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1.  INTRODUCTION

Herbivorous protists are ubiquitous in marine eco-
systems and they have been recognized as key
components in planktonic microbial food webs for
decades (sensu lato Pomeroy 1974) and, more re -
cently, as the single most important loss factor of
phytoplankton production in all seasons and surface
ocean habitats (e.g. Calbet & Landry 2004, Modigh &
Franzè 2009, Schmoker et al. 2013, Sherr et al. 2013,
Morison & Menden-Deuer 2015, Franzè & Lavrentyev
2017, Steinberg & Landry 2017, Lavrentyev et al.
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ABSTRACT: Phytoplankton growth dependence on
temperature is recognized and has been quantified
comprehensively. However, no similar relationship
exists for the major phytoplankton predators, the her-
bivorous protists, especially at low temperatures rep-
resenting polar and coastal oceans during most sea-
sons. Their acclimation to changing temperatures is
also largely unexplored. Here we report acclimated
growth and acclimation rates from 0 to 22°C for 3 cos-
mopolitan herbivorous dinoflagellates. Due to inter-
active effects between size and temperature, growth
increased 40% more rapidly with increasing temper-
ature for production- compared to division-based
growth rates (0.043 and 0.062 d−1 °C−1, respectively).
Biomass-based growth rates were 10-fold higher
than abundance-based rates at low temperatures, re -
flecting an average 50% increase in biovolume at
≤2°C. Thus, there was significant biomass accumula-
tion at low temperatures, despite low cell-division
rates. Testing different acclimation procedures, we
established that acclimated rates emerged after 3
generations. Herbivores required 1.25 d °C−1 when
acclimating towards higher temperatures and 2.5 d
°C−1 when transitioning towards lower temperatures.
Growth rates increased linearly with temperature,
implying a weaker temperature effect on growth than
the commonly assumed exponential dependency. A
possible consequence is that herbivore growth rates
are underestimated at cold and overestimated at
warm temperatures. Current and future ocean as -
sessments could thus underestimate trophic transfer
rates in polar and cold-water regions and overesti-
mate herbivore growth and thus grazing impact in
future ocean predictions. Identifying physiological
responses that transcend species-specificity supports
cross-biome comparisons of ecosystem structure and
function that rely on accurate predictions of matter
and energy flow in planktonic food webs.

OPENPEN
 ACCESSCCESS

Temperature-dependent herbivore growth results in in -
creased cell size, and thus biomass, at low temperatures and
increased cell division rates at higher temperatures.

Image: Gayantonia Franzè

KEY WORDS:  Temperature dependency · Growth
rate · Acclimation · Cell size · Protists · Herbivory ·
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2019). At the same time, herbivorous protists are a pre-
ferred food source for many copepod species (Camp-
bell et al. 2009, Saiz & Calbet 2011) and are critical
components of most large-scale, oceanic biogeo-
chemical processes (Menden-Deuer & Kiørboe 2016).

The central role herbivorous protists play in the
pelagic food web means that even subtle changes in
their abundance, community structure and physio-
logical rates can have large implications for ocean
ecosystem functioning (Caron & Hutchins 2013). Yet,
the effects of climate change on these organisms at
the base of the marine food web are poorly con-
strained (Falkowski & Oliver 2007). It is essential to
quantify the sensitivity of protists to temperature in
order to reliably evaluate the effect of climate change
on carbon flux, ecosystem productivity and sustain-
ability. Moreover, because temperature is a funda-
mental driver of biological rates, it directly affects
plankton metabolism, and thus organism abundance,
and influences interactions among species (Reuman
et al. 2014). A recent review revealed that in the past
50 yr, fewer than 30 studies have quantified the
growth response of herbivorous protists over a range
of temperatures that allow the description of thermal
reaction norms (Wang et al. 2019). The scarcity of
data on herbivorous protists’ growth rate depend-
ence on temperature is particularly pertinent at the
lower end of the temperature range, representing
much of the highly productive, polar and temperate
coastal ocean through much of the year. Understand-
ing temperature sensitivity is critically important to
parameterize herbivorous growth dependence in
biogeochemical and ecosystem models (Carr et al.
2006, Dunne et al. 2013, Moore et al. 2013) and to
gain a predictive understanding of the influence of
herbivorous protists on marine primary and export
production. Uncertainties and unknown temperature
responses of this important group of phytoplankton
predators make cross-ecosystem productivity com-
parisons particularly challenging, as the degree of
herbivory is a major determinant in whether primary
production is transferred to higher trophic levels or to
export (Stock & Dunne 2010).

The scarcity of data on herbivorous protists’ tem-
perature sensitivity is remarkable, considering the
high de gree of diversity among and within single-
celled eu karyote species (de Vargas et al. 2015, Wor-
den et al. 2015) and the myriad, often plastic, physio-
logical and behavioral mechanisms that characterize
their ecology (e.g. Harvey et al. 2013, Strom et al.
2013, Menden-Deuer & Montalbano 2015). The re -
cognition of this functional diversity has led to the
flourishing of ecosystem models that break down

larger trophic categories into smaller functional groups
(e.g. Yang et al. 2013, D’Alelio et al. 2016, Chen &
Laws 2017, Kremer et al. 2017, Michaletz 2018).
Thus, taxon-specific thermal sensitivities are needed
to en hance our knowledge not only on herbivore-
specific responses but also on the role of temperature
performance breadths in shaping plankton commu-
nity structure and function in a changing ocean. For
in stance, the universal use of cross-taxa approaches
that fit the upper envelope of physiological responses
of all taxa examined (e.g. Eppley 1972, Rose & Caron
2007, Bissinger et al. 2008) has been questioned, as it
might not be a universally suitable descriptor of plank-
tonic population dynamics (Wang et al. 2019).

Here we address 3 important knowledge gaps:
(1) the temperature dependence of herbivorous pro-

tists’ growth rates over an ecologically important range
representing productive regions of the polar and
temperate ocean for much of the year (0−22°C);

(2) the importance of temperature-induced cell size
changes that may result in deviations between divi-
sion- and production-based quantifications of growth;
and

(3) the potential effect of assuming that plankton
metabolism is instantaneously acclimated to target
temperatures, when ocean temperatures can in fact
fluctuate over short time scales.

First, to measure herbivorous protists’ growth and
cell-size dependence on temperature, we measured
the growth response of 3 cosmopolitan herbivorous
dinoflagellates (Oxyrrhis marina, Gyrodinium domi-
nans and Protoperidinium bipes) to an environmen-
tally relevant temperature range (0−22°C). Second,
recognizing that temperature affects an organism’s
physiology on several levels, from cell size to inges-
tion rate and growth efficiency (e.g. Atkinson et al.
2003, Kimmance et al. 2006, Rose et al. 2009, Forster
et al. 2013), we characterized herbivore responses
based on both cell division (abundance) and produc-
tion, i.e. biomass accumulation. By comparing mag-
nitude and shape of the growth response based on
these 2 metrics, we wanted to examine the wide-
spread custom of using abundance-based growth
rates in carbon flux models, and to what extent inter-
actions between temperature and cell size could lead
to discrepancies in abundance, distribution and bio-
mass predictions. Finally, to make these results rele-
vant to a dynamic ocean that can undergo rapid tem-
perature fluctuations of 1−2°C within a few hours or a
day, we developed new procedures and investigated
the effect of prior acclimation to target temperatures
on measurements of population growth and biomass
production rates. Understanding how acclimation af -
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fects species responses to environmental change is
essential for our ability to quantify and predict ocean
ecosystem processes. Thus, we explicitly tested dif-
ferent acclimation procedures including short (3 gen-
erations), medium (10 d) and long (1 mo) exposures
to target conditions. Most importantly, we aimed to
identify commonalities among the examined species
that transcend species-specific differences, so that
herbivorous protists’ growth dependence on temper-
ature and ultimately their grazing impact could be
parameterized accurately despite intra- and inter -
specific variations in physiology.

2.  MATERIALS AND METHODS

2.1.  Culture maintenance

Clonal cultures of Oxyrrhis marina (CCMP 3375),
Gyrodinium dominans (SPMC 103) and Protoperi-
dinium bipes were established from single-cell iso -
lation. P. bipes was originally isolated from South
Korea, while strains of G. dominans and O. marina
are identical to those used by Strom et al. (2013). All
cultures were maintained in 0.5 l polycarbonate bot-
tles on a 12:12 h light:dark cycle, with salinity of
~30 psu and light intensity of 10−15 µmol photons
m−2 s−1. Throughout the experiments, all herbivores
were periodically transferred to fresh, 0.2 µm filtered
seawater, and all were fed the ~5 µm cryptophyte
Iso chrysis galbana (CCMP 1323) once or twice a
week. I. galbana was cultured in f/2 enriched seawa-
ter minus silicon, at 15°C, 12:12 h light:dark cycle
and light intensity of 80−100 µmol photons m−2 s−1. I.
galbana was transferred every 5 d to maintain expo-
nential growth (Guillard 1975). Light intensity and
temperature were monitored throughout the experi-
ments with data loggers (HOBO, Onset) placed inside
each incubator.

2.2.  Acclimation procedure

Herbivorous protists were acclimated to each tar-
get temperature before growth rates were measured.
Due to the wide temperature range tested (0−22°C),
cultures were moved from the initial temperature of
15°C through gradual transitions limited to at most
3°C. Subsequent temperature shifts proceeded only
after 3 divisions were completed at any of the inter-
mediate temperatures. The experimental Day 0 (D0)
was defined as the first day on which acclimated
growth rates were measured. Although acclimation

periods have not been reported for herbivorous pro-
tists, the number of generations exposed to a new con-
dition has been used to establish acclimated responses
(Montagnes & Franklin 2001, Beveridge et al. 2010).
In our experimental setup, we defined cultures as
being acclimated after they were exposed to target
temperatures for at least 3 generations (3 divisions)
so that >80% of the population was reared at target
temperature.

The validity of our approach and importance of
acclimation was further investigated by comparing
growth rates of cultures that had been acclimated to
target temperature for 3 generations with those that
had been continuously incubated at target tempera-
ture for 10 d (D10) and 30 d (D30).

2.3.  Cell abundance and biomass

To determine predator and prey abundance,
 samples were preserved in acid Lugol at a 2% final
concentration (Menden-Deuer et al. 2001) and enu-
merated using a Sedgewick-Rafter slide (1 ml vol-
ume) and a Nikon Eclipse E800 light microscope
equipped with phase contrast. A minimum of 500
cells was counted for each sample, and when abun-
dance was lower than 500 cells ml−1, the whole
chamber was counted. Herbivore biovolume was
calculated based on linear dimensions obtained
from ≥35 cells measured at each time point and
temperature treatment using an image analysis sys-
tem consisting of a high-resolution digital camera
(Allied Vision, Stingray F45) and ImageJ software
(version 1.5i). The biovolume was determined as -
suming a prolate spheroid for O. marina and G. do -
minans, while the shape of P. bipes was calculated
according to Jeong et al. (2004). Biovolume was
converted to carbon content according to Menden-
Deuer & Lessard (2000).

2.4.  Growth rate

Growth rates of the 3 herbivorous species were
determined at 7 incubation temperatures: 0, 2, 5, 10,
15, 18 and 22°C. Acclimated growth rates were meas-
ured after gradual transitions of a maximum 3°C and
exposure of 3 generations to the new target tempera-
ture. Experiments were conducted using tempera-
ture-controlled incubators (I-36LLVL Series, Percival
Scientific). Cultures exposed to target temperature
were partitioned into triplicate 150 ml bottles after 3
generations and again after 10 and 30 d (see Section
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2.2) and fed I. galbana at saturating concentration
(1.3 to 5 × 105 ml−1, Kimmance et al. 2006). Changes
in O. marina, G. dominans and P. bipes abundance
and biomass were determined over 24 h incubations
of the triplicate 150 ml bottles and used to calculate
growth rates (µ d−1) assuming exponential growth:
µ = ln(Nt/N0)/t, where: N0 and Nt are the initial and
final cell abundance (or biomass) respectively, and t
is the experiment duration in days.

2.5.  Statistical analysis

The combined effect of temperature and in -
cubation duration (D0, D10, D30) on the growth rates
of each herbivorous species was examined using a 2-
way ANOVA. Differences in division rate and bio-
mass pro duction rate at different temperatures were
tested using a 1-way ANOVA. Normality of data dis-
tributions and homoscedasticity of variance were
verified with a Shapiro-Wilk test. Post hoc tests iden-
tified significant factors, and a Bonferroni correction
was applied to correct for multiple comparisons and
apply a conservative approach to identifying statisti-
cal significance. To identify the best model for pre-
dicting herbivorous growth response to temperature,
we used Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC) and tested linear
and exponential models. The equality of slopes was
assessed through analysis of covariance (ANCOVA).
All analyses were considered significant at p < 0.05,
and were conducted using R (version 1.2.1335) and
Prism 7.

3.  RESULTS

3.1.  Acclimation effect

The acclimation response to warming and to 2°C
cooling of all 3 herbivorous species was identical
(Fig. 1). Furthermore, the rate of acclimation was
remarkably similar in the 3 dinoflagellates across the
temperature gradient (Fig. 1). Acclimation slowed and
cultures took increasingly longer periods of time
when the 3 herbivores were exposed to temperatures
farther from the original long-term culturing temper-
ature of 15°C (Fig. 1). All 3 species survived temper-
ature transitions at maximally 3°C increase (or de -
crease), and transitions of 5−7°C re sulted in high to
total herbivore mortality. In re sponse to warming
effects, Oxyrrhis marina, Gyrodinium dominans and
Protoperidinium bipes required the same number of

days to acclimate to higher temperatures, i.e. 3 and
5 d, respectively at 18 and 22°C. In contrast, the time
required to acclimate to lower temperatures was dif-
ferent for the 3 species. Overall, O. marina needed a
cumulative 36 d to be moved from 15 to 0°C. G. dom-
inans took 17 d to complete the transition from 15 to
5°C and died at temperatures below 5°C irrespective
of acclimation duration, while P. bipes required up to
32 d (Fig. 1) to acclimate to the same temperature
range (15 – 5°C) and did not survive at temperatures
below 5°C. Nevertheless, the rate of transition, i.e. the
slope of the relationship between acclimation time and
temperature, obtained for all 3 species were statisti-
cally indistinguishable (ANCOVA F2,14 = 1.71, p >
0.05), and a common acclimation rate could be estab-
lished. To obtain fully acclimated rates, herbivorous
protists required 1.25 d °C−1 when transitioning to
higher temperature and 2.5 d °C−1 when transitioning
to wards lower temperature.

3.2.  Acclimated temperature response: 
abundance- vs. biomass-based growth

Growth rates increased with increasing tempera-
ture for all 3 species (Fig. 2). O. marina grew at all
temperatures tested (0−22°C), presenting the widest
performance breadth among the species consid-
ered, while G. dominans and P. bipes reached their
temperature minima at 5°C and no rate estimates
could be obtained below 5°C. O. marina growth
rates based on changes in abundance (µab) reached
a maximum (±SD) of 0.96 ± 0.12 d−1 at 22° (Fig. 2a).
Positive growth rates were also observed at the 2
lowest temperatures. Within a narrower temperature

4

Fig. 1. Cumulative days required by each herbivore species
(Oxyrrhis marina, Gyrodinium dominans and Protoperidi -
nium bipes) to achieve acclimated growth through gradual
3°C transitions from the initial isolation temperature (15°C, 

Δ0) to each target temperature
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range, 5−22°C, G. dominans µab increased with in -
creasing temperature up to a maximum of 0.49 ±
0.05 d−1 measured at 18°C, followed by a de crease
in growth at 22°C (Fig. 2b). G. dominans was not
able to grow at 5°C, where a mortality rate of −0.12
± 0.08 d−1 was observed. Within the same thermal
range, P. bipes reached its temperature optimum at
15°C, the long-term culturing temperature, with an
estimated µab of 0.70 ± 0.03 d−1. P. bipes µab was
significantly lower at temperatures above and below
the optimal temperature (1-way ANOVA F2,6 = 39.3,
p < 0.001, Fig. 2c).

As a result of the temperature effect on cell physi-
ology, division rates at lower temperature decreased
and cell size increased. Thus, significant biomass ac -
cumulation was still observed at the 2 lowest temper-
ature treatments, because cells became significantly
larger, despite the low division rates. Thus, to account
for cell size changes due to the mismatch between
division and ingestion rate, we measured growth rates
based on biomass accumulation. O. marina biomass-
based growth rates (µbio) were significantly greater
than those based on cell division (2-way ANOVA
F6,28 = 15.4, p < 0.0001; Fig. 2a). The difference in
magnitude between µbio and µab was greatest at low
temperatures, where µbio was up to 10 times higher
than µab, reflecting an average 50% increase in bio-
volume at 0 and 2°C.

G. dominans biovolume also changed significantly
with temperature (2-way ANOVA F4,232 = 22.18, p <
0.0001), and the increases in cell volume observed at
temperatures above 15°C resulted in µbio up to 3
times higher than µab (Fig. 2b). Contrary to the 2 ath-
ecate dinoflagellates, the µbio of the thecate P. bipes
was not consistently higher than µab (Fig. 2c), reflect-
ing only minor changes in cell volume observed for
this species.

3.3.  Time dependency of growth rates

The acclimated growth rates were measured on D0
and again on D10 and D30 to estimate changes in
growth rate as a function of the duration over which
the herbivores were exposed to new target tempera-
tures. The 3 species showed a common response in
their ability to reach acclimated growth over 3 genera-
tions and sustain this growth for 10 d. The temperature
dependence of growth for O. marina did not change
over time considering either abundance-based (AN-
COVA F2,15 = 2.02, p > 0.05, Fig. 3a) or biomass-based
rates (ANCOVA F2,15 = 0.62, p > 0.05). A similar result
was obtained for G. dominans, where growth rates
measured at D0, D10 and D30 were all comparable
and produced slopes not statistically distinguishable
from each other (ANCOVA F2,7 = 1.12, p > 0.05 and
F2,7 = 1.97, p > 0.05, based on abundance and biomass,
respectively; Fig. 3b). Thus, for the 2 athecate dinofla-
gellates, a 3 generation exposure to a new target tem-
perature was sufficient to reach consistent growth
rates over time and confirms that 3 generations are an
appropriate acclimation period. On the other hand, P.
bipes demonstrated a higher variability. The slight in-
crease in growth rates measured on D10 at 22°C was
followed by a significant decline on D30 (Fig. 3c). P.
bipes growth rates on D30 were significantly lower
compared to those observed on D0 and D10 at all tem-
peratures (2-way ANOVA, F8,20 = 67.57, p < 0.0001), in-
dicating a long-term, adverse effect of P. bipes expo-
sure to changed temperatures. After the month-long
incubation, the only positive growth rate (0.19 ± 0.05
d−1) was measured at 15°C, the original isolation tem-
perature. This indicates that despite the capacity to
grow at a range of temperatures, over the long-term P.
bipes may be un able to sustain growth at altered tem-
peratures and may be more of a temperature specialist.
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Fig. 2. Temperature dependency of acclimated growth rates based on abundance (cells ml−1, filled circles) and on biomass
(µg carbon l−1, open circles) for (a) Oxyrrhis marina, (b) Gyrodinium dominans and (c) Protoperidinium bipes within the tem-
perature range 0−22°C. Due to population mortality, no rate estimates could be obtained below 5°C for G. dominans and 

P. bipes. Symbols with error bars indicate means ± SD



Mar Ecol Prog Ser 634: 1–13, 2020

3.4.  Temperature response

Parameterization of maximum growth rates across
the range of temperatures 0−22°C (Fig. 4) allowed
the identification of comparable responses among
the 3 species. Growth rates increased linearly with in -
creasing temperature considering both abundance-
and biomass-based rates (Fig. 4, Table 1). Despite the
species-specific difference in growth magnitude,
highlighted by the difference in intercepts (ANCOVA
F2,43 = 43.41, p < 0.0001 and F2,38 = 52.23, p < 0.0001,
for abundance- and biomass-based growth rates, re -
spectively), the slopes between maximum growth
and incubation temperature obtained for O. marina,
G. dominans and P. bipes were not statistically differ-
ent from each other, either considering abundance-
based (ANCOVA F2,41 = 2.59, p > 0.05) or biomass-
based rates (ANCOVA F2,36 = 0.38, p > 0.05). Thus,
the temperature–growth dependence is best de -
scribed with a common slope of 0.043 ± 0.002 d−1 °C−1

and 0.062 ± 0.005 d−1 °C−1 based on abundance and
biomass, respectively (Fig. 4). It is noteworthy that
these relationships show an almost 40% faster
increase of the biomass-based rates in response to
increases in temperature.

3.5.  Cell size dependence on temperature

The effect of temperature on cell size was analyzed
after cells were exposed for 10 d to target tempera-
tures. The protists were provided with unlimited food,
thus the changes in cell size reflected the tempera-
ture effect on both growth and prey uptake. Common
to all species, mean cell size was larger at cooler tem-
peratures compared to warmer temperatures (Fig. 5).
O. marina was significantly smaller at 18 and 22°C
than at 0°C (1-way ANOVA, F6 203 = 48.02, p < 0.05),
measuring 21 µm in equivalent spherical diameter
(ESD) at the lowest temperature and only 18 µm ESD

6

Fig. 3. Fully acclimated abundance-based growth rates of the 3 herbivorous protist species, (a) Oxyrrhis marina, (b) Gyro-
dinium dominans and (c) Protoperidinium bipes, measured after 3 generation exposure to each target temperature on Day 0
(D0, white), and then again on Days 10 (D10, grey) and 30 (D30, black) within the temperature range 0−22°C. Due to popula-
tion mortality, no rate estimates could be obtained below 5°C for G. dominans and P. bipes. Symbols with error bars indicate

means ± SD

Fig. 4. Linear temperature dependence in growth rates based on (a) maximum abundance-based and (b) biomass-based rates.
Equations represent the common linear slope based on the 2 metrics and their explanatory power. OM: Oxyrrhis marina; 

GD: Gyrodinium dominans; PB: Protoperidinium bipes
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at the highest (Fig. 5a). Similarly, the mean cell sizes
of G. dominans at 18 and 22°C (15 and 14 µm ESD,
respectively) were significantly lower than the mean
size measured at 10°C (18 µm ESD; 1-way ANOVA,
F3,166 = 30.07, p < 0.0001; Fig. 5b). Although the dif-
ferences in P. bipes cell size at each temperature
were less pronounced compared to the other 2 dino-
flagellates, a decrease in mean ESD from 13 µm
measured at 10°C to 10 µm at 15°C was observed
(Fig. 5c).

4.  DISCUSSION

Temperature is a fundamental driver of physiologi-
cal rates and impacts biological processes on a global
scale. In the ocean, temperature is a descriptor of
broad biomes, such as coastal, polar and temperate
oceans. However, in such dynamic environments,
temperature can fluctuate over short periods of time.
Addressing temperature effects on the growth and
feeding physiology of unicellular herbivores, key
consumers of marine primary production (Steinberg

& Landry 2017), is of pivotal importance to accurately
quantify and predict cellular processes such as diges-
tion and respiration, as well as relevant ecosystem
properties, e.g. predator population abundance and
energy transfer through the pelagic microbial food
web, and ultimately produce reliable carbon cycle
predictions. 

Here, we established species-specific growth re -
sponses across an important temperature gradient
re presenting polar to temperate oceans for 3 cosmo-
politan dinoflagellate species. These data allowed us
to observe commonalities among the 3 species that
will be useful to predict herbivore responses to short-
term temperature fluctuations and long-term warm-
ing of marine waters. All species showed: (1) a com-
mon rate of increase in growth rate with increasing
temperature; (2) a similar rate of acclimation, i.e.
slower to cold and faster to warm temperature, that
re quired 3 generations of exposure to the new condi-
tions; and (3) a common amplitude of temperature
shift to reach acclimation. At the same time, the ob -
served differences in temperature dependency when
considering cell division vs. biomass production rates

7

Fig. 5. Cell size expressed as equivalent spherical diameter (ESD), (a) Oxyrrhis marina, (b) Gyrodinium dominans and (c) Proto -
peridinium bipes, measured after 10 d of exposure to each target temperature at saturated prey concentration. Boxes indicate
the lower 25th and 75th percentiles, the line within each box indicates the median, and the whiskers represent the interquartile 

range, based on the Tukey method. Black dots represent outliers

Model                                          Slope Abundance-based growth              Slope Biomass-based growth
Species                                                                AIC        BIC        df       R2                                                AIC        BIC      df        R2

Linear
Oxyrrhis marina                 0.046 ± 0.003        −81.57    −72.72     19     0.89       0.059 ± 0.006      −55.54    −57.47    16      0.83
Gyrodinium dominans      0.029 ± 0.004        −55.57    −47.39     10     0.78       0.070 ± 0.010      −30.36    −34.39    10      0.71
Protoperidinium bipes       0.041 ± 0.004        −57.68    −49.82     10     0.86       0.063 ± 0.008      −42.30    −46.33    10      0.84
Common                            0.042 ± 0.002                                               0.88       0.062 ± 0.005                                            0.81

Exponential
O. marina                                                          −70.84    −63.01     19     0.83                                   −48.73    −50.66    16      0.75
G. dominans                                                     −52.84    −45.11     10     0.72                                   −26.89    −30.59    10      0.62
P. bipes                                                             −49.44    −42.76     10     0.74                                   −37.07    −41.10    10      0.76

Table 1. Results of the comparative analysis between linear and exponential models to best describe growth responses to tem-
perature. The test was performed on both abundance- and biomass-based rates for each species. AIC: Akaike’s information
criterion; BIC: Bayesian information criterion. The lowest information criteria values and thus the best fits are shown in bold,
as is the resulting common linear slope describing abundance and biomass growth temperature dependence. Slope values 

represent means ± SD
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highlight the need for thoughtful consideration of
when abundance-based or biomass-based assess-
ments are most suitable. As shown here and ob -
served previously (e.g. Anderson & Menden-Deuer
2017), the rate at which cells divide can, in fact, be
uncoupled from the rate at which biomass accumu-
lates, because feeding status or responses to environ-
mental conditions can affect cell size independently
from division rate. Thus, cells not actively dividing
but accumulating biomass can function as ‘energy
packs’ for higher trophic levels.

4.1.  Acclimation effect

Investigation into herbivorous protist responses to
temperature fluctuations poses experimental chal-
lenges regarding both the time needed for species to
acclimate to a new condition and the amplitude of
the temperature shift sustainable in a single step by
each species. Information is lacking about both as -
pects of the acclimation process, particularly with re -
spect to herbivorous protists. For monospecific phyto -
plankton laboratory cultures, Brand & Guillard (1981)
found that in order to achieve stability of a single
metric (growth rate), the required acclimation period
was 1−3 wk and depended on species. Due to tem-
perature-dependent differences in growth rate, de -
fining temperature acclimation using as a common
denominator the number of generations exposed to
the new condition instead of the duration in days,
might produce more comparable data among tem-
peratures (Montagnes & Franklin 2001). Further-
more, investigations on the amplitude of the temper-
ature shifts that herbivorous protists can survive are
completely missing. Shifts in temperature that ex -
ceed the maximum temperature change tolerable in
a single step could lead to the establishment of in -
accurate species’ performance breadths, which could
affect our understanding of ecosystem structure and
function. The approach taken here can point to a best
practice in plankton physiology that includes deter-
mination of survivable temperature fluctuations and
establishment of the time frame of sustained growth,
considering exposure to both increasing and de -
creasing temperature. Such approaches are needed
to produce rates suitable for comparisons between
studies and/or species and to better represent natural
dynamics.

Remarkably, we were able to determine a common
amplitude and time frame of temperature shifts at
which growth rates can be confidently considered
acclimated. The first acclimated rates measured (D0)

were either not statistically different or representa-
tive of the same trend observed after 1 mo of expo-
sure to the target temperature. The similarity in
response in these 3 dinoflagellate species is remark-
able, given that other metrics differed in a species-
specific manner. While 3 species are insufficient to
propose a universal acclimation rate, it appears that
once cells were acclimated to target conditions, there
were no subsequent intermediate or long-term
changes to growth rates. Thus, the data presented
here provide a meaningful constraint on the time
scale of acclimation. Determination of whether this is
the case amongst other dinoflagellates or non-dino-
flagellate unicellular herbivores will support ecologi-
cally relevant predictions of herbivore responses to
fluctuations in environmental temperature and the
consequences of these fluctuations on population
production.

4.2.  Thermal sensitivity

The 3 herbivorous protists investigated in this
study, despite being isolated at similar environmen-
tal temperature and maintained at a constant temper-
ature over months to years, displayed distinct ther-
mal sensitivities within the thermal range explored.
Oxyrrhis marina exposed to an environmentally rele-
vant range of temperatures responded as a true ther-
mal generalist, growing at all temperature tested,
given enough time to acclimate to the new condi-
tions. Although we did not explore the complete tem-
perature performance curve, the growth rates and
the performance breadth measured in our study sig-
nificantly expanded the unexplored lower tempera-
ture range of O. marina. The positive rates observed
at the 2 lowest temperatures indicate that O. marina
is able to grow in polar or wintertime conditions.
Despite the fact that O. marina has been extensively
used for experimental studies, some of which have
been employed to develop or parameterize mathe-
matical models (Davidson et al. 2011 and literature
therein), we found only 1 other study that reported a
sufficient thermal range to establish a reaction norm
for O. marina (Kimmance et al. 2006). This lack of
data, even for this well studied species (Montagnes et
al. 2011), is remarkable. The growth rates and the
performance breadth measured in our study match
well with those presented by Kimmance et al. (2006).
Combining the data from both studies, O. marina
grew within a temperature range spanning 0 to 30°C,
with the optimum temperature at 25°C, higher than
the highest temperature used in our study. Protoperi-
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dinium bipes and Gyrodinium dominans shared the
same relatively narrower temperature breadth
(5−22°C). However, the long-term exposure tested
highlighted possible divergences in the degree of
acclimation of these 2 species. The sharp decline in
growth on either side of the optimum temperature
after a month of exposure to target temperature sug-
gests that P. bipes might have a limited ability to
withstand large and/or prolonged temperature
changes. On the other hand, G. dominans was able to
withstand changes and acclimate to a range of tem-
peratures, albeit more restricted compared to O.
marina. The magnitude of growth in G. dominans
compared well with a G. dominans strain isolated
from the Ie-shima Islands, Japan, at in situ tempera-
ture of ~25°C (Nakamura et al. 1992). A performance
breadth shifted towards higher temperature is not
surprising given the differences in the source envi-
ronment and the ability of herbivorous protists to
adapt to their environment, whether it be a tempera-
ture extreme (Franzè & Lavrentyev 2014, Menden-
Deuer et al. 2018, Lavrentyev et al. 2019) or charac-
terized by spatially or temporally heterogeneous
prey availability (Paffenhöfer et al. 2007, Menden-
Deuer & Fredrickson 2010, Anderson & Menden-
Deuer 2017).

The difference in thermal responses between spe-
cies observed in this and previous studies (Chen &
Laws 2017, Wang et al. 2019) can determine winners
and losers in a changing ocean. Thus, climate can
affect ecosystem function directly by imposing spe-
cies range limits (Gaston 2003), and indirectly
through geographically varying competitor abun-
dances and performance (Gross & Price 2000, Price &
Kirkpatrick 2009). Characterization of the thermal
responses and identification of driving factors (e.g.
species specificity, abiotic drivers) affecting the re -
sponses of herbivorous protists to temperature will
improve our predictive ability of species succession,
energy transfer and trophodynamics in a changing
ocean.

4.3.  Abundance-based vs. 
biomass-based growth rates

Mean cell sizes of protists change considerably
with both temperature and population abundance
(Forster et al. 2013). Consequently, the often made
assumption that biomass per cell is constant is
invalid, because cell size is a commonly used deter-
minant of total cellular biomass (Menden-Deuer &
Lessard 2000). Thus, a doubling of cell number does

not necessarily result in a doubling in biomass nor
does a lack of change in cell abundance imply con-
stant biomass. A system considered static based on
low division rates could indeed reveal itself as quite
active, with significant ingestion rates and biomass
accumulation that can support transfers of energy.
Thus, taking into account cellular responses based
on division rate or biomass accumulation provides
more comprehensive understanding of the systems.
Nevertheless, typically no distinction is made be -
tween abundance- and biomass-based growth, and
the majority of the data available for model integra-
tion are abundance-based growth rates. Here we
show that the 2 rates are not equivalent, and the fact
that the magnitude of the dinoflagellates’ thermal
response differed significantly whether it was based
on cell division or biomass production raises ques-
tions about the accuracy of productivity models
based on rates that do not represent the potential car-
bon availability within food webs. Biomass-based
rates up to 10 times higher than the abundance-
based ones suggest significant biomass accumulation
and thus carbon availability also at low rates of cell
division. Remarkably, large cell size increases were
characteristic of cool temperatures, implying a par-
ticular bias of underestimating biomass availability
in polar or wintertime regions. The increasing ap -
pearance of models that take into account the strate-
gic role of herbivorous plankton in redistributing
resources within marine systems and incorporate
predator− prey dynamics (Stock et al. 2014, D’Alelio
et al. 2015, 2016) show the urgency of recognizing
systematic deviations between estimates (e.g. divi-
sion vs. production) and their causes (e.g. tempera-
ture effects on rates vs. cell size changes). Providing
common descriptors that transcend species speci-
ficity supports these cross-biome comparisons of eco-
system structure and function.

4.4.  Temperature response

The maximum growth rates of the 3 herbivorous
protists linearly increased with increasing tempera-
ture considering both abundance- and biomass-
based rates. The major frameworks addressing either
species or whole plankton community temperature
dependence of growth, often referred to as division
rate, all predict that such an increase will follow an
exponential trend, whether it is the seminal Eppley
curve for phytoplankton (Eppley 1972), the more
recent metabolic theory of ecology (Gillooly et al.
2001, Brown et al. 2004) or the widely used Q10
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model. A major review of herbivorous protists’ spe-
cies-specific growth rates as a function of tempera-
ture also de scribes the growth–temperature relation-
ship as exponential (Rose & Caron 2007). These
approaches combine works based on many species to
develop a ‘whole community’ temperature depend-
ence of growth (e.g. Eppley 1972), which assumes
that at any given temperature, some species will
grow at their particular maximum rate. Our study
was not designed to emulate these large data sets,
nor did we aim to quantify the temperature–growth
dependence across the entire temperature breadth
(norm) of each species (Boyd et al. 2013). 

Keeping these limitations in mind, combining our
abundance-based data with literature values, we
find little support for assuming that growth increases
exponentially with increasing temperature. A linear,
rather than exponential, dependency of growth on
temperature has important quantitative ramifications
for resulting predictions of population abundance
and food web impacts. Several previous studies have
concluded that herbivorous protist growth responds
linearly to temperature (i.e. Montagnes & Lessard
1999, Strzepek & Price 2000, Montagnes & Franklin
2001). This hypothesis has been empirically sup-
ported by 79 peer-reviewed datasets, which yielded
a linear dependence of abundance-based growth on
temperature of 0.07 d−1 °C−1 (Montagnes et al. 2003).
Both species-specific and whole community protist
growth rates were found to linearly increase with
temperature in the Arctic Ocean, particularly at tem-
peratures below 3°C (Lav rentyev et al. 2019). The
maximum growth rates based on abundance ob -
tained for the 3 dinoflagellate species examined in
this study also showed a linear relationship with tem-
perature, supporting the findings of these previous
studies that the response of herbivo-
rous protists to temperature is better
represented by a simple linear model
(Montagnes et al. 2003, Franzè &
Lavrentyev 2014, Lavrentyev et al.
2019). Montagnes et al. (2003) also
sug gested that the use of the 2-point
Q10 model to predict the relationship
be tween herbivorous growth and tem-
perature can introduce a systematic
error and inappropriately im pose an
exponential response to a linear rela-
tionship. Scaling the average maxi-
mum growth rate for herbivorous pro-
tists at 20°C (2.0 d−1, extrapolated from
Fig. 6 of Rose & Caron 2007) and
applying a linear increase in growth

with temperature as observed for abundance-based
rates in our study, and widely supported in the litera-
ture, the predicted abundance-based growth rates
were about 30% lower than the growth rates of her-
bivores predicted by the commonly used Q10 of 2 or
the growth rates of autotrophic protists predicted
using Eppley’s Q10 (Fig. 6) at temperatures >20°C. A
linear temperature de pendence of herbivore growth
implies rate increases much more modestly with
increasing temperature than anticipated by models
using an exponential dependency. An important con-
sequence of assuming exponential growth with
increasing temperature and greater temperature
sensitivity in heterotrophs than autotrophs (Brown et
al. 2004) is that predators rapidly outgrow their prey
populations, suggesting high trophic transfer rates,
low export and possibly food limitation for herbi-
vores. At the same time, the predicted decline in
growth at lower temperatures, suggested as one of
the mechanisms that allows phytoplankton blooms at
high latitudes, is not reflected either in the laboratory
observations contributed here, nor in prior in situ
observations of herbivorous protists growing at their
maximum rates at temperatures below 5°C (Franzè &
Lavrentyev 2014, Menden-Deuer et al. 2018, Lavren-
tyev et al. 2019). These discrepancies confirm the
inadequacy of the present models to predict much of
the ocean ecosystem, and highlight the need to take
into account different metrics in order to capture the
differential effect that environmental changes might
have on cellular physiology. It is necessary to settle
these significant questions in order to accurately pre-
dict predator−prey dynamics in microbial food webs
in a rapidly changing ocean. An important step is to
identify statistically supported parameterizations of
temperature dependence in physiological rates, as
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done here for 3 species, that are valid for many spe-
cies. Identifying cohesive responses despite the com-
plexity of planktonic systems is critical in producing
accurate predictions of ocean ecosystem function,
including carbon cycling, export production, species
diversity, distribution and responses to environ -
mental change (e.g. Stock & Dunne 2010, Caron &
Hutchins 2013, Siegel et al. 2016).

5.  CONCLUSIONS

This study provides data on acclimated tempera-
ture dependence of 3 cosmopolitan herbivorous dino -
flagellates and the required rates of acclimation
within an ecologically relevant temperature range,
especially at the poorly characterized cool tempera-
tures representative of much of the polar ocean and
temperate waters through all but the summer season.
The data produced alleviate a fundamental knowl-
edge gap in plankton physiology, improving our
understanding of how temperature affects physiolog-
ical rates, behavior and species interactions that can
lead to shifts in community composition and affect
spatial and seasonal abundance patterns of these key
herbivores. These temperature responses may also
aid in anticipating food web function in a warming
ocean, particularly the relative rates of increase in
the growth rates of phytoplankton vs. herbivorous
protists. Through these results, we highlight the
importance of applying the appropriate metric, i.e.
abundance- or biomass-based growth rates, to pro-
duce robust and dependable biogeochemical and
ecosystem models. Additionally, the understanding
that acclimation is achieved within a few generations
will support cross-biome comparisons of growth pre-
dictions, helping to constrain future scenarios of eco-
system structure and function.
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