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The excerpts of the lecture delivered by Prof. S. P. Mehrotra

Good Afternoon! I am going to talk on the topic "Mathematical
modelling : A wonder tool if judiciously used". It took me a while to

properly phrase the title of my presentation today. I did not want to make

it too specific to be confined to one particular kind of activity, at the

same time I did not want to talk about things which do not belong to me;

and also I did not want to talk about mathematical modelling in general.

In fact, this particular lecture represents the philosophy of my research

career over the last 30 years.

I start with two basic definitions in the context of this lecture.

Mathematical modelling, as you all know, is representation of chemical or

physical phenomena in a process by one or more mathematical equations

along with the necessary initial and/or boundary conditions. The equations

involved could be algebraic, ordinary differential and/or partial differential.

In the context of mathematical modelling, simulation may be defined as the

study of process behaviour with respect to operating variables and process

parameters. We come across mathematical modelling in almost all facets

of engineering whether it is R&D, process design or plant operations. For

instance in R & D, we often study reactions and processes and try to

determine the kinetic parameters and study the mechanism of reactions. In

almost all cases, it is done through modelling and simulation. It is a

different thing that sometimes we realise it but more often we do not. The

use of simple Arrhenius equation to estimate the activation energy and then

try to comment about the mechanism of reactions or the rate phenomena

in process is nothing but modelling. Another thing that we often do is to

study the effect of process parameters on the process behaviour. This can

be done by performing experiments in the laboratory - by changing the

input parameters, measuring the output parameters and then try to infer

from that about the process behaviour. Many a time, performing experiments

even on laboratory scale may be quite expensive , time consuming and even

risky. Mathematical models, these days, are being used in all spheres of

engineering - from research and development to plant operations - and

even in business and economic studies. In research and development,

these are being used for: (i) determining chemical kinetics, mechanisms

and parameters from laboratory or pilot plant research data, (ii) exploring

the effects of different operating conditions for optimization studies, and

(iii) aiding in scale up calculations. In the area of design, mathematical

models find applications in: (i) exploring sizing and arrangement of process
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equipment for dynamic performances, (ii) studying the interactions of

various parts of the process, (iii) evaluating alternate control strategies,

and (iv) simulating start-up, shut down and emergency situations and

procedures. In plant operations mathematical models are used in: (i)

trouble shooting, control and processing problems, (ii) aiding in start-up,

(iii) studying the effect of and the need of expansion (bottleneck removal)

of projects and (iv) optimizing plant operation.

STEPS IN THE DEVELOPMENT OF A MATHEMATICAL MODEL

The various steps involved in the building of a mathematical model of

a complex process have been described by Himmelblau and Bischoff', are

I. Formulation of the problem and establishment of objectives.

2. Preliminary inspection and classification of the process to break it

down into sub-systems.

3. Preliminary determination of the relationship among the sub-systems.

4. Analysis of the variables and relationships to provide as simple and

consistent a set as possible.

5. Mathematical modelling of relationships in terms of the variables

and parameters.

6. Evaluation of how well the model represents the real process.

7. Application of the model - interpretation and comprehension of results.

Fig. I indicates the cyclic (iterative) nature of these steps.

CLASSIFICATION AND

DECOMPOSITION

CORRECTIVE ACTION

ESTIMATION OF

COEFFICIENTS

EVALUATION

ANALYSIS OF

L DEFECTS

Fig 1. Cyclic nature of steps in model building.
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Mathematical modelling is frequently hampered by a poor understanding

of the process. This is more true for most metallurgical operations

which often involve high temperatures and multiphase processes. In

such situations, modelling must be undertaken hand-in-hand with sound

experimental work- This point is vital to good model building and is

emphasized throughout this lecture.

14OLE OF MATHEMATICAL MODELS IN PROCESS ANALYSIS

It is important that mathematical models be seen in correct perspective

in Process Analysis. As an engineer, our principal objective is to know

more and more about the process and its behaviour, i.e., how is it going

to respond to changes under different input and operating conditions. This

can he done by using one or more of the three commonly used tools. One,

for an existing process we make measurements during its operation,

compile data, analyse these as judiciously as we can and generate the kind

of information needed. Second, generation of experimental data using

replica or physical models of the operating units - real or simulated. The

third tool, of course, is mathematical modelling. Thus it should be realised

and emphasised that mathematical modelling is only one of the techniques

or tools of process analysis - a very powerful tool, indeed. The point I am

trying to emphasize is that mathematical modelling is not an end into itself

and therefore, we should always remember as to what we are trying to do

and why. And, of course, we should remember that the best method of

process analysis is the one, which solves the problem in the least time and

with least expenses. It can be any one of the three tools mentioned above,

or it can be a combination of these.

LIMITATIONS OF MATHEMATICAL MODE LLING

While mathematical modelling has several advantages, it has a few

limitations as well:

1. Non-availability of reliable and accurate data : System studies

based on mathematical modelling are only as accurate as the

physical and chemical data that go into the model. After setting up

the model equations, one of the major tasks of the analyst is to

evaluate the parameters in the model on the basis of experimental

data. For many metallurgical processes and unit operations, the

forms of model equations are now well established and the entire

effort is directed towards the more accurate estimation of parameters

in these equations. Process kinetics is one area in which great
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uncertainty exists. Normally, the kinetics coefficients are obtained

by actually carrying out experiments in a small-scale reactor. Lack

of information about side effects in small-scale reactors, effect of

impurities in the actual commercial plant and improper scaling up

criteria may lead to unpleasant surprises in the actual operation.

2. Limitations in solving model equations : Once the mathematical

model is developed to describe the process, the equations involved

in the model are to be solved using mathematical techniques. Most

of the times, a process can be easily defined and described

mathematically but the equations cannot be solved because of

limitations in mathematical theories and computational techniques.

3. Validity of assumptions : The accuracy of the model depends on

the validity of various assumptions. If the assumptions are too far

off from reality, one cannot expect good results. So, while making

certain assumptions to simplify a given set of equations, one should

ensure that simplification does not turn into oversimplification.

4. Extrapolation of a model : Another danger in the use of model is

to assume that the model represents the real system beyond the

range of variables that the model was originally intended to

encompass. Such extrapolation of the model may be very misleading.

Fig. 2 illustrates an exaggerated case of extrapolation, by means of

a linear model, into a region beyond the experimental data for a

chemical reaction that reaches a maximum.

T1M a
Fig 2 . A n illustration of the danger of extrapolation beyond the range

of variables.
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FALSE NOTIONS ABOUT MATHEMATICAL MODELLING AMONGST

STUDENTS/YOUNG ENGINEERS

Many modellers start believing themselves to be intellectually more

advanced as compared to their counterparts engaged in experimental

activities. Often, the feeling is that while I can deal with complex

mathematical formulations, they only do the experiments - a trivial job.

Nothing can be more misleading than this. Another false notion that one

often comes across is the belief that one can get complete information and

solve all problems related to a process through a mathematical model. The

truth is that most models are only ideal in nature and based on several

assumptions. In fact, even the most sophisticated model would not be a

true representation of a real process / phenomenon - it would only be an

ideal representation since it is based on several assumptions. We must

appreciate that the predictions we are making are only approximate and

therefore, would give us only partial or incomplete information.

The other false belief is that a more rigorous or complicated model

would give more accurate results. Contrary to it, many a times a well

conceived but a very simple model can give quite reasonable results. I

have seen students arguing 'Sir, you have only one-dimensional model, I

have a three-dimensional model, then how do you say that your one-

dimensional model may be adequate or even better than mine'. People

who take several days to solve rigorous equations argue that their results

are superior to those obtained by solving one-dimensional model

equations in just few minutes or hours. Many a time, we find that even

a one-dimensional model, if based on a proper understanding of the

process, may give as accurate and sometime even more accurate results

than those obtained by a three-dimensional model. This is because when

we increase the complexity of the model, we also involve many more

parameters, and most of these are unknown in many real situations,

particularly the kind of systems that we deal with in our discipline. These

parameters are often inaccurate and become sources of error, which

propagates, and the final result that we get is highly erroneous. I am not

saying that one must always confine oneself to one-dimensional model

only. No, there may be situations, which can not be really represented

unless one goes for two- or three-dimensional formulation.

One other thing that I have always believed in and tried to propagate

is that one should use the simplest possible language. Many people during

discussions tend to use very abstract and complicated terminologies,
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which may have no bearing on the physics of the problem. My experience

is that if a person repeatedly does it, it is because he is missing something

some where. A good model formulation and its execution should he
based on simple language, simple terminologies, and as I stated in the
preceding paragraph, in many cases one need not go for the most
rigorous formulation and solutions.

Many a times, the modellers think that experimental work has to be

done by someone else. But, 1 strongly believe that the prerequisite for a

researcher to be a good modeller is that he should be an equally good

experimentalist. This, in fact, has been the philosophy of my R & D

career throughout. In the remaining part of the talk I shall briefly discuss

a few examples, all based on my own work. Except for the very first

example, wherein the validation was done using actual plant data, in all

other cases you would appreciate the kind of rigorous experimentation

that was carried out, the data generated thereof and which then used to

validate the model.

Example 1: Optimal Design and Synthesis of a Flotation Circuit'

Froth flotation is a mineral heneficiation process in which the

valuable minerals are separated from their finely ground ores. The

separation of valuable minerals by this process depends on the difference

in the surface properties of the minerals involved. When a mixture of

minerals is suspended in aerated water, the air bubbles tend to adhere

preferentially to one of the constituents, which is more difficult to wet

by water. In a single flotation cell there is one feed stream of raw ground

ore slurry and two exit streams - the mineral rich floated 'concentrate'

and the gangue rich 'tailings'.

Due to several reasons, the separation is seldom complete in a single

flotation cell, and a number of interconnected flotation cells (or bank of

cells) are used to improve the process efficiency. In a conventional

flotation circuit, the feed is introduced in a 'rougher' cell, where a crude

separation is affected. For improvement of the grade of the product, the

concentrate is refloated in one or more 'cleaner' and 'recleaner' cells, and

the tailings from the 'rougher' stage are refloated in 'scavenger' cells so

as to extract more of the valuable residual mineral from the gangue rich

stream. The issue under consideration is how to interconnect various

flotation cells such that the separation efficiency of the flotation circuit

is optimum. Since a typical flotation circuit may process several
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thousands of tons of ore per year, even a marginal improvement in its

process efficiency may have a significant economic impact. Hence, the

optimal design and synthesis of large circuits is assuming importance. To

understand the problem in this context, let me take a simple example.
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I-- ig 3. Six possible configurations for a circuit with two flotation cells

Suppose, I have to arrange two cells, what are the various possible

configurations? How can I arrange these two cells, so that I get the best

product? Six possible configurations are shown in Fig. 3. Instead of

considering each individual circuit configuration, I can also consider a

generalised circuit, Fig. 4, which embeds in it all possible configurations.

This generalised configuration has one more major advantage that it has

provision for recycling, withdrawal and feeding of partial streams.

r r_ C O

Fig 4. Generalized configuration for two flotation cells.
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In actual practice, we have three or larger number of cells. A generalised

circuit with four cells is shown in Fig. S. Though it appears quite
complicated, it contains in it the optimum circuit configuration as well.

I now ask a question - can I evolve a methodology based on sound

theoretical considerations to extract the optimum configuration for the

given input conditions (i.e. type of material to be benificiated and other

operating conditions) from this generalised circuit configuration? Without
going into the details of mathematical formulation and analysis procedures,
let me just briefly talk about the concept involved in the methodology

developed by us.

FEEL'

p41

S

P2I

62

Fig 5. Generalized configuration ,for fourflotation cells.

a.,
s

A typical raw material will have a valuable constituent and a gangue

constituent - it may also have middlings. If this is the case, this raw

material can be characterised in terms of three species. If we want to be

more rigorous, we can characterise a given raw material in terms of

larger number of species depending on how this raw material responds

to a typical batch flotation test. Each species can be characterised in

terms of its overall flotation constant as well as its chemical composition,

particularly the percentage of the valuable constituent in it.

In the generalised configuration, the configuration coefficients P+i

and S' refer to the fraction of concentrate and tailings, respectively,

recycled from the jth cell to the ill cell. fl) and b° are the fractions of

concentrate and tailings flow respectively, exiting from the j`h cell as

output. cY,, is the fraction of the new feed going to the ill cell.
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Using an appropriate flotation kinetics model it is possible to

calculate the mass flow rate of concentrate and tailing streams from each

cell in terms of the configuration coefficients (betas and deltas), mean

residence time in each cell, and the flotation rate constant for each

species in the raw feed. Once the mass flow rate of each of the

concentrate and tailing streams are known, one can define the percentage

recovery (valuable component wise or overall recovery) as well as the

grade of the concentrate. It is now possible to convert this problem into

a constrained optimisation problem. For example, depending on the

requirement, one may aim to maximise recovery subject to a minimum

specified grade, G.

Y Y C,13,,(,)
G = * 1 00

where wJ . is the fraction of valuable content in the j'" species.

There are certain constraints, which originate from the physics of

the problem. For a four cell flotation circuit, each stream is to be divided

into five fractions; suin of these can only be one. This concept leads to

the following constraints:

Yap, =l

a k , +ako = 1
1=1

P AI + l ko = I
r=1

05(6,f3)<1

0<_ap <1

Thus the generalised circuit problem is converted into a constrained
optimisation problem to maximise recovery. We aim to find out alpha (a),

betas ((3) and deltas ( b) in such a way that the recovery is maximum,
subject to a minimum grade of the product concentrate and the above

physical constraints.

There are several algorithms, which may be used to solve this

problem. We solved it by three different methods. First time in mid 70's,
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we used random search method. Later on we solved it using the more

sophisticated technique of Luse Jaccola and now we are trying to solve

the same problem using an adapted version of genetic algorithm. Just for

illustration purpose, I present one typical result for a feed consisting of

15% valuable, 20% middling and 65% gangue. Each of these species is

characterised in terms of an apparent flotation rate constant and its

chemical composition. Solution of this optimisation problem results in a

circuit configuration shown in Fig. 6. No doubt, the circuit appears to

be quite complicated wherein one of the streams is split into two parts;

another stream is split into three parts and so on. It is beyond doubt that

any additional stream in a plant would mean additional pipeline, pumping

of slurry etc. and one has to pay a price for all this. However, this can

be easily taken into consideration by imposing a penalty function for each

additional stream. One can further simplify the circuit by imposing the

condition that split streams with very small fractions can be neglected.

The model since then has been validated using the plant data available in

published literature and one of the operating plants in India.

Fecd composition, Valucs of lilt
Constraints liaramclers

Valuable =15 35
Middling = 20 0 < 1.a  < 20, j = 1, 2, 4 Kmid OBI Jnlin
Gangue = 65 = 20 N1301= U1/min

V = SO Cu ft MMr -- 25 Ibf nlin

Fig 6. Optimal configuration for three species, frnsr cell problem
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Example 2 : Stratification of Particles during Jigging'-'

Jigging is a process in which we try to beneficiate minerals by

creating stratification of particulates in a pulsated slurry. We have a bed

of solid particles and a mechanism for pulsating it - it could be a

mechanical device or a hydraulic device or whatever else one can think

of. When the bed is pulsated, during the pumping stage the slurry gets

diluted and moves up and the entire bed opens up in a fluid medium.

When the cycle is reversed, the particles settle down. When particles

settle down in an aqueous medium, they have different settling behaviour

depending on their density, morphology and size. This is the property that

is used in a jigging process, where we try to separate out particles either

based on their density, if the particles are of unisizc or in terms of their

size if the particles arc of the same density.

Although the jigging process is over 400 years old. even today it is

not properly understood. For the jig design also, people have used very

different criteria and have come up with different design methodologies.

While Japanese adopt a particular criterion for the frequency of pulsation

and the amplitude, Russian and Americans adopt different criteria. We

were curious to know how is that, jig performance does not vary much,

even with different design criteria. To understand this, we realised that

it would be necessary to understand the settling behaviour of particles

and the process of stratification during pulsation of slurry.

In a typical jigging operation, one can identify four different stages,

namely, inlet, expansion, exhaust and compression. In the inlet stage, the

bed lifts up en masse. Near the end of the lift stroke, the particles at the

Operating Variables

• Air Pressure
• Frequency
• Bed thickness

• Hutch water

Jigging Process

• Feed grade

• Specific gravity
• Particle size

• Slime content

Random Variables

Performance Variables

• Concentration profile
index

• Partition curve

• Separation time

• Energy input

Fig 7 . Parameter affecting the stratification process in a jig.
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bottom of the bed start falling resulting in the loosening of the bed which

in turn causes its expansion or dilation. During the third and fourth stages,

the particles resettle through the fluid and the bed collapses back to its
original volume. The pulsation and suction are repeated to bring about
stratification with respect to specific gravity across the bed height. Various
parameters affecting the stratification process are schematically shown in
Fig. 7. These include amplitude and frequency of pulsation, bed thickness,
and rate of hutch water flow and feed characteristics.

We have tried to study the jigging process using the Discrete

Element Method ( DEM). The jig model based on DEM essentially

involves tracking the positions of each particle incrementally, applying

Newton 's Second law of motion and a force displacement law at the

contact . A pair of springs and dashpots represents the contact. The

success of this approach depends on an efficient scheme for identifying

contacts and keeping track of them as time progresses . In order to

achieve this , the whole experimental space is divided into a uniform

cubical grid. The identity of each particle is mapped into these grids. In

these cases where particles are considered as spherical elements, a

particle can at most have entries in eight cubes, if the cube dimension is

kept larger than that of the sphere. Thus, by checking each cube where

the element has entry , all potential and existing contacts are identified. In

calculating the contact forces, the elements are allowed to overlap.

We conducted a series of simulations by varying the amplitude and

frequency of pulsation in a jig of 0.16 m diameter . Four hundred different

balls of two different densities namely 2800kg/ml and 1500 kg/M3 but of

equal size (0 .018 m diameter) and numbers were taken . All simulations

Fig 8. Variation offluid velocity and displacement with time for
different types of wave forms.
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were done for 25 cycles. In order to analyse the effect of fluid wave

forms on stratification, following wave forms (Fig. 8) were studied:

AR (Accelerated upstroke and retarded down stroke)

RA (Retarded upstroke and accelerated down stroke)

AA (Accelerated upstroke and Accelerated down stroke)

RR (Retarded upstroke and retarded down stroke)

The effect of these wave forms, as simulated by the DEM model,

is presented in Fig. 9 in the form of concentration profile of the jig bed

obtained after the end of the simulation.

AMP = 0. 11m ; Ornego - 10 rods/sec

C

1.2

1.0

0.8

0.6
0.4

0.2

0

AR Energy = 0.977 J RR ; Energy - 1.03 J

RA ; Energy = 1.0S J

c
0
U

1.2

1.0

0.9

0.8

0.4

0.2
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AA.; Energy . 1.00 J

i I

0 0.03 0.06 0 .09 0.12 0.15 0 0 .03 0.06 0 .09 0.12 0.15

Bad Height (m)

F ig 9. Concentra t ion profile of the bed for four different leave forms.

To validate these results, a rigorous experimental programme was

initiated. A schematic representation of the experimental set up is shown

in Fig. 10. Jigging experiments were carried out using two types of

artificial particles conforming to a narrow range of density. The heavy

and light particles had density of 3010 and 2640 kg/m;, respectively.

These particles were thoroughly mixed and passed to the jigging chamber

to make a bed height of 0.12 m. A total of 1600 particles were used.

Experiments were carried out for 20 cycles with amplitudes of 5 and 10

cm and frequency of 20 cycles per second. The nucleonic density gauge

was used to scan the bed height. The results of these experiments as well
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Fig 10. Experimental setup showing locations of various equipments in the jig

system. 1. Compressor, 2. Compensator, 3. Jig, I. Nucleonic density gauge,

5. Level sensor, h. Pneumatic actuator, 7. Two-way solenoid valve, 8. Three-wayv

solenoid valve, 9. and 10. Pressure transducers

as those of simulation are presented in Figs. 11 and 12. There is a

reasonably good agreement between the model and the experimental data.

Water bulk density (gmlcc)

Fig 11. Comparison between experimental data and DEM prediction for

the density profile across the jig bed effect of amplitude of pulsation.
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Water bulk density (gmlcc)
Fig 12. Comparison between experimental data and DEM prediction Jro

the density profile across the jig bed-effect of frequency of pulsation

Both the experimental and simulated results show that there are

several combinations of frequencies and amplitudes , which would give
similar stratification . There is no unique combination of frequency and
amplitude , which can be claimed as optimal. Depending on the characteristics
of the available set-ups people have used different combinations of
frequency and amplitude , i.e. the different operating conditions resulting
in variations in jig designs.

Example 3 : Single Roll Continuous Sheet Casting Process$-7

The process under consideration is schematically shown in Fig. 13. In

brief, a water-cooled hollow caster drum rotates through a pool of

molten metal, which is contained in the annular space between the

concentric outer wall of a tundish and the rotating drum. As soon as the

caster drum enters the metal pool, a skin of solidified metal is formed on

its surface, which grows in thickness as it moves through the metal pool.

In Fig. 13, a pressure roll fixed at the top helps in keeping the sheet

firmly attached to the drum surface preventing any slippage and also in

maintaining uniforin thickness of the sheet along the width. The sheet is

separated from the drum surface by a knife edge.
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Fig 13. Single roll continuous caster.

Mathematical model

Development of a representative model describing the process has

been an evolutionary exercise. Starting with a simple overall enthalpy

balance model, we have come up with more rigorous mathematical model

based on segment-wise heat balance, solidification and fluid flow

considerations. Described below is the brief outline of the final model

which is used for prediction and validation.

For modelling purpose, the system is divided into four distinct zones

(Fig. 13): (i) liquid metal reservoir, (ii) liquid metal pool, (iii) solid sheet

zone, and (iv) caster drum. As shown in the Fig. 14, in each rotation the

caster drum passes through three different heat exchange zones.

1 . Solidification zone (f3,<B <f3,)

2. Sheet cooling zone (,32<0 <f33)

3. No sheet zone (f3<<8 <(2 ;r +f3,))

In the solidification zone, the caster drum moves through the metal

pool. Its surface is covered by the solidified sheet, the thickness of

which increases continuously as the drum moves from Q, to f32. In this

zone, the heat flow is from the liquid metal pool to water sprays via

solidified metal sheet and the caster drum. In the sheet cooling zone, the

sheet has emerged from the liquid pool but is still attached to the drum.

The top surface of the sheet transfers heat to the surrounding atmosphere
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I /mo

Lone ; so ! ;Cificatian Zone 0., < B <,3;
Zone 2 . Sheet C ooling Zona P, < B < /J,
Zo,.Q 3 No-Shcct Z'vn2 ,33<B < (2w +t(ptj

Fig 14. Schematic diagram of a single roll step caster.

by convection as well as by radiation, while the bottom surface attached

to the caster drum transfers heat to the drum by conduction. As in the

solidification zone, the heat from the caster drum is transferred to the

water sprays. In the no sheet zone, the outer surface of the drum is

exposed to the surrounding atmosphere and loses part of its heat to it.

The model primarily consists of the momentum balance equations, which

quantify the fluid flow phenomena in the molten metal pool and the

energy balance equations for the metal pool, solidified strip and different

zones of the caster drum. The 2-D momentum balance equation in steady

state is written invoking the equation of continuity and the vorticity

transfer equation. The concept of vorticity is used to combine the two

components of momentum in r and 0 directions into a single equation,

and to eliminate the pressure term. The resulting equation contains two

unknown velocity components v and vy . To reduce the number of

unknowns, the concept of stream function is applied.

Separate energy equations are written for the molten metal pool,

solidified metal sheet and different zones of the caster drum. For the

molten metal pool, the steady state 2-D energy transfer equation is

obtained from the generalised energy balance equation for laminar flow

conditions for an isotropic fluid and assuming the conditions of negligible

viscous dissipation. For the solidified metal sheet and different zones of

the caster drum, the energy transfer equation is essentially the conductive

heat transfer component of a generalised energy balance equation. All

equations are written in the dimensionless form. Stream function and

vorticity boundary conditions, and boundary conditions for energy

transfer equations are specified. The model equations are solved

numerically using an implicit finite difference technique to evaluate: (i)
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stream function, (ii) velocity field in the molten metal pool, (iii)

temperature field in the metal pool, solidified metal sheet and the caster

drum and (iv) thickness of metal sheet. Model equations are solved for
various sets of operating conditions. Some typical results are shown in
Figs. 15-17.

&vo - 5 rpm, 8:20 mm, 02 = 45'

45.0

y

'. 1 1 i( l l l

I

x,35.0 '

^27a 1 ^ 1 I^ 1^ ^: 1,
l

l i ^ r 1 7 '1 ' I I

18.0 ;
l

.t^'i

S.0 -

Noy

0.00.2 50 0 .25 0.258 0.262 0 . 266 0.270
Radial Distar, ce , r (m)

Fig 15. 6'elocity field in molten metal pool.

Fig 16. Temperature isotherms in liquid melt.
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Fig 17. Comparison of simulated and experimental sheet thickness.

Experimental

To validate the model, experimental data were generated by casting

aluminium sheets on a laboratory scale caster schematically shown in

Fig. 18. This microprocessor controlled caster can produce continuous

aluminium sheets, 0.1 in wide under varying operating conditions. It also

has a provision to measure temperatures at two different locations in the

caster - one very close to the outer surface of the caster and the other

close to the inner surface.
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`^, i! rJ Nozile ti i r4
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^rrill^\ 11 I I.

rr^. J t r Is
mil f

LI-9rass Ring

All oirransmns in mm

Fig IS. .Scherrratic diagram of caster drum assenmbly.
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Model Validation

Validation of the model using experimental data on sheet thickness

for aluminium sheets produced under various conditions revealed large

variations between the predicted sheet thickness values and those

experimentally obtained. Re-examination of the model attributed this

difference to the assumption of perfect thermal contact at the caster

drum/ sheet interface. Perfect thermal contact essentially corresponds to

infinite heat transfer coefficient. In reality, perfect thermal contact is not

attainable for a variety of reasons. Imperfect thermal contact signifies a

resistance to heat flow and the heat transfer coefficient, he, has a finite

value implying different temperatures at the substrate and the casting

side of the interface (Fig. 19). This more realistic mathematical

description of heat transfer at this interface was incorporated by

INTERFACE
SOLIDIFIED SHEET

LIQUID METAL

CASTER
DRUM

(a)

interface Interfuce

DRUM

Perfect
Contact
(hc =co)

T

SHEET

DRUM SHEET

Real
Contact

(hc- Finite)

Dist-once f)istnnce

Fig 19. Schematic temperature profiles in the meta l sheet and the caster drum for

perfect and impeifect/reat thermal cnnfacls.
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modifying the boundary conditions. The value of this heat transfer

coefficient was estimated using [he approach of parameter estimation. In

this approach, the value of h4 is continuously adjusted until the

mathematically predicted value of the sheet thickness best corresponds

with the experimentally measured value. h. was thus estimated

for various operating conditions. Some typical graphs are shown in

fig. 20. Sheet thickness values predicted using these values of h. match

well with the experimental values (these values were not used in

estimation of h0) (Fig. 17). Theoretically predicted temperature profiles

in the caster drum also match well with the temperature values recorded

at two locations (Fig. 21).
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Example 4 : Study of Magnetohydrodynamics in Hall-Heroult Cells'

In spite of the best efforts , even today the actual energy consumption

in Hall cells is substantially higher than the minimum theoretical value

needed for dissociation of alumina dissolved in cryolite to form

aluminium metal and CO/CO, gas. There are several reasons for it, but

the primary reason is related to magnetohydrodynamics phenomena in

the cell. During the operation of the cell, two forces act on the

electrolyte: (i) a force due to the interface momentum exchange arising

from the anodic gas release (a buoyancy effect) and (ii) an electromagnetic

force produced from the interaction between Current and magnetic

fields. Current flow in typical Hall cell varies between 150 - 250 kA,

which produces a strong magnetic field within the cell. This magnetic

field interacts with the flowing current to produce an electromagnetic

force causing an electromagnetic torque, which provides motion to the

conducting melts - the electrolyte and the aluminium metal pad. The

electromagnetic force within the cell also causes a horizontal motion,

which destabilizes the metal/ electrolyte interface leading to short

circuiting of the aluminium pad and anode, and erosion of carbon
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refractory lining by both mechanical abrasion and dissolution of carbon

refractory. The instability of the electrolyte/ metal pad interface is one of

the principal factors responsible for high energy consumption. Therefore,

the efforts of the technology experts are aimed to maintain least turbulent

interface by reducing the electromagnetic torque with various operating

as well as design parameters. The maximum effort, however, is to

minimise the vertical magnetic field component, which interacts with

horizontal current and creates a swirl and instability in molten aluminium.

Since the experimental measurements of Currents, magnetic and velocity

field distributions within the cell is exceedingly difficult and unreliable,

it was decided to formulate appropriate mathematical models.

Mathematical modelling of Hall Cells

Mathematical models were formulated to address the issues related

to: (i) Thermal phenomena, (ii) Electric current distribution, (iii)

Magnetic field distribution and (iv) velocity distribution. A brief outline

of the models is given below. These models are used to predict the steady
state hehaviour of the cell.

Thermal phenomena : Temperature distribution within the cell
directly affects the geometric profile of the frozen cryolite crust (ledge

profile ) and the two together have a direct bearing on current efficiency,

specific energy consumption , fluoride emission and even the anode

consumption . A steady state two dimensional thermal model was

formulated with primary objective to predict : ( i) the ledge profile and (ii)
temperature distribution within the entire cell including the carbon lining

and the cathodic block . Thermal model treats conduction of heat within

the sides and bottom of the cell as two -dimensional heat flow problem.

Joule heat generation is taken as a heat source term in the heat

conduction equation. All cell boundaries except for the ledge profiles are

characterized once the cell configuration is specified. All boundary

conditions are specified . The resulting model equation is solved for
specified boundary conditions using a numerical method - We used the

'PHOF.NICS (Version 2.1.6)' software to solve the model equation. To
start the solution , a ledge profile is assumed and the model equations are
solved to give complete temperature profile, then the ledge profile is

computed from the temperature isotherm which corresponds with

electrolyte melting point . If this profile is different from the initially

assumed , the model equations are re-solved for this new ledge profile.

This iterative procedure is continued till the solution converges.
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Electric current distribution : Electric current distribution in different

regions of the cells is a critical factor in the development of thermal and

hydrodynamic phenomena. Electric current along the bars generate the

largest contributions to magnetic fields. The interactions of these fields

with electric currents in the melt produces volumetric Laplace forces

inducing movements in these melts. Joule heat generated by electric

current flowing through the cell can be calculated by computing

resistivity and current distribution within cell by application of Ohm's

law.

The study of the electrical phenomenology can be divided into two

central subjects:

1. Electrical current and potentials in volumetric conductors (anode,

cathode and melts).

2. Current distribution in bars (anodic and cathodic bus bars, anodic

and cathodic bars)

The 3-D potential (0) and current distribution (J) within the cell can

be calculated solving the following equations:

- 6 +- o + a - =0a( a 1 a a
ax l ax) ay

^
ay a-z az

These equations were solved using 'PHOENICS' software for the

specified boundary conditions.

Magnetic field distribution : Once the current density distribution

within the cell is determined, magnetic field strength and direction at any

point can be determined by application of Biot-Savart law in integral

form. There are three sources of magnetic field (MF) in the cell.

1. Electric currents in the bars (bus bar, anodic and cathodic bars, etc)

2. Electric currents in volumetric conductors (anodes, melts and
cathodic blocks).

3. Steel parts (cell shell).

MF originated from electric currents in the bars can he computed

applying Ampere's law to rectilinear conductors of negligible cross
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section area and finite length. MF from anodes. melts and cathodes is

computed by integration of the volumetric current density flowing

through these. MF from volumetric conductors can also be computed

solving the Laplace equation for scalar potentials.

Velocity field distribution model : Mathematical description of the

movements of the melts in the cell ( cryolitic bath and molten aluminium)

is a complicated task. Two layers of viscous fluids are superposed, their

movement is turbulent in certain regions of the cell. The cryolitic bath is

agitated by the electromagnetic forces and the movements of CO, and
CO. We neglected the latter effect in our model which is based on the

Navier-Stokes equation of motion and the equation of continuity. The

electromagnetic force is taken as the source term. The shallow water

approximation is invoked for the melt which introduces depth averaged

velocities.

Model Predictions

Model formulations described above may be used to calculate

thermal profile, current distribution, magnetic fields and velocity distributions

for industrial Hall cells. We made computations for one such cell but

could not validate our results as there was no provision in the cell to

measure these quantities. We therefore decided to set up a laboratory

scale simulated Hall cell in which woods metal was used as the liquid

phase. The basic idea was to use this set-up to generate large amount of

experimental data which could be used to validate the model predictions.

Therefore, subsequently, all the model predictions were made for

different experimental conditions used in this simulated cell. A few

typical results are presented in the following section.

Experimental Set-up

The low temperature simulated multi-anode Hall cell is schematically

shown in Fig. 22. The cell consists of:

(i) Inner stainless steel box, which represents the cavity of Hall cell and

can hold upto 50 kg of simulating liquid, that is woods metal, which
was selected because of its low melting point of -75°C and high
electrical conductivity.

(ii) Anode assembly: Si,,,: stainless steel blocks suspended from anode

bus bar by copper rods simulate the carbon anodes.

94



S. P. MEIIROTRA

I, IA' Po Cr^+

ISlla 1 2115 ^I.^^)I)I)LflAu,,, SUNNI!

/ -}

i(IK 111:11

I& , "'I N I I, I

I L'n}^I rurj

SteelSIi.;I1

Fig. 22 . (a) Schernutic diagram oflow temperature simulated Hall cell

I 80mm

41O-
Y-axis E- 1 I R mm

X-axis

Fig. 22(b). Top view of bus bars attached to anodes for end riser design.
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(iii) Cathode collector bars: Copper strips, 0.5 crn thick, welded to the

inside bars of the stainless steel cell box serve as collector bars.

The simulated low temperature model is approximately one-tenth
scale of a typical industrial cell and can be operated at a maximum

current of 550A.

The following measurements were made in this cell :

1. Magnetic field measurements : Three components of the magnetic

field are simultaneously measured in woods metal with a Hall probe

at different locations in the cell for various operating conditions.

2. Current density measurements : Current flow in various bars is

measured with the help of a True RMS clamp-meter. The current

density in the molten metal is measured using an indigenously

fabricated probe which measures EMF drops between two sets of

conductors, each set having two conductors. Line joining one set of
conductors represents X-axis, while the other, perpendicular to it,

is Y- axis. Current density is then computed using the Ohm's law.

3. Velocity measurements : An electromagnetic probe fabricated indigenously,

is used to measure the velocity in woods metal. EMFs of the order of

nano volts, generated across the copper conductors yield the two

velocity components. The probe was calibrated using a pot containing

Woods metal and being rotated at pre-determined RPMs.

A large number of measurements were made to study the effect

of - (i) current density, (ii) anode - cathode distance, (iii) cold anode,

(iv) presence of ledge (i. e. a non-conducting surface between the cell

walls and anodes) and (v) two different bus bar designs - end riser and

quarter riser design (Fig. 23).

Some typical results, both measured and predicted, are presented in

Figs. 24-26. Considering the complexities involved in the process as well

as the measurements, the models can be considered reasonable.

Example 5 : Interfacial Phenomena between Liquid Metal - Ceramic

Substrates'

The interfacial behaviour between molten metal/alloy and solid

ceramic substrate is of great industrial significance because of its bearing
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Fig 26 (a & b) Predicted and measured velocities.
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on processes like enamelling, thin film bonding on ceramic substrates,

corrosion of refractories, developments of container materials for

smelting high purity metals. However, due to difficulties associated with

the experimental measurements there is a dearth of reliable data on

interfacial behaviour of metal-ceramic systems. We, therefore, decided

to develop a mathematical model, which may predict at least approximately,

the behaviour of those systems for which no data are available.

We attempted to develop a model to predict the interfacial energies

at liquid-gas and liquid-solid interfaces (Fig. 27) and the contact angle as

a function of partial pressure of oxygen. As one of the main problems

that is encountered in developing the model is the lack of reliable

experimental data, in the first part of study we generated experimental

7 1 g

ceramic substrate

Fig. 27 Schematic representation of metal drop on a substrate.

data for Cu-Al,03 and Ag-AI2O3 systems using the sessile drop technique.

For the experiments, 99.98% purity single crystal sapphire substrate,

5N-copper and 5N-silver were used. Sessile drop experiments were

carried out at different temperatures at various oxygen partial pressure

values ranging between 10-" to 1 atm. The size of the sessile drop was

kept small (- 6.3 mm') to minimise the gravitational effects. Once the

drop attained the equilibrium shape, a series of photographs of sessile

drops were taken. The value of the interfacial energy of the liquid metal

(yes) and contact angle 0 were evaluated from the geometric profile of the

sessile drop.

In developing the model it is assumed that the interfacial energy of

the ceramic substrate (y.,) is a function of temperature only, and that the

interfacial energy of pure liquid metal (y,f,) is either known or can be

estimated. The approach that is used here in developing the model

involves two main steps. The first step is to develop a relationship between
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y,R and Po,. An attempt is then made to express the contact angle Bas a

function of either y ,, or y, so that when the expression for y,g and 0 are
substituted in Young - Dupre equation [y.,= yW - yg cos ( 6)] the resulting
equation is a relationship between y, and Po, (or y, and M. This enables

one to predict y,, and y,, as well as B as a function of Po, just from the
knowledge of a few fundamental parameters , e.g. the free energy of

formation of the compound at the liquid metal - ceramic interface, or the

work of adhesion . The free energy of formation data is available for
several metal -ceramic systems. Similarly , work of adhesion data are

either available or can be estimated for many systems.
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To test the validity of the model, variation in yg. Band y, as function

of log(Po) are predicted for Cu, Ag, Fe and Ni. Theoretically predicted

plots of y,,: , 0 and y,, vs log (Po,) are shown in Fig. 28 for Cu-AI,01 and
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Plots of theoretically prcdictcd 7;., yr- and 0 rs log Pc,_ for

Co-AI O, system at 1908 K.

Fig 29 Predict' d interfacial energies for C'n-.41,03 System.

Ag-Al203 systems, where the experimentally determined values are also

included. The agreement is reasonably good. Assuming that the model is

applicable to other metal-sapphire system as well, an attempt was made

to predict the behaviour of Co-Al,O3 system in Fig. 29, for which no

surface energy could he found in literature. Even if the model is only

approximate, it can at least be used to predict the interfacial energies and

contact angles for those metal ceramic systems for which no data are at

all available. This model also suggests a direction in which efforts may

be made to develop a more accurate model for predicting interfacial

phenomena.

CONCLUSIONS

The main thrust of this lecture has been to illustrate how effective

and a powerful tool mathematical modelling can be in developing a better

understanding of the physical/chemical phenomena and simulating a

Co - A1203 of rsoe'u
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process if this tool is used intelligently and judiciously. With the help of

five examples I have attempted to establish that for a good and meaningful

modelling activity, an intelligently designed experimental programme is of

paramount importance. No matter how precisely the model equations are
formulated, and assumptions are validated, no matter how sophisticated
software packages are used to solve the model equations, the accuracy
of the final results depends on the accuracy and reliability of the values
of the parameters used and the precision with which the boundary
conditions are characterized. For many real life systems and processes,
the latter two are obtained through experimental measurements. It is
therefore strongly advocated that a judicious experimental programme

must always be an integral part of any meaningful mathematical
modelling programme.
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