achieved, and second,
to control the helicopter’s velocity, position and orientation such that it hovers as desired with minimum error.
The dynamics of the helicopter UAV are not only nonlinear but also coupled with each other and underactuated,
which makes the UAV difficult to control. The helicopter has six degrees of freedom (DOF) which must be
controlled with only four control inputs - thrust and the three rotational torques.

To solve this control problem, several techniques have been proposed1–7 for model-based control of he-
licopter UAVs. It has been shown1 that the multivariable nonlinear helicopter model cannot be converted into
a controllable linear system via exact state space linearization. In addition, for certain output functions, exact
input-output linearization results in unstable zero dynamics.8 Based on Newton-Euler equations, a dynamic
model has been derived1 considering the helicopter as a rigid body with input forces and torques applied to the
center of mass. Previous researchers have considered an adaptive output feedback control of uncertain nonlinear
system with unknown dynamics and dimensions, a controller for autonomous helicopter flight, with the control
problem3 separated into an inner loop attitude control and outer loop trajectory control. A drawback of these
controllers2–4 is that the coupling between rolling (pitching) moments and lateral (longitudinal) accelerations
are completely neglected. A backstepping-based controller has been presented5 for the autonomous landing of
the rotary wing helicopter which also holds good for full flight control. The nonlinear controller computes the
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desired thrusts and flapping angles to get the commanded position and then computes the control inputs which
achieve the desired thrust and flapping angles. Models which are properly trained offline are often robust to
small variations in the system but fail to adapt to larger changes in the system. Further, an offline scheme
alone does not allow the NN to learn any new dynamics it encounters during a new maneuver. NN approaches2

have been proposed to learn the dynamics of the unmanned helicopter online, but the observer used in this case
estimates only the states of the feedback linearized system and not the actual states of the helicopter dynam-
ics. A nonlinear controller for a quadrotor unmanned aerial vehicle has been proposed7 by employing output
feedback and NNs. It has been assumed that the availability of the dynamics of the UAV is not always feasible
and therefore a NN has been introduced to learn the complete dynamics of the unmanned quadrotor online, also
including the uncertain nonlinear terms such as aerodynamic drag. A single online approximator (SOLA)-based
scheme has been introduced9 to solve the optimal regulation and tracking control problems for affine nonlinear
continuous-time systems with known dynamics. The SOLA-based adaptive approach has been designed to learn
the infinite horizon continuous-time HJB equation, and the corresponding optimal control input that minimizes
the HJB equation has been calculated forward-in-time.

However, the optimal controller design for regulation and vertical tracking of an underactuated helicopter
using NN has not yet been attempted, to the best of the authors’ knowledge. Following a previous approach,9 in
this paper the SOLA-based scheme for optimal regulation and vertical tracking of a nonlinear continuous-time
strict feedback system with known dynamics has been considered. The online approximator-based dynamic
controller learns the continuous-time Hamilton-Jacobi-Bellman (HJB) equation and then calculates the cor-
responding optimal control input that would minimize the HJB equation forward-in-time. This SOLA-based
optimal control scheme is then extended for the optimal regulation and vertical tracking of a helicopter UAV
with known dynamics. The proposed controller will consist of three NNs - one for approximating the cost func-
tion, with a second NN necessary for the virtual controller, a third NN used for tracking during take-off and
landing, and all the NNs tuned online using novel weight update laws. The paper is organized as follows: the
next section presents the nonlinear model of the helicopter, Section 3 deals with the continuous-time nonlinear
optimal HJB regulation and tracking problem and the solution of the HJB equation forward-in-time, and the
following sections include simulation results and concluding remarks.

2. DYNAMIC MODEL OF THE HELICOPTER

Consider a helicopter with six degrees of freedom (DOF) defined in the inertial coordinate frame Qa,
where its position coordinates are given by ρ = [x, y, z]T ∈ Qa and its rotational orientation described as roll,
pitch and yaw respectively, are given by Θ = [φ, θ, ψ]T ∈ Qa. The equations of motion can be expressed in
the body fixed frame Qb which has as its origin the center of mass of the helicopter. The bx-axis is defined
parallel to the helicopter’s direction of travel, the by-axis is defined perpendicular to the helicopter’s direction of
travel, while the bz-axis is defined as projecting orthogonally downwards from the xy-plane of the helicopter. The
dynamics of the helicopter are given by the Newton-Euler equation in the body fixed frame and can be written as1

[
mI 0
0 J

] [
v̇
ω̇

]
+

[
ω ×mv
ω × Jω

]
=

[
F
τ

]

where
m ∈ R is the positive scalar denoting the mass of the helicopter,
F ∈ R3×1 is the body force applied to the helicopter’s center of mass,
τ ∈ R3×1 is the body torque applied to the helicopter’s center of mass,
v = [vx, vy, vz]

T ∈ R3×1 represents the translational velocity vector,
ω = [ωx, ωy, ωz]

T ∈ R3×1 represents the body angular velocity vector,
I ∈ R3×3 is the identity matrix,

and J ∈ R3×3 is the positive-definite inertia matrix.
The kinematics of the helicopter are given as in equations (1) and (2) in Dierks,7 along with the trans-

lational rotation matrix T used to relate a vector in body fixed frame to the inertial coordinate frame, and
the rotational transformation matrix R used to relate a vector in body fixed frame to the inertial coordinate
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frame. The transformation matrix is bounded according to ‖T ‖F < Tmax for a known constant Tmax provided
−π/2 < φ < π/2 and −π/2 < θ < π/2 such that the helicopter trajectory does not pass through any singulari-
ties.1

Here it is necessary to mention that ‖R‖F = Rmax for a known constant Rmax and R−1 = RT . Let
the mass-inertia matrix M and skew-symmetric matrix S̄(ω) be given by Dierks.7 Now the dynamics can be
rewritten in the following form7

M

[
v̇
ω̇

]
= S̄(ω)

[
v
ω

]
+

[ N1(v)
N2(ω)

]
+

(
G(R)
03×1

)
+ U + τd (1)

where N1(v), N2(ω) ∈ R3×1 represents the nonlinear aerodynamic effects such as fuselage drag, G(R) ∈ R3×1

represents the gravity vector and is defined as G(R) = [−mg sin(θ) mg sin(φ) cos(θ)
mg cos(φ) cos(θ)]T with g = 9.81m/s2, U = [u1 u2 u3 u4 u5 u6]

T ∈ R6×1 is the control input vector,
with u1 providing the thrust in the z-direction, u2, u3 and u4 providing the rotational torques in x−, y− and z−
directions respectively, and τd = [τTd1, τ

T
d2]

T represents unknown bounded disturbances such that ‖τd‖ < τM for
all time t, and τM being a known positive constant. The nonlinear aerodynamic effects taken into consideration
for modeling of the helicopter are composed of translational aerodynamic drag and the main rotor torque that
is offset by the tail rotor. Defining X = [ρT ΘT ]T and V = [vT ωT ]T ∈ R6×1, one can rewrite (4) employing
backstepping in the strict-feedback form as

Ẋ = A(t)V + ξ (2)

V̇ = f(V ) + Ū (3)

where f(V ) =M−1(S̄(ω)V + [N1(v)N2(ω)]
T ) + Ḡ with Ḡ =M−1G(R) ∈ R6×1, Ū =M−1U , ξ = ξ1 + τ̄d with

ξ1 ∈ R6×1 being the bounded sensor measurement noise such that ‖ξ1‖ ≤ ξ1M for a known constant ξ1M and

τ̄d = [τ̄Td1, τ̄
T
d2]

T = [τTd1/m, (J
−1τd2)

T
]T ∈ R6×1, and A(t) as defined in Dierks.7 In this section, the dynamic

model of the helicopter with six degrees-of-freedom (DOF) and six inputs has been presented. The inputs are
functions of main rotor thrust TMR, tail rotor thrust TTR, the longitudinal tilt α, and the lateral tilt β of the
main rotor path plane with respect to the shaft.

In the case of this system, there is a high degree of coupling and nonlinearity in the inputs to the system
dynamics, such that it is mathematically impossible for this model to uniquely determine the system dynamics
inputs from the optimal controller-generated inputs. In order to control the system, it is necessary to reduce
the system such that only four states are monitored and controlled. The trade-off is that a powerful nonlinear
neural-network-based controller is used to evaluate a cost function online for optimality, but this can only be
done by imposing a requirement that the helicopter remain in hover.

Now, consider the input U to be given by U = [u1 u2 u3 u4]
T ∈ R4×1 as the control input vector,

with u1 providing the thrust in the z-direction, and u2, u3 and u4 providing the rotational torques in x−, y−
and z− directions respectively. Consequently, in order to control the four inputs of the helicopter, from the next
section onwards, only four states (z-axis translational velocity, and roll, pitch and yaw angular velocities) of the
helicopter will be considered.

3. NONLINEAR OPTIMAL REGULATION & VERTICAL TRACKING OF THE
HELICOPTER UAV

3.1 Hamilton-Jacobi-Bellman Equation

In this section, the dynamics of the helicopter given in (2) and (3) which are of the form

V̇ = f(V ) + guV (4)

will be considered, where V ∈ R4×1, f(V ) ∈ R4×1, g = M−1 ∈ R4×4 is bounded such that gmin ≤ ‖g‖F ≤
gmax and uV ∈ R4×1 is the control input. It has been assumed that the system is observable and controllable,
with V = 0 a unique equilibrium point on compact set Υ ∈ R4×1 with f(0) = 0.9 With these assumptions, the
optimal control input for the unmanned helicopter system given in (4) can be determined.11 It is important to
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note that the dynamics f(V ) and g are assumed to be known. However, this assumption may be relaxed if some
of the unknown parameters are estimated by using NNs.

The infinite horizon HJB cost function for (4) is given below

W (V (t)) =

∫ ∞

t

r(V (τ), uV (τ))dτ (5)

with r(V (t), uV (t)) = Q(V ) + uTVBuV , Q(V ) > 0 the positive definite penalty on the states and B ∈ R4×4

denoting a positive definite matrix. The control input must be selected such that the cost function in (5) is
finite, or uV must be admissible.9 Next, the Hamiltonian for the cost function in (5) with control input uV is
defined as

H(V, u) = r(V, u) +WT
V (V )(f(V ) + guV ) (6)

with WV (V ) the gradient of W (V ) with respect to V . Since the optimal control input u∗V which minimizes the
cost function in (5) will also minimize the Hamiltonian in (6). Thus the optimal control input can be obtained
by solving the stationary condition ∂H(V, uV )/∂uV = 0 and is found to be

u∗V (V ) = −B−1gTW ∗
V (V )/2 (7)

Substituting the optimal control input from (7) into the Hamiltonian (6) while retainingH(V, u∗V ,W
∗
V (V )) =

0 gives the HJB equation and the necessary and sufficient condition for optimal control to be11

0 = Q(V ) +W ∗T
V (V )f(V )−W ∗T

V (V )gB−1gTW ∗
V (V )/4 (8)

with W ∗(0) = 0. It is also known that the following relation is applicable9

JT
1V (f(V ) + gu∗V ) = −JT

1V Q̄(V )J1V (9)

Tracking results are also possible by modifying [7] to obtain an expression for the optimal control input as given
below

ûV = ud −B−1
e gTW ∗

Te(e)/2

with the desired control input ud expressed as

ud(Vd) = g−1(V̇d − f(Vd))

The control input consists of a predetermined feedforward term, ud, and an optimal feedback term that is a
function of the gradient of the optimal cost function. The details of this result will not be presented here, but
may be found in [9]. It is important to note that successful implementation for trajectory tracking along the
z-axis requires that the states V be replaced with the error between the actual and desired states e.

3.2 Single Online Approximator(SOLA)-Based Optimal Control of Helicopter

Usually, in adaptive critic based techniques, two OLAs9 are used for optimal control, since one is used to
approximate the cost function and the other is used to generate the control action. In this paper, the adaptive
critic for optimal control of a helicopter is accomplished using only one OLA. For the SOLA to learn the cost
function, the cost function is rewritten using the OLA representation as given below

W (V ) = ΓTΦ(V ) + ε(V ) (10)

with Γ ∈ RL the constant target OLA vector, Φ(V ) : Rn → RL a linearly independent basis vector such
that Φ(V ) = 0, with ε(V ) the OLA reconstruction error. The target OLA vector and reconstruction errors are
assumed to be upper bounded, with ‖Γ‖ ≤ ΓM and ‖ε(V )‖ ≤ εM .10 The OLA cost function gradient in (10) is

∂W (V )/∂V =WV (V ) = ∇T
V Φ(V )Γ +∇V ε(V ) (11)

Proc. of SPIE Vol. 8045  80450W-4

Downloaded from SPIE Digital Library on 23 May 2011 to 131.151.8.157. Terms of Use:  http://spiedl.org/terms



Using (11), the optimal control input in (7) and the HJB equation in (8) can be expressed as

u∗V = −B−1gT∇T
V Φ(V )Γ/2−B−1gT∇V ε(V )/2 (12)

H∗(V,Γ) = Q(V ) + ΓT∇V Φ(V )f(V )− ΓT∇V Φ(V )C∇T
V Φ(V )Γ/4 + εHJB = 0 (13)

where C = gB−1gT > 0 is bounded with Cmin ≤ ‖C(V )‖ ≤ Cmax for Cmin and Cmax and εHJB =∇V ε
T (f(V )−

1
2gB

−1gT (∇T
V Φ(V )Γ+∇V ε))+

1
4∇V ε

T gB−1gT∇V ε = ∇V ε
T (f(V )+gu∗V )+

1
4∇V ε

TC∇V ε is the OLA residual
reconstruction error. The OLA estimate of (10) is

Ŵ (V ) = Γ̂TΦ(V ) (14)

with Γ̂ the OLA estimate of the target vector Γ. In the same way the estimate for the optimal control input in
(12) can be expressed as û∗V = −B−1gT∇T

V Φ(V )Γ̂/2. An initial stabilizing control is not required to implement
this proposed SOLA-based scheme. Lyapunov analysis shows that the estimated control input approaches the
optimal input with a bounded error.

Ĥ∗(V, Γ̂) = Q(V ) + Γ̂T∇V Φ(V )f(V )− Γ̂T∇V Φ(V )C∇T
V Φ(V )Γ̂/4 (15)

Remark 1 : From the definition of the OLA cost function approximation (14) and the Hamiltonian function
(15), it is clear that both become zero when ‖V ‖ = 0. Therefore, once the system states have converged to zero,
the cost function approximation can no longer be updated, which satisfies the persistency of excitation (PE)
requirement for the inputs to the cost function OLA.10 Stated differently, the system states must be persistently
exciting long enough for the OLA to learn the optimal cost function. Recollecting the HJB equation in (6), the
OLA estimate Γ̂ should be tuned such that Ĥ∗(V, Γ̂). Unfortunately, only tuning Γ̂ to minimize Ĥ∗(V, Γ̂) does
not guarantee the stability of the nonlinear helicopter system(4) throughout the OLA learning process.

Consequently, the OLA tuning algorithm is designed to minimize (15) while maintaining the stability of
(4) and given as

˙̂
Γ = −δ1 β̂

(β̂T β̂+1)2
(Q(V ) + Γ̂T∇V Φ(V )f(V )− Γ̂T∇V Φ(V )C∇T

V Φ(V )Γ̂/4)

+Σ(V, ûV )
δ2
2 ∇V Φ(V )gB−1gT (V )J1V (V )

(16)

with β̂ = ∇V Φ(V )f(V ) − ∇V Φ(V )C∇T
V Φ(V )Γ̂/2, δ1 > 0 and δ2 > 0 design constants, J1V (V ) as defined

previously, and the operator Σ(V, ûV ) given by

Σ(V, ûV ) =

{
0 if JT

1V (V )V̇ = JT
1V (V )(f(V )− gB−1gT∇T

V Φ(V )Γ̂/2) < 0
1 otherwise

The first term in (16) minimizes (15) and has been derived using a normalized gradient descent scheme
with the auxiliary HJB error defined as EHJB = (Ĥ∗(V, Γ̂))2/2. The second term in the OLA tuning law in (16)
ensures that the system states remain bounded while the SOLA scheme learns the optimal cost function. The
basis function is given by Φ(V ) = [∇V V ∇V V

2 ∇V V
3 ∇V sin(V ) ∇V sin(2V ) ∇V tanh(V ) ∇V tanh(2V )]T . The

SOLA-based HJB regulation and vertical tracking design for an unmanned helicopter is illustrated in Figure 1.

3.3 Kinematic Controller

The overall control objective for the helicopter UAV is to hover around a desired position ρ0 = [x0, y0, z0]
T

with a desired heading while maintaining stable flight.
In this subsection, the terms required by the kinematic controller are derived. First of all, the desired trans-

lational velocity in the z- direction, vzd, is found to ensure that the helicopter position converges to the desired
position. To design the controller for the unmanned helicopter, the tracking error for position and velocity must
first be defined. The position tracking error is given by

eρ = ρd − ρ ∈ Qa (17)
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Figure 1. Control Scheme for Optimal Regulation of Helicopter
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On differentiating (17) and substituting (1) from Dierks,7 the position error dynamics are written as

ėρ = ρ̇d −Rv (18)

In order to minimize the position tracking error, the desired velocity is defined as

vd = [vdx vdy vdz]
T = RT (ρ̇d +Kρeρ) ∈ Qb (19)

where Kρ = diag{kρx, kρy , kρz} ∈ R3×3 is a diagonal matrix with positive definite design constants. Next,
define the translational velocity tracking error as ev = [evx evy evz]

T = [vdx vdy vdz]
T − [vx vy vz]

T = vd − v.
By substituting vd from (19) into (18) while observing v = vd − ev, the closed loop position error dynamics are
written as ėρ = −Kρeρ +Rev. Since Ṙ

T = −S(ω)RT , one may obtain v̇d = −S(ω)vd +RT (ρ̈d +Kρ(ρ̇d −Rv)),
with S(ω) as given by Dierks.7 Furthermore, it is important to note that there exist desired trajectories which
may reach unstable operating regions of the helicopter as the orientation about the x- and y- axes approaches
±π/2.

3.4 NN Virtual Controller

The main contribution of this subsection is the methodology for calculating the desired angular velocity.
The desired roll, pitch, and yaw angles are compared with the actual orientation of the unmanned helicopter
to get the attitude tracking error eΘ. This information is sent as feedback to the virtual controller, which then
calculates the desired angular velocity ωd such that the orientation of the unmanned helicopter converges to
the desired orientation (i.e., Θ → Θd or the attitude error eΘ is minimized). For obtaining the desired angular
velocity ωd, the attitude tracking error is defined mathematically as eΘ = Θd − Θ. The attitude tracking error
dynamics obtained using (3) in Dierks7 are given by ėΘ = Θ̇d − Tω. The desired angular velocity ωd, such that
the orientation errors are zero, is given below

ωd = T−1(Θ̇d +KΘeΘ) (20)

where KΘ = diag{kΘ1, kΘ2, kΘ3} ∈ R3×3 is a positive definite matrix with kΘi > 0, i = 1, 2, 3. The angular
velocity tracking error is defined as eω = ωd − ω. Since ω = ωd − eω, the closed-loop tracking orientation error
dynamics can be written as ėθ = −Kθeθ +Teω. To observe the dynamics of the proposed virtual controller, (20)
is rearranged and written as

Θ̇d = T (ωd − T−1KΘeΘ)

ω̇d = Ṫ−1(Θ̇d +KΘeΘ) + T−1(Θ̈d +KΘėΘ) (21)

For simplicity, a change of variables is defined such that Λd = ωd − T−1KΘeΘ, and (21) becomes

Θ̇d = TΛd

Λ̇d = Ṫ−1Θ̇d + T−1Θ̈d = FΛ (22)

Next, defining the estimates of Θd and Λd to be Θ̂d and Λ̂d respectively, and the estimation error to be Θ̃d =
Θd − Θ̂d, the dynamics of the virtual control inputs can be written as

˙̂
Θd = T Λ̂d +KΛ1Θ̃d

˙̂
Λd = F̂Λ1 +KΛ2T

−1Θ̃d (23)

where KΛ1 and KΛ2 are positive constants. The estimate ω̂d can then be written as ω̂d = Λ̂d + T−1KΘeΘ +
KΛ3T

−1Θ̃d, where KΛ3 is another positive constant. Observing ω̃d = ωd− ω̂d = Λ̃d−KΛ3T
−1Θ̃d and subtract-

ing (23) from (22), as well as adding and subtracting T T Θ̃d and KΛ3Ṫ
−1Θ̃d, the virtual controller estimation

error dynamics are obtained as ˙̃Θd = T ω̃d − (KΛ1 − KΛ3)Θ̃d and ˙̃Λd = (FΛ + T T Θ̃d − KΛ3Ṫ
−1Θ̃d) − FΛ1 −
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KΛ2T
−1Θ̃d − T T Θ̃d +KΛ3Ṫ

−1Θ̃d. In (23), the unknown function FΛ1(xΛ) is given by

FΛ1(xΛ) = FΛ + T T Θ̃d −KΛ3Ṫ
−1Θ̃d (24)

The approximation properties of NN are utilized to estimate the unknown function
FΛ1(xΛ) = WT

Λ σ(V
T
Λ xΛ) + εΛ by bounded target weights WT

Λ , V T
Λ such that ‖W‖F ≤WKΛ, with WKΛ being

a known constant, and εΛ the NN approximation error such that ‖εΛ‖ ≤ εKΛ for a constant εKΛ. The NN
estimate of FΛ is defined as

F̂Λ = ŴT
Λ σ(V

T
Λ x̂Λ) = ŴT

Λ σ̂Λ (25)

where ŴT
Λ is the NN estimate of WT

Λ , and the NN input x̂Λ = [1 ρTd ρ̇Td ρ̈Td ˙ρ̈Td ΘT
d Λ̂T

d V T Θ̃T
d ]

T . The update
law has been provided in [7], with FΩ gains set to 20 and κΩ1 = 0.1. On adding and subtracting WT

Λ σ̂Λ to the
derivative of ω̃d, the estimation error dynamics for angular velocity are given by

˙̃ωd = −KΛ3ω̃d + F̃Λ1 − T−1(KΛ2 −KΛ3(KΛ1 −KΛ3))Θ̃d − T T Θ̃d +KΛ3Ṫ
−1Θ̃d + ξΛ (26)

where F̃Λ1 = W̃T
Λ1σ̂Λ, W̃

T
Λ = WT

Λ − ŴT
Λ , ξΛ = εΛ +WT

Λ σ̃Λ and σ̃Λ = σΛ − σ̂Λ. Also, it is to be noted that
‖ξΛ‖ ≤ ξΛK with ξΛK being a positive constant defined as ξΛK = εΛK +2WKΛ

√
NΛ, where NΛ is the number

of hidden layer neurons, and the relationship ‖σΛ‖ ≤ √
NΛ has been used.

3.5 NN Control Scheme Verification

In the final theorem, the stability of the entire system which includes position, orientation, and velocity
tracking errors are considered along with the estimation errors of the virtual controller and the NN weight estima-
tion errors. Theorem 1 (Helicopter System Stability): Given the nonlinear helicopter UAV system defined in (4),
with the target HJB equation (11), let the SOLA tuning law be given by (16). Let the auxiliary velocity control
input be given by (12). Then the kinematic error, velocity tracking error, and NN parameter estimation errors
of the cost function are all UUB for all t ≥ t0 + T , and the error system is regulated in a near optimal manner.
That is, ‖u∗e − ûe‖ ≤ εu for a small positive constant εu. Theorem 1 can be shown to be valid. The theoretical
results of Theorem 1 confirm that the estimation error remains bounded in the presence of bounded disturbances.

4. SIMULATION RESULTS

Simulation results for the unmanned helicopter are presented in this section. All simulations are performed
in Simulink and demonstrate the performance of the proposed control scheme. The simulations take into account
the aerodynamic features previously presented as part of the helicopter model. The following trajectories were
used:

Case I Take-off and hovering:

zd = 0.7

Case II Hovering and landing:

zd =

{
0.7 t ≤ 0.5 sec

0.7e0.5(t−10) otherwise

Note that the following gains and constants were used: m = 44.3840kg,
J = diag([1.4668 4.5767 4.4070]T )kg.m2, KΛ = [24 80 20]T , Kρ = diag([1 1 3]T ), Kθ = diag([1 1 1]T ), and
κ = 0.1. The virtual controller employs five hidden layer neurons, while the optimal controller employs seven
hidden layer neurons. The optimal controller gains were set to δ1 = 100 and δ2 = 1. The helicopter’s initial
position and orientation are set to zero, and the requirement that f(0) = 0 is retained, except in the case of
hovering followed by landing, in which case the initial value of z is set to the initial altitude. Figure 2 displays
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Figure 2. Hovering of Helicopter During Take-off (Left) and Landing (Right)

the regulation and vertical tracking capabilities of the helicopter when taking off and transitioning to hover, and
when transitioning from hover to landing, respectively, with the previously detailed controls methodology. It is
important to note that the main rotor thrust and tail rotor thrust should approach constant values rather than
zero in order to keep the helicopter in hover, while the main rotor blade roll and pitch angles should approach
zero.

5. CONCLUSION

A NN based optimal control law has been proposed for an unmanned helicopter which uses a single online
approximator for optimal regulation and vertical tracking of an unmanned helicopter with dynamics written in
strict-feedback form. The SOLA-based adaptive approach is designed to learn the infinite horizon continuous-
time HJB equation, and the corresponding optimal control input that minimizes the HJB equation is calculated
forward-in-time. Further, optimality of the controller has been demonstrated. A NN-based virtual control struc-
ture was used to obtain the desired angular velocities such that the desired orientation is achieved. Simulation
results confirm that an unmanned helicopter with this control system is capable of regulated flight and vertical
tracking.
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