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The excerpts of the lecture clelivered by Prof, Santosli K. Gupta

Prof. Mehrotra, Scientists of National Metallurgical Laboratory and

Ladies and Gentlemen, it is a privilege for me to be visiting NML and I thank

Prof. S. P. Mchrotra for inviting me to deliver a lecture under the

CSIR Diamond Jubilee Lecture Series. I am quite aware of the good R&D

work: that CSIR and NML have been doing and wish you all success in your

celebrations as well as future endeavours.

I am going to deliver a lecture on "Genetic Algorithm and Multi-objective

Optimization with the Jumping Gene (Transposon ) Adaptation - A Primer".

Optimization techniques have long been applied to problems of industrial importance.

Several excellent texts1 - 5 describe the various methods with examples. These

usually involve a single objective function and constraints . Most real-world

engineering problems, however , require the simultaneous optimization of several

objectives ( multi-objective optimization ) that cannot be compared easily with each

other (are non-commensurate ), and so cannot be combined into a single , meaningful
scalar objective function . An example is the maximization of the product, while

minimizing the production of an undesirable side product . A very popular and

robust technique for solving optimization problems with a single objective function

is genetic algorithm (GA), also referred to as simple GA (SGA). This, is a search

technique developed by Holland . 1 It mimics the process of natural selection and
natural genetics. The Darwinian principle of'survival of the fittest ' is used to obtain
the optimal solution. This technique is better than calculus-based methods (both

direct and indirect methods) that generally obtain the local optimum , and that may
miss the global optimum . This technique does not need derivatives either . A recent

adaptation of GA [non dominated sorting genetic algorithm' with elitism ' and the
jumping gene operator, NSGA II-JG4] has been developed to solve multi-objective
function optimization problems. In this paper we describe GA and its adaptations
in a manner quite suited to a beginner.

GENETIC ALGORITHM

The optimization problem we have chosen for illustration involves two

bounded decision variables, x, and x„ and one constraint, and is given by

Max l(x,, x,) Max i(x)

subject to (s.t .)

bounds on x x L< x< XU ; i= 1, 2

constraint : f (x) = 0 (I)
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We first randomly generate N feasible sets of decision variables. The

feasible region is shown in Fig. 1 for the above example. However. instead

of representing the decision variables in terms of commonly used numbers

A.

x2

U
X 2

------------

L -------------- 3__^-Z -^-1-^ -/-ZI---------------
X2 1

X
L

X
U

I I XI

s

Fig. 1. Feasible region for the 2-decision variable problem in Eq. 1

(in the decimal system), we will use sets of, say, 4 (= I), binary numbers

for each decision variable. The set of binaries representing the entire set

of two decision variables in this case, is referred to as a 'chromosome'

or 'string'- An example of NF chromosomes generated using a random

number generating code (if the random number, R, is less than 0.5, use

the binary, 0, while if R is greater than 0.5, use the binary 1) is:

S3
S, S, S o S3 S. SI So

st chromosome: 1 0 1 0 0 1 1 1

2nd chromosome: I 1 0 1 0 1 0 1

N th chromosome:
R

1 1 1 1 0 0 0 1

substring l substring 2 (2)

Here, So ,S1, S„ and S3 denote the binaries in any substring at the 0th, 1 St

2nd and :3" positions, respectively. The domain, [ xi , x u ], for each decision

variable is now divided into (21 -l)[= 15 in the present example] equal

intervals. Fig. 2 shows that the lower limit, xU , for a decision variable

13 0 0 00 0 0 0 a 4 string

0 0 I 1 1
0 1 0 1

I

0 1 2 3 4 13 14 15

XL xI
U

xi

Fig. 2 : Mapping of binary szlbstrings
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is assigned to the 'all 0' substring, (0 0 0 0), while the upper limit,xF,
to the 'all I' substring , ( I I I 1). The other 14 combinations of the
substring are sequentially assigned values in-between the bounds of x , ,
as shown in Fig. 2 . The binary substrings are mapped into real numbers
using the following mapping rule:

x U - x L I-I
X, = x; + 21 -1 x 12iSi (3)

i=0

Clearly, the longer the substring, the larger are the number of intervals
in [xfr, x u ], and the higher the accuracy of search . The mapped real
values of each of the (two, here ) decision variables , can be used with a
model to evaluate the value of the objective function, 1, (xfor the j"^
chromosome . Ii are referred to as fitness values . For the minimization of
I (x), the fitness function (to be maximized) can be taken as 1/ (1 + IJ).

At this stage, we have a set of NP feasible solutions (parent

chromosomes), each associated with a fitness value. We now need to
generate improved chromosomes (daughters) using an appropriate

methodology. This is done by mimicking natural genetics. We make Np

copies of the parent chromosomes at a new location, called the 'gene
pool', using proportionate representation based on the 'goodness' of the

chromosome, i.e., the better the j"' chromosome ( in terms of 1), the
higher is its chance of getting copied. The probability, P,, of selecting the
jth string for copying is taken as:

Pi = I,N j = 1,2,...,N (4)
P

i=1

The actual methodology used for this is the roulette wheel selection.

We divide the range , 0< R s I , of random number , R, into NP zones:

0<R <P1 ; P1 <_ R<PI +P2; ..............:

N -1 N,

Pi s R P; = 1 and assign chromosomes , 1, 2, . . . , NP, to these

zones , respectively . For example, i f we have five randomly generated
chromosomes with the characteristics shown in Table 1, we can
partition the range, [0, 1], of R and associate the appropriate chromosome
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Table I : I ive chromosome s with their fitness values

Chromosome

Number

Ii P =

I / Z 1

Range

1 25 0.25 0<_R<0.25

2 5 0.05 0.25__<R<_0.3

3 40 0.40 0.3<R<_0.7

4 10 0.10 0.7 <_ R <_ 0.8

5 20 0.20 0.8 1 R 1

to each zone. A random number, A, with 0 5 A <_ 1, is now generated

and the corresponding chromosome is copied into the 'gene pool'. For

example, if A is obtained as 0.45, string 3 is copied. This procedure is

repeated NP times. Clearly, chromosomes having a higher fitness will be

selected more frequently in the gene pool . Due to the randomness

associated with the copying procedure, there are chances that some

'poor' chromosomes get copied (survive). This helps maintain diversity

of the gene pool (two 'idiots' can produce a genius, etc.).

Crossover operation is now performed on the chromosomes of the
gene pool. We first select any two strings in the gene pool, randomly.

The chromosomes in the gene pool are assigned a number, from I to

NP. The first random number , C (0 s C < I) , is generated. This is

multiplied by NP and rounded off into an integer. The chromosome in

the gene pool corresponding to this integer is selected. A second

chromosome is then selected . This procedure is repeated to give

NP/2 Fairs. We check if we need to carry out crossover on a pair, using

the crossover probability, P.. A random number in the range [0, 1] is

generated for a selected pair. Crossover is performed if this number

happens to lie between 0 to PC. If the random number lies in [Pa, 1], we

copy the pair without carrying out crossover. Thus, 100(1 - P^) % of
strings remain unchanged in the next generation. This helps in

preserving some of the elite members of the parent population in the

next generation.

Crossover involves selection of a location (crossover site) in the string,

randomly, and swapping the two strings at this site, as shown in next page :
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1001 11 100 1001 11101

1011 0 101 1011 0 100 (5)

parent chromosomes daughter chromosomes

In the above pair, there are seven possible internal crossover sites.
Generating a random number, B (0 5 B 1), and comparing it with zones

[0 < B < 1/7 ;l/7 <_ B < 2 / 7 ; . . . ;6/ 7 <_ B 5} in an equi-
partitioned roulette wheel helps decide the location of the crossover in
this pair.

If we somehow have a population in which all chromosomes happen

to have a 0 in, say, the first location , it will be impossible to get I at this

position using crossover . If the optimal solution has I at the first
position , then we will not be able to obtain it. Similar is the problem at
all locations . This drawback is overcome through the mutation operation
that follows crossover . In this, all the individual binaries in all NP
chromosomes are checked and changed from 0 to I (or vice-versa) with
a small mutation probability , P. i.e., if the random number generated
corresponding to any binary lies between 0 to Pm , mutation is performed.
Too large a value of P. leads to oscillations of the solutions.

The crossover and mutation operations may create inferior strings
but we expect them to be eliminated over successive generations by the
copying operation (survival of the fittest). Since SGA works probabilistically
with several solutions simultaneously , we can get multiple optimal
solutions , if present . For the same reason , SGA does not get stuck in the
vicinity of any local optimal solution , and so is a very robust algorithm.

A constraint in the optimization problem can be taken care of by
adding it to the objective function in the form of a penalty function.10'2
The penalty function reduces (for a maximization problem ) the modified
fitness value of the objective function by assigning a heavy penalty in
case the constraint is violated , thus favoring its elimination over the
following generations.

We now solve the following constrained optimization problem:

Max I(x1,x2)=
1

(a)
1+[(xj +x2 -11)2 +(x1 +x2 -7)2]
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(xi -5)2+X2-26?0 (b)

bounds . 0< x I <_ 5; 0< x , 5 5 (c) (6)

The modified objective function can be written as:

Max I(x x )zt>
1+[(xI +x2-1i)^+ (x1 +x; -7)2]

-wl[(xl -5)2 +x; -26]2 (7)

Here, w, is taken to be a large positive number (depending on the

value cf the original objective function) in case the constraint is violated,

else it is assigned a value of zero. The results for this problem for the

40111 generation are shown in Fig. 3. The computational parameters used

are: 1 10, P. = 0.85, P^ = 0.01, NP = 100, w, = 101. Fig. 3 shows that

most of the solutions crowd around the optimal point, (0.829. 2.933)T.

There are still a few points that violate the constraint.

Feasible
Region

K

1

0 1 2 3 4 5
XI

Fig. 3 : Population at the 40th generation for the

constrained optimization problem in Eq. 6

With this basic background we now turn our attention

multiobjective adaptation of GA, namely, NSGA 11-JG.'

to the
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NSGA II-JG'

As soon as we have optimization problems involving two or more
objective functions ( with constraints and bounds ), the scene changes
and we may not get a single , unique optimal solution . Indeed, in several
such problems , a set of equally good ( non-dominating) optimal solutions,
called a Pareto set, is obtained . A typical Pareto set is shown12• 11 in Fig. 4.

Fig. 4a corresponds to the minimization of both the objective functions,

19

18

17
F,

F2

0 0.1 0.2 0.3 0.4 0.5

F,

NSGA II (Gen 1000) (a)

NSGA II-JG (Gen 1000) (b)

0 0.5

F,

1

Fig. 4 : The Pareto set obtained for the ZDT4 problem" using NSGA 11' and

NSGA 11-JG9

F, and F,. It is clear that if we take any two points on the curve, one is
superior in terms of one objective function, but inferior in terms of the

16

15

1.2

1

0.8

0.6

0.4

0.2
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other objective function . SGA has to be adapted so as to be able to solve
such multi -objective problems. A popular technique is the non-dominated
sorting genetic algorithm , NSGA I1,8. 12 which is described below.

We generate , randomly, NP parent chromosomes ( as in SGA ), in box
P. The binary substrings are mapped and the model is used to evaluate
both [ , (x) and 1 ,(x), the two objective functions to be maximized. We

create a -new box, P', having NP locations . Chromosome I (referred to as
CI) is transferred from P to V. Then the next chromosome, C , , is taken

temporarily to box P sequentially [ i = 2, 3, ... , No]. C, is compared with
all the other chromosomes present in P', one by one_ If Ci dominates the

member of P' with which it is being compared (i.e., both 1, and L, of C

are better than those of this member ), the latter is removed from P' and
put back . into P at its old position . If C, is dominated over by this member,
C. is returned to box P and the comparison of C stops (and we study the
next member , C ,, 3 ' from P). If C and this chromosome in P' are non-
dominating ( i.e., C is better than the chromosome in P' with respect to
one fitness function, but worse with respect to the other fitness

function ), both C and the other member are kept in P'. The comparison
of C with the remaining members of P' is continued , and either C1 is
finally kept in P', or returned to P. This is continued till all the NP
members in P have been explored . At this stage we have only (< NP) non-
dominated chromosomes in V. We say that this is the first front, and we

assign it a rank of 1. We now close this sub-box in P'. Further fronts

(with ranks = 2, 3, . . . , etc .) are generated in P', using members left

in P, till P' is full, i.e., all NP members in P are classified into fronts. Rank

( or front) numbers , R,, are assigned to each chromosome , C., in box P'.

It is obvious that all the chromosomes in front 1 are the best , followed

by those in fronts 2, 3, . . .

In multi-objective optimization , we wish to have a good spread of
the non-dominating chromosomes ( Pareto set). In order to achieve this,
we try to de - emphasize (kill slowly ) solutions that are closely spaced.
This is done by assigning a crowding distance, Di, to chromosome, C,,
in V. We select a front , and re-arrange its chromosomes in order of
increasing values of 1, (or I,). Then we find the largest cuboid enclosing
chromosome , C,, in the front , that j ust touches its nearest neighbours.
The crowding distance for C. is calculated as:

Di _ I [sum of all the sides of the cuboid] (8)
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The lower the value of D,, the more crowded is the chromosome, C,.

Boundary chromosomes are assigned high values (arbitrarily) of Di, so as to

prevent their killing. Clearly, if we look at two chromosomes, i and j, in
P', C1 is better than C. if Ri < R.. If, however, R. = R., then C. is betterJ
than C. if Di. > D.

Now that we know how to compare chromosomes in P', we start to copy
them in a gene pool (box P"). We take any two members from P' randomly

(as described for SGA), and make a copy of the better chromosome in P".

We then put both the chromosomes back into P'. This is repeated till P"

has Np members. Crossover and mutation are now carried out on the
chromosomes in the gene pool, as in SGA, giving NP daughters in box D.

The jumping gene (JG) operation is now performed. Before we

describe this operation in NSGA II-JG, we give the salient features of

JG. Irvbiology, a jumping gene or transposon is a DNA that can jump in
and out of chromosomes. These genes are found to generate genetic

variation (diversity) in natural populations. Transposons are of several

different kinds. We focus attention on only one kind, namely, those
involved in the process known as insertion. Transposons, having a

relatively small size of about 1-2 kb (kilo-bases or kilo -nucleotides), can
get inserted (replace a sequence of bases) in a chromosome. These are
referred to as insertion sequences. These consist of a central coding

sequence of bases that is flanked on both sides by short, inverted, repeat
sequences (see Fig. 5). We assume in the JG adaptation of NSGA II that

the length (number of base pairs) of the JG is the same as that of the

replaced bases in the original chromosome. This keeps the total length
of the chromosome unaffected. Only a fraction, P jump, of chromosomes

ATGGACT AGTCCAT

5 5

TACCTGA4 +TCAGGTA

4 2 * 4

3 4

Fig. 5 : Schematic representation of a transposon. I. Transposon inserted in a

chromosome ; 2: Genes in the transposon: 3,4: Inverted repeat sequences of
basestnucleotides; 5: Double-stranded DNA of original chromosome. Bases: A:

Adenine, C: Cytosine, G: Guanine, T Thymine.
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(selected randomly) in the daughter population (D), are modified by the

JG operator. Once a chromosome is identified (using Pump) for the JG

operation, two sites are found between which replacement is to occur.

This is done using random numbers. We generate a random number

(between 0 and 1) and multiply this by the total number of binaries in a

chromosome. We round-off to convert it into an integer. This represents

the position of one end (beginning) of a transposon. This step is repeated

to get the other end of the JG. The binaries between these locations are

deleted and replaced by an equal number of newly generated binaries (the

procedure is the same as used in SGA) using a sequence of random

numbers. We assume only a single transposon to be present in any

selected chromosome to keep the algorithm simple (several other

possibilities mimicking transposons in natural genetics can be tried). It

is worth mentioning at this stage that replacement by a JG involves

a macro-macro-mutation that is expected to provide higher genetic

diversity.

All the parents in P" and the NP daughters with transposons are

copied in box, PD (of size 2Np). These 2N" chromosomes are

re-classified into fronts (kept in box PD') using only the criterion of non-

domination (and not crowding). The best Np chromosomes are now

selected from box PD' and put into box P"'. Clearly, the elite members
of the parent population will also get represented in P"'. This completes

one generation. This procedure is repeated for the next generation, starting

from P"' as the new parent population. Unfortunately, the diversity

decreases because of elitism, but this is counter-acted by the JG operation.

W2 now illustrate NSGA ll-JG using the following, two-objective

function problem (ZDT411):

I
Max l, (x) = I+ F,

1Max 12(x)=

where,

I+F2

(a)

(b)

(c)
1/2

F,

[ +[ x? - I ocos (amc;)^^
i=2

(d) (9)
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This problem has 2I9 Pareto sets 12. 13 and the global Pareto has

0<xl < I andx. =Oforj= 2,3,..., 10 (and so,0<FI,F`< 1). The

Pareto results9 using both NSGA 11' and NSGA ll-JG,9 are shown in Fig.

4. For this problem , the binary - coded NSGA-lI has been found to

converge to different local Paretos (depending on the computational

parameters used ), rather than to the global optimal set (note that the

optimal values of F., in Fig . 4 for NSGA-1I are not in the range of 0 - 1,

characteristic of the global Pareto ). However , the results obtained using

NSGA l1-JG outperform those obtained by NSGA-II and the global

Pareto is, indeed obtained.

It may be mentioned here that NSGA 11-JG has also been applied to
an industrial fluidized-bed catalytic cracking unit (FCCU).9 It is found

that the Pareto optimal solutions are obtained in only 10 generations, as

against 50 required for NSGA II. A more recent adaptation of the JG
operator has been used14 to optimize froth- flotation circuits in the mineral
processing area. In this, some substrings (representing the fraction of
flow rates of exit streams from a cell to another cell) are randomly
assigned either 'all 0' (no flow) or 'all 1' (entire stream directed to one
unit) binaries during the JG operation. This artificially increases the
probability of deleting flows in circuits, something that is difficult to
achieve by the normal, unbiased, generation of binaries.

Several industrial processes in chemical engineering have been
optimized by our group in the last few years. These are summarized in

Table 2, and give a flavor of the immense possibilities still to be tapped.

Table 2. Multi-objective optirni>ations in chemical engineering studied

by our group

Problem Studied Reference

Dynamic optimization of a non -vaporizing
nylon 6 batch reactor

Wajge and Gupta15

Optimization of an industrial semi-batch
nylon 6 batch reactor

Sareen and Gupta"

Dynamic optimization of an industrial
nylon 6 semi-batch reactor

Mitra et al.17

Free radical bulk polymerization reactor Garg and Gupta"
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Prohlcrlt Siu hied Re)`ererice

industrial nylon 6 semi--hatch reactor

system.

Gupta and

Industrial wiped film polyethylene

terephtiialate (PET) finishing reactor

;tll,.si:a i al

Polylnethyl methacrylatc (PMMA) reactors
and film production

Lliou et al."

Steam reformers Rajesh et al.'

Cyclone separators Ravi et al.2'

Venturi scrubbers Ravi et al.24

Beer dialysis Yuen et al."

Fluidised-bed catalytic cracking ullit Kasat et al."

CONCLUSION

An adaptation of SGA, namely, NSGA 11 using the jumping

gene operator, is described . This algorithm is effective in obtaining

global Pareto solutions for problems with multiple local Paretos ( where

W CA 11 fails). This adaptation also converges to optimal solutions

faster , as compared to NSGA II. This can prove quite valuable for
solving, similar compute-intense multi-objective optimization schemes in
metallurgical operations.
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