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ABSTRACT

A brief overview on lead sinter microstructure is presented.

Characteristic micro-structural features of a good and bad sinter are

highlighted and these are used in a case study involving use of a low

grade and complex concentrate of lead (-40% Pb ) in the sintering

operation . The plant sinter produced exhibited low strength and its

ncicrostructural examination revealed non - uniform distribution of

porosity , along with unsintered galena and low melting lead silicate

phase. Part replacement of limestone by lime helped in producing sinter

with good physical properties and desirable microstructure . The sinter

with modified feed chemistry had more uniform distribution of porosity

and presence of primarily a Ph-Fe silicate phase characterised by a

(Ph+Fe):Si mole ratio of 3: 1, Ca-Pb-Zn-Fe-Al -silicate phase identified

as hardysonite and a spine! phase of the type (Fe,Zn )O.(Fe,Al),03.

Lead nietaUoxide/sulphide occurred in the sinter only rarely. The likely

implications of lime addition to the sinter charge mix are discussed

Key Words : Lead, Complex and low grade concentrate . Sintering , Process

Mineralogy

INTRODUCTION

In the recent past, a large number of primary lead production processes have

been developed on commercial scale (example: QSL process, imperial smelting)

together with significant advances in the secondary lead processing. World-over,

the conventional blast furnace reduction route continues to he in use in several

plants. Sintering of lead concentrate, that has twin objectives of sulphur removal

through oxidation and agglomeration, is a key unit process prior to the reduction

in the blast furnace. In the sintering process, sulphide concentrate(s) are mixed

with return sinter fines along with limestone, iron ore, quartz (fluxes) and blast

furnace slag and desulphurised in a sinter machine to get a sinter suitable for the

blast furnace. The performance of a sintering operation is judged by the produc-
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tivity and quality of sinter produced. The parameters which define the quality of

sinter are its sulphur content, room temperature strength, porosity, degradation

behaviour and softening characteristics.

There have been several attempts to study the mineralogy of sinters and

correlate it with sinter characteristics'' " The quality of sinters is directly linked

with the mineralogy, i.e., minerals and microstructures present. Good sinters

form competent masses, approximately 10-15 cm across, that have approximately

I5c/ porosity and good mechanical strength to withstand transport and weight of

the overlying load in the smelter. Holiday et al'=1 addressed the problem of pre-

mature softening of lead sinter fed to the ISF furnace of Sulphide Corporation

Pty Limited at Cockle Creek, New South Wales, Australia. The problem of

premature softening was attributed to the increasing silica content in the sinter,

which led to the formation of a low melting glass phase containing calcium and

lead oxide. With an understanding of correlation between microstructure and

softening behaviour of sinter, changes in the feed composition, in terms of ha-

sicity and Fe,O, content, were suggested to get the desired microstructure, con-

sisting of high melting point calcium ferrite eutectic as binder, and overcome the

problem of premature melting. Recently, Hagni and co-workers'''" have attempted

mineralogical characterisation of good and bad sinters using reflected light mi-

croscopy with X-ray microanalysis (SEM-EDS) and electron microprobe. Based

on these studies ''" the mineralogical characteristics of good and bad sinters are

summarised in Table I. In the studies on sinter samples, produced using lead

concentrate from Viburnum in south-cast Missouri, it was found that good sinters

consist predominantly of hardysonite, franklinite, lead silicate matrix and large

crystals of calcium-magnesium-iron silicate, together with minor amounts of

lead oxides, lead-zinc silicate, metallic lead, specular hematite, magnetite, Pb-Fe

bearing zincite, and Zn-Ph-Mg hearing wustite in a tightly inter-grown mesh of

crystals and with an evenly distributed porosity of approximately 15-20%. Bad

sinters contain larger amounts of lead silicate matrix, galena, metallic Pb, and

lead oxides, but smaller amounts of hardysonite, franklinite, and calcium-mag-

nesiunm-iron silicate, lack intimate growth of phases, and have lower (0-5%) and

unevenly distributed porosity. Huyssteen et al'" have developed a method of

establishing the relationship between the mineralogy of a sinter and its subse-

quent processing behaviour in the lead blast furnace. These studies have demon-

strated that not only the sinter microstructure is important but also equally im-

portant is the distribution of elements into various phases in the sinter. Specifi

cally, the substitution of Mg for Zn in hardysonite significantly influences sinter

production. Magnesium substitution releases Zn into the surrounding matrix.

This Zn reacts with the lead-silicate to form larsenite thereby reducing the amount

of lead-silicate available for anhydrite digestion. Excessive amounts of residual

anhydrite thus result if the sinter formulation is based solely on the CaO/SiO,.
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Recently, Lee et ally" have established that solidification of complex PhO-ZnO-

Fe,O1-CaO-SiO,-AI,O,-MgO could he represented by pseudo ternary phase dia-

grams of the lead oxide-melilite-franklinite system comprising of three binary

eutectics and one ternary eutectic. The diagram has been found useful in repre-

senting the formation of phases in lead blast furnace sinters. Besides temperature

history of the sinter bed (typical sintering temperature 1000-1050°C), the forma-

tion phases in the sinter is primarily controlled by the feed

chemistryt'-".

Table I : Mineralogical Characteristics of good and bad sinters

Good Sinter Good Sinter

Porosity (15-20%) Low porosity (0-5%)

Uniform distribution of porosity Uneven distribution of porosity

Minerals predominantly present Minerals predominantly present
Hardysonite (Ca,ZnSi2O,) - Lead silicate (excess amount)
Wollastonite (CaSiO) (4-20% Pb) - Galena (PbS)
Franklinita [(Zn,Fe) Fe,04 (2-14% Pb)

- Metallic lead
Lead silicate (matrix ) (-70% Pb)

Ca-Mg-Fe silicate
Lead oxides

Intimate erowth of minerals Lack of intimate growth of minerals

Background Information

The problem of low quality sinter and productivity was encountered in a

lead-plant that used partially (30-50% of the total concentrate) a low grade lead

concentrate containing as low as 35-40% lead and abnormally fine granulometry.

The complexity of the feed was further compounded by the presence of large

amount of acid insoluble silicate gangue (25-30%) and 4-9% carbon (possibly in

the form of graphite) in the concentrate. Typical sulphur level in the sinter was

near 2%. The sinter from the plant showed non-uniform microstructure and

uneven distribution of porosity (Fig. 1). SEM-EDS studies revealed presence of

unsintered or partially sintered galena and lead silicate phase (Pb/Si = I) sur-

rounding unsintered or partially sintered galena. Literature revealed that the

PbO.SiO, phase is low melting (761 °C)'''.

The complex nature of the concentrate manifested itself in several ways. In

the sintering experiments on the pellets (without any addition) of different kinds

of concentrate in a muffle furnace at 975°C, the pellets of the low-grade concen-

trate melted completely in sharp contrast with the pellets made from a high-grade

concentrate. This corroborated formation of low melting phases at the sintering
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temperature. Studies on the sintering of three types of fluxed pellets (hasicity

similar to plant-sinter) made from pure galena, galena and carbon and the con-

centrate revealed the following: (a) phases formed in a good sinter could be

reproduced in the sinter pellets prepared using only galena, primarily Pb-Ca-

Silicate phases either rich in lead or calcium; (h) presence of graphite during

sintering of galena did not alter the nature of phases formed and its only effect

was on small alteration in porosity distribution from even to somewhat uneven;

(c) highly complex phases and very uneven distribution of porosity was observed

when pellets containing the concentrate were sintered indicating more detrimen-

tal role of insoluble gangue. The problem of sintering was investigated further

by carrying out hatch sintering tests in the laboratory using the low grade com-

plex concentrate with a high grade concentrate (65% Pb) and similar charge mix

as used in the plant. Detrimental effect of the complex concentrate showed more

and more with its increasing amount in the feed. In a typical sintering test carried

out using 70:30 proportions of the low and high grade concentrates, sulphur level

in the sinter was about 217 and the sinter showed all the microstructural features

of a had sinter, for example completely fused regions and unsintered galena
crystals. SEM-EDS characterization of the polished sections of some of the

sintered lumps indicated presence of a irregular shaped white colour calcium

silicate phase (Ca:Si=1) distributed in dark heterogeneous matrix that showed the

presence of Fe, Zn, Ca, Si and S along with small amount of lead (Fig. 2). The

matrix appeared to he quite complex at higher magnification . Small crystals of

lead sulphide were found randomly distributed in the matrix phase. Very encour-

aging results were observed with regards to sinter microstructure when a part of

limestone was replaced by lime. Effect of lime substitution was investigated in
detail and these results are reported in this paper.

J : Typical polished section of the sinter sample

272



.1. P..SRII'4. l:4 VA et. al.

Fig. 2 : SEM uuiemgraph showing presence of an irregtdcur shaped white colour

calcium silicate phase (Ca : Si = 1) distributed in the matrix comprising of
Fe, Zn, Ca, Si and S along with small amount of lead

EXPERIMENTAL DETAILS

Pot-grate sintering studies were carried in a 200 x 200 x 400 mm' down draft

sinter pot using a 30 kg charge mix. The charge mix fed to the sinter pot con-

sisted of the lead sulphide concentrate, return sinter , limestone, lime (as a part

replacement for limestone), iron oxide and blast furnace slag. The chemical

composition of major constituents, namely the lead concentrate and return fines

used is given in Table 2. The sintering conditions and charge mix composition

used in some of the representative tests are given in Table 3. The prime focus

in the investigation was on the sinter basicity and proportion of lime and lime

stone. The sinter samples were characterised in terms of chemical composition,

physical strength (Shatter and Tumbling Tests) and mineralogical features (phases

present and microstructure). Representative coarse (+10 mm) sinter samples were

used for chemical analysis. Sinter lumps (+10 nom), collected after each test,

were used for the Shatter and Tumbling tests. Weight fraction of +10 mm lumps

with respect to total weight taken for shatter testing indicated 'Shatter Index' of

the sinter sample . Tumbling test was carried out as per IS 3271:1995 standard.

In the tumbling test, tumbling and abrasion indices are given by the percentage

fraction of +6 nom and -28 mesh sinter, respectively with respect to total sinter

mass taken for the test. Phase present in the coarse sinter samples were deter-

mined using powder X-ray diffraction method. Selected pieces of the coarse

sinter samples were mounted using a cold setting resin , polished and used for

microstructural characterisation by optical and scanning electron microscopy

(SEM-EDS analysis).
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Table 2 : Chemical analysis of the concentrate samples and return sinter

Sample Chemical analysis, Wt.%

Pb Zn Fe Cu S(total) S (SO4--) C SiO, Al

Concentrate

Sinter fines

41.2 6.51 4.3 2.15 16.6 2.98 4.9 6.5 27.1

38 .0 6.26 16.9 0.42 5.3 1.33 0.5 5.5 8.2

*Al = Acid Insolubles

Table 3 : Summary of sintering conditions used in the tests

Sinter pot grate area = 400 cm2

Bed height = 300 mm

Ignition Time = 2 min

Sintering Test Number

arameterp
I 2 3 4 5 6 7 8

Concentrate , kg 7.20 7.20 7.20 7.20 7.60 7.20 7.20 7.20

Ratio of the 35 :65 35:65 35:65 35:65 40:60 35:65 35:65 35:65

concentrate and

sinter fines

Basicity * 0.85 0.71 0.80 0.80 0.73 0.74 0.76 0.76

CaO (as lime), % 25 40 40 20 40 40 65 65

Iron ore , kg 0.83 0. 83 0.83 0 ,83 1.00 0 . 80 0.80 0.80

BF slag , kg 0.52 0 .52 0.52 0.52 0.60 0.52 0.52 0.52

Water, kg 1.80 1.73 1.76 1.78 1.68 1.74 1.73 1.73

Green mix bulk 2.52 2.38 2.67 2.46 2.55 2.61 2.74 2.57
density, Urn'

Suction , mm WG 560 550 550 550 550 550 550 500

basicity E,Wt.ek(CaO)/E Wt.( %SiO,), where i refers to the different consti tuents in

sinter inix.
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RESULTS AND DISCUSSION

Sinter Chemistry

The results of chemical analyses of coarse sinter (+10 mm) generated in

different tests are compiled in Table 4.

Table 4 : Chemical analysis of sinter samples (+ 10 ntm samples)

Element/

Constituent Test I
Chemical analysis of hinter, wt. %

Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

Ph 36 . 4 38.7 38.7 38.8 36 . 6 38.1 37.2 38.5

S1 1 0 .9 1.0 1.5 1.2 0 .9 0.9 0.8 0.8

S/H,S 0.3 0.4 0.8 0 .4 0.4 0.3 0.2 0.2

S/SO42- 0.6 0.6 0 .7 0.8 0 . 5 0.6 0.6 0.6

CaO 7.2 6.0 5 .6 6.3 6.3 6.9 7.0 6.7

SiO, 9.9 9.9 10.3 9.9 9.2 9.7 9.8 9.5

FeO 24 .4 24.2 21.8 21.9 25 . 1 23.8 24.4 22.8

Cu 0.72 0 . 73 0.89 0 . 71 0.76 0 . 8 0.79 0.78

ZnO 6 .6 6.3 6 . 1 5.8 6.1 5 . 2 6.2 5.9

C 1.4 1.3 1.8 1.1 1.7 1.1 1.2 0.8

The sulphur content of coarse sinter samples indicates satisfactory sulphur

removal in all the tests (much below the 2% limit, mostly - 1%) at different

substitution levels (20-65%) of limestone by lime and varied sintering conditions

as given in Table 3. Close examination of the results indicate that all other

conditions remaining same, change in the proportion of the concentrate and

sinter fines from 35:65 (Test 6) to 40:60 (Test 5) did not result in any change in

S level. Similarly, change in suction from 550 mm (Test 6) to 500 mm (Test 7)

did not cause any significant change in S. The results plotted in Fig. 3, indicate

following general trends:

- The substitution of limestone by lime remaining fixed, the sulphur content

of the +10 mm sinter decreases with an increase in basicity.

- To attain a particular S level with lower amount of replacement of lime-

stone by line, much higher basicity is required.

- There is an inverse relationship between S level and replacement of lime

stone by lime. Also. replacement from 40 to 65% does not seem to he as

effective as from -20 to 40%.
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It is found that sulphur content of the sinter can he correlated with hasicity

(E Wt.%(CaO)/E,Wt.^/- (SiO,)) and % of limestone replaced by lime (CaOLime,

) by the fallowing rcCressiun equation

1.6

ai
C
41

E 1.2
E
0

C_

V) 1.0

0.74 0 . 76 0.78 080 0 . 82 0.84 0.86

Basicity (CaO/SiO2)

Fig. 3 : Effect of basicity on sulphur content of the sinter at different addition of
CaOL,, ( CaO1r,,, (%) indicated on the data points)

Physical Characteristics of the Sinter

The indices of shatter and tumbling signify resistance to breakage after free

fall on a hard surface and resistance of the material to breakage or degradation

due to tumbling action, respectively. Abrasion index that is complementary to

tumbling index and is obtained during the same test, is a relative measure of
degradation of the sinter material due to abrasion . Figures 4-6 indicate that

substitution of limestone by lime has a beneficial effect on shatter, tumbling and
abrasion indices. irrespective of hasicity (0.7-0.85) and the ratio of the concen-
trate and return fines.

ilicrustructure and Phases

The polished sections of the coarse sinters were examined by reflected light

microscopy and SEM-F.l)S for the assessment of the microstructures formed in

the tests. The sinter samples showed a microstructure typical of a good sinter as

reported in literature. Microstructure of a had sinter . that is nonuniform under-

developed microstructure with unsintered galena, fused region etc was nowhere
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40 50

CaO, %

Fig. 4 : Effect of CaOL,., on shatter index of the sinters produced under different
experimental conditions (basicity, proportion of concentrate and sinter fines as

.superimposed on data points)

40 50

CaOLj", %

Fig. 5 : Elect of CoO1 on tuniblin index of the sinters produced under different

experimental conditions (basicity, proportion of concentrate and sinter fines as

superimposed on daa points)
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40 50

CaOL,,, %

Fig. 6 : F.Jject of CaOc„,u. on abrasion incle.% of the sinters produced under different
experimental conditions ( basicity, proportion of concentrate and sinter fines as

superimposed on data points)

visible. Typically, the microstructure of sinter in tests with lime substitution

consisted of a matrix phase with more or less uniform distribution of a needle

shaped silicate phase and irregular or square shaped crystal of a spinel phase

(Fig. 7). The results of SEM-EDS analysis on the phases observed are summarised

in Table 5. From the EDS studies, the matrix phase is identified to he a Pb-Fe-

silicate. The matrix phase is characterised by a typical (Ph+Fe):Si mole ratio of

3: 1. The structural identity of the phase could not be identified by XRD powder

diffraction data of the sinter samples. The needle shaped phase represent a Ca-

Ph-Zn-Fe-Al-silicate. The needles are found to be sulphur free. The

(Ca+Fe+Zn+Pb):Si ratio of 2:3 in the thicker needles indicates presence of

hardysonite mineral. White square shaped to irregularly shaped crystals contain-

ing zinc, iron and aluminium are identified as a spinel phase of the type

(Fe.Zn)O.(Fe,Al),O1. Analysis of the XRD patterns confirmed occurrence of both

hardysonite and the spinel phase. Lead metal/oxide/sulphide occur in the sinter

only rarely.

Role of Lime

The presence of lime inhibits the early formation of low melting phase that

results in non -uniform sintering. Use of lime favours the formation of phases that

are required for a good sinter. Beneficial effect of lime in iron ore sintering has
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been reported' . However , information on lead sulphide ore sintering is scarce.

Some relevant facts pertaining to lime usage in sintering" ' and their likely impli-

cations in the present case are presented here to provide a possible explanation

for the observed beneficial effect of lime:

During mixing and moistening, lime added as CaO into the sintering mix-

ture forms calcium hydroxide (Ca(OH),). The hydration is accompanied

by volume expansion resulting in the formation of finely dispersed par-

ticles that can improve pelletability and gas permeability of the mixture.

- Lime slacking is accompanied by liberation of heat (4.214 kcal/kg of CaO)

and consequent rise in the temperature of the sinter mix that help in the

intensification of the sintering process.

- An intense absorption of moisture by lime due to hydration can reduce the

mixture over-moistening in sintering . It is likely to have a beneficial effect

in controlling breakage of the sinter structure and maintaining sinter bed

permeability . This is especially going to be important since the used con-

centrate has a fine granulometry.

- Lime can activate carbon and increase its reactivity or combustion rate.

Fig. 7 : Optical micrograph showing typical microstructural features present in the

sinter samples after lime addition.
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Table 5 : SEA1-EDS analysis of major phases in Fig. 7

Element Weight (7r% Atomic %

Lead silicate matrix phase

Si 4-6 20-24

S 0-4* 0-8

Fe 7-16 16-32

Cu 0-5* 0-11

Pb 78-86 44-54

Needle shaped phase

Al 0-3 0-4.5

Si 27-29 40-42

Ca 42-45 44-45

Fe 1.5-4 1-2.5

Zn 12-17 7-12

Pb 8-10 1-2

Square or irregular shaped crystals

Al 0-4.5 0-9.1

Fe 68-79 76-78

Zn 17-28 14-25

* mostly absent

CONCLUSION

Following are the major conclusions that follow from the study:

I . The problem of had sinter formation due to use of the low-grade complex

concentrate with tine granulometry can be tackled by adding lime to the

sinter charge mix as part replacement of limestone.

2. Good sinter with desired sulphur content and microstructure is produced in

the tests that were carried out with wide variation in CaO addition as lime

(20-65`7( of total CaO), basicity (0.72-0. 85), proportion of concentrate and

sinter fines (RD Concentrarte : Fines - 35:65 to 40:65) and suction ( 500-560

nom for 30 cm bed height).

3. To overcome the problem of had sinter, the optimum level of lime addition

is about 4017( of the total CaO addition to the sinter.
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