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ABSTRACT

Tata Research Development and Design Centre (TRDDC) has developed

a state of the art mineral processing simulator called SimL8. Jr performs

modelling, simulation and optimisation functions and provides viable

strategies for enhancement of the performance of mineral processing

plants. A number of case studies on plant diagnostics, grinding,

classification, flotation and pressure filtration are taken up to

demonstrate the utility of modelling and simulation on SimL8 platform.
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SimL8. Grinding, Classification, Flotation, Circuit design, Filtration.

INTRODUCTION

The efficiency and viability of a mineral processing plant operation is deter-
mined by its productivity, yield, product quality, cost, energy consumption, en-
vironmental impact and so on. These i ndices, in turn , are impacted by the chem-
istry of the process, as controlled by chemicals, reagents, surfactants, polymers,
pH etc., and by the physical unit operations employed. The advances made in

molecular structure, properties and behaviour now permit us to select chemicals
with much greater reliance on our understanding of the fundamentals than on

empirical knowledge. Molecular modeling and reagent design is an emerging
field, which holds considerable promise for mineral processing industry. Recent

advances in reagent design'' "I have shown that it is possible to identify more
selective reagents, tailor - made for a specific separation problem at hand. De-
tailed discussion on these topics. however, is outside the purview of this paper.
The reader is referred to several excellent monograph and reviews.
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Improvement in the process chemistry, in isolation, is by no means adequate
for optimisation of the mineral processing plant. It is concurrently necessary to
analyse in detail the various unit operations that comprise the plant as well as the
manner in which these are interconnected, that is, the circuit configuration. For

this purpose, one has to carry out computer aided process design, simulation,
optimisation and circuit synthesis. SirnL8, the state of the art mineral processing

simulator developed by TRDDC. perform these tasks with relative ease in a user
friendly environment.

As shown in Fig- I, the first step in an exercise directed at plant optimisation
usually calls for collection of plant data, followed by data reconciliation, plant
audit and diagnostics. Next step entails acquiring or building mathematical models

of the various unit operations comprising the plant. such as size reduction. clas-
sification, beneficiation, liquid-solid separation etc. The models can he cmpiri-
ca], semi-empirical or more realistic and detailed phenomenological models in
the particle population balance paradigm. The last approach requires a sound

understanding of the actual physical phenomena prevailing in a unit operation.
Once the mathematical models are validated with plant / laboratory data, it
should be possible to simulate the performance of individual units and the circuit
as a whole, and come up with strategies for pertor-mance enhancement. These
complex and computational intensive tasks are best carried out with help of a
tailor-made, dedicated and user-friendly modeling-simulation tool such as SimLB.

Plant audit & diagnostics

Design / selection of
appropriate reagent
combination (dosage
optimization)

Size Reduction

& classification

Unit operations
Optimization &

circuit design

Separation
of desired
component

Solid - Liquid
separation

I i,,. I Sclrenrcrric diogmiir sliosrif? , rirriotts steles- in I^lcurt njrrirni.z a tiorr

MODEL ING-SIMULATION TOOLS

Very few cornntercial modelling-simulation tools for mineral processing plants

are currently available. These are USIM PAC lrom BRC„M-T. France: JKSimFloat
from JKMRC, Australia: and SimL8 from TRDDC, Pone. Based on inc rc than
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fifteen years of TRDDC experience in modelling, simulation and optimization of
mineral processinunit operations and circuits. SintL8 was developed in col-C7

with the software-engineering group of Tata Consultancy Services and
Hindustan Zinc Limited. It incorporates the latest Simulator Development Envi-

ronment (SDF), a proprietary technology of Tata Consultancy Services, which

enables seamless additions of new unit Operations, process models, solvers or
optimisers. SiniLB has 3 modes of operation. namely, data reconciliation'
parameter estimation and simulation. It has a user friendly graphical user inter-
face, which interacts with the hackend solver, optimiser and a large hackend
literary of process models. The architecture ol' SiiuL8 is shown in Fig 2.

Data Reconciliation
Parameter Estimation

Simulation

Plant flow sheet
Equipment

specifications
t Process specific

variables
Plant data

Solvers Optimizers

Grinding
Classification
Flotation
MGS
Filtration

I-ditahle report
Graph

Display value
Run info for output

CAST? STUDII?S

Fig. 2 : Archilecriuce (it .SirrrLti

Design and
optimization of

gnndmg circuits

Design and
optmization of

flotation circuits

Design of mineral
processing

circuits

A Iew case studies carried out by us are presented in the following sections
to illustrate the utility and power of SiniLK.

Plant Audit and Diagnosticsi15-171

A process audit is a methodical and systematical exploration of a system for

rluantifying its performance. Process auditing of it mineral processing plant at

regular intervals can provide valuable information to the plant engineers regard-

ing the plant health and drift in the plant performance with time. It is also

possible to identify the prohlci ultic process units Iron the plant audit. This case

stud) k'~as done on a Pb circuit. shown in big. 3. of a Ph-Zn plant. The Ph circuit
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Fig. 5.
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Fig. 6(a): Rougher performance in terms of separation
efficiency of Pb from Gr . C and insolubtes

Fig 6(c ) Cleaned performance intarms of separation
efficiency of Pb from Gr C and insolubles
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Fig. 6(b): Scavenger performance in terms of separation
efficiency of Pb from Gr. C and insolubles

3
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Fig 6(d ) Cleaner3 performance in terms of separation
efficiency of Pb from Gr C and insolubles

Figlra, <5 (a, b, c, d)

377



M^I^NY^Wi a^.. ^. ,a^..^^W^Yun^r^ ► „ ^+sr^r^ ...... ..Il .W N^u^^ee^. ^ib,^.. r^anM

/'R;11)//' S. RAHA anal P C. KA1'f'R

It will he seen from these plots that there are considerable variations in the
performance of the process units in different runs- On the whole. Rougher and
Scavenger are working reasonably efficiently as compared to the cleaner banks
in rejectin* insolubles. For separating Ph. Cleaner] is not working ^4cll: how-
ever, cleaner 3 has better separation performance for Ph , and in sci it i,
performing quite well.

Information of this kind based on plant data but appr^priateI reconciled for

mass balances using a tool like SiniLS, if collected on a regular basis and docu-

mented. again with the help of a data processing tool like^Siml.8 having those

functionalities, can provide valuable means of optimir.ing plant performance, if

the trends of this kind established on the basis of plant data are correlated with

actual mineralogical or operating conditions . one can make suitable chant*c, to
enhance plant pcrforrnarrce.

{Grinding and Classification"'2111

Case study /

This illustration is for a typical chronic ore heneticiation plant. The original

chrome ore grinding section is shown in Fig*. 7. The problem in the plant wvas

related to low throughput with relatively high generation of slime (-37 micron).

SimL8 was employed to mass balance, model and simulate the grinding circuit.

It was found from the plant audit studies (consisting of sampling canipaig*ns

Billowed by data reconciliation and performance assessment of each individual

unit) that the sieve bend was overloaded and was not performing well. Based on

extensive simulations. a circuit modification was proposed in which the finer

fraction of screw classifier is not reclassified in the sieve bend but directly taken

out as product. Moreover, the sieve bend overflow is sent hack to screw classi-

fier, unlike the original circuit in which the sieve bend overflow is recycled to

the ball mill. These changes led to a significant increase in [he overall circuit

throughput and reduction in proportion of slimes fraction. The tziodified circuit

is shown in Fig. 8.

As the separation efficiency of sieve bend was poor. the throu-hput of the
modified circuit could be improved by bypassing the screw classifier finer frac-
tion. The sieve bend perforniace before and after the Modification is shown in
Fig. 9. The sieve bend \,%a,; overloaded and reduction in the sieve bend loading
can improve its separation efficiency.
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Fig. 8 : Modified chrome ore grinding circuit

-+- wftrnp tw a CM)
-t- orasl etrsncy {r 4 I Mt)

0,0 :^• * r .
100 700 900 400

Purtic)N S. (micron)

600

Fig, 9 : Sieve bend
eflic•ienc v

379



mioidd wo I,. I i 1iai1•44 mkok rk"114d it i n . •Y 1♦i IhF•tr , rYiq^IiriYM1^M!YW^M^ Jim Ft^ frI 1+64^r^IM is* igloo I J i N. i ilr

PRAD!P S. RAHA orrc! P C. KAP(,R

A comparison of the performance of the two circuits is shown in Table 1.

J ibfe / Comparison of per/or-ntance of tiro circuits

Circuit Feed (t/hr) Feed (t/hr) Ball mill Product. Product
(-3 mm) (-15+3 mm) throughput wt`4 (-37 w1c4

(t/hr) micron) (-500+37
micron)

Normal 81.46 25.70 69.70 34.88 62.95
Modified ckt 151.39 47.76 112.18 34.13 65.45

A tool like SimL8 can thus he very gainfully utilised in plant practice in not
only assessing the unit performance quantitatively but also to find suitable rem-
edies to those operating sub-optimally.

Case stctdV 2

The primary and secondary hydrocyclones in a classifier circuit can he com-
bined in various ways as shown in Fig. 10.

Fig. 10 . Clussifiers crrrrrrr, er! in r<uiotrs ii u^.t

The plots in Fig. I I shows the simulated product sis.e disu-ihutions ohUrincd

under clifferent modifications. It Would seem that there is an optimal cltr,silier

circuit for a given product requirement. which can he identified by modellinc

and simulation.
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Cumuiativ® Size Distribution in Final Product
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Fig. 11 : Product size disiiibrittori in various hvdrocvclone urrangemenis

Flotation circuit[2 3

The flotation circuit will be described with a case study of the Ph circuit
already shown in Fig. 3.

Case study 1 :

Some interesting simulation results were obtained when the final Ph concen-
trate stream is fed back to various banks i.e., rougher, scavenger, cleaner], cleaner2
and cleaner 3. Fig. 12 illustrates the effect of recycling path (the results of
increasing proportion of recycling of final concentrate back to the flotation cir-

cuit) on the rejection of graphite carbon content and Ph recovery. It would seem
that recycling of final concentrate to scavenger has the most disastrous effect on
lead recovery with only a small improvement in graphite carbon rejection. This
is expected since material fed to scavenger bank will go out of final tails, leading
to high loss of valuable material. When recycled to rougher hank, even though
the recovery drops, it is accompanied with a better performance in graphite
rejection. Recycling in cleaner 1, cleaner 2 and cleaner 3 shows improved per-
formance with better rejection of graphite carbon and lower drop in recovery in
that order. The simulation results suggest that cleaner 3 concentrate can he re-

cycled back for improving the quality of concentrate.

Case study 2 :

Based on empirical experience, plant engineers often shift cells from one
hank to another. The effect of shifting some cells from rougher to scavenger hank
was simulated with SimL8. Fig. 13 shows the effect ail' increasing the number of
rougher cells, while keeping total number of rougher and scavenger cells con-
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stint, on Pb grade and recovery. With an increase in numher of' rougher ccl]s_ Ph

grade drops. Ph recovery increases slightly as number ol, rougher cell is in-
creased from 2 to 3 and then it begins to drop again with further increase in
number of rougher cells.

% graphite in final concentrate

f-i,g. 12 : f-jfec: of ,reveling of filial cr',l tnerate at rurir , rrs /nicks

0

Number of rougher calls

1--i". /3 ( !^JJ.S /ruin uc'crirRI Leer to curt Ju r

0-th level s imrrfctiion :

7

SiuiL;i has malty detailed and realistic nrathenuatical models for erindirrc!.

classification and Ilotation. Folr other unit operations. "'hick have not hccn

modelled yet. a facility of O-ill level siltrulutiolli ha, been prrv idCd. In t)-ill ICv Cl
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simulation, it is assumed that separation efficiency of a process unit, which can
he calculated in SimLS, remains approximately invariant of any reasonable
modification in the circuit configuration. Thus, one set of separation efficiencies
can he employed to simulate the modified circuits. This is demonstrated with
reference to the . Pb circuit in Fig. 3. It is known that a multi gravity separator
(MGS) can he quite effective in rejecting graphite carbon from the Pb circuit. A
decision had to he taken regarding the position of MGS in the Ph circuit. With
this objective in mind. several circuit configurations were tested by simulation
in order to obtain the best possible circuit configuration. Fig. 14 shows the
optimal circuit configuration -obtained. There is a significant improvement in Pb
grade with only marginal drop in recovery when MGS feed comes from cleaner
I concentrate and cleaner 2 tails. Table 2. shows the expected performance of
different circuit modification.

Fig. 14 : Pb circuit with MGS

Table 2 : Effect of MGS on Performance of Pb Circuit

Circuit Configuration Grade (%) Recovery (%)
Pb Gr.C Pb

Without MGS 48.12 9.58 62,26
Feed Conc. Tail

Scavenger Cleaner 1 Rougher 46.17 8.74 66.67
Conc

Cleaner 1 Conc Cleaner 2 Cleaner 1 71.87 0.86 50.88
With Rougher Conc Cleaner 1 Rougher 71.23 0.81 46.29
MGS Cleaner 1 Conc Cleaner 2 Cleaner 1 68.41 0 .75 57.19

and Cleaner 2
tail

Cleaner 1 Conc Cleaner 2 Rougher 73.15 0.67 41.66
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Solid Liquid ticparationtu..'I

All nnncral pro:essing plant, have sold liquid separation units. like thi'k-
ener. pressure filtration etc. The various solid liquid separation devices arc listed
in Table 3.

Table 3 : Deu ate rin,i,' e!('t,•ie•es

Pres>urc ikPat Deice

O Gravity belt filter

< 1(1 Thii ^cnrr

<2(X) Vacuum and drum Idler

<5(X) Ceramic drum filter

2(10-I.0I)0 Belt press lifter

1.1)11)1-31)00 Plate and frame filter

5,100-20.000 Tube press

The issues that need to he addressed for cflicient dewatering operation arc: ti)
The optimum dosag of dewatcrin^g aids (eg. Ilocculants). (ii) The best deAaterin,r
aid kit a particular tarry. (iiii The extent t)t dewatering achievable economically.
)iv) The rate of dewatcrin_* and (v') Optimal conditions for maximising extent and
rate of dewatering. TRDDC has developed expertise in nukleling simulation of
filtration processes. The study involves characterisation of the Murry in the lahora-
tarv. nxldclinc and simulation to ascertain the optimal conditions life the liltratiun
process. Fig. 15 show,, the model lit on Zn concentrate lalxnatorv exparintental data
at various operating pressures. Fig. 16 show„ the ellect o1 initial slum height in
liltration chamber on overall throughput. From the I figure we ohst rye that the through
put for a given handling time has a maxinia with respect to initial :Iurrr tilling
heig*ht. The maximum throughput increases by as much as 4(1' i when the handlim,
time IS reduced by 20(ls. Further, if the stopping criterion is relaxed front at yaluc
of I6A to It)'i. tier a fixed liltratiun pressure and handling time. the maximul'i
throughput increase, by 501A. The maximum tho uohput is 0h1aincd ashen the :il-
Iration time is same as the handling time.

600

700

0
E

600

400

300

500

200

100

0

01 02 03 04 05 05 D? 00

Soloci vol fraction

lr: 1^ I o rl,, r%'u n) r rlarrrrl C )rr / liii " fir! ;usu ! gi /: ii ii')! to y "I,

384



PRADIP S. RANA and P. C. KAPUR

Fig. 16 : Effect of initial +lrrri \ height on overall throughput
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