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Synopsis 

High strength, high toughness and good weldability are the major criteria for 

engineering structural materials. HSLA-100 steel is essentially low carbon microalloyed 

and copper-strengthened high strength steel. It is one of the important materials in 

naval, and others structural applications in which high strength (UTS >1000 MPa) and 

good toughness can be obtained without impairing weldability by judiciously 

engineering the microstructure. This steel can provide various strength–toughness 

combinations over a wide range of plate thickness by different heat treatments. 

Available literatures concerning the influence of heat treatment on microstructure and 

mechanical properties are confined to the characterisation of microstructure and the 

variation in mechanical properties such as tensile strength and impact toughness. Such 

mechanical property evaluation is insufficient to characterise the mechanical behaviour 

of the materials. Modern engineering design approach demands a fracture mechanics 

based characterisation of material behaviour.  

The deformation and fracture behaviour of material is controlled by its 

microstructure. Desired microstructural constituents in HSLA steel can be optimised 

through microstructural engineering by adopting a combination of thermo-mechanical 

controlled process (TMCP), along with accelerated controlled cooling (ACC). The 

optimisation of different microstructural constituents can also be achieved through 

different processes like rolling and ageing, normalising and ageing, quenching and 

ageing etc.  

A brief description of the subject matter, pertaining to the study forms the 

content of Chapter-1: introduction. Chapter-2: literature review reveals the important 

and relevance studies carried out in HSLA steels with a focus on physical metallurgy of 

HSLA steel, assessment of microstructural evolution by differential scanning 

calorimetry (DSC) study and magnetic techniques, fatigue and fracture behaviour of 

material. Various phases associated with the evolution of microstructure have been 

described. Role of various alloying elements relevant to the present study has also been 

discussed. As the processing parameters have strong influence on the microstructure 

and mechanical properties of steel, this aspect has also been included in this chapter. 

The mechanisms which are operative in strengthening of these categories of steels have 

 x



been elucidated. Chapter-3 describes the experimental work related to heat-treatment 

and characterisation of HSLA-100 steel. Microstructural modification through solution 

treatment followed by quenching and ageing has been discussed in this chapter. 

Microstructural characterisation by electron microscopy, evaluation of mechanical 

properties like hardness and tensile properties are included in the chapter. Variation of 

microstructures and mechanical properties of the steel on ageing have also been 

discussed in Chapter-3. In view of the changes in magnetic properties with structural 

modification, magnetic techniques can be used for microstructural assessment for 

structural component by non-invasive way. Chapter-4 describes indirect assessment of 

the microstructural evolution of the material using magnetic hysterisis loop and 

magnetic Barkhausen emission techniques. In this chapter the effect of precipitation of 

copper in HSLA–100 steel on the magnetic properties has been evaluated and the 

kinetics of copper precipitation process has been highlighted using differential scanning 

calorimeter. Chapter-5 is associated with the influence of various ageing treatments on 

the fatigue crack growth (FCGR) behaviour of the steel. Microstructure exhibiting same 

tensile and hardness properties may not offer same resistance to fracture. Chapter-6 

consists of a deeper understanding on the effect of different microstructure on fracture 

behaviour and fracture mechanics parameters. Finally, Chapter-7 consists of the 

summary and conclusions drawn from the present investigation. 

The material used in this study was Cu-strengthened HSLA-100 steel that was 

developed for naval structural use demanding high strength and toughness together with 

enhanced weldability. Carbon is kept at a very low level (0.04 wt%) to improve the 

weldability, and a substantially high content of Ni (3.50 wt%) is provided for increasing 

the hardenability and improving the hot workability of the steel. Microalloying with Ti, 

V and Nb induces strengthening via stable carbide and carbo-nitride precipitations. The 

high amount of Cu (1.60 wt%) in the steel is necessary for obtaining additional 

precipitation strengthening through quenching and ageing heat treatments that can be 

designed to provide optimum combination of strength and toughness required for 

specific applications. The material was available in the form of flat plates from which 

blanks were machined with their axes oriented along the rolling direction for the 

fabrication of tensile and fracture specimens. These were austenitised for 1 hour at 

910oC and water quenched (WQ). The quenched specimens were then aged for 1 hour at 

various temperatures between 350oC to 750oC in steps of 50oC and few additional 
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blanks were aged at 675oC in order to produce systematically varying microstructures. 

Some blanks were preserved after quenching treatment to investigate the as-quenched 

properties. 

Metallographic samples were prepared from the heat treated blanks using 4% 

nital as the etchant and examined in a JEOL JSM 840A scanning electron microscope 

(SEM) equipped with Noran Quest energy dispersive X-ray (EDS) microanalysis 

system. More detailed microstructural characterisation was carried out with a Philips 

CM 200 transmission electron microscope (TEM) with EDS attachment on twinjet 

electro-polished thin foils prepared from 3mm discs cut from the heat treated blanks. 

The mechanical properties of the various microstructures were obtained through 

hardness test using a computerised hardness tester in Vickers scale and through tensile 

tests conducted as per ASTM standard E-8M using a 100kN Instron servo hydraulic 

testing system. A constant displacement rate of 3x10-3 mm/s, with a 25mm gauge length 

extensometer mounted over the 5mm gauge diameter specimens was employed for the 

tests. 

Magnetic hysteresis loop (MHL) and Magnetic Barkhausen emission (MBE) 

techniques were used to characterise the material. Magnetic hysteresis and Barkhausen 

emission were carried out using surface magnetising probe. Magnetic hysteresis loop 

was measured at a quasi-dc (50 mHz) magnetising field whereas the Barkhausen 

emission were measured at 40 Hz using a 30kHz-300kHz band pass filter. The Cu 

precipitation behaviour of the steel under study was carried out using differential 

scanning calorimeter (Perkin-Elmer, DSC-7). The DSC was calibrated using Zinc and 

Indium sample prior to the experimental run for the specimen. The heating was done in 

an inert atmosphere at a heating rate of 10oC/min. However, various heating rates were 

used for activation energy calculation. The broad exothermic peak indicated the 

formation of nanocrystalline particle. Activation energy for this phase transformation 

was calculated using Kissinger plot 

Single-edge notched three-point bend specimens, of 150mm (L) x 30mm (W) x 

20mm (B) nominal dimensions, were employed for both FCGR and fracture toughness 

testing. The specimens were fabricated with integral knife-edges at the notch mouth on 

which a crack opening displacement (COD) gauge could be fixed for crack length 

 xii



measurement using the compliance method. Tests were conducted on a 100kN Instron 

servo hydraulic testing system equipped with a digital controller that was interfaced to a 

computer for test control and data acquisition. All tests were carried out in ambient 

laboratory air environment. Fractographic observations were carried out on tested 

specimens using a SEM. 

FCGR tests were conducted as per ASTM standard E-647 employing the 

decreasing ΔK test methodology. Tests were carried out at 15 Hz frequency with a load-

ratio, R, of 0.1 under software control. Instantaneous crack lengths, crack closure levels, 

ΔK and crack growth rates were computed on-line by the testing software. 

The single-specimen method was employed for carrying out fracture toughness tests as 

per ASTM standard E-1820 with the primary objective of obtaining J-R curves. A 

displacement rate of 3x10-3 mm/s was used for imposing a loading scheme consisting of 

concatenated sequences of loading through 0.3mm, followed by partial unloading 

through 0.15mm and reloading through the same amount, repeated continuously till 

sufficient crack growth has taken place. Software was used for test control and data 

acquisition, the data being analysed off-line as per the guidelines laid down in ASTM E-

1820. The widths of stretch zones spanning the culmination of pre-fatigue cracks and 

the initiation of ductile fracture were quantified from SEM fractographs for correlation 

with the ductile fracture behaviour. 

The microstructure in quenched condition is consisted of mixture of lath 

martensite, bainite and acicular ferrite along with little amount of retained austenite 

(RA), carbides, and carbo-nitrides. Ageing upto 500oC facilitated fine coherent nano-

size Cu precipitation that lost its coherency above 550oC. Simultaneously, recovery of 

martensite and acicular ferrite occurred at higher temperatures above 550oC. As the 

ageing temperature exceeds AC1 temperature, a few ferrites transform to reverted 

austenite and subsequently on cooling, a part of reverted austenite converts to small new 

martensite islands above 675oC. Carbides, carbo-nitrides and retained austenite were 

remained unchanged upto 700oC. Ageing above 700oC, causes softening of the material 

due to formation of granular bainite, recovery of martensitic laths and acicular ferrite as 

well as coarsening of carbides and Cu precipitates. Therefore, specimens aged beyond 
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700oC were excluded from magnetic characterisation as well as FCGR and fracture 

toughness tests in this investigation. 

The hardness of the material increased with the increase in ageing temperatures 

and reached maximum (350 Hv) at 500oC followed by a gradual decrease with a further 

increase in ageing temperature up to 675oC. Again, hardness increased and a second 

maxima was observed at 700oC. Hardness decreased when the steel was aged above 

700oC. Similar trend was observed in tensile properties like yield strength (YS) and 

ultimate tensile strength (UTS). The YS and UTS initially increased during ageing upto 

500oC and then gradually decreased during ageing up to 675oC. Subsequently the 

increase in strength was recorded and at 700oC, a second peak was observed. Strength 

again decreased when the steel was aged above 700oC. A reverse trend was observed in 

percentage elongation (%EL) and in percentage reduction in area (%RA). 

Microstructural and fractographic studies indicate that nano size coherent copper 

precipitate introduces the brittleness and high strength in the material in the initial stage 

of ageing whereas loss of coherency of Cu precipitate in later stages causes the increase 

in ductility in the material. The plastic flow of the material was restricted in the initial 

stage of ageing (350oC to 500oC) due to the formation of very fine coherent Cu 

precipitates, which restrict the dislocations movement. Plastic flow of material again 

increased during ageing above 550oC when Cu precipitates were coarsened and lost 

coherency.  

The magnetic properties did not response in the same manner as that of hardness 

and tensile strength. The material became magnetically softer at the initial stage of 

ageing, which was due to the tempering of lath microstructure. The Cu precipitation did 

not have much influence on the magnetic softness because of the smaller size of 

precipitate compare to the domain wall width. However, the materials became 

magnetically harder when the precipitate size increased, which hindered the domain 

wall movement. The kinetics of Cu-precipitation was studied using differential scanning 

calorimeter and the activation energy was found to be 68 kCal/mol. 

Variations in fatigue crack growth rate (FCGR) curve, J-R curve, blunting-line 

slope and stretch zone width (SZW) with variation in microstructure of the steel was 

carried out. It was observed that blunting line slope M i.e., slope of the initial linear 

region in J-R curve varies with ageing temperature. The slope first increased, and then 

 xiv



decreased and again increased with increase in temperature. The material exhibited total 

brittle crack extension or pop-in behaviour between 400oC to 500oC. A decrease in 

slope was observed with increase in ageing temperature above 500oC and the ductile 

fracture behaviour of the material again sets in. The co-efficient in the tearing region 

and Ji as well as JQ also showed similar trends. Beyond 500oC, the ductile fracture 

behaviour occurred followed by a marginal increase in brittleness at 700oC, owing to 

the formation of new martensitic islands from austenite. It was observed that although 

there was a systematic trend, the FCGR curves were less sensitive to microstructural 

changes.  The variation of fracture toughness value is characterised by JQ in most cases 

and by KQ for the microstructure showing highest strength, correlated well with the 

inverse relationship between fracture toughness and strength. A systematic trend was 

also observed for the pre-exponent and exponent of the power-law tearing curve (for 

cases in which brittle fracture was precluded), the blunting line slope and the SZW. 

From the present study, it is possible to develop an appreciation of the role 

played by microstructural constituents in controlling the deformation processes and the 

fracture behaviour of HSLA-100 steel for monotonic as well as fatigue loading. The 

major role played by the coherency of Cu precipitates in restricting plastic flow, as 

implied from the variation of mechanical properties with ageing temperature is thought 

to be responsible for the effects observed. Since fatigue crack growth is also governed 

by accumulation of damage through localised plastic deformation, precipitate coherency 

is an important factor in controlling its rate. The conditions under which microvoid 

coalescence was totally suspended in spite of a constant resident population of void 

initiating carbide and carbo-nitride particles, leading to brittle fracture through cleavage 

mode, was observed. The effect of tempering of the background matrix on fracture 

mechanics parameters was also evidenced. The evolution of new austenite and small 

martensite islands in the microstructure on ageing around 700oC was responsible for a 

desirable combination of high strength and high toughness in the HSLA-100 steel for 

critical engineering applications. 
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1.0
 

 

Introduction 
 

Low carbon, Cu containing high strength low alloy (HSLA) steels are emerging 

materials for naval and other structural applications due to their good combination of 

strength and toughness and excellent weldability. The improved weldabilty is achieved 

through lower concentrations of carbon. The copper addition provides the required 

strength through ageing. These steels can provide different combinations of strength and 

toughness in a wide range of plate thickness by different heat treatments. So appropriate 

selection of heat treatment is possible to obtain the best strength-toughness combination 

in these steels. However, it requires an investigation of microstructural change vis-à-vis 

mechanical behaviour due to various heat treatments. The assessment of integrity of any 

structure requires study of the fracture and fatigue resistance besides conventional 

mechanical property evaluation. 

The deformation behaviour of a material is controlled by its microstructure. 

Since the event of fracture is essentially an extension and, in a sense, culmination of the 

processes initiated during deformation, microstructure has profound effect on fracture 

behaviour of materials. From an engineering standpoint, the parameters used for 

characterising fracture behaviour are derived within the framework of fracture 

mechanics, and include - 

•  Pre-exponent and exponent of the Paris curve which are used to describe 

fatigue crack growth rates (FCGR) 
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• Fracture toughness in the linear-elastic and the elastic-plastic fracture 

mechanics regimes, based on stress intensity factor, K, and energy parameter 

J-integral respectively 

• Tearing modulus, T, defined as the slope of the J-resistance curve for ductile 

fracture. 

In recent years, considerable amount of interest has been generated in ductile fracture 

parameters such as blunting-line slope, M, and the related fractographic manifestation of 

stretch zone. 

The above fracture mechanics parameters are known to be influenced by 

microstructure, as well as by environment, stress triaxiality, and geometry of 

engineering components. However, while other parameters can be quantified, or at least 

specified, unequivocally, the same is not often true for microstructure. Description of 

microstructure include grain size, preferred orientations of grains if any, degree and 

nature of banding, distribution of phases in microstructure, chemistry of different 

phases, size distribution of particles and precipitates present in microstructure, 

chemistry of particles and precipitates. Microstructural features can obtain various 

length scales from macroscopic (like band spacing) to sub-microscopic (for example 

precipitates which may be of a few nanometres in size). All of these features will 

influence on deformation and fracture behaviour of materials. Considering the 

complexities involved in defining microstructure, they are often indexed using 

mechanical properties like hardness or tensile strength, which reflect overall 

performance of a microstructure. These indices are further used to understand the 

influence of microstructure on fracture mechanics parameters. 

The indirect appreciation of the effect of microstructure as described above, 

provides engineering leverage in comparative assessments, however they are somewhat 

empirical in nature. To elucidate: microstructure exhibiting the same hardness may 

contain completely different combination of phases that in totality provides same 

resistance to deformation by an indentor, but not same resistance to fracture. It is 

therefore imperative to develop a deeper understanding of the effect of microstructural 

constituents, on fracture behaviour and, to assimilate the effect of microstructure on 

fracture mechanics parameters. 
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Most investigations concerning the influence of heat treatment were confined to 

hardness, impact and tensile properties of HSLA–100 steels. However, these 

mechanical properties are insufficient to evaluate deformation behaviour of materials. 

Modern engineering design approach demands characterisation of material behaviour 

based on different fracture mechanics parameters. The influence of Cu precipitation and 

microstructural constituents on fatigue crack growth and fracture behaviour of Cu-

strengthened HSLA steels has not been explored much. In the present investigation, 

efforts have been given to evaluate the effect of various microstructural constituents 

with a focus on Cu precipitation as a function of various ageing temperatures on 

different fracture mechanics parameters of HSLA–100 steel. 

In this study, an attempt was made to assess evolution of microstructure by 

magnetic techniques, phase change by differential scanning calorimetry and correlate 

them with direct observation techniques. Variations in fatigue crack growth rate 

(FCGR), J-R curve, blunting-line slope and stretch zone width (SZW) for variation of 

microstructure in Cu-strengthened HSLA-100 steel has been investigated. The 

microstructural variation in the steel has been introduced through ageing at various 

temperatures after an initial quenching treatment. This has resulted in progressive 

tempering of the as-quenched martensitic matrix, accompanied by nanoscale 

precipitation of coherent Cu particles which gradually coarsen and loose coherency on 

over ageing. The high temperature precipitate population, which plays an important role 

in the process of ductile fracture, has been retained throughout the implementation of 

the scheme. Descriptions of various microstructures have been obtained through 

detailed scanning and transmission electron microscopy. These have been used to 

illustrate variation in mechanical properties and in fracture mechanics parameters 

obtained through standard tests.  
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2.0
 

 

Literature Review 

 

2.1 Introduction 

HSLA steel can provide various strength–toughness combinations over a wide range of 

plate thickness for various structural applications. Microstructural engineering by thermo-

mechanical controlled process (TMCP), along with accelerated controlled cooling (ACC) 

in this steel can optimise the desired microstructural constituents.  The optimisation of 

different microstructural constituents can also be achieved through different processes like 

rolling and ageing, normalizing and ageing, quenching and ageing.  

Literature review on HSLA steel in this chapter has revealed that investigation 

concerning the influence of ageing on microstructure and characterisation is not sufficient 

for modern engineering design approach, which includes fracture mechanics parameters. 

Section 2.1 is the introduction highlighted the need and content of this literature review. 

History of the development of HSLA steel has also been highlighted. Physical metallurgy 

of HSLA steel pertaining to the study forms the content of section 2.2 of this review. It 

reveals the important and relevance studies carried out in HSLA steels with a focus on role 

of alloying elements, thermo-mechanical and ageing treatment, strengthening mechanism, 

evolution of microstructures and mechanical properties. Section 2.3 contains the review of 

the changes in magnetic properties with structural modification. Magnetic techniques can 

be used for microstructure assessment for structural component by non-invasive way. In 

this section, possibility of using differential scanning calorimeter for the study of kinetics 
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of copper precipitation process has been reviewed. Section 2.4 and 2.5 are associated with 

fatigue crack growth and fracture behaviour of material. Other relevant literatures have 

been referred in results and discussion sections.  

 

2.1.1 History of HSLA Steel 

High strength steel was first developed in the 1960's for naval applications. Ferrite-pearlite 

steels had been used for many years for high strength structural applications. Medium 

carbon low alloy steels were also conventionally used for engineering structures in 

quenched and tempered condition. Advancements in high strength plate steels were 

stimulated by the demand for [1] (a) higher yield strength (YS), for greater load bearing 

capacity by thinner section (b) high resistance to brittle fracture as well as low impact 

transition temperature (c) a high degree of weldability. This led to the development of a 

new series of low carbon steels based on (1) low carbon content (2) adequate alloying 

elements to get desired transition temperature and (3) microstructural refinement by micro 

alloying and thermo mechanical processing. In these steels, strengthening mechanisms do 

not primarily depend on carbon. The strength of this category of steels is due to the 

dislocation sub-structure and solid solution strengthening [2]. The ultra low carbon bainitic 

(ULCB) steel is one category of such steel. A second category is copper containing HSLA 

steels, which are low-carbon, copper precipitation strengthened low alloy steels. These 

steels can provide various combinations of strength and toughness over a wide range of 

plate thickness. Research on HSLA steels has led to the development of HSLA-80 and 

HSLA-100 steel with many publications on the processing, microstructure and properties 

of these steels [3-29]. 

Carbon is an efficient and economic element for increasing strength in steels. 

However, its presence is associated with poor notch toughness. Weldability and weldment 

toughness are inversely related to the carbon equivalent (CE) in steels, and high fabrication 

costs may have to be incurred for steels due to stringent control requirements of welding 

procedures like preheat etc. Copper bearing HSLA steels have been developed to counter 

usual welding problems. The main objective of welding preheats is to minimise hydrogen 

related cracking in the hard martensitic heat affected zone (HAZ). The HAZ of very low 

carbon copper strengthened HSLA-80 steel is not significantly hardened due to dissolution 

 7



of copper and grain coarsening caused by heat of welding [24]. HAZ microstructure of such 

HSLA steels are thus less sensitive to hydrogen cracking and consequently achieve 

excellent weldability at low or without preheats. Hot cracking and cold cracking resistance 

of copper bearing HSLA-80 steels are superior to those of the conventional medium carbon 

high strength (HY-80 being a typical example of high strength carbon steel that was being 

used for naval structural applications) steels under similar conditions. Preheat or interpass 

temperature and electrode handling requirements for HSLA-80 applications are also less 

stringent than those for HY-80 welding. The relative fabricability of HSLA-80 in a 

shipyard production environment has demonstrated significant reduction of fabrication 

costs [25]. 

The US Navy first certified copper strengthened HSLA-80 steel for naval 

applications [7]. It is however unsuitable for complex structures, especially when subjected 

to complex dynamic loading. It is also not suitable for higher plate thickness applications 

due to limited hardenability. Later on, HSLA-100 steel with a higher YS, similar toughness 

and almost equivalent weldability is developed which is a modified version of the copper 

strengthened HSLA-80 steel, and is conceived as a replacement of high strength carbon 

steel (HY-100) for naval structural applications. This steel is also weldable without preheat 

and exceed strength and toughness of HY-100. It is not prone to HAZ softening because of 

increased hardenability. HSLA-100 steel has been found to be better in all aspects of 

structural performance in comparison to HY-100 steel. The copper containing HSLA-100 

steel could be used in rolled and aged, normalized and aged, and quenched and aged 

conditions. It could provide higher strength and toughness over a wide range of plate 

thickness, in comparison to copper strengthened HSLA-80 steel. 

 

2.2 Physical Metallurgy of HSLA Steel 

2.2.1 Classification 

The American Society for Metals (ASM) has classified the different varieties of high 

strength low alloy (HSLA) steels into four categories [30]: 

 (a) as hot-rolled C-Mn steel with minimum yield strength of 250-400 MPa (36-58 ksi) 
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 (b) microalloyed HSLA steel with properties which result from low alloy additions 

and controlled hot rolling with minimum yield strength of 275-450 MPa (40-65 

ksi) 

 (c) high strength structural carbon steels either in normalized or in quenched and 

tempered condition with minimum yield strength of 550-690 MPa (80-100 ksi) 

 (d) heat-treated structural low alloy steels quenched and tempered with minimum 

yield strength of 620-690 MPa (90-110 ksi) 

Cu-strengthened HSLA steels belong to the last category of HSLA steels. 

 

2.2.2 Role of Alloying Elements 

Steel chemistry, and microalloying additions in particular, is an important factor that 

controls the microstructure of HSLA steels. Microalloying elements like niobium (Nb), 

titanium (Ti) and vanadium (V) play a major role in grain refinement and precipitation 

hardening which in turn alter the microstructure and mechanical properties of steels. The 

total amount of alloying elements is generally less than 10 wt%. Strength, toughness, 

hardenability, corrosion resistance and weldability properties can be improved by addition 

of alloying elements like nickel (Ni), copper (Cu), chromium (Cr), molybdenum (Mo) for 

specific applications. The main constituents of copper bearing HSLA steels are 

combinations of carbon (C), manganese (Mn), silicon (Si), sulphur (S), phosphorus (P), 

nitrogen (N), Nb, Ti, Cu, Ni, Cr, and Mo in different weight percentages. S and P remain in 

steel as primary impurities. The level of carbon is kept below 0.07 wt% to control HAZ 

hardness, toughness and cold cracking, whereas Cu addition up to 1.5 wt% raises yield and 

tensile strengths of the steel [31]. Cu imparts solid solution and precipitation strengthening 

in addition to resistance to corrosion. Cr, Ni and Mo improve toughness of the steel. The 

hardenability is improved by addition of Ni, Mo, Mn and corrosion resistance in marine 

environment is improved by addition of Cu, Mo and Cr [32-40]. Detailed discussions on 

the role of various alloying elements are available in literatures [30,41,42]. In this section, 

a brief discussion on the effect of alloying additions in HSLA steels is made. 

Carbon is one of the cheapest element, forms interstitial solid solution of iron, 

conventionally used to increase the strength of steel. It forms carbides and carbonitrides by 

combining with other alloying element and have significant effect on mechanical 
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properties of steel. It increases hardenability, raises impact transition temperature, lowers 

weldability and resistance to corrosion. Weldability and toughness are deteriorated with 

higher amounts of carbon. The influence of carbon content and carbon equivalent [C.E.] on 

weldability of steel is shown in the Graville diagram in Fig. 2.1 [43]. In late seventies and 

early eighties, steels with low carbon content came into picture due to increasing demand 

for good weldability and formability along with high toughness at low temperatures for 

line pipe applications [44]. Further details of the influence of carbon content on steel 

microstructure are available in literature [45]. Bainitic microstructure appears in HSLA-

100 steel in water quenched condition when carbon content is less than 0.02 wt% and lath 

martensite appears when carbon is kept above 0.03 wt%. 

Manganese is one of the major alloying elements, which is added in different 

categories of steels in a wide range of wt%, depending upon cooling rate, thickness and 

strength of the products [46]. When Mn is added in steel, it acts as austenite stabilizer and 

carbide former. Mn prevents hot-shortness which results due to the presence of sulphur. 

The solute strengthening effect of Mn is also appreciable. Mn lowers the critical 

temperature and helps in formation of fine pearlite structure. It increases the hardenability 

markedly without a reduction in toughness. The ductile-brittle transition temperature 

(DBTT) of a steel decreases in the presence of manganese. 

Silicon is known as a ferrite strengthener. It increases the tensile strength with a 

marginal loss in ductility and increases impact transition temperature [47]. Nitrogen 

beyond certain amount is not a desirable element in steel. Aluminium is added in steel as a 

nitrogen and oxygen scavenger. As Al forms fine aluminium nitride, it contributes in 

forming finer grained steel [48]. Micro alloying elements like titanium, niobium combines 

with nitrogen and form nitrides and/or carbonitrides. They act as grain refiner and 

precipitation hardener and increases the strength of the steel. Low nitrogen content in the 

range of 30-60 ppm is desirable to minimise loss of effective nitrogen [49]. Sulphur and 

phosphorus have detrimental effects on properties of steel. Sulphur causes hot shortness in 

steel, i.e., brittleness at high temperatures, whereas phosphorus drastically lowers the 

ductility and is said to induce cold shortness in steel. Sulphur and phosphorus should be 

less than 0.02 wt% for HSLA steels and it is necessary to have Mn of at least five times the 

weight of S to ensure the formation of MnS. Titanium has a high affinity for sulphur and 
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forms (TiMn)S and Ti4C2S2 inclusions [50]. It is also very important to keep S low to 

minimise the loss of titanium.  

Chromium, nickel, and molybdenum affect the hardenability of steel strongly, 

besides imparting solid solution strengthening. It is reported that Ni up to 3.5 wt% alone or 

in combination with Cr was initially used to develop HSLA steels [45,47,51]. Cr increases 

the yield strength and improves corrosion resistance property. The effect of Cr on 

transition temperature depends on the rolling condition [52]. Cr depresses the austenite 

transformation temperature and is used in place of Mo as hardenability agent. Mo is used 

for its effect on continuous cooling transformation characteristics [53]. The amount of Mo 

addition is dependent on the plate thickness and cooling rate [46]. An increase in Cu 

addition requires a higher amount of Ni addition. Ni prevents grain boundary segregation 

of Cu and thus reduces the chances of hot shortness [31,41]. 

Titanium, vanadium and niobium are added as microalloying elements in HSLA 

steel and act as grain refiners and precipitation hardeners. These microalloying elements 

increase strength, ductility and toughness of these steels. Ti, V and Nb are strong carbide 

and nitride forming elements even at very low concentrations [54]. These carbides and 

nitrides prevent austenite grain growth through pinning of grain boundaries during 

reheating, and retard recrystallisation during rolling of the steel. The basis of strengthening 

mechanism imparted by Ti, V and Nb is contributed by precipitation hardening, grain 

refinement, dislocation hardening and texture hardening [55]. It is observed that Nb affects 

grain refinement significantly with moderate precipitation hardening, whereas V imparts 

moderate strengthening with relatively weak grain refinement and Ti imparts strength 

through precipitation hardening and moderate grain refinement. Mishra et al. [10] studied 

the precipitation behaviour of HSLA-80 and HSLA-100 steels on quenching from different 

austenitising temperatures in the range of 950 to 1200oC. They observed that Nb rich 

precipitates, that dissolved during reheating above 1150oC, are present in the form of 

carbonitride in the steel. In another study, it was observed that TiN and TiCN formed 

during casting, remained undissolved during reheating at 1200oC [56]. Xiaogong et al. 

observed that TiN and TiCN particles are formed in the liquid melt or during solidification 

[57]. Many factors are operative to control the size of TiN particle formed in the liquid 

state or during solidification. Ti/N ratio is one of them. It has been reported that the 

optimum Ti/N ratio is approximately 2 to 3.5 to produce fine TiN precipitate [58]. The 
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shape, size and distribution of precipitates are also important parameters, which regulate 

the mobility of dislocations and in turn the work hardening rate. Prikryl et al. has reported 

that the effective size range for precipitation hardening is approximately 5 to 20 nm [59]. 

Inter-particle spacing is very important for precipitation hardening. A model for the 

mechanism and kinetics of strain-induced precipitation of Nb(CN) in austenite has been 

developed by Dutta et al [60]. 

Copper draws attention as an alloying element because its effects in steel are 

manifold. Cu can be used as grain refiner, solid solution and precipitation strengthener 

[27]. Cu increases the strength in Cu-bearing steels through age hardening and it can 

increase the toughness as well as corrosion resistance. Therefore, research on Cu 

precipitation in steel has been essential for understanding as well as development of newer 

grades of Cu-containing HSLA steels. Precipitation of Cu in iron base systems has been 

studied by several investigators [61–76]. 

Russel and Brown [64] found a linear relationship between the yield strength 

increase and the square root of the Cu content in Fe-Cu binary alloys during thermal ageing 

experiment. The Russel-Brown modulus-hardening model explains hardening by treating 

Cu precipitates as soft spots in a harder iron matrix. In Cu bearing steels, Cu-rich clusters 

form first during ageing and they are coherent with the matrix and induce elastic strains 

within it. The cluster formation occurs by short-range diffusion of Cu in the solid solution 

formed on quenching. As the ageing temperature increases, the clusters disappear and 

intermediate phases form that are redistributed in the matrix. The hardness reaches a 

maximum value when the precipitates are semi-coherent and has a critical size [64]. 

However, Harry and Bacon [66] suggested a very different mechanism of hardening 

due to copper. They studied the dislocation-precipitate interaction and simulation of the 

strengthening effect originating from the core structure of the <111> screw dislocation in 

α-iron containing Cu precipitates. Their results indicate that the hardening observed in 

experiments is due to the effect of screw dislocation core on the BCC copper structure, 

which is a new precipitation strengthening mechanism, rather than elastic interaction. 

 Nakashima et al. [68] highlighted the strengthening mechanism due to Cu particles 

in terms of interaction between dislocation and Cu particles in aged Fe-Cu alloys. They 

observed that the dislocations moving during deformation cut Cu particles and pass through 
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them before the bowing angle of dislocation reaches π/2 when the size of Cu particles are 

less than 70 nm.  

 The maximum solubility of Cu in γ-iron is 2.1 wt% at 850oC and solubility 

decreases with decreasing temperature [69]. Cu lowers the transformation temperature of 

martensite (MS) or of bainite (BS) upon quenching from austenite (γ) at 900oC. Okada et al. 

reported that higher amount of Cu (>1.5 wt%) together with Mn lowers the transformation 

temperature of austenite in HSLA steels [70]. Cu precipitates retard recovery and 

recrystallisation of the quenched matrix. In another study, Garcia et al. [71] observed 

precipitation of ε-Cu particles in controlled rolled HSLA steel. Bhagat et al. [75] studied 

the ageing behaviour and precipitation of copper in HSLA steel by measurement of 

electrical resistivity continuously as a function of temperature and time which is an 

effective means of studying the kinetics of Cu precipitation in steel. The ageing kinetics of 

a low carbon Cu-bearing (1.86 wt%) steel has also been studied by Krishnadev et al. [76]. 

They observed that peak hardness and the time to reach the peak increases with decrease in 

ageing temperature.  

 

2.2.3 Thermomechanical and Ageing Treatments 

The heat treatment of Cu containing HSLA steels involves austenitisation or solution 

treatment followed by quenching and ageing. The processing technology of the steel 

comprises thermomechanical controlled processing (TMCP) followed by tempering or 

ageing [77,78,79]. TMCP optimises the grain size of the microstructure through controlled 

rolling (CR) at high temperature (>900oC) followed by accelerated controlled cooling 

(ACC). The amount and nature of microalloying elements influence the controlled rolling. 

Controlled rolling can be divided into three stages [77,79]: 

 (a) deformation around 1080oC; i.e. in austenite recrystallisation region where coarse 

austenite is refined through repeated recrystallisation due to continuous 

deformation 

 (b) deformation between 950oC-870oC in austenite non-recrystallisation region where 

formation of deformation bands in non-recrystallised austenite provides additional 

nucleation sites for transformation 

 (c) deformation in the two phase austenite-ferrite region. 
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One important stage in TMCP is accelerated cooling (ACC) or direct quenching (DQ). The 

grain growth is suppressed by rapid cooling from finish rolling temperature. Air cooling 

after accelerated cooling to room temperature provides self-ageing unlike direct quenching. 

The direct quenching results in formation of martensite and acicular ferrite or bainite at 

room temperature and ageing of the steel is necessary to obtain suitable combination of 

microstructure and properties. The accelerated cooling and DQ processing are illustrated 

schematically in Fig. 2.2. The cooling rate, plate thickness and steel composition together 

optimise the properties of these steels [77]. DQ and ACC control the austenite 

transformation and cooling begin at such a temperature that the third stage of TMCP can 

be omitted [80]. Controlled rolling followed by direct quenching or accelerated cooling 

leads to a uniform fine-grained structure [81]. 

A few literatures are available concerning the influence of ageing on mechanical 

properties of HSLA steel [7,78,82] and some results are shown in Fig. 2.3 to Fig. 2.5. The 

ageing behaviour of this steel can be divided into different stages [78]. Stage I is associated 

with exhibition of highest strength when ageing temperature is up to 450oC. Stage II is 

associated with a continuous decrease in strength up to 640oC. Stage III is associated with 

secondary hardening at 708oC. Stage IV is again associated with a decrease in strength 

above 708oC. The toughness of these steels increase significantly above ageing 

temperatures of 600oC [7]. Several other investigators reported that the best combination of 

strength and toughness is obtained when the steel is aged between 620oC-690oC [22,78,83]. 

It is also reported that the ageing time to develop optimum toughness and mechanical 

properties may vary with plate thickness [78, 84-88]. 

 

2.2.4 Strengthening Mechanisms  

The alloying elements and process variables play an important role in imparting high 

strength and toughness without impairing formability and weldability of HSLA steels [89]. 

Based on the work of Pickering [90] and Massip et al. [91], the following strengthening 

mechanisms are thought to contribute in enhancing mechanical properties of HSLA steels: 

a) Grain refinement significantly increases the yield strength and toughness, and lowers 

impact transition temperature (ITT) of steels. The quantitative relationship between 

 14



yield strength and grain size has been established by Hall [92] and Petch [93]. The 

expression is as follows: 

 σLYS = σo + K.d −1/2 …. (2.1) 

where, σLYS is the lower yield stress; σo is the friction stress; K is a constant and d is the 

ferrite grain size. 

Non-recrystallised austenite grains can produce fine grain ferrite where ferrite 

nucleation rate at the strained austenite grain boundaries are very high but growth rate is 

low due to space congestion [94]. Starting with a smaller austenite grain size, 

refinement of ferrite grain size can also be achieved [95]. 

b) Solid solution strengthening is dependent on the atomic size differences between solute 

and solvent. Potent interstitial solutes cannot be used for strengthening to a great extent 

due to their limited solubility. The influence of the solutes towards strengthening has 

been studied by Leslie [42]. At small concentrations, the solute has little effect on 

ductility and the variation in impact transition temperature [1]. 

c) Precipitation strengthening is responsible for decrease in impact transition temperature 

(ITT) [1]. It is also reported that a balance in precipitation strengthening and grain 

refinement increases the strength, toughness and ITT of HSLA steels [96]. The stress 

required to move dislocations in a slip plane has to be higher than the stress needed to 

generate dislocations from a source in precipitation strengthened alloys. Therefore, the 

yield strength associated with the stress required for dislocations to sweep out in the 

slip planes are large compared with dispersion strengthening. 

d) Dislocation strengthening can effectively increase the yield stress of metals. A network 

of dislocations is produced due to deformation of metals below recrystallisation 

temperature. The interface of such networks restricts the movement of dislocations to a 

great extent. The following expression has been proposed by Baeley et al. [97] and Keh 

[98] for strengthening by dislocation interactions: 

 σd = α . G . b . ρ1/2  …. (2.2) 
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where α is a const., G is the shear modulus, b is the Burgers vector, ρ is the dislocation 

density. 

Baker observed that dislocation density of a low C, Nb containing steel at room 

temperature is very high and depends on the finish rolling temperature [99]. He further 

observed that with lowering of finish rolling temperature, dislocation strengthening is 

enhanced. The limitation of dislocation strengthening is its influence towards the 

increase in ITT of the steel, despite the significant increase in strength. 

e) Substructural Strengthening is another important strengthening mechanism for 

improving strength of metallic material. The ferrite and austenite grains are deformed 

and lead to an increase in dislocation density during thermomechanical treatment at a 

lower temperature between Ar3 and Ar1. Ferrite sub-grains can be formed by recovery 

if the temperature is favourable and sufficient. An additional increase in yield strength 

with a less detrimental effect on ITT can be imparted through the formation of ferrite 

subgrains. 

The various strengthening mechanisms in microalloyed cold worked steel have been 

studied by Gawne et al. [100]. In their study, they observed that precipitation strengthening 

depends on volume fraction as well as direction of the precipitates, and not significantly on 

the composition of the precipitates. Manganese has a significant effect when combining 

with Nb and V in depressing austenite-ferrite transformation temperature, and increases the 

influence of controlled rolling. However, it acts as a weak solid solution strengthener. All 

the strengthening mechanisms that are often operative in HSLA steels can be combined and 

Baker has estimated the following relative contribution of individual mechanism [99]: 

 σYS  = σo + σs + σp + σd + σt + K.d−1/2 + σ ….(2.3) 

in which σo is the lattice friction stress, σs is solid solution strengthening, σp is precipitation 

strengthening, σd is dislocation strengthening, σt is the strengthening due to texture, σ is 

strengthening due to subgrain effect, and K.d−1/2 is strengthening due to grain refinement.  

It may be noted that all strengthening mechanisms may not play a significant role in 

strengthening HSLA steels, and their relative contributions is an important consideration 

for optimisation of composition and processing parameters of the steel. 
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2.2.5 Microstructural Evolution 

The alloying elements and thermo-mechanical processes control the microstructures of Cu-

strengthened HSLA steels. It is from this premise that the concept of microstructural 

engineering arise. The formation of different phases in HSLA steel like acicular ferrite, 

bainitic-ferrite, martensite, martensite-austenite (MA) constituents depend on the 

mechanism of the transformation kinetics of austenite that in turn is dependent on several 

factors like transformation temperature, time, amount of deformation etc. Austenite, the 

initial phase by allotropic transformation, may produce a variety of microstructural 

constituents in solid-state reactions. Roberts et al. reported the kinetics of austenite 

transformation from ferrite/pearlite and ferrite/carbide aggregates [101]. They observed 

that cementite precipitates in ferrite matrix aid in the nucleation of austenite. The effect of 

composition and coherency of carbide on the rate of austenite nucleation and growth has 

also been reported [102]. 

 The morphology of ferrite is dependent on the transformation temperature, austenite 

composition and hardenability. In most steels, proeutectoid ferrite is the initial 

transformation product, which forms over a wide range of temperature and composition 

[103]. The formation of polygonal ferrite in carbon-manganese steel contributes a small 

amount of transformation strain resulting in a lower quantity of dislocations [104]. It is also 

reported [105] that the volume fraction of fine-grained polygonal ferrite increases at the 

expense of acicular ferrite with an increase in the amount of deformation in non-

recrystallisation regions [105]. Acicular ferrite forms on continuous cooling at a 

temperature range, which is slightly higher than the bainitic transformation temperature 

range [106,107]. The microstructure of acicular ferrite consists of non-equiaxed ferrite with 

a little amount of dispersed carbide. Acicular ferrite is intragranularly nucleated in bainite, 

so that it is possible to control these two morphologies by controlling the nucleation site 

[108]. Acicular ferrite contains considerable quantities of mobile dislocations and no 

carbide or occasional carbide precipitation is visible within the ferritic lath [109]. When 

austenite is transformed, another transformation product, such as pearlite may form by 

nucleation and growth. Conventional pearlite differs from pseudo-pearlite in respect of 

carbide arrangement as proposed by Lee et al. [104]. Bainite forms between the temperature 

range of martensite and ferrite-pearlite transformation. It consists of an aggregate of 

acicular ferrite and carbides. There are various forms of bainite like granular bainite, 

 17



inverse bainite, columnar bainite, pearlitic bainite, lower bainite and upper bainite 

described in details by Bhadeshia [108]. 

Martensite is formed by shear mode of transformation of austenite, which is an 

athermal reaction product. Its transformation is dependent on carbon partitioning in 

austenite [109]. The martensite reaction begins over a wide range of temperature from 

500oC to below room temperature depending on the austenite stabilizer concentration. The 

Kurdjumov-Sachs (K-S) orientation relationship persists between the austenite and 

martensite [110], i.e. 

  {111}γ // {110}α′      {111}γ habit plane 

  <011>γ // <111>α′, where α′- martensite 

This relationship persists when the habit plane changes to {225}, but when new habit plane 

{259} appears, a new relationship is found to occur [111] that is given by 

  {111}γ // {110}α′      {259}γ habit plane 

  <011>γ // <111>α′, where α′- martensite  

However, neither of these relationships is accurate and habit planes show a scatter of 

several degrees from the ideal orientation.  

A variety of microstructural constituents like acicular and polygonal ferrite, lower 

and granular bainite, low carbon lath matensite, martensite-austenite (MA) constituents, 

retained austenite (RA), Cu-precipitates, carbides, carbonitrides and nitrides have been 

observed in HSLA steels by several investigators [11,112,113]. The presence of acicular 

ferrite in thin plate and polygonal ferrite in thicker plate has been reported 

[7,77,83,114,115]. HSLA-100 steel exhibits low carbon lath martensite in thin plate and 

granular bainite in thicker plate. The average prior austenite grain size of the steel after 

TMCP is found to be of ASTM No. 9 i.e. ~10 μm [7,77,83]. It is also reported that the size 

of Nb(CN) precipitates which form during hot rolling above 1000oC varies with variation in 

the heat treatment [78,116]. 

Wenpu et al. in a TEM study showed that the microstructure of as quenched HSLA-

100 steel consists of a lath matensite, acicular ferrite, retained austenite and twinned 
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martensite [117]. They observed microstructural changes like tempering of lath martensite 

and twinned martensite, recovery of acicular ferrite during ageing. Retained austenite was 

found to be stable and was not decomposed even on ageing at 650oC for 11/2 hr. The 

precipitates observed in their study include ε-Cu, Mo2C, M23C6, TiN and Nb(CN). 

Besides copper precipitation, the formation of reverted austenite at prior martensite 

lath boundaries while ageing at 640oC is also reported in HSLA steel [78]. The presence of 

fine copper precipitates has been reported by several investigators [21,78,116]. Cu-

precipitates are generally found to be uniformly distributed throughout the matrix 

associated with dislocations. The size of Cu-precipitates has been observed to vary between 

10nm and 30nm. The coarsening behaviour of copper precipitates has been studied by 

investigators [21,78]. The studies have revealed that clusters of Cu particle form initially at 

relatively lower temperatures and time of ageing. Spherical shaped coherent ε-Cu 

precipitates form at somewhat higher ageing temperatures and time. Rod like Cu-

precipitates are formed due to coarsening on ageing and loose coherency faster on ageing at 

higher temperatures. The size variation of Cu-precipitates with ageing temperature in a 

repeat quenched and tempered (RQT) and direct quenched and tempered (DQT) Cu-

strengthened HSLA steel is shown in the Fig. 2.6 [21]. 

 

2.2.6 Mechanical Properties 

The mechanical properties of HSLA steels are dependent on the chemistry of materials, 

process parameters, rolling condition, ageing or heat-treated condition etc that influences 

the resultant microstructure. Some reports are available as shown in Fig. 2.3 to Fig. 2.5 that 

shows the variation of hardness, yield strength, notch toughness with variation in tempering 

temperature of HSLA-100 steel [7]. With reference to figures, it may be noticed that 

maximum hardness and maximum yield strength were achieved on ageing at around 450oC, 

which is due to the formation of Cu-rich clusters. Above 500oC, a continuous decrease in 

strength and hardness was observed. The transformation of reverted austenite to martensite 

around 650oC while ageing and appearance of a secondary peak has also been reported [7]. 

On further ageing the steel above 700oC, the material was softened due to the formation of 

bainitic microstructure. The reverted austenite has a strong influence on the mechanical 

properties of HSLA-100 steels. Fig. 2.7 shows a schematic illustration of the variation of 
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yield strength as a function of the formation of microstructural constituents of HSLA-100 

steel with change in ageing temperature. Reports are available on the comparison of 

mechanical properties of Cu-strengthened HSLA-steel with those of other steels of similar 

strength [77,88]. 

 

2.3 Indirect Assessment of Microstructural Evolution 

2.3.1 Magnetic Techniques 

Ferromagnetic material consists of sub-microscopic regions known as domains within 

which the majority of magnetic moments are aligned in one direction. In a demagnetised 

state, the domains are oriented randomly, so that the net magnetisation of the materials is 

zero (Fig. 2.8a). The region between the domains where the moments change their 

directions is called the domain wall and this is shown schematically in Fig. 2.8b. The 

change in orientation is spread over several hundred atom layers, which is called the 

domain wall width. Every domain is magnetised to saturation but unless a majority of them 

is aligned in particular direction, the vector sum of all domains will be zero and the 

material is considered macroscopically demagnetised. When a magnetic field is applied, 

domains are favourably aligned with the field, and tend to grow by domain wall movement 

at the expense of unfavourably aligned domains. The amount of growth or the distance that 

a domain wall travels depends on the strength and the direction of applied magnetic field, 

microstructure, composition and the stress state of the material. Domain wall can be 

classified into 180o walls, in which the spins rotate by 180o from one domain to another, 

and 90o walls, in which the domain rotates by 90o upon application of the magnetic field.  

When a ferromagnetic material is subjected to a cyclic magnetic field of very low 

amplitude, reversible domain wall motion takes place and the material returns to its initial 

state after the magnetic field is withdrawn. Magnetic hysteresis loops (MHL) are formed 

when the amplitude of the applied cyclic field crosses a critical value at which the domain 

wall moves irreversibly. Fig. 2.9 shows the various magnetic hysteresis loop parameters 

when the test material is subjected to a high amplitude of cyclic magnetic field so that all 

the domains are oriented along the field direction, and the material is known to reach its 

saturation (BBS) level. MHL parameters represent the bulk properties of the test material. On 
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the microscopic scale, the hysteresis loop is not found to be a smooth function of magnetic 

induction (B) and field (H). The magnetic induction curve consists of discontinuous 

changes although the field is continuous. Particularly near the coercive point of the 

material, the magnetic induction curve shows a structure composed of many individual 

steps, which are caused by the sudden jumping of domain walls from one position to 

another during the process of magnetisation. These small steps, which are irreversible 

changes in magnetisation, are known as magnetic Barkhausen emissions (MBE). The 

irreversible motions of 180  domains are mainly responsible for MBE signals. Fig. 2.10 

shows how one MBE burst is created for a magnetising half cycle. MBE signal can be 

quantified in terms of peak amplitude, rms voltage, number of pulse counts, pulse height 

distribution etc. Barkhausen emissions are electromagnetic signal of radio frequency range 

and hence, due to eddy current limitation, MBE presents the surface properties of 

materials. 

o

Most of the materials used for structural purposes in pipeline, railroads, and bridges 

are made of steel, which is ferromagnetic. It is found that magnetic parameters like 

coercivity decreases with an increase in tensile stress and grain size [118,119]. A good 

correlation has been found to exist between hardness and magnetic properties [120]. A 

considerable change in magnetic properties is also found during plastic or elastic 

deformation [121]. In view of these observed changes in magnetic properties with the 

structural modification, attempts are now being made to utilise the inherent ferromagnetic 

properties of steel for evaluation of integrity of in-service components. Different magnetic 

NDE techniques was reviewed by Jiles [122] and out of all the available techniques, 

magnetic hysteresis loop (MHL) and magnetic Barkhausen emissions (MBE) are found to 

be very promising as non-destructive testing (NDT) tools. 

MHL parameters may be divided into two categories. These are structure sensitive 

properties, such as coercivity, permeability, remanence and hysteresis loss, and structure 

insensitive properties, such as saturation induction, saturation magnetostriction and Curie 

temperature. The variation of some structure sensitive properties of AISI 1000 series 

carbon steel with two different microstructures is shown in Table-2.1 [123]. 

MBE are also found to be sensitive to the microstructure of structural materials 

[124]. Coercivity is normally found to be an inverse function of grain size [125]. In 
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addition to the inverse relationship, a Hall-Petch type relationship has also been proposed 

[126]. 

 Hc = K1 + K2 d-1/2 …. (2.4) 

where, K1, K2 is constant and d is the grain size. This equation indicates analogous 

behaviour of domain walls and dislocations at pinning points [126,127]. As grain boundary 

is the source of nucleating sites for irreversible magnetic flux motion, which corresponds 

to Barkhausen jumps, MBE activity is also influenced by the grain size. Barkhausen 

activity has been modelled in ferritic steel by the following equation [128]. 

 Vrms = Cgdg
1/2     ….  (2.5) 

where, Cg is a constant and dg is ferrite grain size. 

Thermal ageing of ferritic steel may occur in components operating at higher 

temperatures, and dislocation density, size and distribution of laths/grains and second 

phase precipitates may vary in a systematic manner due to thermal ageing. Using MBE 

parameters, a two stage magnetisation process has been proposed in sufficiently tempered 

microstructure, considering the grain boundaries and the carbide precipitates as the two 

major types of obstacles to the domain wall movement, to characterise such thermally aged 

microstructures [129]. Studies have been carried out in an annealed and a thermally aged 

0.3% carbon steel to establish the effect of lamellar and spheroidised cementite structures 

on MBE behaviour [130]. The effect of microstructural change during isothermal heat 

treatment on structure sensitive magnetic properties has been investigated for low alloy 

steel [131,132]. It was observed that magnetic permeability increased while coercive force 

and Vickers hardness decreased with increased ageing time. During isothermal heat-

treatment, M23C6 and (Cr2.5Fe4.3Mo0.1)C3 carbides were found at grain boundaries. These 

carbides were formed by C, Cr, Mo and Mn which migrated from the matrix to the grain 

boundary. The decrease of C in matrix resulted in decrease of Vickers hardness and 

coercive force and in the increase in permeability. The correlation between mechanical and 

magnetic properties indicates that hardness and microstructural changes could well be 

evaluated in a non-destructive fashion by measuring permeability or coercive force.  
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2.3.2 Differential Scanning Calorimetric Study 

The theory of  operation of differential scanning calorimeter is based on principle in which 

energy absorbed or evolved by the sample is compensated by adding or subtracting an 

equivalent amount of electrical energy to a heater located in the sample holder. Platinum 

resistance heaters and thermometers are used in the DSC to accomplish the temperature 

and energy measurements. The continuous and automatic adjustment of heater power is 

necessary to keep the sample holder temperature identical to that of the reference holder 

provides a varying electrical signal equivalent to the varying thermal behaviour of the 

sample. This measurement is made directly in energy units and providing true electrical 

energy measurement of peak areas. DSC measures time, temperature, heat flow and by 

integration of the heat flow, enthalpy. The most common DSC application is the precise 

measurement of transition temperature. DSC provides the information quickly and easily 

on a minimum amount of sample. In DSC specific heat-temperature (cp-T) curves can be 

rapidly determined using only milligram quantities of solids or liquids over a temperature 

range of 25oC-750oC. If a particular thermal event (phase change, annealing, chemical 

reaction, etc.) is encountered, the calorimeter can be thought of as treating it as unusual cp 

requirement so that by integration, overall enthalpy changes can be found and these in turn 

yield heats of fusion, transition, reaction etc. 

DSC is capable of distinguishing random temperature variations and those are 

caused by actual phase evolution. The absorption energy for the phase transformation is 

generally calculated by using Kissinger Plot [133]. 

 

2.4 Fracture Behaviour  

Fracture of materials is an inevitable consequence of continued stress and deformation of 

materials. Fracture behaviour of materials can be studied and quantified using various 

phenomenological aspects. In recent times, the area of fracture mechanics has been 

especially developed for understanding fracture mechanisms and characterisaton of 

fracture resistance. Fracture mechanics has been extensively used for this purpose in this 

work  

 23



The following fracture mechanics parameters are generally used for characterising fracture 

behaviour of material: 

 (i) fracture toughness in the linear-elastic and elastic-plastic fracture mechanics 

regime, based on the stress intensity factor, K, and the energy parameter J-

integral respectively, 

 (ii) the pre-exponent and exponent of the Paris curve that is used to describe 

fatigue crack growth rates (FCGR), 

 (iii) the tearing modulus, T, defined as the slope of the J-resistance curve for ductile 

fracture. 

The blunting-line slope, B, and the related fractographic manifestation of the stretch 

zone have also drawn considerable interest as ductile fracture parameters. These 

parameters are also influenced through a variation of microstructure. 

The fracture mechanics parameters stated above are known to be influenced by 

microstructure, environment, stress triaxiality and the geometry of components. The 

parameters other than the microstructure can be quantified, or specified, unequivocally. 

Considering the complexities involved in defining microstructures, they are often indexed 

using basic mechanical properties like hardness or tensile strength that reflect the overall 

performance of a microstructure. The indirect appreciation of the effect of microstructure 

provides an engineering leverage in comparative assessments. However, they are 

somewhat empirical in nature. 

Fracture mechanics parameters, like the ones listed above, essentially characterise 

the propensity of a crack to extend. These parameters represent crack extension force or 

energy, and their critical values are known as materials properties. The procedure for 

making an estimate of crack driving force lies in the domain of linear elastic fracture 

mechanics (LEFM) in the case of materials behaving “globally” in a linear elastic manner. 

The elastic–plastic fracture mechanics (EPFM) is adopted where extensive plastic 

deformation is experienced prior to fracture. For Cu-strengthened HSLA-100 steel, the 

EPFM regime is applicable for many of the microstructural conditions that are being 

studied in this investigation. 

Principle of LEFM is based on the distribution of stress ahead of a crack in a body 

under load. The amplitude of the stress distribution is characterised by the stress intensity 
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factor K that has been shown as a characteristic parameter representing the driving force 

for existing cracks to propagate. The solution of the stress field in front of a crack using 

linear elasticity can be written as: 

 
( )

( )θ
π

σ ijf
r

K
ij 2
=  …. (2.6) 

where, (r,θ) represent polar coordinates around the crack tip and fij are characteristic 

functions of θ. 

The elastic stress field solution indicates the presence of a stress singularity at the 

crack tip. However most materials exhibit a yield stress above which they deform 

plastically, and therefore there exists a region around the crack tip, known as the plastic 

zone (PZ), within which the material is yielded plastically. As long as the size of the PZ is 

insignificantly small in comparison to significant dimensions of the crack geometry, the 

employment of LEFM remains valid. Fracture conditions are controlled by EPFM in 

materials where the size of PZ is relatively large. EPFM often uses the concept of non-

linear elasticity to obtain solutions for equivalent plastic problems. EPFM is based on a 

detailed understanding of crack tip plasticity. There are three established procedures for 

obtaining characteristic fracture parameter under EPFM applicability: those based on (i) 

crack tip opening displacement (CTOD) (ii) J-integral and (iii) R-curve concept. 

A larger plastic zone (PZ) means that the displacement field is higher than that 

calculated by elasticity theory. The presence of a plastic zone makes a crack to behave like 

a crack that is longer than its original size and lowers the stiffness of the component the 

crack is contained in. Irwin [134] first estimated such plastic zones and observed this 

phenomenon. Of late, a series of refined calculations have been developed for predicting 

the shape and size of plastic zones associated with crack tips [135-141]. The size and shape 

of a plastic zone depends on (i) the yield criterion, (ii) the mode of loading (with respect to 

the crack orientation) and (iii) the strain hardening behaviour of the material. Etching 

techniques can reveal plastic zones perhaps in a better and more convincing way than 

theoretical descriptions of PZ [142,143]. 
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The concept of crack tip opening displacement (CTOD) as a fracture criterion was 

proposed by Wells [144] and was improved upon by other investigators [145,146]. Based 

on this, Dugdale [135] formulation for plastic zone size can be written as 

 ⎟
⎠
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a

σ
πσ
2cos  ….(2.7) 

where, a is the half crack length, and C = a+d, where, d being the plastic zone length at the 

crack tip. The expression for CTOD (δ) then becomes [144-146] 

 ⎜
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After simplification the equation can be written as for σ << σY as, 
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=      …. (2.9) 

The equation (2.9) can be written for constrained yielding as, 

     
YEm

K
σδ
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=               …. (2.10) 

where, m1 is a constant and it value lies between 1 and 2. 

As equations (2.9) and (2.10) indicate K→ KC and δ → δC, therefore the critical 

value of CTOD (δC) is a material property which depends on the microstructure of 

material, temperature and loading rate used for testing. If, the size of plastic zone is 

significantly small, then K→ K1C and δ→ δ1C. Hence, CTOD is applicable for both LEFM 

and EPFM regimes. Among the various procedures like optical method, extraction replica, 

paddle device, infiltration technique, clip gauge technique [147-154] for determining 

CTOD, the method based on the work of Dawes [155] is popular and can be written as, 
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σ              …. (2.11) 

where, Vp is the plastic component of clip gauge displacement measured at a distance z 

from the specimen surface or loading line, and E′ = E/(1-ν2). 
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The elastic-plastic stress field near the crack tip is characterised by the J-integral in the 

same way as K describes the crack tip elastic stress field. Several investigators provide a 

description of the crack tip mechanical environment for the elastic plastic situation 

[140,156-159]. It has been shown [156] that the J-integral is the change in potential energy 

for a virtual crack extension of ∂a and J can be simply defined as  

     a
VJ
∂
∂−=               …. (2.12) 

where, V is the potential energy. 

The potential energy term is no longer available for crack propagation as a portion 

of energy is dissipated in incremental plastic deformation. There has no physical meaning 

of J as energy release rate given by equation (2.12) is lost in real materials [160,161]. For 

an elastic plastic situation equation (2.12) is written as [156]- 

     a
U

BJ
∂
∂−= 1               …. (2.13) 

where, U is the strain energy, B is the thickness of the component and ∂U/∂a is elastic and 

plastic work done per unit crack growth. 

Equation (2.13) does not rely on energy balance but depends on path independence 

and the degree to which the value of J is related to stress or strain singularity near the crack 

tip. The value of J as a dissipative energy rate based on elastic plastic work done from the 

load line displacement curve can be determined by [162-164]- 

     ( )aWB
UJ
−

= η
              …. (2.14) 

where, U is the total work done depends on the configuration and extent of plastic flow, η 

is 2 have been taken for deep notched bend specimen [163,165] and equation (2.14) can be 

expanded as [161,165,166]  
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where, Ue and Up are the elastic and plastic parts of the area under load-displacement plot 

of J-integral test as shown in Fig. 2.11. The ηe factor simplifies the determination of J and 

allow the stability of the growth. ηe and ηp factors can be computed as given by the 

investigators [167,168]. 

Dawes [169] proposed the following relationship to obtain J from the load-COD 

diagram – 

  ( ) ( )⎟⎠
⎞

⎜
⎝
⎛+= −++−

+
′ aWrza

WV
aWB

PP
E
K

p

pJ 21
2

            …. (2.16) 

where, P1 and P2 are defined in Fig. 2.11, Vp is the plastic component of clip gauge 

displacement, rp is the plastic rotational factor and rp is 0.4, when a/W > 0.45 and rp is 

0.45, when a/W< 0.45. 

The standard method for determining J-integral has been given in ASTM-E-813 

[164]. JC and J1C, represent characteristic failure criteria in situations where fracture is 

preceded by substantial amount of yielding. JC and J1C  also depend on temperature, strain 

rate, microstructure like KC and K1C. The dimensional requirement for the measurement of 

J1C  is given by [163]- 

    a, B and (W-a) ≥ 25 ⎟
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1               …. (2.17)  

where, σo is the flow stress. 

The above dimensional requirement is much smaller than K1C. 

R-curve analysis is an alternative technique for determining the fracture resistance 

of a material in the EPFM domain in addition to J-integral and CTOD criteria. The R-curve 

technique is based on an extension of LEFM concept to the EPFM domain. There is a 

continuous balance between the released and the consumed energy during slow crack 

growth as proposed by Irwin and the failure occurs when the rate of the change in the 

elastic energy release rate, ∂G/∂a, equals the rate of change in the material resistance to 

such crack growth, ∂R/∂a [170]. It is possible to determine GC or KC, by knowing the R-
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curve of the material and using the correct stress and crack length dependence of G for a 

given specimen configuration. 

The fracture behaviour of a material including crack initiation and propagation can 

be described by R-curve. This method provided an alternative way to analyze fracture 

behaviour of an elastic–plastic material where determination of J1C is not possible. The 

ASTM [171] procedure for J-R analysis divides J-resistance of a material into elastic and 

plastic components: 

     JR = JC + Jp1              …. (2.18) 

the elastic component is- 

    ( )
E

KJc
22 1 ν−=              …. (2.19) 

where, K is constant, computed in a similar fashion to the stress intensity factor calculation 

procedure described in the ASTM standard E-399 [172]. The plastic component of J is- 

    Bb
A

pJ 2
1 =               …. (2.20) 

   [For triple point bend (TPB) specimen.]  

where, A is the area under load-displacement curve during the J-integral test.  

The construction of J-R and δ-R curves is possible by using multiple or single 

specimen technique [164,171,173]. The construction of R-curve or evaluation of δ1C and 

J1C requires measurement of crack growth during loading. 

The construction of J-R or δ-R curve requires the continuous measurement of the 

growth of ductile crack extension from crack tip. Various techniques based on optical, 

compliance and electrical potential drop measurements can be adopted for monitoring of 

the crack length. The optical measurement technique of crack length measurements in 

multiple specimens is recommended by ASTM E-813 [164]. But this technique may 

increase the scatter in data points for J1C determination [174]. Therefore, single specimen 

technique is recommended for evaluating J1C or δ1C or constructing R-curve to establish a 

confident lower bound toughness. The compliance method is often used for crack length 
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calculation using crack opening displacements measured at crack mouth. Investigators 

[175,176] proposed the relationship between the crack length and normalised compliance 

U that can be written as- 
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where, C0 to C5 are the coefficients experimentally or numerically derived and U is given 

as- 
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where, E′ is the effective modulus, being equal to the Young’s modulus E in plane stress 

and E/(1-ν2) in plane strain, ν is Poisson’s ratio, B is specimen thickness and V/P is 

measured compliance.  

The crack growth measurements by electrical potential drop estimations are used 

when the displacement measurement for compliance calculations is difficult [177-179]. In 

this technique, the crack length causes perturbations in the equi-potential lines surrounding 

the crack and the potential drop is measured across the crack mouth that changes, as the 

crack grows in a constant current. 

The critical conditions for fracture can be described by parameters like tearing 

modulus other than conventional fracture toughness parameters like CTOD, J and R-curve 

[180-181]. The tearing modulus (TJ) as described by Paris et al. [180]. 
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where, dJ/da is the slope of the J-Δa curve in stable crack growth domain. 

An equivalent measurement of the material’s resistance to crack growth in terms of 

equivalent to that of tearing modulus based on crack tip opening angle (CTOA) can be 

written as [182] – 
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To understand the relationship between the crack initiation and crack growth toughness 

parameters, several attempts have been made based on the tearing modulus [181,183,184]. 

 

2.5     Fatigue Behaviour  

There are many literatures available on fatigue behaviour of materials. Nevertheless, 

fatigue is still most common cause of the failure of any components. Conventionally the 

design against fatigue is based on tests and the results of the tests are presented as S-N 

curves. These curves relate cyclic stress to number of cycles to failure. However, this 

conventional approach for design against fatigue is inadequate and it cannot differentiate 

between the initiation and propagation of crack growth, which accounts for the majority of 

failure. The conventional approach does not provide a link between the micromechanism 

of fatigue crack propagation and the fatigue failure of materials. Therefore, fracture 

mechanics is used as a tool for quantifying the effect of fatigue and design against fatigue 

failures. Paris et al. propose the fracture mechanics parameters for characterising fatigue 

are- stress intensity factor range, reversed plastic zone and Paris plot [185].   

The stress intensity factor (K) is a function of the applied force and the geometry of 

the cracked body and the crack driving force in fatigue can be represented in terms of the 

stress intensity factor. The local stress at the crack tip is described by the stress intensity 

factor. In a fatigue situation, a stress intensity range ΔK which is comparable to a cyclic 

stress range Δσ, is used and given by- 

     ΔK = Kmax- Kmin             …. (2.25) 

where, Kmax and Kmin are stress intensity factors associated with the maxima and minima of 

the loading cycles, σmax and σmin respectively.  

In order to describe the stress–state fully, the R-ratio is given by-  
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The R-ratio indicates the mean stress level that is represented by- 

     2
minmax KK

meanK +=             …. (2.27) 

ΔK, Kmax, Kmin, Kmean and R are inter-related through the above equations and any two can 

be used to describe a fatigue loading situation. 

The plastic zone at crack tip consists of a reversed plastic zone (RPZ) embedded in 

a larger monotonic plastic zone due to cyclic nature of loading in fatigue. The monotonic 

zone results from the maximum stress σmax in loading cycle and can be written as- 
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where, α is a constant.  

The RPZ size can be estimated and can be written as- 
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Knott has explained the use of 2σY in calculating RPZ.  σY must be replaced by the cyclic 

yield strength in equations (2.28 and 2.29) in order to model the real cyclic situation [186]. 

Crack initiation and crack propagation are responsible for fatigue failure. 

Quantification of fatigue crack propagation is necessary as it plays an important role in 

controlling fatigue failures. Crack growth laws for this are available [185,187-192]. The 

most widely used crack growth was proposed by Paris et al. based on fracture mechanics 

[185]. This law is popularly known as Paris Law and the equation is given by- 

     m
dN
da KCΔ=                         …. (2.30) 

where, m = 4 (empirically found), C is a constant (independent of material). 
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There are number of experimental investigations [193-196] to provide evidence to prove 

the value of m. However, Ritchie and Knott indicate that the exponent m can assume a 

number of values [197]. 

Figure 2.12 shows a sigmoidal curve obtained when the crack growth rate (da/dN) 

is plotted against ΔK for a full range of growth rates as suggested by Paris et al. [185]. This 

plot can be divided into three regions as shown in the Fig. 2.12. The Paris equation (eqn. 

2.30) is applicable to region B only, which is linear on logarithmic plot. The crack growth 

rates in B region are less sensitive to limited variations in frequency, environment, mean 

stress and microstructure. However, crack growth rates are very sensitive to the variations 

of above factors in region C and in the threshold region A, where as crack extension in 

region C is aided by non-fatigue fracture mechanisms [198]. 

Fatigue crack propagation is affected by various factors such as R-ratio, the 

frequency of test, environment, microstructure, materials properties etc. as described 

briefly below. 

The effect of R-ratio or mean stress on fatigue crack growth rate (FCGR) arises 

from two sources. Higher R-ratio means higher mean stress, which results in attainment of 

a higher Kmax for a given ΔK, where the growth rate is dependent on Kmax. This will result 

in a higher growth rate. Secondly, a higher mean stress can result in reduction of crack 

closure stress. This increases the driving force at the crack tip, which ultimately increases 

the growth rate. The empirical modelling has been done on the effect of R-ratio on FCGR 

[199] and can be written as- 

     ( ) KKR
KC

dN
da

c

m

Δ−−
Δ= 1                           …. (2.31) 

where, Kc is the cyclic fracture toughness. 

The ASTM task group E24.04.04 [200] has recommended a standard procedure for 

determination of the stress intensity factor, KC1 at which the crack faces come into contact. 

It has been shown in a investigation [201] that the use of ΔKeff (where, ΔKeff = Kmax- KC1), 

instead of ΔK  results in convergence of plots of experimental data by varying R-ratio and 

the effect of mean stress can be correlated with closure. 
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Figure 2.1: Graville diagram showing the influence of carbon level and carbon equivalent 

[C.E.] on weldability of different grades of steel [43]. 
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Figure 2.2: Schematic representation of different thermo mechanical and heat treatment 

processing of HSLA steel [77]. 
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Figure 2.3: Variation of hardness in HSLA steel with ageing temperature [7]. 
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Figure 2.4: Variation of yield strength of HSLA steel with ageing temperature [7].  

 35



 

 

 

 

 

 

 

 
Ageing Temperature (oC) 

En
er

gy
 a

t –
85

o C
 (J

) 

 

Figure 2.5: Variation of impact toughness at –85oCwith ageing temperature [7]. 

 

 

 

 

 

 

 

 

 

Figure 2.6: The size variation of Cu-precipitates with ageing temperature in a repeat quench 

and tempered (RQT) and direct quench and tempered (DQT) Cu-strengthened HSLA steel 

[21]. 
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Figure 2.7: Schematic illustration of variation of yield strength as a function of formation 

of microstructural constituents with ageing temperature [7]. 

 

Table-2.1: Magnetic parameters for different AISI 1000 series carbon steel [123] 

Normalized lamellar pearlite 
microstructure Spheroidized microstructure Sample 

with AISI 
Designation Hc (A/m) Br (T) µin Hc (A/m) Br (T) µIn

1020 517 0.95 150 517 1.31 275 

1045 835 0.88 100 597 1.34 200 

1080 875 0.80 95 716 1.05 185 

1095 875 0.88 100 637 1.20 170 
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Figure 2.8: (a) Schematic representation of magnetic domain in polycrystalline 
materials like steel (b) the movement of the domain wall under applied ma
field 
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Figure 2.9: Magnetic hysteresis loop 
showing important properties, Remanence 
(Br), Coercivity (Hc), initial permeability 
(µi) and maximum differential 

Figure 2.10: Magnetic Barkhausen 
emissions signal for full magnetizing 
cycle 

permeability (µ ) max
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Figure 2.11: Schematic illustration of load (P), load-line displacement (V) diagram. 
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3.0
 

 

Heat-treatment and Characterisation of 

HSLA-100 Steel 

 

3.1 Introduction 

The influence of process parameters and microstructure on the mechanical properties 

based on literatures have been reviewed in Chapter-2. There is an increasing demand for 

high strength steel with adequate toughness and weldability with properties like – (i) 

higher YS for greater load bearing capacity by thinner section (ii) high resistance to 

brittle fracture as also low impact transition temperature. HSLA-100, a low carbon 

copper bearing steel can provide various combinations of strength and toughness by 

judiciously engineering the microstructure through various processes like - rolling and 

ageing, normalising and ageing, quenching and ageing. This steel has been developed 

based on – (i) low carbon content (ii) sufficient alloying elements to get desired impact 

transition temperature and (iii) engineering the microstructure by micro alloying and 

thermo mechanical controlled processing (TMCP). Copper contributes significantly in 

increasing yield strength of HSLA-100 steel on ageing without impairing weldability.  

Ageing behaviour of HSLA steel by electrical resistivity measurement technique 

has been studied by Bhagat et al. [75]. An attempt has also been made to study the 

ductile fracture behaviour of HSLA steel  [9]. However, influence of Cu precipitation 

and microstructural constituents on tensile fracture behaviour of HSLA steel has not 

 41



been explored much. In this chapter, ageing behaviour and tensile fracture behaviour of 

the steel has been reported after engineering various microstructure by solution 

treatment, followed by water quenching and subsequently ageing at various 

temperatures. Microstructural and tensile properties were studied for all specimens on 

ageing. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) with energy dispersive X-ray microanalysis (EDS) were carried out for 

microstructural characterisation. The influence of precipitation and microstructural 

constituents on ageing behaviour and tensile fracture behaviour has been discussed in 

this chapter. 

 

3.2 Experimental Work 

3.2.1 Material 

The material used in this study was Cu-strengthened HSLA-100 steel which was 

developed for use as naval structural material and this demands for high strength and 

high toughness along with good weldability [18,22]. The composition of the steel is 

given in Table-3.1. It may be noted that carbon is kept at a low level to improve 

weldability, and a high amount of nickel is added to increase hardenability and improve 

hot workability of the steel. Microalloying with Nb, Ti and V imparts strengthening 

through stable carbide and carbo-nitride precipitations. The high amount of copper in 

the steel is necessary for obtaining additional precipitation strengthening through 

quenching followed by ageing that can provide good combination of strength and 

toughness required for specific applications. 

The material was available in the form of 50 mm thick plate from which 

specimens were machined with their axes oriented along the rolling direction for the 

fabrication of tensile and other specimens. 
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3.2.2 Microstructural Modification through Heat Treatment 

The specimens of 200mmx50mmx30mm prepared from 50 mm thick steel plate were 

solutionised at 910oC for 1 hour and subsequently water quenched (WQ). The quenched 

specimens were aged at different temperatures from 350oC to 750oC in steps of 50oC for 

1 hour and air-cooled to room temperature in order to produce different microstructure. 

Few additional specimens were aged at 675oC. The temperature was controlled within ± 

2oC using a Eurotherm temperature controller. Specimens of appropriate dimensions 

were extracted from the steel plate for investigation. A few specimens were preserved 

after austenising treatment to investigate the as-quenched properties of the material.  

 

3.2.3 Microstructural Characterisation  

Microstructure of HSLA-100 steel like other structural materials controls the 

deformation of material which has a profound effect on the parameters that are used to 

characterise the fracture behaviour of materials. Microstructure include distribution of 

phases, chemistry of phases, size of particles and precipitates, chemistry of the particles 

and precipitates, grain size, preferred orientations of grains if any, degree and nature of 

banding etc. All of these features influence the effect of microstructure on deformation 

and fracture behaviour of materials. The complexities in microstructure, influence 

mechanical properties like hardness or tensile strength that reflect the overall 

performance of a microstructure, and these indices are further used to understand the 

influence of microstructure on fracture mechanics parameters. 

 

3.2.3.1 Scanning Electron Microscopy 

Metallographic samples were prepared by conventional grinding and polishing 

techniques for microstructural observation. Specimens for scanning electron microscopy 

(SEM) were etched with 4% nital. A high-resolution analytical scanning electron 

microscope (JEOL JSM 840A SEM) and Noran Quest energy dispersive spectroscopy 

(EDS) system was used for microstructural characterisation. Due to instrumental 
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limitation (spatial resolution limitation) of energy dispersive X-ray, only semi-

quantitative X-ray microanalysis was carried out. Quantitative analysis of very small 

particle (< 1 μm) is not possible in conventional SEM-EDS. However, care was taken to 

achieve the best possible spatial resolution by optimising and adjusting instrumental 

parameters such as probe current, accelerating voltage, beam dia (spot size) etc.    

 

3.2.3.2 Transmission Electron Microscopy  

Thin foils were prepared for examination in a TEM. Thin slices of 0.2mm thickness 

were cut off by a slow speed precision diamond wheel cutter. Thickness of specimens 

were reduced to 0.1mm by careful manual grinding on silicon carbide emery papers of 

800 grits with an intermittent cooling in running water to avoid any rise in temperature. 

Coupons of 3mm dia specimens were punched by a Gatan precision punching system. 

The specimens were finally thinned in a twin jet electropolishing unit (Tenupol – III) at 

40V using a mixture of 10% per chloric acid and 90% acetic acid. Specimens were 

washed thoroughly in alcohol and dried properly. The electro-polished thin foils were 

examined in a TEM (Philips CM 200 with EDAX) at 200 kV operating voltage. The 

EDAX was used for determination of chemical composition of the precipitates. 

 

3.2.4 Evaluation of Mechanical Properties  

The heat treatment conditions and resultant microstructure influence the mechanical 

properties of HSLA-100 steel. Controlling microstructure through optimised ageing 

condition can impart best combination of strength and toughness in the steel. The 

evaluation of mechanical properties, like hardness and tensile properties of the steel 

with respect to different ageing conditions needs detailed information concerning 

microstructure.  
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 3.2.4.1 Hardness  

A computerised hardness-testing instrument (Leica-VMHT) was used for hardness 

measurement in Vickers scale at a 100 gm load. Hardness was measured on the polished 

surfaces of the specimens. The average hardness values in different heat-treated 

conditions have been reported based on 10 numbers of indentations on each specimen. 

 

3.2.4.2 Tensile Properties  

The tensile properties of various specimens were obtained by tensile test conducted as 

per ASTM standard E-8M [202] using a 100kN Instron servo hydraulic testing machine. 

At least, three specimens were tested for each ageing condition. Round specimens of 25 

mm gauge length and 5 mm gauge diameter were prepared as per ASTM standard. A 

constant displacement rate of 3x10-3 mm/s, with a 25mm gauge length extensometer 

mounted over 5mm gauge diameter specimens was employed at room temperature 

(28oC) to measure strain and this was continued until fracture.  

 

3.2.4.3 Study of Fracture Surfaces 

Fracture surfaces of tensile test specimens were examined in a SEM (JEOL JSM-840A). 

Suitable portion of both ends of fracture surfaces were cut and cleaned in an ultrasonic 

cleaner for 5 minutes before observation in a scanning electron microscope. SEM 

fractographs were recorded at different magnifications to study fracture surface of each 

specimen.  
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3.3 Results and Discussion 

3.3.1 Variation in Microstructure of HSLA-100 Steel on Ageing  

Secondary electron images (SEI) of different heat-treated conditions of Cu-strengthened 

HSLA-100 steel under investigation are shown in Fig. 3.1 to Fig. 3.3. The 

microstructure of the steel in water-quenched condition shows a mixture of acicular 

ferrite, bainite and lath martensite. In order to identify different microstuructural 

constituents and their variation on ageing in HSLA-100 steel, it was necessary to 

undertake detailed TEM-EDS studies. The findings are summarised in Table-3.2. Figure 

3.4 is bright field electron image of water-quenched sample. Microstructure in quenched 

condition is primarily consisting of lath martensite, acicular ferrite and bainite. Acicular 

ferrite generally shows morphology of parallel lath similar to lath martensite, however 

the orientation difference between adjacent ferrite plates is greater and interfaces are not 

as straight as in lath martensite. Though morphological appearance of bainite and 

acicular ferrite are similar, carbides are mainly distributed in bainite. Figure 3.5 is the 

TEM micrograph of water quenched (WQ) sample showing carbides (M23C6) in bainite 

matrix. A few occasional carbides and carbonitrides are distributed within ferrite laths. 

Though morphological appearance of bainite and acicular ferrite are similar to many 

extent, however carbides are seen to be distributed within ferritic laths as well as along 

lath boundaries in bainite. Figure 3.5(a) is bright field electron image of M23C6 carbide. 

The selected area diffraction pattern (SADP) from the above precipitate is shown in Fig. 

3.5(b) and the schematic illustration is shown in Fig. 3.5(c). Figure 3.6 (a) shows the 

distribution of some fine carbides interacting with dislocations with in the ferritic lath. 

Figure 3.6(b) is the selected area diffraction pattern (SADP) from MO2C as shown by 

arrow in Fig. 3.6 (a). The schematic illustration of the SADP is shown in Fig. 3.6(c). 

This confirms the carbide as MO2C.  Figure 3.7(a) shows bright field image of fine 

precipitates within ferrite at a higher magnification. Figure 3.7(b) shows SADP taken 

from a precipitate shown by arrow in Fig. 3.7(a). Schematic illustration of the SADP of 

Fig. 3.7(b) is shown in Fig. 3.7(c). This confirms the fine precipitate as Nb(CN). 

  The lath martensite is gradually tempered on ageing. Microstructures in Fig. 

3.1 to Fig. 3.3 reveal a gradual decrease in substructure in the samples aged up to 

700oC. Formation of small martensite island is occurred when the steel is aged above 

 46



675oC. The entire range of ageing temperatures can be divided into four regimes as it 

has been observed that microstructural changes follow a definite pattern in each regime. 

 With reference to Table-3.2, TEM micrographs (Fig. 3.4 to Fig. 3.16) reveal the 

evolution of various microstructural constituents of the steel on ageing. Water quenched 

microstructure consisting of lath martensite and acicular ferrite are stable up to 500oC 

during ageing. Beyond this temperature, martensite gets progressively tempered and the 

recovery of ferrite occurred vide Fig. 3.11. A small amount of austenite is retained in 

the quenched microstructure that continues to be stable and persist throughout the 

ageing temperature range, which is shown in Fig. 3.8 and Fig. 3.13(b) respectively. 

Above 675oC, as the ageing temperature exceeds AC1 temperature, a few ferrites 

transform to reverted austenite and subsequently on cooling, a part of reverted austenite 

converts to small martensite islands as shown in Fig.  3.15. The size of these newly 

formed martensite islands varies from 1μm to 3 μm in the specimen aged at 700oC as 

observed in TEM. Fine microalloying carbides (Fig. 3.12) and carbonitrides are also 

stable up to 700oC ageing temperature.  

Low carbon lath martensite along with acicular ferrite and bainite are formed 

after solution treatment of the steel at 910oC followed by quenching. The maximum 

solubility of copper in iron is 2.11wt% [69]. A super saturated solid solution of iron 

with copper is formed on quenching of the steel. Higher copper content (1.6wt%) 

together with manganese in the steel reduces transformation temperature and shifts the 

nose of the CCT curve to the right [70]. Retained austenite is found in between 

martensite laths, and it is found to be very stable due to the presence of γ-iron stabilisers 

like Cu, Ni, and Mn in the system. M23C6, Mo2C and Nb(CN) are also found in water-

quenched specimen (Fig. 3.5 to Fig. 3.7). These stable carbides and carbo-nitrides are 

formed during solidification and thermo-mechanical processing of the steel at higher 

temperature at around 1100oC [56]. Ageing in the temperature range of 350oC-675oC 

for 1 hour does not change the morphology and composition of these stable carbides 

and carbonitrides. During ageing, copper precipitate comes out from the super-saturated 

solution and causes the increase in hardness and strength through precipitation 

hardening.  
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Copper goes in solid solution as a super saturated solute in the quenched state 

and precipitates as nano scale coherent particles on ageing upto 500oC as revealed in 

Fig. 3.9, subsequently coarsen and loose coherency at higher temperatures of ageing as 

shown in Fig. 3.14. Very fine ε- Cu precipitates accompanying by strain contrasts and 

cluster of copper rich particles have been observed in the specimens when aged between 

400oC- 500oC as shown in Figures 3.9 and 3.10. Size of these copper precipitates is less 

than 20 nm. Strain field surrounding precipitates and fringes indicate the possibility of 

coherency with matrix and TEM- EDS result shows an increase in copper concentration. 

On ageing above 500oC, Cu precipitates loose the coherency and spherical tiny copper 

particles grow into larger road shaped fcc Cu precipitates vide Figures 3.14 and 3.16. 

This has also been reported by earlier workers [63,64,203-205].  

Such rod shaped fcc copper precipitate is formed by a shear transformation as 

reported by B. Soylu and R.W.K. Honeycombe [206]. In the present study, Cu rich 

particles with strain field are observed in the initial stage of ageing and were analysed in 

TEM-EDS. Hornbogen and Glenn mentioned that bcc Cu rich clusters readily transform 

to fcc Cu at a small size and the strain contrast of coherent precipitates is difficult to 

observe [61]. Other researchers also suggested that bcc copper rich clusters precipitate 

first form from the supersaturated solution of iron and then transformed to fcc phase and 

loose coherency with the matrix when they grow into a critical size [65,207]. In this 

study, rod shaped Cu- precipitates are found in the specimens when aged above 550oC. 

The tempering of martensite laths, recovery of acicular ferrite to polygonal ferrite and 

coarsening of Cu precipitates occur with the increase of ageing temperature above 

600oC. The transformation temperature Ac1 of the steel is lowered down to around 

675oC due to presence of alloying elements like Cu and Mn. Therefore, around 675oC 

small amount of fresh austenite is formed which is not as stable as the earlier retained 

austenite due to presence of austenite stabilisers in lesser amount. It was found that this 

newly formed reverted austenite readily transform to new small martensite island during 

cooling from 700oC. Ageing above 700oC (fourth stage), causes formation of granular 

bainite, recovery of martensitic laths and acicular ferrite as well as coarsening of 

carbides and Cu precipitates. 
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3.3.2 Variation in Mechanical Properties of HSLA-100 Steel on 

Ageing  

Vickers hardness-testing instrument (100 gm load) was used for determination of 

hardness values of water quenched and aged specimens. The results show ageing 

behaviour of the steel. There is a change in the hardness value with a change in ageing 

temperature. Figure 3.17 is the graphical representation of the hardness as a function of 

ageing temperature. From the plot, ageing behaviour of the steel can be classified into 

four stages. In the first stage, hardness increases with an increase in ageing temperature. 

Maximum hardness value of 343 Hv is obtained in the first stage at 500oC. In the 

second stage, hardness value decreases with increase in the ageing temperature above 

550oC and lowest hardness value of 252 Hv is obtained at 675oC. Third stage is 

associated with a rise in hardness value and at 700oC, a second peak in hardness value 

of 280 Hv is recorded. Subsequently hardness value decreases at 750oC, which is 

considered as fourth stage. 

The variation in YS, UTS and hardness of HSLA-100 steel with change in 

ageing temperature are also shown in Fig. 3.17. The mechanical properties obtained in 

tensile testing are tabulated in the Table-3.3. During the 1st stage or initial stage of 

ageing, YS and UTS increase with a rise in ageing temperature up to 500oC and then 

Y.S and UTS gradually decrease in the 2nd stage of ageing. The lowest value of strength 

is obtained around 675oC. Third stage is associated with a rise in strength and at 700oC, 

a second peak is obtained. Steel is softened and strength decreases above 700oC (fourth 

stage) due to formation of granular bainite, recovery of martensitic laths and acicular 

ferrite as well as coarsening of carbides and Cu precipitates. Though the amount of 

carbon in the steel is 0.04 wt%, a high carbon equivalent of 0.81wt% with desirable 

amount of Cu facilitates HSLA-100 steel to retain a good strength through ageing. 

It can be seen from the Table-3.3, that maximum value of 1121 MPa UTS is 

obtained at 500oC and minimum value of 921 MPa UTS is obtained at 675oC. Similarly, 

maximum value of 1034 MPa YS is obtained at 500oC and minimum value of 640 MPa 

YS is recorded at 675oC. Maximum percent elongation of 19.84 and minimum percent 

elongation of 5.9 are obtained in the samples aged at 675oC and 500oC respectively. The 

relative increasing & decreasing trend in YS and UTS can be seen in Fig. 3.17. 
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The stress-uniform strain plots of the steel specimens have been drawn to see the 

deformation or flow pattern as shown in Fig. 3.18. From the plot, it is observed that YS 

of the material increases and plastic flow of the material is restricted at the initial stage 

of ageing. However, plastic flow of the material increases and YS decreases in the 2nd 

stage of ageing. Reverse trend has been observed in percentage reduction in area (%RA) 

and percentage elongation (%EL) as shown in Fig. 3.19. There is a decreasing trend of 

percentage RA in the samples on ageing up to 500oC and again this increases in the 

sample when they are aged beyond 550oC. 

Fracture surfaces of all tensile specimens were examined in SEM. A change has 

been observed with respect to shape, size and depth of microvoids or dimples. Small 

shallow equiaxed microvoids are pre-dominant in water-quenched specimen. However, 

specimens aged at temperature between 400oC–500oC, exhibited mixed mode-having 

quasi-cleavage fracture with smaller size micro-voids. The increase in size of the micro-

voids and disappearance of quasi-cleavage are observed in the specimens when aged 

above 550oC. The detailed features like microvoids, quasi-cleavage are shown in Fig. 

3.20 to Fig. 3.22. 

Maximum values of hardness and strength are obtained when the steel is aged at 

500oC. Hardness and tensile properties of steels are generally very much dependent on 

the carbon content of the system. As the amount of carbon content in this system is very 

low, precipitation of very fine ε-Cu particles during ageing causes an increase in 

hardness as well as strength. Hardness and strength decrease when ε-Cu precipitates 

coarsen during ageing above 550oC. The increase in hardness, UTS and YS is due to 

resistance of the material to plastic flow, as the movement of dislocations is reduced and 

more stress is required to move dislocations. This may be because of the presence of 

very fine coherent copper precipitates and strain field associated with it, which 

restricted the movement of dislocations movement. Plastic flow of the material is 

increased and hardness, YS, UTS decreased in the second stage of ageing above 550oC.  

Copper precipitates became coarsened and transformed to incoherent rod shaped 

precipitate in this stage of ageing.  

In the third stage (700oC) of ageing, strength is again increased due to formation 

of new martensite from reverted austenite. Theoretically, the formation of reverted 
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austenite and new martensite islands might have started below 675oC, but it was not 

observed in TEM. The increase in strength/hardness above 675oC is the net effect of all 

microstructural changes, i.e. the effect of formation of new martensite islands 

overbalancing the negative influence of matrix softening and coarsening of Cu 

precipitates. 

Reverse trend in %RA & %El can be co-related with decrease in plastic flow of 

the material initially and then plastic flow of the material increases. Strength and 

hardness decrease above 700oC in the fourth stage due to softening of the matrix, which 

has also been reported by other researchers [72]. Therefore, specimens aged beyond 

700oC were not used for FCGR tests, fracture toughness and magnetic characterisation 

in this investigation.  

Any ductile fracture involves nucleation, growth and coalescence of microscopic 

voids that initiate at second phase particles and inclusions whereas cleavage fracture 

involves separation along specific crystallographic planes. Cleavage may be brittle, but 

it can be preceded by large-scale plasticity and ductile crack growth [208]. Restriction 

in plastic flow causes cleavage. Fractographic study of the tensile fracture in this 

investigation revealed that there are two kind of micromechanisms of fracture which are 

playing role in the steel - (i) mixed fracture i.e. quasi-cleavage along with small shallow 

dimples which are dominant in specimens aged between 400oC–500oC and (ii) ductile 

fracture i.e. initiation, growth and coalescence of microvoids which are predominant in 

the specimens aged above 550oC. The carbides, nitrides and inclusions like stable 

second phase particles, which are responsible for initiation microvoids during ductile 

fracture and remain unchanged throughout the ageing process. However precipitation of 

nanosize coherent Cu particles, are gradually coarsened and loose coherency on ageing 

at higher temperatures. Therefore, the appearance of quasi-cleavages may be due to the 

precipitation of coherent copper particles. On the other hand incoherent copper 

precipitates facilitate   microvoid initiation and hence, increases ductility. The presence 

of larger microvoids and disappearance of quasi-cleavages in later stages of ageing 

support this argument. Ductility is further increased due to the recovery of martensite 

and acicular ferrite. 
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3.4 Conclusions 
 

Microstructure of HSLA-100 steel used in this study consists of lath martensite, acicular 

ferrite and bainite in water-quenched condition. Small amount of retained austenite are 

also found in WQ specimen, besides a few carbides [M23C6 and Mo2C] and carbo-

nitrides [Nb (CN)]. During ageing, acicular ferrite is transformed to polygonal ferrite 

and recovery of martensite lath occurs. Precipitation of coherent Cu rich particles 

started manifesting its effect from 4000C. Nano-size coherent Cu precipitates gradually 

coarsened and loose coherency with over ageing above 5500C due to growth of fcc 

copper precipitates. There was no change in shape and size of the carbides and carbo-

nitrides due to ageing below 7000C for one hour.  

Here, two types of micromechanism of fracture are playing role during tensile 

fracture- (i) micro-cleavages are dominant in specimens aged between 400oC–500oC 

and (ii) initiation, growth and coalescence of microvoids are predominant for rest of the 

specimens aged above 550oC. The plastic flow of the material is restricted in the initial 

stage of ageing due to precipitation of very fine coherent Cu-rich particles leading to an 

increase in brittleness, strength and hardness at the expense of the ductility of the 

material. At a later stage of ageing (above 550oC), these precipitates coarsened and 

loose their coherency and promote the increase in ductility and flow of the material. 

Hardness and strength decreases in this stage. Around 700oC, the hardness and strength 

increases due to the formation of new martensite islands from reverted austenite. Above 

700oC, due to softening of the matrix and coarsening of the precipitates, hardness and 

strength of the material decreases. 
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Table-3.1: Chemical composition of HSLA steels in weight percent 

Steel C Mn P S N Si Cr Mo Ti V Nb Ni Cu 

HSLA-
100 

0.04 0.90 0.01 0.005 0.015 0.25 0.6 0.60 0.02 0.03 0.03 3.50 1.60

 
 

Table-3.2: Evolution of microstructural constituents with ageing in HSLA-100 steel 

Water quenched Aged between           

350oC-500oC 

Aged between   

550oC-650oC 

Aged between   

675oC-700oC 

Lath martensite  No change in 

morphology/content of 

lath martensite 

Break-up of 

martensite laths 

and transformation 

into tempered 

martensite 

Recovery of 

martensitic laths 

 

 

Acicular ferrite  No change in 

morphology/content of 

Acicular ferrite and  

Recovery of 

acicular ferrite and 

formation of 

polygonal ferrite 

Formation of 

polygonal ferrite 

Retained austenite  No change in 

morphology/content of 

Retained austenite 

No change in 

retained austenite 

Formation of 

austenite 

Carbides and 

Carbonitrides 

Stable population of 

Carbides and 

Carbonitrides 

Stable population 

of Carbides and 

Carbonitrides 

Stable population 

of Carbides and 

Carbonitrides 

Cu in solution in 

super saturated 

condition 

Coherent precipitation 

of nanoscale Cu, 

increasing in amount 

with increasing ageing 

temperature 

Loss of coherency 

due to growth of 

fcc copper 

precipitates  

Coarsening of Cu 

precipitate 

   Appearance of 

small martensite 

islands from fresh 

reverted austenite 
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Table-3.3: Mechanical properties of the WQ & aged HSLA-100 steel 

Heat-treated 
condition 

Hardness  
(Hv) 

E   
(GPa) 

YS 
(MPa) 

UTS 
(MPa) 

% El %RA 

WQ 296 195.0 818 1004 9.38 69.54 

350oC 300 203.3 886 1056 8.49 67.88 

400oC 321 191.5 957 1076 7.70 62.56 

450oC 331 195.7 968 1098 6.46 61.26 

500oC 343 200.0 1034 1121 5.9 61.75 

550oC 312 192.7 927 1011 14.69 65.09 

600oC 271 187.7 698 955 15.92 69.63 

650oC 263 192.5 643 934 17.71 70.11 

675oC 252 175.4 640 921 19.84 73.27 

700oC 280 203.6 831 983 19.12 73.90 

750oC 265 194.0 810 931 19.58 73.45 
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(b)  
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  
 

Figure 3.1: SEM micrographs of WQ and heat treated conditions of Cu-strengthened 

HSLA-100 steel (a) WQ (b) WQ and aged at 350oC and (c) WQ and aged at 400oC. 
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(c) 

 

Figure 3.2: SEM micrographs of different heat treated conditions of Cu-strengthened 

HSLA-100 steel (a) WQ and aged at 450oC (b) WQ and aged at 500oC and (c) WQ and 

aged at 600oC. 
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Figure 3.3: SEM micrographs of various heat treated conditions of Cu-strengthened 

HSLA-100 steel (a) WQ and aged at 650oC (b) WQ and aged at 675oC and (c) WQ and 

aged at 700oC. 
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Figure 3.4: Bright field TEM image of WQ HSLA-100 steels showing lath martensite 

and acicular ferrite. 
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[111] M23C6 

(b)      (c) 

Figure 3.5: (a) Bright field TEM image of WQ HSLA-100 steel showing M23C6 

carbides (b) selected area diffraction pattern (SADP) taken from the carbide and          

(c) schematic illustration of b. 
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Figure 3.6: (a) Bright field TEM image of WQ HSLA-100 steel showing Mo2C carbides 

in the ferrite matrix (b) selected area diffraction pattern (SADP) taken from the carbide 

and (c) schematic illustration of b. 
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Figure 3.7: (a) Bright field TEM image of WQ HSLA-100 steel showing Nb(CN) 

precipitate in the ferrite matrix (b) selected area diffraction pattern (SADP) taken from 

the precipitate and (c) schematic illustration of b. 
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(c)     (d) 

Figure 3.8: TEM micrographs of water quenched HSLA-100 steel showing retained 

austenite in between lath martensite (a) Bright Field (BF) image and (b) Centred Dark 

Field (CDF) image (c) selected area diffraction pattern (SADP) taken from the retained 

austenite (RA) and (d) schematic illustration of c. 
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Figure 3.9: The microstructure of aged (450oC) specimen showing (a) Bright field 
image of the coherent precipitates of copper cluster (b) corresponding centred dark field 
(CDF) image and (c) EDS analysis of the Cu cluster. 
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Figure 3.10: TEM bright field image of aged (500oC) specimen showing (a) very fine 

coherent Cu precipitates associated with strain field and (b) EDS analysis of Cu 

precipitate. 
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Figure 3.11: Bright field TEM image of aged (600oC) specimen showing (a) polygonal 

ferrite and (b) tempered martensite  
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Figure 3.12: (a) Bright field TEM image of aged (650oC) showing M23C6 carbide       (b) 

selected area diffraction pattern (SADP) taken from the carbide and (c) schematic 

illustration of b. 
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Figure 3.13: TEM of aged (650oC) specimen (a) bright field image showing tempered 

martensite (b) centred dark field image showing retained austenite (c) selected area 

diffraction pattern taken from retained austenite and (d) schematic illustration of (c). 
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Figure 3.14: (a) Bright field TEM image of specimen aged at 675oC showing rod-

shaped Cu precipitate and (b) EDS analysis of the Cu precipitate 
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Figure 3.15: (a) Bright field TEM image of aged (700oC) specimen showing formation 
of fresh martensite (marked as ‘M’) from reverted austenite (b) the selected area 
diffraction pattern (SADP) taken from the martensite and (c) the schematic illustration 
of (b). 
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Figure 3.16: (a) Bright field TEM image of aged (700oC) specimen showing rod shape 
incoherent Cu precipitate (b) the selected area diffraction pattern (SADP) taken from the 
precipitate and (c) the schematic illustration of (b). 
 

 

 69



 

 

 

 

 

 

 

 

 

 

 

 

 

-100 WQ 100 200 300 400 500 600 700 800 
240 

260 

280 

300 

320 

340 

 Hardness
YS

 UTS

Ageing Temperature in oC 

H
ar

dn
es

s (
H

v)
  

600 

700 

800 

900 

1000

1100

Stress (M
Pa) 

Figure 3.17: Hardness, YS and UTS  vs. Ageing temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 3.18: Stress as a function of uniform strain 
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Figure 3.19: % RA and %EL as a function of ageing temperature 
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Figure 3.20: SEM fractographs of tensile tested HSLA-100 steel specimens (a) WQ and 

(b) aged at 450oC. 
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Figure 3.21: SEM fractographs of tensile tested HSLA-100 steel specimens in different 

aged condition (a) 500oC and (b) 600oC. 
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Figure 3.22: SEM fractographs of tensile tested HSLA-100 steel in different aged 

condition (a) 650oC and (b) 700oC. 
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4.0
 

 

Indirect Assessment of Microstructural 

Evolution of HSLA-100 Steel 

 

4.1 Introduction 

Steels, which are used as structural materials in various applications like pipe line, rails, 

bridges etc., is ferromagnetic in nature. HSLA-100 steel posses low carbon and high 

strength and it is also potential candidate as soft magnetic material for high strength 

application like in motors etc. Moreover, as magnetic properties change with hardness 

and microstructure, which are usually altered in a component during extended period of 

service, magnetic techniques can be used for damage assessment of structural 

component by non-invasive way. In view of the changes in magnetic properties with 

structural modification, attempts are now being made to utilise the inherent 

ferromagnetic properties of steel for evaluation of in-service component’s integrity. It is 

thus necessary to understand the effect of precipitation of the alloying elements on the 

magnetic properties of HSLA steel to use it either as soft magnetic material or to assess 

the condition of microstructure of the structural component. Out of all available 

techniques, Magnetic hysteresis loop (MHL) and Magnetic Barkhausen emissions 

(MBE) are found to be very promising NDT tools. Magnetic hysteresis loops (MHL) 

are formed when the amplitude of applied cyclic field crosses a critical value at which 

the domain wall moves irreversibly. MHL parameters represent the bulk properties of 

the test material. The magnetic induction curve consists of discontinuous changes 
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although the field is continuous. Particularly near the coercive point of the material, the 

magnetic induction curve shows a structure composed of many individual steps, which 

are caused by the sudden jumping of domain walls from one position to another during 

magnetisation process. These small steps, which are irreversible changes in 

magnetisation, are known as Magnetic Barkhausen emission (MBE). MBE signal can be 

quantified in terms of peak amplitude, rms voltage, number of pulse counts, pulse 

height distribution etc. Barkhausen emissions are the electromagnetic signal of radio 

frequency range and hence due to eddy current limitation, MBE represents the surface 

properties of  materials. 

In this chapter, the effect of precipitation of Cu in HSLA-100 steel on the 

magnetic properties has been evaluated and the kinetics of the copper precipitation 

process has been highlighted using differential scanning calorimeter. 

 

4.2  Experimental Work 

4.2.1 Characterisation of HSLA-100 Steel by Magnetic Techniques 

Magnetic techniques were used for characterisation of microstructurally engineered 

HSLA-100 steel. After austenitising at 910oC for one hour followed by water 

quenching, the material was aged at different temperatures (350oC -700oC) as discussed 

in Chapter-3. The material softened when aged above 700oC and excluded from 

magnetic characterisation.  

Magnetic hysteresis loop (MHL) and Magnetic Barkhausen emission (MBE) 

techniques were used to characterise the material. Magnetic hysteresis and Barkhausen 

emission were carried out using surface magnetising probe. Magnetic hysteresis loop 

was measured at a quasi-dc (50 mHz) magnetising field whereas the Barkhausen 

emissions were measured at 40 Hz using a 30kHz-300kHz band pass filter. 
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4.2.2 Differential Scanning Calorimetric Study 

The Cu precipitation behaviour of the steel under study was carried out using 

differential scanning calorimeter (Perkin-Elmer, DSC-7). The DSC was calibrated using 

Zinc and Indium sample prior to the experimental run for the specimen. The heating 

was done in an inert atmosphere at a heating rate of 10oC/min. However, various 

heating rates were used for activation energy calculation. The broad exothermic peak 

indicated the formation of nanocrystalline particle. Activation energy for this phase 

transformation was calculated using Kissinger plot [133].   

 

4.3 Results and Discussion 

4.3.1  Variation in Magnetic Properties of HSLA-100 Steel on Ageing 

The magnetic hysteresis loop and Barkhausen emission were measured using a surface 

probe for different heat-treated materials. The coercivity of the materials was plotted in 

Fig. 4.1a. To see the changes of other magnetic properties, the Barkhausen emission 

signal has been studied in details for the materials aged at different temperatures.      

Fig-4.2 shows the Magnetic Barkhausen emission (MBE) waveforms at different ageing 

temperatures. MBE waveform did not change monotonically and signal became 

maximum at the intermediate temperature, which was an indication of magnetic softness 

of the materials. To quantify the Barkhausen signal, the rms voltage of the different 

samples aged at different temperatures was calculated and plotted in Fig. 4.1b.  

Power spectrum of material of various aged conditions showed significant 

changes when compared to the materials aged at 400oC. The results are shown in      

Fig. 4.3a to Fig. 4.3g. At the initial stage, i.e. on ageing at 400oC the amplitudes of 

lower frequency pulses were smaller than the sample aged at 350oC. As the ageing 

temperature was raised to 500oC (Fig. 4.3b) the amplitude of the lower frequency pulses 

increased. With further increase in ageing temperature i.e. 550oC and 600oC, 

considerable increase in amplitude for low as well as high frequency pulses were 

observed. 
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The magnetic hysteresis loop and Barkhausen emission study revealed that the material 

became magnetically softer at the initial stage of ageing as the coercivity decreased. 

However, when ageing temperature was above 600oC which was above peak 

temperature (550oC) of the exothermic heat flow for Cu precipitation as observed from 

DSC curve (Fig. 4.4b), rapid increase in coercivity was observed leading to 

magnetically harder material. It is to be noted that the initial trend in magnetic softness 

with ageing in Cu-strengthened HSLA-100 steel contradicted the usual nature of ferritic 

steel where magnetic hardness increased with the increasing hardness of the materials 

[123]. 

To see the changes of other magnetic properties, the Barkhausen emission signal 

has been studied in details for the different aged materials. MBE waveform didn’t 

change monotonically and signal became maximum at the intermediate temperature, 

which is an indication of magnetic softness of the materials. To quantify the Barkhausen 

signal the rms voltage of the different aged samples is calculated. A slow increase in 

rms voltage is observed upto ageing temperature of 600oC where the coercivity became 

minimum indicating the magnetic softness of materials. At a higher ageing temperature 

i.e. above 600oC, rms voltage decreased rapidly showing a decrease in magnetic 

hardness.  

The soft magnetic behaviour observed from coercivity rms voltage of 

Barkhausen emissions at initial stage of ageing (below 600oC) and the hard magnetic 

behaviour above 600oC does not obey the usual relationship of soft magnetic and 

hardness of materials. Usually coercivity increased (rms voltage decreased) with an 

increase in hardness of materials. In the present case, the hardness increased due to 

coherent precipitation of nano-sized copper particles. This precipitate size became much 

smaller than the magnetic domain wall width, which was usually of the order of 30-50 

nm depending upon the anisotropic energy and the exchange length of the materials. 

Hence, domain wall motion was not hindered by the presence of non-magnetic nano-

sized Cu-precipitation, which was responsible for increase in hardness (Hv). However, 

tempering of martensite laths and recovery of acicular ferrite on ageing smoothen the 

domain wall motion resulting in magnetic softness at the initial stage of ageing. As soon 

as the size of Cu-precipitate increased and was comparable to domain wall size, the 

material became magnetically harder as these Cu precipitates started hindering the 

domain wall motion. The change in MBE voltage around 675oC is due to the formation 
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of new martensite from reverted austenite, which was also the cause of increase in 

mechanical hardness of the materials. However, such effect was not observed in 

coercivity measurement.  

Power spectrum of different aged materials showed significant changes when 

compared to the materials aged at 350oC. The results of power spectrum can be 

explained by the influence of eddy current generated by Barkhausen signal which are in 

the radio frequency range. In the present case it is within the range of 30 kHz to 300 

kHz which is the frequency of the broad band filter used in the present study. The 

coherent Cu-precipitation which increased hardness also changed the electrical 

resistivity of materials. It is expected that the electrical resistivity increased with 

coherent scattering from the Cu precipitation and decreased when the precipitation 

become incoherent. 

Due to generation of eddy current, the high frequency rf-Barkhausen signal 

would be heavily damped and was restricted only at the surface region whereas the low 

frequency pulses could penetrate deeper inside. The scattering of electron from the 

coherent precipitation of nano-sized Cu particles increased the resistivity of the material 

in the same fashion as in case of the hardness. The resitivity decreased as precipitation 

started in an incoherent fashion. The increase of resitivity reduced the eddy current at 

the initial stage of ageing which increased the amplitude of low and high frequency rf 

signal of Barkhausen emissions at initial stage (400oC and 450oC) and at the 

intermediate stage (550oC and 600oC) of ageing respectively. As soon as the precipitate 

became incoherent at higher ageing temperature, the resistivity as well as hardness 

started decreasing.  Lowering of resistivity increased eddy current formation and hence 

rf-signal of Barkhausen emissions were damped at high ageing period resulting in a 

decrease of pulse amplitude at different frequencies. The damping would be more at 

high frequency compared to the low frequency, which was reflected at the power 

spectrum of 600oC (Fig. 4.3d). Moreover, size of the precipitate became bigger with 

ageing period, which restricted the domain wall motion and further reduced the 

Barkhausen pulse amplitude.  

 

 

 80



4.3.2 Copper Precipitation - DSC Study 

To understand the Cu precipitation kinetics differential scanning calorimetric (DSC) 

study was carried out with water-quenched sample and exothermic heat flow as a 

function of temperature has been plotted as shown in Fig. 4.4 together with hardness 

data. Broad exothermic peak with an onset at 400oC was observed. The broad 

exothermic peak is the characteristics of precipitation of nano-sized particles [209].  The 

kinetics of the precipitation process has been analysed using modified Kissinger 

expression. Kissinger plot of Cu-precipitation process is shown in Fig. 4.5a. The time 

constant of the process was also measured from the Kissinger analysis. The result is 

shown in Fig. 4.5b.  

During initial solution-treatment at 910oC for one hour Cu present within the 

material is solutionised and α-iron is supersaturated with Cu in water quenched 

condition. During ageing, precipitation of Cu occurred due to its low solubility (0.2%) 

in α-iron. Such copper precipitate was observed in TEM study.  

The kinetics of the precipitation process has been analysed using modified 

Kissinger expression relating to the peak temperature (Tp), scan rate (S) and calculated 

from equation 4.1: 

            ln(Tp
2/S) = Eact/(RTp)+ln (Eact/Rk0)             ...(4.1) 

where, Eact is the effective activation energy of the process associated with the peak, R 

is the gas constant and k0 is the pre-exponential factor  in the Arhenious equation for the 

rate constant k: 

 k=k0 exp (-Eact/RT)             …(4.2) 

or, the time constant, 

τ = 1/k = τ0 exp (Eact/RT)             …(4.3) 

Combining equations (4.1), (4.2) and (4.3), the simple expression for the rate 

constant kp (or time constant τp) at a temperature Tp can be obtained as  

kp =–(Eact/R) x (S/Tp2)               ...(4.4) 

or,  

τp = (R/Eact) x (Tp2/S)                                     …(4.5) 
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The activation energy of the process was calculated using equation (4.1) and found to be 

68 kCal/mole. The time constant of the process was also measured from the Kissinger 

analysis. The result is shown in Fig. 4.5b. Good linear fit (correlation factor, <r> = 0.9) 

with the following expression is observed. 

ln τ =  34.39x103 1/T –37.58                        ...(4.6) 

The stability of the precipitation process at any desired temperature could be obtained 

using the above equation.  
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4.4 Conclusions 
 

The coherent precipitation of nano-size Cu took place during ageing (400oC- 550oC) of 

water quenched HSLA-100 steel after austenitising at 910oC. The hardness and strength 

of the materials increased due to coherent Cu precipitation. The kinetics of Cu-

precipitation was studied using a differential scanning calorimeter and the activation 

energy was found to be 68 kCal/mol. The magnetic coercivity did not response in the 

same manner as that of strength and hardness, in contrast to what is usually expected. 

This may be an advantage for the use of this steel for soft magnetic applications. The 

material became magnetically softer at the initial stage of ageing which was due to the 

tempering of lath microstructure. The Cu precipitation did not have much influence on 

the magnetic softness because of the smaller size of the precipitate compare to the 

domain wall width. However, the materials became magnetically harder when the size 

of the Cu-precipitates increased, which hindered the domain wall movement. 

Barkhausen signal was analysed in the frequency domain and the results were explained 

by the change of eddy current within the materials due to Cu precipitation. 
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Figure 4.1: Variation of (a) Coercivity and (b) RMS voltage of HSLA-100 steel samples 

in WQ and aged condition 
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Figure 4.2: Magnetic Barkhausen emission (MBE) waveforms at different 

ageing temperature 
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Figure 4.3 a-g: Power spectrum of different aged and WQ samples 
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Figure 4.4: (a) Hardness of WQ and aged samples and (b) DSC plot of WQ sample 
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Figure 4.5: (a) Kissinger plot of Cu-precipitation process and (b) time constant 

of the process. 
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5.0
 

 

Fatigue Behaviour of heat-treated 

HSLA-100 Steel 

 

5.1 Introduction 

The influence of process parameters and microstructure on the mechanical properties 

has been discussed in Chapter 2 and Chapter 3. Most literature is confined to 

characterisation of microstructure and variation in tensile and impact strength [7]. Often 

evaluation of these mechanical properties is insufficient to characterise the in-depth 

mechanical behaviour of materials. Characterisation of material behaviour based on 

fracture mechanics is required for modern engineering design. Sivaprasad et al. [12] 

have studied fracture and fatigue crack growth behaviour of Cu-strengthened HSLA 

steels employing the fracture mechanics based approach. However, their study does not 

include any variation in the microstructural condition. The influence of Cu precipitation 

and microstructural constituents on fatigue crack growth behaviour of Cu-strengthened 

HSLA steels has not been explored.  

In the present investigation, the influence of various ageing treatment on the 

fatigue crack growth rate (FCGR) behaviour of Cu-strengthened HSLA-100 steel has 

been investigated. The microstructure of HSLA-100 steel was engineered through 

solutionising, followed by water quenching and ageing treatments. The resultant 

changes in microstructure has been characterised through scanning and transmission 
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electron microscopy. The variation in the FCGR behaviour has been related to changes 

in microstructure resulting from ageing treatment. 

 

5.2. Experimental Work 

5.2.1 Specimen Preparation 

Specimens of 200mm x 50mm x 30mm dimension were cut from the steel plate such 

that length of the blank is parallel to rolling direction of the plate. These specimens were 

austenitised for 1 hour at 910oC and water quenched (WQ). The quenched specimens 

were then aged at various temperatures between 350oC to 700oC in steps of 50oC for 1 

hour except a few samples were aged at 675oC. Some specimens were preserved after 

austenitising treatment to investigate as quenched properties. Single-edge notched bend 

(SENB) specimens of 150mm (L) x 30mm (W) x 20mm (B) nominal dimensions, were 

machined from heat-treated samples with the notch in L-T orientation. The specimens 

were fabricated with integral knife-edges at the notch mouth on which a crack opening 

displacement (COD) gauge could be fixed for crack length measurement using 

compliance method. 

 

5.2.2 Fatigue Crack Growth Rate (FCGR) 

Fatigue crack growth rate (FCGR) tests were conducted on these specimens in air 

employing a decreasing ΔK envelope following ASTM standard E-647 [210]. All 

FCGR tests were carried out at room temperature (28oC) at a load ratio (R) of 0.1. A 

cyclic frequency of 15 Hz was employed. Duplicate tests were carried for each heat 

treatment condition and results of two tests were found to be similar. 

  All tests were conducted in a 100 kN closed loop servo-hydraulic testing 

machine. The machine was equipped with a digital controller interfaced to a computer 

for test control and data acquisition. Crack lengths were monitored using compliance 

technique. Crack mouth displacements for computing compliance were measured using 

a 5mm length crack opening displacement (COD) gauge fixed on integral knife-edges 
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machined across the crack mouth. Compliance crack length relation proposed in ASTM 

standard [210] was used for calculating crack length. The test control software 

performed on-line crack closure measurements following recommendations of ASTM 

standard [210]. During FCGR tests, ΔK continuously decreased with crack growth such 

that ΔK envelope of the tests follows 
( )0

0
aaCeKK −Δ=Δ             ….(5.1) 

Where ΔK0 and a0 are stress intensity factor range and crack length respectively with 

which test started and C is a constant. The value of which has been standardized at -0.08 

mm-1, so that there are no delay effects originating from progressive unloading. 

The crack lengths were measured by compliance technique using a COD gauge 

fitted to load line of the specimen. The software permitted on-line monitoring of the 

crack length (a), stress intensity factor range (ΔK), effective ΔK (ΔKeff) and crack 

growth rate per cycle (da/dN). The software used for fatigue crack growth rate (FCGR) 

testing stored all relevant data like ΔK, da/dN, ΔKeff etc. for further analysis. All 

specimens were fractured by over-load at the end of the test and the fracture surfaces 

were examined in a SEM. 

 

5.3 Results and Discussion 

5.3.1 Effect of Microstructural Variation on FCGR of HSLA-100 Steel 

The fatigue crack growth behaviour of water quenched and aged specimens for entire 

regime of ΔK studied is shown in Fig. 5.1. The FCGR curves at only a few selected 

temperatures of ageing are shown in figure for clarity. It may be noted that as the ageing 

temperature was increased, the crack growth rate of HSLA-100 steel initially increased 

up to ageing temperature of 500oC. Beyond 500oC, the FCGR gradually decreased up to 

650oC. On further ageing, FCGR once again showed an increasing trend. In order to 

clearly reveal this trend, the Paris slope and Paris coefficient, m and C, were determined 

from the crack growth data, and in turn they were used to calculate the crack growth 

rate at any given ΔK (say 20 MPa√m) using the relation- 
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da
dN = C  ΔK  m                                            …. (5.2)  

The results are shown in Fig. 5.2 along with variation of strength properties. It may be 

noted that the variation of fatigue crack growth resistance of HSLA-100 steel follows a 

variation with temperature of ageing as the mechanical properties. 

It is instructive to observe the variation of m and C with temperature of ageing, 

as shown in Fig. 5.3. It may be noted that variations in m and C are inversely related to 

each other. Peak values are found in the neighbourhood of 500oC, as observed for 

mechanical properties. However, a reversal of trend beyond 650oC is not exhibited in 

case of Paris parameters, in contrast to trends observed in the FCGR at a particular 

value of ΔK and the mechanical properties discussed earlier. 

It is interesting to note the correlation between Paris slope m and Paris 

coefficient C. As shown in Fig. 5.4, two parameters seem to follow a first order 

exponential decay relationship. Such direct relationships between constants derived 

from Paris law is often noticed for tests on the same system which has been varied 

systematically or where test conditions have been varied systematically [211]. There is 

merit in consideration that such relationships can be interpolated or extrapolated for 

determination of fatigue crack growth parameters for any condition of a given system 

for which limited data are available. 

Representative fatigue fracture features of some of microstructural conditions 

are given in Fig. 5.5. It may be noted that fracture features at WQ and 650oC were 

observed to be similar. The specimens tested at 700oC showed evidences of secondary 

modes of failure at local regions. At 500oC, such secondary cracks were found to be 

more frequent, together with tendencies towards quasi-cleavage modes of failure at 

isolated regions. 

The changes in microstructural constituents and observed fatigue crack growth 

behaviour appear to have a direct relation. Even though crack initiation resistance of a 

material would increase with increase in strength, a material with higher strength would 

provide a poor crack growth resistance. The increase in crack growth rate of HSLA-100 

steel during early stages of ageing can thus be attributed to increase in strength of the 

steel due to formation of coherent copper precipitates. Increase in strength might have 
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imparted more brittleness and thereby decreasing the propagation resistance of the steel. 

In the second stage of ageing, loss in strength of the steel due to increasing incoherency 

of copper precipitates has offered higher resistance for growth of the fatigue crack. 

Formation of fresh martensite in the third stage of ageing and resulting increase in 

strength of HSLA-100 steel, once again offered inferior resistance to fatigue crack 

propagation in this regime. It may be noted that HSLA-100 steel in this investigation is 

intended for marine structural applications in an optimised heat-treated condition. It is 

obvious that a study on fatigue crack growth behaviour of this steel under corroding 

atmosphere is of great importance. Literature is available on corrosion fatigue crack 

growth behaviour of HSLA steel aged at 680oC [212]. It may be pointed out that this 

ageing temperature offers a best combination of strength and toughness, which is 

required for engineering structural applications. The investigation revealed that HSLA-

100 steel showed inferior crack growth resistance in 3.5% NaCl solution in comparison 

to that in air; the reason for this is attributed to repeated film formation and rupture that 

would expose the bare metal surface in every cycle thereby enhancing the crack growth 

rate. A reduction in the cyclic frequency is observed to further reduce the crack growth 

resistance with attendant changes in Paris slope. 

A similar influence of microstructural changes on Paris regime FCGR behaviour 

is reported in Al alloys [213]. The FCGR behaviour of thermo-mechanically treated EN 

36 steel weldment and Ti-alloy are also reported [214 - 216] to be affected by ageing 

treatment. The influence of quench and temper heat treatment on the fatigue crack 

growth behaviour of a multi phase microalloyed medium carbon steel also shows a 

strong dependency of FCGR on heat treatment [217]. All these investigations give an 

indication that the fatigue crack propagation behaviour of engineering structural 

materials can be affected by the microstructural changes due to heat treatment. The 

residual stresses that are stored due to heat treatment and the microstructural features 

that may induce specific slip modes can alter the intrinsic crack propagation behaviour. 

An in-depth understanding of the correlation between microstructural condition and 

fatigue crack growth behaviour can be employed for appropriate microstructural 

engineering for optimal fatigue resistance. 
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5.4 Conclusions 

The microstructural changes due to ageing treatment affect the FCGR behaviour of 

HSLA-100 steel. Initial ageing treatment (350oC-500oC) caused a decrease in the 

fatigue crack growth resistance. This was due to the increase in the strength owing to 

the formation of coherent ε-copper precipitates. Ageing above 500oC, caused a recovery 

in the fatigue crack growth resistance. This was due to the loss of coherency and growth 

of Cu-precipitates. Ageing at 700oC, results in formation of fresh martensite islands 

occurred and this in turn caused a decrease in the fatigue crack growth resistance. The 

observed variation in the FCGR behaviour was similar to the nature of variation of 

strength properties with ageing treatment.   
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Figure 5.1: The da/dN vs. ΔK plots of steel showing the fatigue crack growth behaviour 
of water quenched and aged specimens 
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Figure 5.3: Variation of Paris parameters, obtained from the FCGR data, with 

temperature of ageing 
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Figure 5.4: Correlation between m and C obtained from FCGR curves for various 

microstructural conditions 
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Figure 5.5: SEM fractographs of FCGR test specimens – (a) WQ condition (b) aged at 

500oC (c) aged at 650oC and (d) aged at 700oC. Secondary modes of failure are shown 

with arrows 
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6.0
 

 

Effect of Microstructures of HSLA-100 

Steel on Fracture Mechanics Parameters 

 

6.1 Introduction 

The indirect appreciation of the effect of microstructure of HSLA-100 steel as described 

in earlier Chapter-3, although providing engineering leverage in comparative 

assessments, is somewhat empirical in nature. Microstructures exhibiting the same 

hardness may contain completely different combination of phases that in totality 

provides the same resistance to deformation by an indenter. However, they may not be 

the same resistance to fracture. It is therefore imperative to develop a deeper 

understanding of the effect of different microstructure and microstructural constituents, 

on fracture behaviour and the effect of microstructure on fracture mechanics parameters. 

The important parameters used for characterising fracture behaviour that are 

derived within the framework of fracture mechanics include (i) pre-exponent and 

exponent of the Paris curve that is used to describe fatigue crack growth rates (FCGR) 

(ii) fracture toughness in the linear-elastic and elastic-plastic fracture mechanics 

regimes, based on the stress intensity factor, K, and the energy parameter J-integral 

respectively (iii) tearing modulus, T, defined as the slope of the J-resistance curve for 

ductile fracture (iv) blunting-line slope, M, and (v) related fractographic manifestation 

of the stretch zone. It would be interesting and instructive to study and understand how 
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these parameters are influenced through a variation of microstructure. It may be noted 

that the fracture mechanics parameters are known to be influenced by not only 

microstructure, but also the environment, the stress triaxiality and the geometry of 

engineering components. However, while other parameters can be quantified, or at least 

specified, unequivocally, the same is often not true for microstructure.  

The effect of microstructural variation of HSLA-100 steel on FCGR has already 

been discussed in Chapter-5. In this chapter, variations in the J-R curve, blunting-line 

slope, tearing modulus and the stretch zone width (SZW) has been reported for 

systematic variation of microstructures in Cu-strengthened HSLA-100 steel. Variations 

in the microstructure of the steel have been incorporated through ageing at various 

temperatures after an initial quenching treatment. Descriptions of the various 

microstructures have been obtained through detailed scanning and transmission electron 

microscopy. These have been used to understand the variations in mechanical properties 

and in fracture mechanics parameters obtained through standard tests.  

 

 6.2 Experimental Work 

6.2.1 Specimen Preparation 

Single-edge notched three-point bend specimens, of 150mm (L) x 30mm (W) x 20mm 

(B) nominal dimensions, were employed for fracture toughness testing. Specimens were 

fabricated with integral knife-edges at the notch mouth on which a crack opening 

displacement (COD) gauge was fixed for crack length measurement using the 

compliance method. All tests were carried at room temperature (28oC). Fractographic 

observations were carried out in JEOL JSM 840A SEM. 
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6.2.2 Fracture Toughness Evaluation 

The single-specimen method was employed for carrying out fracture toughness tests as 

per ASTM standard E-1820 [218] with the primary objective of obtaining J-R curves. J-

integral tests were carried out to study fracture behaviour of the microstructurally 

engineered HSLA-100 steel. Figure 6.1 is the schematic diagram of the three-point bend 

(TPB) specimen machined as per ASTM standard E-1820. All specimens were pre-

cracked to a/W = 0.5 in a EMR machine at 75 Hz frequency. Tests were conducted in a 

100 kN Instron servo hydraulic testing system equipped with a digital controller that 

was interfaced to a computer for test control and data acquisition. A displacement rate 

of 3x10-3 mm/s was used for imposing a loading scheme (Fig. 6.2) consisting of 

concatenated sequences of loading through 0.3 mm, followed by partial unloading 

through 0.15 mm and reloading through the same amount, repeated continuously till 

sufficient crack growth took place. A 10 mm COD gauge was used for Load-Line-

Displacement (LLD). The load on specimens, crosshead displacement and crack 

opening displacements were constantly monitored throughout the test. Software was 

used for test control and data acquisition and the raw data was analysed off-line to get 

the load–load line displacement (P-LLD) and J-R curve as per ASTM E-1820.  

 

6.2.3 Stretch Zone Imaging 

The widths of stretch zones spanning the culmination of pre-fatigue cracks and the 

initiation of ductile fracture were quantified from SEM fractographs for correlation with 

ductile fracture behaviour. The specimens were post fatigue cracked at room 

temperature at the end of each J-integral test. Then fracture surface of the tested 

specimen was cleaned in a ultrasonic cleaner before examining them in a scanning 

electron microscope (JEOL JSM-840A). The mode of failure and prominent features 

were recorded in digital electronic format. Fractographs were also recorded for each 

specimen at the location of initiation of ductile crack and were recorded at different tilt 

angles to analyse the nature and dimensions of the stretch zones. 
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6.3 Results and Discussion 

6.3.1 Effect of Microstructural Variation on J-R Curve of HSLA-100 

Steel 

The different load-load line displacement curves were obtained from the J-integral test 

for differently aged & WQ specimens. A typical load-COD displacement curve for WQ 

specimen is shown in Fig. 6.3. 

From the load-load line displacement plots, different J-R curves were obtained 

for specimens at differently aged conditions. To get the ductile fracture toughness value 

from the curve, a best-fit line is constructed to the initial linear region of the data as per 

the equation:  

J = M Δa σ0.                                               ….(6.1) 

Where, J = fracture toughness, M = blunting line slope, Δa = crack extension, 

σ0 = flow stress    

A cubic fit line is constructed to the rest of the data to get the intersection point which is 

the initiation fracture toughness (Ji).as per the equation:  

J = C1ΔaC2                                                 ….(6.2) 

Where, C1 and C2 are the pre-exponent and exponent of the tearing curve 

respectively. 

To avoid any confusion in correctly identifying this deviation point, the linear line is 

offset to 0.2 mm crack extension and takes this intersection point as ductile critical 

fracture toughness (JIC) as shown in Fig. 6.4. 

Variation in blunting line slope (slope of the initial linear region in the J-R 

curve) with change in ageing temperature is shown in Fig. 6.5. The slope first increased, 

then decreased and again increased with ageing temperature. There are absences of data 

points in between 350oC–500oC because of total brittle crack extension/pop-in-

behaviour of the material. The variation of co-efficient in the tearing region also shows 
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similar trends (Fig. 6.6). The Ji and JQ also vary with the ageing temperature. Figure 6.7 

shows the variation of Ji, JQ and Ju as a function of ageing temperature.  

From the fracture toughness tests, it was apparent that most of the samples on 

ageing at various temperatures displayed R-curve behaviour. The samples aged at 400oC 

to 500oC were exceptions, in which crack instability was observed at early stage on 

loading. The J-R curves that could be obtained by analysing the test data as per the 

procedures laid down in ASTM standard E-1820 [218] are shown in Fig. 6.8. The load-

displacement data obtained for the peak-aged conditions are given in Fig. 6.9, clearly 

indicate their brittle characteristics of fracture. Fig. 6.8 and Fig. 6.9 reveal that the 

fracture resistance of HSLA steel can be altered through a large range through changing 

its microstructure by selecting the ageing temperature. It may be noted that the fracture 

resistance is at a moderate level in the WQ condition, and further suffers a drastic 

embrittlement at ageing temperatures up to 500oC, with acute fracture instability. It is 

surprising to note that the recovery of the J-R curve of the sample on ageing at 550oC, 

maintained equivalent levels for the samples aged at temperatures up to 675oC. It 

appears that on ageing at 700oC, large increase in resistance of the material to fracture 

occurs. 

A comparison based on the shape of J-R curves can often be misleading, and it 

is appropriate to make assessments based on the critical fracture toughness parameter. 

Accordingly, the critical initiation toughness Ji and the (unqualified) critical fracture 

toughness at 0.2mm ductile crack extension JQ was obtained using the procedure of 

ASTM standard E-1820 [218], through the definition of a best-fit blunting line and 

employing a power curve to define the tearing region.  

Beyond the requirement of the standard, the procedure was implemented in an 

iterative scheme so that the critical values and other parameters of the J-R curve were 

progressively refined until they converged. Fig. 6.10 shows the iterated blunting line fits 

and tearing curves were obtained for some of the microstructural conditions. For the 

microstructural conditions exhibiting fracture instability (i.e. ageing at 400oC, 450oC 

and 500oC), and for which critical parameters could not be obtained through the J-R 

curve route, the critical fracture parameter Ju was derived considering the elastic energy 

and plastic work from the load-displacement plots using the basic equation for the 

calculation of J-integral. 
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The variation of fracture toughness with change in microstructure of HSLA steel on 

ageing at various temperatures is shown in Fig. 6.7. It can be seen from the figure that 

fracture toughness value of the water quenched condition falls sharply when aged at 

500oC, increases again considerably when aged above 500oC. In contrast to the 

behaviour of mechanical strength properties, and in similarity to the observation for 

fatigue crack growth parameters m and C, there does not appear to be a sharp reversal of 

trends at the ageing temperature of 650oC. In fact, there seems to be a direct correlation 

with the variation shown by the reduction in area for tensile specimens. 

The fracture toughness values obtained for specimens that exhibited fracture 

instability appear to fall along the trend for ductile fracture specimens. The somewhat 

higher fracture toughness calculated for ageing at 450oC is due to the fracture instability 

manifesting itself after a small amount of stable crack extension, as evident from the 

load-displacement plot in Fig. 6.9, in contrast to fracture instability prior to stable crack 

growth for ageing at 400oC and 500oC. The extent of stable crack extension at fracture 

instability for 450oC ageing is probably of the order of 0.2mm, since the data point for 

this condition aligns well with the JQ points. 

The lowest fracture toughness value obtained in samples on ageing at 500oC is 

due to the precipitation of coherent nano-size Cu particles. The increase in fracture 

toughness value occurs on ageing the samples beyond 500oC are primarily due to the 

loss of coherency of Cu precipitates rather than softening and degeneration of the matrix 

through tempering effects. The sudden toughening exhibited at 550oC is difficult to 

explain without invoking the fact that loss of coherency is apt to be sudden. The 

asymptotic rise in fracture toughness as the ageing temperature is increased above 

650oC is no doubt primarily due to the formation of reverted austenite and new 

martensite islands, since this is an additional factor in the process of microstructural 

evolution in this range of temperature. The martensite-austenite combination effectively 

acts as a local composite entity and toughens the material through resisting easy 

propagation of cracks. 

It is interesting to study the variation of characteristics of the J-R curve, like the 

blunting slope M (obtained from the relationship J = M.σ0.Δa and fitted to the initial 
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linear region) and the pre-exponent and exponent of the tearing curve when expressed in 

the power-law equation 6.2. 

Figures 6.5 and 6.6 show respectively their behaviours as a function of ageing 

temperature. In Fig. 6.5, M is found to be mostly below 2, which is conventionally 

thought to be the lower-limit of the blunting-line slope (earlier versions of ductile 

fracture toughness testing standards, for e.g. ASTM E 813 preferred this value) [219]. 

This is quite contrary to typical observations on ductile materials that show excellent 

toughness where it is customary to obtain blunting-line slopes as high as 8 [220]. The 

variation of M is within a very small range and it is believed that the actual trend in this 

range is not important and should not be interpreted as an effect of variations in 

microstructure on ageing. The rising nature of M may however be noted for increasing 

toughness on ageing from 550oC to 700oC. From Fig. 6.6, it can be seen that the value 

of C2 is quite insensitive to changes in microstructure, while that of C1 responds 

predominantly. C2 reflects the shape of the tearing curve, which is similar for all cases 

of ductile fracture as seen in Fig. 6.10, and therefore it is not surprising to find that it 

does not change much with ageing. C1, on the other hand, is the amplification factor that 

scales the R-curve, and since there is considerable change in fracture toughness with 

ageing, C1 is liable to respond accordingly.  An increasing trend is again observed with 

increasing fracture toughness as the ageing temperature is elevated. 

 

6.3.2 Stretch Zone Width and Fracture Toughness of HSLA-100 Steel 

The importance of SZW as a parameter for characterising the fracture toughness of 

materials should be considered. The SZW has been the subject of active consideration 

[221,222], and its measurement has been introduced into the JIS standard and is 

incorporated in the ESIS procedure for measurement of fracture toughness. The stretch 

zones as seen on the fracture surfaces of specimens are shown for a selection of 

microstructural conditions of HSLA steel in Fig. 6.11. It may be noted that for all 

ageing conditions, including those displaying fracture instability, the SZW could be 

readily identified. In fractographs (Fig. 6.11), the boundaries of the stretch regions are 

manually delineated to facilitate measurement. Identification of the boundary of stretch 

zone features is somewhat subjective, and errors may accrue into measurement from 
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this. On-line viewing of the fracture surface in the SEM, manipulating the specimen to 

gain a better insight of the elevation and details of the features, often facilitates the 

process. It is apparent that SZW is not uniform along the crack front, and a number of 

measurements are required in order to arrive at an average value. It is also 

recommended that measurements should be made on both halves of specimens since the 

fracture initiating from a blunted crack tip may not be symmetrical. The fractographs in 

Fig. 6.11 has been obtained at a magnification of 400x. Fractographic observation at 

lower magnifications, although incorporates a larger fraction of the specimen thickness 

however does not provide enough details to identify the boundaries accurately. 

For quantitative analysis, the SZW was measured at 30 locations spanning a few 

fractographic frames at the centreline of the specimens for the various aged conditions. 

The average measurements are plotted in Fig. 6.12 as a function of the ageing 

temperature. It is interesting to observe that SZW of the samples on ageing at various 

temperatures remains almost constant including at ageing temperatures for which 

fracture instability prior to extended stable crack growth was observed. The near 

constancy of SZW is particularly apparent when compared alongside the critical crack 

extension at fracture initiation Δαcritical, measured at the intersection of the blunting line 

and the tearing line for J-R curves, which is also plotted in Fig. 6.10. In the narrow 

range of evidently random variation of SZW, a slight increase in value may be obtained 

as the fracture toughness of the material improves with temperature of ageing, but this 

may not be significant considering the errors involved in measurement. With reference 

to Fig. 6.12, one fact that is glaringly evident is the difference between the Δacritical and 

SZW. Except for the microstructural condition for ageing at 350oC (and perhaps for 

400oC, 450oC and 500oC also since fracture was significantly brittle for all these 

conditions and for which Δacritical data is not available), Δacritical always overestimates 

the SZW. This indicates that either the procedure for obtaining the blunting-line from 

the test data is grossly inappropriate, or the concept of crack blunting through stretching 

followed by initiation of stable (or unstable) crack extension that is used to model 

fracture behaviour is totally inaccurate. 
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6.4 Conclusions 

From the study carried out, it was possible to develop an appreciation of the role played 

by microstructural constituents in controlling the fracture behaviour of HSLA-100 steel 

that has been quenched and aged. The major role played by the coherency of Cu 

precipitates is in restricting plastic flow, thereby limits the potential for initiation and 

growth of microvoids that are responsible for ductile fracture. The recovery of the 

background matrix and loss of coherency of Cu precipitates and its effect on fracture 

mechanics parameters was also observed. The evolution of reverted austenite and small 

martensite islands in the microstructure on ageing was responsible for a desirable 

combination of high strength and high toughness in the steel, and can be exploited to 

develop suitable microstructures for critical engineering applications. Following 

conclusions are made from the study- 

(i) Jc decreases but SZW remains constant when specimen was aged 

between 350-500oC,  

(ii) Jc increases and there is an apparent trend of increasing M and C1, 

whereas SZW remains constant when specimen was aged between 550-

650oC,  

(iii) Jc continue to increase and there is an definite increasing trend for M, C1, 

C2, SZW when specimen aged between 675-700oC 
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Figure 6.1:  Schematic representation of three point bend (TPB) specimen for            

J-integral test. 
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Figure 6.2: Schematic representation of the loading scheme used for J-test. 
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           Figure 6.3: Load-Load Line Displacement plot for WQ specimen. 

0 1 2 3 4 5 

0 

10 

20 

30 

40 

50 

Lo
ad

   
(k

N
) 

LLD, mm

WQ 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ji 

0

100

200

300

400

500

600

700

800

900

1000

J, kJ/m2 

WQ 

JIC 

J = C1 Δa C2

J = M Δa σo 

 

 

 

 

 

 

 

 

 

 

 
0.0 0.5 1.0 5.0 5.5 6.0 1.5 2.0 2.5 3.0 3.5

a, mm
4.0 4.5 6.5 

Δ
 

Figure 6.4: J-R curve for WQ specimen 
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Figure 6.5: Blunting line slope vs. ageing temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800
300

400

500

600

700

800

900

1000

1100

1200

 C1
 C2

Ageing temperature, oC

C
1

0.0

0.2

0.4

0.6

0.8

1.0
C

2

 

Figure 6.6: Tearing co-efficient (C1 & C2) as a function of ageing temperature 
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Figure 6.7: Variation of fracture toughness Jc of HSLA-100 steel with ageing 

temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 6.8: J-R curves of HSLA steel, water quenched and aged at various 
temperature 
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Figure 6.9: Load-displacement characteristics of HSLA microstructures that 
display fracture instability 
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Figure 6.10: Blunting line and tearing curve fit to J-R curves for selected heat-treated 
HSLA steel specimens 
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Figure 6.11: Fractographs of HSLA-100 steel variously aged, showing the stretch zone 
region (a) WQ, (b) aged at 500oC, (c) aged at 550oC and (d) aged at 700oC. The 
boundaries of stretch features are delineated. 
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Figure 6.12: Variation of the SZW with temperature of ageing for HSLA steel. 
The critical crack extension at fracture initiation, as measured from J-R curves is 
also superimposed in the figure 

 
 

 
 

  

 116



 

Chapter 7.0 
 

 

 

Summary and Conclusions 

 

 

 

 

 117



7.0
 

 

Summary and Conclusions 

 
Microstructure of HSLA-100 steel used in this study consists of lath martensite, acicular 

ferrite and bainite in water-quenched condition. Small amount of retained austenite 

along with microalloying carbides & carbo-nitrides have been observed in the 

microstructure. On ageing, transformation of acicular ferrite to polygonal ferrite and 

recovery of martensite lath occurred. Precipitation of coherent Cu rich particles has also 

been observed on ageing at 400oC. Nano-size coherent Cu precipitates gradually 

coarsened and lost coherency on ageing beyond 550oC due to growth of fcc Cu 

precipitates. However, there was no change in shape & size of microalloying carbides 

and carbonitrides due to ageing below 700oC for one hour.  

Two types of micromechanism of fracture plays role during tensile fracture- (i) 

micro-cleavages are dominant in specimens on ageing between 400oC–500oC and (ii) 

initiation, growth and coalescence of microvoids are predominant for specimens on 

ageing beyond 550oC. The plastic flow of material is restricted in the initial stage of 

ageing due to precipitation of very fine coherent Cu-rich particles and leads to an 

increase in brittleness and strength at the expense of ductility of material. The hardness 

of material also increases due to precipitation of coherent Cu particles. On ageing at 

higher temperatures, these precipitates coarsen and loose their coherency and facilitate 

an increase in ductility and flow of material.  

The kinetics of Cu-precipitation was studied using a differential scanning 

calorimeter and the activation energy was found to be 68kCal/mol. The magnetic 
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coercivity didn’t response in the same manner by an increase as that of mechanical 

strengthening induced by Cu precipitates, in contrast to what is usually expected. This 

may have an advantage for the use of this steel for soft magnetic applications. The 

material became magnetically softer at initial stage of ageing, which was due to 

tempering of lath microstructure. The Cu precipitation didn’t have much influence on 

magnetic softness due to smaller size of precipitate in comparison with the domain wall 

width. However, the materials became magnetically harder when the precipitate’s size 

increased, which ultimately hindered the domain wall movement. Barkhausen signal 

was analysed in the frequency domain and the results were explained in the light of 

change of eddy current within material due to Cu precipitation.  

The microstructural changes due to ageing treatment strongly influence FCGR 

behaviour of HSLA-100 steel. Ageing treatment in the temperature range of 350oC-

500oC caused a decrease in fatigue crack growth resistance. This was due to increase in 

strength owing to formation of coherent Cu precipitates. Ageing above 500oC, causes a 

recovery in fatigue crack growth resistance. This was due to loss of coherency and 

growth of Cu-precipitates. Ageing at 700oC, results in formation of fresh martensite 

islands and this in turn causes a decrease in the fatigue crack growth resistance. 

From the present investigation, it is possible to develop an appreciation of the 

role played by microstructural constituents in controlling the deformation processes and 

the fracture behaviour of HSLA-100 steel. Since fatigue crack growth is also governed 

by accumulation of damage through localised plastic deformation, precipitate coherency 

is an important factor in controlling its rate. It should be noted that at elevated 

temperature of ageing, other factors (for e.g. formation of new austenite and martensite 

beyond 650oC) also influence fatigue crack growth rate and change the trend observed 

at lower temperatures of ageing. 

The conditions (400oC-500oC aged) under which microvoid coalescence was 

totally suspended in spite of a constant resident population of void initiating carbide and 

carbo-nitride particles, leading to brittle fracture through cleavage mode, were observed. 

The effect of tempering of the matrix on fracture mechanics parameters was also 

evidenced. The evolution of reverted austenite and small martensite islands in 

microstructure on ageing was responsible for a desirable combination of high strength 

 119



and high toughness in HSLA-100 steel, and can be utilised to develop suitable 

microstructure for critical engineering applications.  

The major observations of the effect of variation of microstructure in HSLA-100 

steel through quenching and ageing treatments on deformation and fracture modes 

studied are summarized in Table 7.1 together with inferences drawn on the influence of 

microstructure that substantiate the observations.  

 

Table-7.1: Summary of the effect of ageing temperature regimes on the properties and 

characteristics displayed in HSLA-100 steel during deformation, fatigue crack growth 

and fracture. 

Mode of 
failure 

Aged between 
350oC-500oC 

Aged between 
550oC-650oC 

Aged between 
675oC-700oC 

Deformation YS, UTS increases 

%El decreases 

%RA decreases 

YS, UTS decreases 

%El increases 

%RA increases 

YS, UTS increases 

%El remains almost 
same 

%RA remains 
almost same 

Fatigue crack 
growth 

FCGR increases  

m increases 

C decreases 

FCGR decreases  

m decreases 

C increases 

FCGR increases  

m decreases 

C increases 

Fracture Jc decreases 

SZW remains constant

Jc increases 

Apparent trend of 
increasing M and C1

SZW remains 
constant 

Jc continue to 
increase 

Definite increasing 
trend for M, C1 and 
C2         

Small increase in  
SZW 

Main 
microstructural 
manifestations 
that are 
responsible 

Coherent 
precipitation of Cu 

Loss of coherency of 
Cu precipitates, with 
recovery of matrix  

Formation of 
reverted austenite 
and small 
martensite islands; 
continuation of 
matrix degeneration 
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