View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by eprints@NML

RESEARCH COMMUNICATIONS

On the fractal nature of Penrose ti|ing postulate, in this communication, such an algorithm and
arrive at the Hausdorff fractal dimension.

Let us consider a figure in the form of two straight
edges AB and BC of equal leng#h,and intersecting each
other at an angle of 108° (Figurea)l The point of inter-
section, B, is called a vertex. Divide the side AB in the
ratio 7: 1, as seen from A, and replace a short segment
with an isosceles triangle having sides BE and ED of
length a/t. The triangle should be erected such that
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An earliest preoccupation of man has been to find
ways of partitioning infinite space into regions having
a finite number of distinct shapes and yielding beauti-
ful patterns called tiling. Archaeological edifices, every-
day objects of use like baskets, carpets, textiles, etc.
and many biological systems such as beehives, onion A ¢
peels and spider webs also exhibit a variety of tiling.

Escher’s classical paintings have not only given a new

dimension to the artistic value of tiling but also

aroused the curiosity of mathematicians. The gener-

ation of aperiodic tiling with five-fold rotational

symmetry by Penrose in 1974 and the more recent ¥

production of decorated pentagonal tiles by Rosemary
Grazebrook have heightened the interest in the subject
among artists, engineers, biologists, crystallographers a 3 c
and mathematicians™. In spite of its long history, the

subject of tiling is still evolving. In this communica-

tion, we propose a novel algorithm for the growth of a

Penrose tiling and relate it to the equally fascinating

subject of fractal geometry pioneered by Mandelbrot 5

The algorithm resembles those for generation of fractal
objects such as Koch’s recursion curve, Peano curve,
etc. and enables consideration of the tiling as cluster
growth as well. Thus it clearly demonstrates the dual
nature of a Penrose tiling as a natural and a non-
random fractal.

o

THE aperiodic tilings have many interesting propertie:
which can be illustrated with respect to the most discusst o .
quasi-periodic tiling: the Penrose tilihgThese can be

infinite in number The tilings exhibitlocal isomorphism

which ensures that every finite region in any one tiling i 8
contained somewhere inside every other and that too in
nitely many times. The tilings can be generated from or
another by the methods of inflation or deflation. For d
example, in deflation a cluster of tiles is subdivided intc
smaller pieces following specific procedures. Performin
such operations iteratively, one can generate an aperiot
tiling with a much larger number of smaller tiles. Thest
procedures endow the tiling with the property salf-
similarity. These properties have suggested, right from tt
time of the discovery of Penrose tilings, that the tiling i
fractal in natur@ If so, it should be possible to generate
the tiling by an algorithm that is characteristic of fracta
generation and consisting of the three steps of initiatiol
generation and cascade at all scales. Till date, there are
methods of generating a Penrose tiling in a fashion simil;

to the generation of a non-random fractal object. Wc

Figure 1. Proposed algorithm for the generation of a Penrose tiling.
a, the initiator;b, the first generationn(= 1); c, the second generation
*For correspondence. (e-mail: dnml@csnml.ren.nic.in) (n = 2); andd, Penrose tiling in a thick rhomh:= 7.
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the angle at B is divided in the ratio 2:1 and log(N)
UOEDB =0EBD = 72° eachr is the golden mean and has D = It ———,
the value of (145 )/2. Next join the point E to C which -0 log(/1)

lies at a distance cd/t as well. We may now erase all

other lines which do not have a |enmh- (Figure _’]_b) whereN is the number of edgeS of |engt|’VVh|Ch occur
These steps generate three line segments of equal lenyifhin the fractal object. The discovery of quasi-crystals
(DE, EB and EC) and two new vertices D and E witfhas conclusively demonstrated that aperiodic packing of
OADE andOBEC being 108°. It may be noted that one ofttoms occurs in nature. In a Penrose tiling, the closest
these angles is exterior to the apex of the isosceles tflistance of separation of two atoms can only be along the
angle erected, while the other is exterior to its base. ThegBort diagonal of a thin rhomb. For the present algorithm,
two angles are once again divided as before by erectifigthe edge length of a rhomb is taken as the reference,
two isosceles triangles of si@ér? such that two adjacent Whenn tends to infinity, the edge length tends to zero and
angles of 36° each are formed at the apex and two adffe rhomb collapses to a point. Thus it would not be app-
cent angles of 72° form at the base of the previous|r>ppriate to evaluate the fractal dimension of the tiling in
erected isosceles triangle. All vertices at a distanegréf the limit whenn tends to infinity. Therefore, when one
will then be joined and all segments whose length isonsiders the Penrose tiling from a crystallographic point
nota/r? will be erased (Figure d). The two isosceles tri- Of view, a limit has to be placed on the valuenofthe
angles erected in this operation are EFG and DHI. It mdwmber of recursions of the algorithm. The recursions
be seen that the rhombi BDHI and BIEF are the thin an@ave to be limited only to the extent of achieving dis-
thick rhombi used by Penrose to generate an aperiodignces of separation of the order of atomic spacings
tiling. The newly formed vertices with an included angledetween the vertices in the tiling. From the point of view
of 108° are at F, G, H and I. The angle EIB is also 1089f the present algorithm, one achieves atomic distances of
The procedure described above can be repeated to divigRparation from a starting separati@n,of 1 cm in 39

all the 108° angles by erecting isosceles triangles of sidecursions. Hence, the formula oy can be modified as,

1/t of the side on which they are being erected. We also

join the newly formed vertices to already existing vertices

at a distance equal to the side of the triangle erected. The D = It w,

procedure can be repeatad infinitum With each com- n-n' log(t"™)

plete operation of the algorithm, the edges in the pattern

are reduced by a factor at The pattern of a Penrose wheren' is the physical limit on the number of recursions.

t|I_|ng begms_to emerge as we proceed and all the kncM@ne can obtain the edge length and the number of vertices
distinct vertices appear when the length scale reach%

al(r%. Such a complete Penrose tiling shown in Figur gnerated in a tiling in terms of the Fibonacci numbers.

1d, is obtained after reflecting the structure derived a hese have been estimated as:
n=7 in a mirror placed along AC. The ratio of the edge

length of a tile &) to the edge of the rhomb tiled)(will Nvertices= Fan+1 + 4Fn,

always ber", wheren represents the number of times the

scale length has been reduced by a factar &l further N =2N... .—8F +ﬁ
. . - . . edges vertices n ’

discussions refer to the tiling within this rhomb. Many 2

others have repeatedly stressed the self-similar nature of
the Penrose tiling. The present algorithm is the first tawhereF represents the respective Fibonacci numbers in a
employ an iterative procedure commonly employed tsequence starting with zer@, is an even integer depen-
generate deterministic fractals. This novel algorithnlent onn. Based on an analysis using the edge length in
which has aninitiator (lines at 108° to each other), athe above formula foD;, we arrive at a value of the
generator (erection of isosceles triangles with sideg 1/Hausdorff dimension as 1.974 using the sizevoés 39.
times the previous length scale and erasing all sides ®his value is close to the fractal dimension obtained
other length scales) andascadingis typical of pro- for the growth of two-dimensional clusters of atoms.
cedures which generate patterns with fractal dimensionslowever, it may be noted that limit @ asn - o exists
This procedure also obviates the need for assembling tilasd its value is 2, implying a non-fractal space filling
according to matching rules of Penrose. In addition, itructure.
permits us to utilize various procedures developed for Quasicrystals which incorporate aperiodic tilings, like
determining the fractal dimension of patterns arising fronPenrose tiling, are known to grow by the clustering pro-
such an algorithm. cess. Recently Lordt al® have shown that the clustering
Conventionally, the estimation of the fractal dimensiogprocess is very similar to the way quasicrystals actually
of a non-random fractal based on an iterative scheme gfow. A cluster is conceived to grow by accretion of suc-
the above three steps is given as, cessive shells around an initial seed, such as a 12- or 13-
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atom icosahedron. The clusters grow as they bond to e
other by sharing the atoms. One of the most commol
discussed cluster growth models is the diffusion-limite
aggregation (DLA) of atonfis'® DLA exhibits random
branching during growth and can be shown as a nc
deterministic fractal, governed by the sticking probability
Notwithstanding this randomness, DLA manifests, irre:
pective of the magnitude of the sticking probability, son
important regularities in an average séfise.g. (i) the
most probable value of the angle between neighbouri
branches is found to be 36°, and (ii) Fibonacci numbe
are known to occur in DLA clusters. In Penrose tiling
also, these two parameters, viz. the angle of 36° and Fil
nacci numbers, govern the pattern generation. Howe?
unlike those in DLA, the angles in a tiling are exact mult
ples of 36° and the number of tiles, edges and vertices
precise functions of the Fibonacci numbers as sho
above. It remains to be seen as to how a determinis
algorithm for Penrose tiling, like the one generated in tl
present study, and diffusion controlled probabilistic DL
algorithm of Whitten and Sandebear these important
similarities.
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