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Abstract. The net ecosystem productivity (NEP) of two sea-
grass meadows within one of the largest seagrass ecosystems
in the world, Florida Bay, was assessed using direct measure-
ments over consecutive diel cycles during a short study in the
fall of 2018. We report significant differences between NEP
determined by dissolved inorganic carbon (NEPDIC) and by
dissolved oxygen (NEPDO), likely driven by differences in
air–water gas exchange and contrasting responses to varia-
tions in light intensity. We also acknowledge the impact of
advective exchange on metabolic calculations of NEP and
net ecosystem calcification (NEC) using the “open-water”
approach and attempt to quantify this effect. In this first direct
determination of NEPDIC in seagrass, we found that both sea-
grass ecosystems were net heterotrophic, on average, despite
large differences in seagrass net above-ground primary pro-
ductivity. NEC was also negative, indicating that both sites
were net dissolving carbonate minerals. We suggest that a
combination of carbonate dissolution and respiration in sed-
iments exceeded seagrass primary production and calcifica-
tion, supporting our negative NEP and NEC measurements.
However, given the limited spatial (two sites) and temporal
(8 d) extent of this study, our results may not be representa-
tive of Florida Bay as a whole and may be season-specific.
The results of this study highlight the need for better tempo-
ral resolution, accurate carbonate chemistry accounting, and
an improved understanding of physical mixing processes in
future seagrass metabolism studies.

1 Introduction

Seagrass ecosystems are often net autotrophic, producing
more organic matter (OM) than they consume (Duarte et al.,
2005, 2010; Barrón et al., 2006; Unsworth et al., 2012; Long
et al., 2015a; Ganguly et al., 2017; Perez et al., 2018). In ter-
restrial ecosystems, CO2 uptake by photoautotrophs neces-
sarily leads to an exchange of carbon from the atmosphere to
the biosphere. However, such a net uptake of CO2 by sub-
merged seagrass is attenuated as carbon produced or con-
sumed by net ecosystem productivity (NEP) interacts with
the carbonate buffering system and the processes of calci-
fication and carbonate dissolution in the water, submerged
sediments, and calcifying organisms. The impact of seagrass
carbonate chemistry on measurements of NEP is further ob-
scured by physical processes at the air–water interface, which
may cause temporal lags between NEP and air–water CO2
exchange.

Calcification is an important process in many tropical and
subtropical seagrass ecosystems (Mazarrasa et al., 2015) and
has the net effect of consuming total alkalinity (TA) in ex-
cess of dissolved inorganic carbon (DIC), thereby decreas-
ing pH and generating CO2. Florida Bay is a well-studied
seagrass-dominated ecosystem and is assumed to be net cal-
cifying given the vast autochthonous sedimentary deposits
of CaCO3 that have accumulated in the bay in the last 3 mil-
lennia (Stockman et al., 1967; Bosence et al., 1985). While
much of this CaCO3 was produced by other photoautotrophic
or non-photoautotrophic calcifiers (Frankovich and Zieman,
1994), it is likely that some unknown fraction was also de-
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rived from calcification driven directly by the seagrass (En-
ríquez and Schubert, 2014), although the extent to which in-
ternal CaCO3 formation occurs remains a debated topic. Ex-
isting measurements from Florida Bay show that net ecosys-
tem calcification (NEC) can vary from positive to negative
over diel cycles (Turk et al., 2015) and across gradients of
seagrass productivity and substrate type (Yates and Halley,
2006). The relative magnitudes of NEC and NEP in the con-
text of the overall seagrass ecosystem carbon budget is un-
clear, and it is still uncertain which component of the ecosys-
tem dominates net calcification (seagrass, benthic inverte-
brates, macroalgae, etc.). Early assessments of seagrass NEC
in Florida Bay relied on species-specific calcification rates
that were upscaled to the community or ecosystem level.
These studies indicate that epiphytic calcification can domi-
nate NEC (Frankovich and Zieman, 1994) and that the phys-
ical transport of carbonate mud within the bay is likely sig-
nificant (Bosence, 1989). The physical transport of carbon-
ate mud is important because it can allow CaCO3 formation
and destruction to become spatially decoupled such that re-
gions of net dissolution may exist within the larger context
of the net calcification of Florida Bay. More recently, results
from in situ chambers have indicated that seagrass primary
production can dominate short-term carbonate chemistry dy-
namics (Hendriks et al., 2014; Turk et al., 2015; Camp et al.,
2016).

This biological CO2 addition or removal causes non-linear
changes in the marine carbonate system, further challeng-
ing direct measurements of seagrass ecosystem NEP. Hence,
prior assessments of seagrass NEP were often made using
dissolved oxygen (DO) production as a proxy for CO2 fix-
ation, necessitating the assumption of a photosynthetic quo-
tient (PQ) relating CO2 fixation to DO production. The as-
sumption of a PQ value is made problematic by the car-
bonate system reactions discussed earlier, which affect CO2
but not DO. While it is often assumed that PQ is approxi-
mately 1 (e.g., Duarte et al., 2010), prior measurements of
1CO2/1DO in seagrass ecosystems show a wide range of
values, from 0.3 to 6.8 (Ziegler and Benner, 1998; Barrón
et al., 2006; Turk et al., 2015). As a result, potential ex-
ists for a general disagreement between NEP assessed us-
ing measurements of carbon and those using its O2 proxy
(NEPDO). Hence, we identify a need for simultaneous mea-
surements of pH, O2, pCO2, TA, and dissolved inorganic
carbon (DIC) when assessing seagrass ecosystem NEP and
NEC, which may explain the divergence between CO2- and
O2-based methods.

In addition to the importance of primary production in sea-
grass meadows as a source of energy to fuel coastal ecosys-
tems, the net uptake or production of CO2 could have other
important impacts on the carbonate chemistry of overlying
seawater. High primary production drives large diel varia-
tions in pH within seagrass meadows (e.g. Hendriks et al.,
2014; Turk et al., 2015; Camp et al., 2016; Challener et al.,
2016), and it has been suggested that seagrass NEP may

partially buffer coastal ocean acidification (OA) by consum-
ing CO2, thereby creating refugia for calcifying organisms
(Manzello et al., 2012; Unsworth et al., 2012; Hendriks et
al., 2014; Koweek et al., 2018; Pacella et al., 2018). Seagrass
may also help to buffer local changes in pH by attenuating
mangrove-derived fluxes of DIC (Buillon et al., 2007). How-
ever, it remains unclear how NEP and NEC might interac-
tively affect carbonate system buffering in regions where pri-
mary producers of biomass and NEP are limited by the avail-
ability of nutrients, like in the severely phosphorus-limited
regions of Florida Bay (Fourqurean et al., 1992).

Prior studies of NEPDO in Florida Bay have suggested net
autotrophy (Long et al., 2015a), yet others were unable to
infer long-term NEPDO balance (Turk et al., 2015). Both of
these estimates of NEPDO necessarily ignore any anaerobic
catabolic biogeochemical processes that may cause NEPDIC
to decrease but do not affect NEPDO. Rates of denitrification
(Eyre and Ferguson, 2002) and sulfate reduction (Smith et
al., 2004; Ruiz-Halpern et al., 2008) can be significant in sea-
grass soils, although rates may depend on specific seagrass
morphology and physiological traits (Holmer et al., 2001).
Additionally, despite the inferred net ecosystem autotrophy
of seagrass, pCO2 is often found above (Millero et al., 2001)
or near (Yates et al., 2007) equilibrium with the atmosphere
throughout most of Florida Bay, suggesting the important
role of NEC or anaerobic catabolic processes in generating
excess CO2.

In this study, we describe our direct measurements of
NEPDIC, NEPDO, and NEC in two Florida Bay seagrass sites.
We investigate variations in NEP and NEC across a seagrass
productivity gradient, discuss differences between NEPDIC
and NEPDO, and suggest possible drivers of NEP and NEC.

2 Methods

2.1 Study site

This study took place in one of the largest seagrass ecosys-
tems in the world, Florida Bay (Fig. 1), where we occu-
pied two primary study sites which experience similar hydro-
logic and climatologic conditions yet differ substantially in
community composition and biomass (Table 1). The choice
of these sites allowed us to discern the effects of seagrass
abundance and productivity on NEP and NEC that are inde-
pendent of the environmental setting. Both sites were domi-
nated by the seagrass Thalassia testudinum in a phosphorus-
limited region (Fourqurean et al., 1992), have similar wa-
ter depths (∼ 2 m), and were approximately 0.5–1 km from
land. However, these sites differed in important factors like
seagrass above-ground biomass, nutrient content, morphol-
ogy, sediment depth, soil carbon (organic and inorganic), and
soil nutrient content (Table 1). The potential for submarine
groundwater discharge at these locations is low (Corbett et
al., 1999). In addition to the two primary study sites, we col-
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Figure 1. Site map, showing locations of the high- and low-density
sites (HD and LD) and meteorological stations used to derive U10
and pCO2 data (MS and CR, respectively). Additional FCE-LTER
sites used in this study are shown as the dark-green squares: Sprig-
ger Bank (SB), Bob Allen (BA), Little Madeira (LM), and Duck
Key (DK).

lected time series data of DO and pH for an additional four
Florida Coastal Everglades Long Term Ecological Research
(FCE-LTER) sites in an effort to test whether the relationship
between NEPDO and NEPDIC observed in this study can be
extended over larger areas of Florida Bay.

2.2 Sampling campaigns

We quantified NEPDO, NEPDIC, and NEC at our high-density
and low-density sites by measuring diel excursions in DO,
DIC, and TA and applying corrections to account for factors
like air–water gas exchange and variations in water depth
and light intensity. This is essentially a modification of the
“free-water” approach to assessing NEP (Nixon et al., 1976;
Odum and Hoskin, 1958), where the total inventory of DIC
or O2 is monitored over time. A benefit of this approach
over traditional chamber-based metabolism methods is that
the container effect is avoided, which is known to result in
underestimations of benthic respiration due to a dampen-
ing of turbulent sediment-water exchange (Hopkinson and
Smith, 2007). This approach has a number of weaknesses,
however, related both to the reliance on modeled air–water
gas exchange, which is subject to a high degree of uncer-
tainty (Upstill-Goddard, 2006), and the assumption that the
system is closed and does not exchange water or material
with adjacent systems. Both of these assumptions may be
broken in shallow seagrass meadows, where tides are mini-
mal but a wind-driven seiche can be important. Furthermore,
the physics governing air–water gas exchange in these sys-
tems are very poorly understood, and while it is assumed
that wind-driven turbulence is the dominant driver, other fac-
tors like convection (MacIntyre et al., 2010; Podgrajsek et
al., 2014), bottom-driven turbulence (Ho et al., 2016; Ray-

mond and Cole, 2001), surfactant activity (McKenna and
McGillis, 2004; Lee and Saylor, 2010), and chemical en-
hancement may at times play an equal or greater role (Smith,
1985; Wanninkhof, 1992).

During two sampling campaigns in late 2018, measure-
ments were made over consecutive diel cycles for a total of
8 d. The first campaign lasted for ∼ 4 d, from 28 October–
1 November, while the second campaign, also ∼ 4 d, lasted
from 25 to 29 November. Samples were taken three times per
day during the first campaign (dawn, noon, and dusk) and
four times per day during the second campaign (dawn, late
morning, early afternoon, and dusk). During the first sam-
pling campaign, water samples were collected for the analy-
sis of stable isotopic composition of DIC (δ13CDIC) in an ef-
fort to constrain potential DIC sources. We applied Keeling
plots to our isotopic data, where 1/nDIC is plotted against
δ13CDIC. In this approach, the y intercept (as 1/nDIC ap-
proaches 0) indicates the δ13CDIC value as nDIC approaches
infinite concentration (e.g., as 1/nDIC approaches 0) and can
be interpreted as an indicator of the δ13CDIC of the source of
the DIC (Karlsson et al., 2007).

2.3 Discrete measurements

At our primary study sites, water samples for total alkalinity
(TA) and dissolved inorganic carbon (DIC) were collected
with pre-rinsed borosilicate bottles at a depth of approxi-
mately 0.2 m. TA and DIC samples were preserved with a
saturated solution of HgCl2 and stored on ice until analysis
(Dickson et al., 2007). Samples for δ13CDIC were taken at the
same depth, filtered to 0.45 µm, and preserved with HgCl2.
Calcite saturation state (�calcite) was calculated in CO2SYS
(Lewis and Wallace, 1998) from measured TA, DIC, salinity,
and temperature, using the H2CO3 dissociation constants of
Mehrbach et al. (1973) refit by Dickson and Millero (1987).

At each of our primary sites, small quadrats (n= 6;
10cm×20cm) were randomly placed; at the quadrats, aerial
seagrass primary productivity (gm−2 d−1) rates were de-
termined using the leaf-marking technique (Zieman et al.,
1989). For this analysis, seagrass leaves were scraped of all
epiphytes using a razor blade, rinsed, and dried at 65 ◦C un-
til a constant weight. This dried seagrass material was then
weighed as seagrass biomass. Dry samples were homoge-
nized and ground to a fine powder using a motorized mortar
and pestle in preparation for tissue elemental content analysis
(C, N, and P). Powdered samples were analyzed for total car-
bon (TC) and nitrogen content using an elemental analyzer
(Thermo FlashEA, 1112 series). Phosphorus content was de-
termined by a dry-oxidation, acid hydrolysis extraction fol-
lowed by a colorimetric analysis of phosphate concentration
of the extract (Fourqurean et al., 1992). The elemental ratio
is reported as mole :mole. Surface soils were collected using
a 60 mL manual piston core following previously described
methods for determining soil carbon content (Corg and Cinorg;
Fourqurean et al., 2012b).

www.biogeosciences.net/16/4411/2019/ Biogeosciences, 16, 4411–4428, 2019
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2.4 Continuous measurements

At each of our primary sites, we deployed a YSI EXO2 water
quality sonde which recorded water depth, sea surface tem-
perature (SST; ◦C), sea surface salinity (SSS), and dissolved
oxygen (DO; mgL−1) at an interval of 15 min. In situ pH was
measured at each site with an ion-sensitive field effect tran-
sistor sensor (Sea-Bird SeaFET) at an interval of 5 min, with
an initial accuracy of ±0.05 pH on the Total scale. In order
to assess the sensitivity of NEP and NEC to light availabil-
ity, we recorded photosynthetically active radiation (PAR) at
the seagrass canopy (µEm−2 s−1 – microeinsteins per second
per square meter; an einstein is equal to one mole of photons)
with a submerged Sea-Bird ECO-PAR sensor equipped with
an automatic wiper for the optics. We also deployed Low-
ell tilt current meters (TCMs) at both of our primary sites to
assess lateral transfer of water through the site, but the ob-
served current speeds were below the minimum detectable
speed for these instruments (<∼ 2 cms−1).

At the four FCE-LTER sites (Fig. 1), we measured DO
and pH over a span of 4–7 d in September (BA, LM, and
DK) and 8 d in December (SB), with an hourly sampling
frequency using YSI EXO2 sondes. These sites span broad
gradients in phosphorus limitation, seagrass productivity
(Fourqurean et al., 1992), carbonate production (Yates and
Halley, 2006), DIC and TA concentrations (Millero et al.,
2001), and air–water CO2 exchange (Yates and Halley, 2006;
DuFore, 2012). We used these pH and DO data to calculate
temporal excursions in DO (1DO) and hydrogen ion concen-
tration (1[H+]; mMh−1), which are proxies for NEPDO and
NEPDIC, respectively (Long et al., 2015b). Data from these
FCE-LTER deployments were compared with data from the
two primary sites to determine whether the results of this
study were generalizable to the rest of Florida Bay.

2.5 Benthic chamber fluxes

During the second sampling campaign, benthic chambers
were deployed continuously over bare sediment at each of
our primary sites to measure sediment-water fluxes of TA
and DIC, excluding the effect of seagrass shoots. At the be-
ginning of the experiment, acrylic chambers (∼ 2.5 L) were
flushed with site water and placed at a naturally seagrass-
free location on the sediment, within a few meters of each of
our primary sites. Chamber incubations ran for a total of 4 d.
At intervals ranging from 8 to 20 h, ∼ 150 mL samples were
taken from the chambers using a syringe, and the chambers
were re-equilibrated with ambient site water. Fluxes were
calculated based on the difference in concentration between
the ambient water sample at the initial time of chamber place-
ment and the final concentration inside the chamber.

2.6 Sample analysis

TA was analyzed in at least triplicate (n= 3–5) 25 mL sub-
samples by automated Gran titration at a controlled tem-
perature on an Apollo AS-ALK2, with an average pre-
cision (standard deviation of replicate measurements) of
±1.89 µmolkg−1, or 0.07 % of the average measured TA.
Samples for DIC were analyzed by injecting 250 µL sub-
samples into an impinger filled with 10 % HCl, converting
all DIC to CO2, which was subsequently transferred with
a pure N2 carrier gas to a LI-COR 6262 infrared gas ana-
lyzer in integration mode. Samples were repeatedly injected
(3–5 times) to improve the precision, which was still notice-
ably lower than that for TA, at ±5.11 µmolkg−1, or 0.21 %.
During each TA and DIC run, a certified reference material
(CRM) was repeatedly measured to quantify any drift or sys-
tematic bias with these analyses. The CRM used was pur-
chased from Andrew Dickson at the Marine Physical Labo-
ratory in La Jolla, California, and was a part of batch no. 154.
We used these CRM measurements to correct TA and DIC,
assuming a linear drift between repeat CRM runs. The mag-
nitude of this correction was on average 0.75 % for DIC and
0.34 % for TA. Both TA and DIC measurements were con-
verted to gravimetric units by multiplying the concentration
(µM) by the calculated SSS- and SST-derived seawater den-
sity using the Gibbs Seawater toolbox for MATLAB (GSW;
McDougall and Barker, 2010) to derive units of micromoles
per kilogram.

Samples for δ13CDIC were analyzed on a Thermo Gas-
Bench coupled to a Thermo DELTA V Isotope Ratio Mass
Spectrometer and reported in delta (δ) notation in units of per
mill (‰) relative to Vienna Pee Dee Belemnite. Precision for
this measurement was±0.4 ‰ based on replicate analyses of
CRM (Dickson et al., 2003).

2.7 NEP and NEC calculations

NEC, NEPDIC, and NEPDO were determined by integrating
temporal excursions in salinity-normalized TA (nTA), DIC
(nDIC), and DO. We quantified the total TA or DIC inven-
tory over time to determine NEC and NEP in what is an
application of the open-water approach. This approach re-
quires a static water mass that is thoroughly mixed and a
water residence time that is long enough to prevent lateral
exchanges from affecting TA and DIC concentrations. This
open water approach is often applied to shallow coastal sys-
tems including tidally inundated coral-reef lagoons, which
are restricted from exchanges with the coastal ocean at low
tide (Shaw et al., 2012; McMahon et al., 2018). While this
approach may not be appropriate for coral-reef lagoons at
high tide due to excessive lateral mixing and vertical hetero-
geneities (McMahon et al., 2018), this region in Florida Bay
is not subject to tidally driven mixing to the same extent.
First, NEC (mmolCaCO3 m−2 h−1) was estimated using the
alkalinity anomaly technique, which assumes that variations
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in TA are affected only by CaCO3 precipitation and dissolu-
tion (Eq. 1):

NEC=−0.5×
1nTA
1t
×hρ, (1)

where 1nTA was the difference in nTA (nTA= TA×
SSSAverage/SSS), h was the water depth, and ρ was the
seawater density. The −0.5 scalar was required because
2 mol of TA are required to form 1 mol of CaCO3 produc-
tion. Salinity-normalized DIC (1nDIC) was calculated in
the same manner as 1nTA. The temporal excursion in nTA
used for Eq. (1) was calculated between each sampling point
shown in Fig. 2g and h, for a total of 28 individual mea-
surements of NEC. SSSAverage was determined for each sam-
pling campaign at each site. By convention, NEC is positive
when TA consumption occurs, and CaCO3 is inferred to have
been precipitated. Because of this, other processes which act
as sources or sinks of TA will necessarily impact calculated
NEC. Such processes include denitrification, which is a net
source of TA due to the consumption of HNO3. Sulfate re-
duction also produces TA but only if reduced sulfur is re-
tained in the sediment and is not oxidized in oxygenated pore
water. NEPDO (Eq. 2; mmolO2 m−2 h−1) and NEPDIC (Eq. 3;
mmolCm−2 h−1) were calculated in a similar manner, but
with additional corrections for air–water gas exchange and
DIC consumption by NEC:

NEPDO =
1DO
1t

hρ−O2 flux, (2)

NEPDIC =
1nDIC
1t

hρ−NEC−CO2 flux, (3)

where O2 and CO2 fluxes (Eqs. 4 and 5) were estimated with
a bulk-transfer approach using two different formulations for
the gas transfer velocity (k600; cmh−1). These k600 parame-
terizations were intended to represent upper (Raymond and
Cole, 2001) and lower (Ho et al., 2006) bounds for gas ex-
change. Wind data used to derive the k600 were taken from
the NOAA meteorological station at Islamorada (DW1872;
Fig. 1) and normalized to a height of 10 m a.m.s.l. under neu-
tral drag conditions (U10; Large and Pond, 1981):

O2 flux= k600 · Sc ·
(
O2(water)−O2(air)

)
, (4)

CO2 flux= k600 · Sc ·K ·
(
pCO2(water)−pCO2(air)

)
, (5)

where pCO2(water) was the partial pressure of CO2 (µatm),
and O2 was the measured DO concentration (mgL−1).
pCO2(water) was calculated from measured TA and DIC us-
ing CO2SYS as above. Atmospheric pCO2 (pCO2(air)) was
taken from the nearby Cheeca Rocks mooring buoy operated
by the NOAA (Fig. 1), while O2(air) was calculated from the
measured DO (%). The gas solubility (K) and Schmidt num-
bers (Sc) were calculated from in situ SSS and SST (Wan-
ninkhof, 1992; Weiss, 1974). No attempt was made to re-
fine NEC by accounting for the TA produced by ecosystem

productivity, but preliminary calculations assuming TA in-
creases with DIC consumption at a ratio of 17/106 (Middel-
burg, 2019) indicated that this TA production was a small
fraction of total NEC (average difference of < 10 %). Fur-
thermore, the implicit consideration of NEPDIC into the cal-
culation of NEC (Eq. 1) introduces a circular reference in
Eq. (3) (which includes NEC) that cannot be resolved in this
approach.

2.8 Uncertainty analysis for NEP and NEC calculations

While our primary study sites are minimally affected by lu-
nar tides, light water currents driven by wind and other fac-
tors do occur. When current speed is sufficiently high, and
combined with spatial gradients in TA or DIC, the assump-
tions implicit in the open-water approach may not hold, and
calculated metabolic rates will be subject to error. We con-
sider this advection combined with spatial concentration gra-
dients to be the largest source of uncertainty in our metabolic
calculations. To address this concern, we calculated upper
and lower bounds of NEC and NEP using conservative es-
timates of possible advective TA, DIC, and DO exchange.
Given the spatial separation between the high- and low-
density sites of approximately 4 km, and the average con-
centration difference in TA of 300 µmolkg−1, we estimate
an average spatial gradient of 300/4, or 75 µmolkg−1 km−1.
Given the close relationship between TA and DIC at this site,
we consider the spatial gradient in DIC to be equal to that
for TA. The average spatial gradient in DO was much lower,
at 4.6 µmolkg−1 km−1. These spatial concentration gradients
(1TA
1x

1DIC
1x

1DO
1x

)were combined with a conservative estimate
of water velocity (u) of 1.0 cms−1 to estimate the contribu-
tion of advective forcing to calculated metabolic rates. Be-
cause current speed was below the limit of detection, we
cannot infer current direction, leading us to take the cautious
approach of applying this error term as an absolute value to
both sides of our metabolic rate measurements. For exam-
ple, the upper (NECUB) and lower bounds for NEC (NECLB)
were calculated as NECLB =−0.5×(1nTA

1t
−[u×1TA

1x
])×hρ

and NECUB =−0.5×(1nTA
1t
+[u× 1TA

1x
])×hρ. Uncertainty

bounds for NEPDIC and NEPDO were calculated in the same
manner, using the average spatial gradients in DIC and DO
listed above.

3 Results

3.1 Physicochemical conditions

At each site, variations in SSS were generally less than 1
during each sampling campaign, indicating that precipitation
and fresh groundwater inputs were likely minor sources of
freshwater to these sites during the study period (Fig. 2c, d).
Across sampling campaigns, SSS was more variable, rang-
ing from 33.15 to 34.63 at the high-density site and from
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Figure 2. Time series of (a–b) U10 (ms−1), (c–d) SST and SSS, (e–f) DO (mgL−1) and SeaFET pH, (g–h) nTA (µmolkg−1), (i–j) nDIC
(µmolkg−1), and (k–l) PAR (µEm−2 s−1). For panels (c)–(f), the solid lines are linked to the left axis, while the dashed lines are for the
right axis.

31.45 to 34.67 at the low-density site. SST values at both
sites followed each other closely, exhibiting diurnal varia-
tions of ∼ 2 ◦C and ranging from 18.5 to 27.0 across the
entire study period (Fig. 2c, d). Diurnal variations in PAR
coincided with those in SST, as is typical for sunlit shal-
low water (Fig. 2k, l). Likewise, both DO and pH exhib-
ited typical diel excursions. The peak DO concentration
of 8.14 (high density) and 9.45 mgL−1 (low density) oc-
curred in the late afternoon, coinciding with maximum pH
of approximately 8.17 (high density) and 8.29 (low den-
sity), respectively. The average pH was 8.08± 0.05 at the
high-density site, compared with 8.17± 0.05 at the low-
density site. The calculated pCO2(water) at the high-density
site (538.8± 123.5 µatm) was generally greater than atmo-
spheric equilibrium, while average pCO2(water) was less than
pCO2(air) at the low-density site (390.3± 129.4; Table 1).
The calculated CO2 flux was generally positive (from the
water to the atmosphere) and small in magnitude, between
0.13± 0.62 and 0.38± 0.20 mmolCm−2 h−1 at the high-

density site (RC01 and Ho06, respectively) and 0.20± 0.40
and 0.067±0.35 mmolCm−2 h−1 at the low-density site (Ta-
ble 1). There was a difference between CO2 fluxes derived
using the RC01 and Ho06 k600 parameterizations, but this
difference was small in magnitude compared to NEP and
NEC; so for the sake of simplicity, we only present results
using the Ho06 parameterization in the main text of this pa-
per. Results considering both parameterizations are given in
the Supplement.

Between the first and second sampling campaigns, av-
erage midday PAR (from 10:00 to 14:00 LT) reaching the
benthos at the low-density site fell by approximately 38 %,
from 916± 332 m−2 s−1 during the first sampling campaign
to 567± 219 µEm−2 s−1 for the second sampling campaign.
Similarly, average midday PAR at the high-density site fell
by ∼ 31 %, from 627± 259 µEm−2 s−1 during the first sam-
pling campaign to 432±211 µEm−2 s−1 for the second sam-
pling campaign. After the passage of a large cold front and
associated high wind speed on 28 November, SST fell by
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Table 1. Table of physicochemical conditions (TA, DIC, and salinity) and seagrass and sediment chemical characteristics (average±SD).

High density Low density High density Low density

�calcite 5.83± 0.84 6.23± 1.15

Aerial productivity 0.59± 0.26 0.41± 0.36 pCO2 538.8± 123.5 390.3± 129.4
(gm−2 d−1) (n= 6) (n= 6) (µatm)

Sediment Corg 5.8 1.4 pH 8.10± 0.055 8.17± 0.062
(% of dry weight)

Sediment Cinorg 7.9 10.1 CO2 flux – Ho06 0.38± 0.20 0.13± 0.62
(% of dry weight) (mmolm−2 h−1)

Corg : Cinorg 0.74 0.14 O2 flux – Ho06 0.034± 1.2 0.75± 1.9
(mmolm−2 h−1)

Sediment depth 56± 15 32± 5 Seagrass N : P 82.7 102.1
(cm) (n= 10) (n= 10) (mol :mol)

Above-ground biomass 65.11± 17.66 15.09± 14.46 Seagrass C : P 1303.4 1892.7
(gm−2) (n= 6) (n= 6) (mol :mol)

Salinity 33.8± 0.49 33.0± 1.3 Seagrass C : N 15.8 18.5
(mol :mol)

DIC 2489.4± 74.7 2212.2± 134.0 Sediment N : P 12.3 8.3
(µmolkg−1) (mol :mol)

TA 2810.6± 51.4 2550.5± 83.2 Sediment C : P 321.8 1187.4
(µmolkg−1) (mol :mol)

Water depth 2.1 1.7 Sediment C : N 26.3 142.3
(m) (mol :mol)

more than 5 ◦C. At the initial SSS, DIC, and TA, the ther-
modynamic effect of this cooling was a nearly 0.1 increase
in pH (CO2SYS), which was on the order of the typical diel
range (Fig. 2e, f). While this rapid pH increase (independent
of DO) was evident at the low-density site, no such change
occurred at the high-density site (Fig. 2f), indicating that bi-
ological factors outweighed the thermodynamic effect on pH
there.

Across the study period, nTA at the high-density site was
always greater than nTA at the low-density site, and nTA was
generally higher than nDIC at both sites. Diel cycles were
evident in both nDIC and nTA, coinciding with typical vari-
ations in net ecosystem production (consuming nDIC) and
calcification (consuming nTA). The average slope between
nTA and nDIC (1nTA :1nDIC) was 0.64 and 0.41 for high-
and low-density sites, respectively (Fig. 3), indicating that
variations in TA and DIC were likely driven by a combination
of ecosystem metabolism (expected slope of−0.15 if NO3 is
used), calcification (slope of 2), and SO2−

4 reduction (slope
of 1) and denitrification (slope of 0.8), as has been suggested
for other types of Florida seagrass (Camp et al., 2016; Chal-
lener et al., 2016). However, in this underdetermined case in
which all of the aforementioned processes occur, the applica-

tion of a simple nTA vs. nDIC plot cannot reveal the relative
importance of these factors.

3.2 NEP and NEC

At both sites, calculated NEPDO and NEPDIC followed a
clear diel pattern, increasing between sunrise and early af-
ternoon and decreasing through sunset (Fig. 4). Nighttime
NEPDO and NEPDIC were nearly always negative (het-
erotrophic), while daytime values were larger and more
variable, often exceeding ∼ 15–20 mmolCm−2 h−1 in the
late morning. Individual measurements of NEPDIC for the
low-density site (−14.5 to 29.2 mmolCm−2 h−1) and high-
density site (−36.2 to 21.4 mmolCm−2 h−1) were very large
compared with seagrass above-ground primary productivity,
which was between 1.5 and 2 µmolCm−2 h−1 at both sites
(Table 1). While NEC was also strongly negative (dissolving)
at night, it was highly variable during the day, with no clear
trend between sunrise and sunset (Fig. 4). It is important to
note that this approach does not account for any TA produc-
tion by net SO2

4 reduction and denitrification, and any such
TA inputs may bias these estimates of NEC. However, our
NEC estimates are at least an order of magnitude larger than
typical published measurements of seagrass SO2−

4 reduction
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Figure 3. Scatter plot of nDIC and nTA for both high-density (blue)
and low-density (orange) sites, and associated slope (m) and corre-
lation coefficient (R2) of the linear regression. The red reference
line indicates the expected relationship if calcification is dominant,
consuming 2 mol of TA for every mole of DIC consumed to form
CaCO3. The blue reference line shows the approximate relationship
expected for aerobic respiration and productivity, which consumes
approximately 0.15 mol of TA for every mole of DIC respired.

(Holmer et al., 2003; Brodersen et al., 2019) and denitrifica-
tion (Welsh et al., 2001) rates, suggesting that our NEC de-
terminations were indeed largely driven by CaCO3 precipita-
tion and dissolution. Still, other studies have found relatively
high rates of SO2−

4 reduction in seagrass sediments (Hines
and Lyons, 2007), especially those with high seagrass shoot
density (Holmer and Nielsen, 1997), so we express caution
in the interpretation of our NEC results.

As discussed previously, the combination of advection
with spatial concentration gradients can generate an er-
ror in calculated metabolic rates by breaking the assump-
tions required in the open-water approach. When NEPDIC
or NEC was large, our estimated uncertainty due to this
mixing effect was relatively low (Fig. 5). However, when
metabolic rates were close to zero, the effect of advection
became quite large and potentially problematic. The aver-
age uncertainty in NEC due to advection (u× 1TA

1x
) was 2.4

and 2.9 mmolCaCO3 m−2 h−1 for the low- and high-density
sites, respectively. This corresponds to 65 % and 76 % of av-
erage NEC. Likewise, this mixing error could account for
4.7 and 5.8 mmolC m−2 h−1, or ∼ 50 % of average NEPDIC.
While this effect was at times large for both NEPDIC and
NEC, it was quite small for NEPDO due to the small spatial
gradients in the DO present between our two primary sites.
The uncertainty in NEPDO due to advection was 0.28 and
0.34 mmolO2 m−2 h−1, or 4.0 % and 4.2 % of average rates
at the low- and high-density sites, respectively.

When discrete NEP and NEC rates were integrated over
cumulative day and night hours, diel trends became more

recognizable (Fig. 6a–b). NEPDIC and NEPDO were posi-
tive during the day (net autotrophic) and negative (net het-
erotrophic) at night for both sites. While the impact of ad-
vective exchanges on the uncertainty of metabolic calcula-
tions was minor for NEPDO, it was relatively important for
NEPDIC. While mean daytime NEPDIC was positive at both
sites, the estimated lower bounds for daytime NEPDIC were
slightly negative, at−0.03 and−1.1 mmolCm−2 h−1 for the
low- and high-density sites, respectively. This is partially due
to the act of binning metabolic values by “day” and “night”,
which combines early morning and afternoon rates with mid-
day peaks in NEP and NEC. Metabolic rates did not (and
should not) exhibit a stepwise change during sunrise and sun-
set, but data from these time periods were combined with
midday peaks in NEP and NEC in Fig. 4. In other words,
temporally integrating by day and night over a sinusoidal
diel signal will always have the effect of decreasing the ab-
solute magnitude of average metabolic rates for daytime and
nighttime periods. However, we emphasize that this simple
uncertainty analysis gives us ample reason to be cautious
when interpreting metabolic rates derived from open-water
approaches in coastal waters. Nevertheless, both mean night-
time NEPDIC and its upper and lower bounds were negative,
giving strong evidence that these sites were indeed net het-
erotrophic at night (Fig. 6a) and net heterotrophic over the
study period (Fig. 6b).

While the advective uncertainty term for NEC calculations
was similar in size to that for NEPDIC, rates of NEC were
typically lower than NEPDIC, causing upper and lower un-
certainty bounds for day and night integrated NEC to con-
tain zero (Fig. 6a). This was due to the obscuring effect of
integrating over daytime and nighttime periods as well as
the choice of a highly conservative estimate of water ve-
locity (1 cms−1) in this uncertainty analysis. The presence
of larger spatial concentration gradients, faster currents, or
greater water depth could all cause this uncertainty term to
increase in relation to metabolic rates. Nevertheless, in this
study, NEC was more consistently negative (net dissolving)
at night (Fig. 6a), causing cumulative NEC to be less than
zero (Fig. 6b). This nighttime dissolution was slightly greater
at the high-density site than the low-density site. Given the
relative paucity of positive NEC estimates across the study
period (Fig. 4) and the clear signal of negative NEC during
the night, it is likely that net dissolving conditions were more
frequent than net calcifying conditions. Therefore, we have
confidence that over the full study period, both sites were net
dissolving (negative NEC), as depicted in Fig. 6b. Average
NEC was less than NEPDIC such that the NEC : NEPDIC ratio
was 0.54 and 0.31 for the high- and low-density sites, respec-
tively – well within the range of tropical seagrass ecosystems
globally (Camp et al., 2016) and locally (Turk et al., 2015).

While NEPDIC and NEC were likely negative (het-
erotrophic and dissolving) at both sites over the entire study
period (Fig. 6b), NEPDO was small and positive at the low-
density site and negative at the high-density site. This differ-
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Figure 4. Diel trends in NEPDIC (a–b), NEPDO (c–d), and NEC (e–f) for the high-density site (left panels) and low-density site (right panels)
for sampling campaign 1 (crosses) and 2 (circles). The x axis represents the midpoint time for each NEP or NEC calculation period.

Figure 5. Time-series plot of NEC (blue), NEPDIC (black), and NEPDO (red), including the upper and lower uncertainty bounds related to
error due to advection (dashed lines).

ence between NEPDO and NEPDIC was still prominent when
values were split by day and night. Although NEPDIC and
NEPDO agreed in direction, NEPDO was greater in magnitude
than NEPDIC for all time periods except at night for the low-
density site (Fig. 5a). In fact, the linear relationship between

NEPDO and NEPDIC in this study was not significantly differ-
ent from zero for the high-density site (p = 0.095; r2

= 0.11)
and was significant but weak (p = 0.001; R2

= 0.35) for the
low-density seagrass site (Fig. 8). While NEPDO and NEPDIC
agreed in sign at night (dark blue points in Fig. 8), there was
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Figure 6. NEC, NEPDIC, and NEPDO integrated over daytime and nighttime periods (a) and over the entire study period (b). NEP values are
shown for k600 of Ho et al. (2006). The error bars in panel (a) represent upper and lower bounds for metabolic rates determined in Sect. 2.8.

no such relationship for daytime NEPDO and NEPDIC. Cor-
relations between net ecosystem processes and PAR were not
strong (R2 < 0.5) for NEPDIC and NEPDO and were very
weak (R2 < 0.05) for NEC (Fig. 7a–c).

To address whether this disconnect between NEPDO and
NEPDIC exists outside of the two primary sites (Fig. 9; high-
and low-density sites), we assembled pH and DO data from
four additional sites across Florida Bay (Fig. 9: SB, BA, DK,
and LM). Even though 1[H+] and 1DO were correlated at
our primary sites and one of the four LTER sites (LM), cor-
relations were poor (R2 < 0.25) at the remaining LTER sites.
The LM site is heavily influenced by terrestrial inputs from
the coastal Everglades and fringing mangroves, which likely
contributed to the significant relationship between 1[H+]
and 1DO there (R2

= 0.48).

3.3 δ13CDIC and benthic flux of TA and DIC

While both sites were net dissolving (negative NEC) over
the study period (Fig. 6b), the calculated calcite saturation
state (�calcite, CO2SYS) was relatively high, at 5.83± 0.84
and 6.23± 1.15 at the high- and low-density sites, respec-
tively (Table 1), indicating that dissolution of carbonates in
the sediments was contributing to water column DIC. The
uncertainty of this �calcite calculation was ±0.30, or approx-
imately 5 % of the average value. The Keeling plot indicated
that source δ13CDIC values were−6.9±3.7 and−8.8±6.8 ‰
(95 % confidence interval) for the high- and low-density
sites, respectively (Fig. 10).

Benthic chamber flux experiments (over bare sediment)
during the second sampling campaign yielded average ben-
thic DIC fluxes of 0.76± 0.7 and 1.26± 0.8 mmolm−2 h−1

at the low- and high-density sites, respectively. These benthic
DIC fluxes could explain 109 % (0.76/− 0.7= 1.09) of the
average NEPDIC at the low-density site and 79 % (1.26/−
1.6= 0.79) at the high-density site. Benthic TA fluxes were
0.24± 0.16 mmolm−2 h−1 at the low-density site but were

highly variable and not significantly different from zero at the
high-density site (0.16±0.4 mmolm−2 h−1). Benthic TA flux
could explain 120 % (0.24/− 0.2= 1.2) of cumulative NEC
at the low-density site but only 18 % (0.16/− 0.9= 0.18) at
the high-density site.

4 Discussion

4.1 Drivers of NEP

Individual measurements of NEPDIC for the low-density
site (−14.5 to 29.2 mmolCm−2 h−1) and high-density site
(−36.2 to 21.4 mmolCm−2 h−1) were within the range
of some previous studies, including the NEPDO of Turk
et al. (2015; −6.2± 1.0 to 12.3± 1.0 mmolO2 m−2 h−1),
Perez et al. (2018; ∼ 23.8 mmolO2 m−2 h−1), and Long et
al. (2015a; 0.45–1.46 mmolO2 m−2 h−1). Over the entire
study period, however, cumulative NEPDIC was negative at
both sites (Fig. 6b), indicating that heterotrophic conditions
dominated in both seagrass meadows during these two sam-
pling campaigns. CO2 fluxes were positive at both sites, in-
dicating a net release of CO2 from the water to the atmo-
sphere (Table 1). Seagrass above-ground primary productiv-
ity rates were between 1.5 and 2 µmolCm−2 h−1 at both sites
(Table 1), approximately 3 orders of magnitude lower, and
opposite in sign, than the measured NEPDIC. This large dif-
ference provides further evidence that seagrass above-ground
primary productivity is only a component of net ecosystem
productivity, which was likely dominated by sediment pro-
cesses (including seagrass belowground productivity, which
was not measured during this study) and epiphytic primary
productivity. We found a clear disagreement between day-
time NEPDO and NEPDIC such that the linear relationship
between NEPDO and NEPDIC was not significantly different
from zero for the high-density site (p = 0.095; R2

= 0.11)
and was significant but very weak (p = 0.001; R2

= 0.35)
for the low-density site (Fig. 8). Such a disagreement be-
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Figure 7. Scatter plots of (a) NEPDO vs. PAR, NEPDIC, and NEC vs. PAR (b–c). Points are colored by the average hour for the respective
time period over which NEP or NEC was calculated. The arrows in (a) are intended to highlight the hysteretic pattern between PAR and
NEPDO.

Figure 8. Scatter plots of NEPDO vs. NEPDIC.

tween NEPDO and NEPDIC has been observed recently in
coral ecosystems (Perez et al., 2018). This discrepancy be-
tween NEPDO and NEPDIC may be related to the thermody-
namics of CO2 and O2 dissolution, as the solubility of O2 is
much less than that of CO2 (Weiss, 1970, 1974). Any O2 pro-
duced or consumed by NEP will rapidly exchange with the
atmosphere, while most of the CO2 generated by NEP will
enter the carbonate buffering system and persist as HCO−3 or
CO2−

3 ions rather than exchangeable CO2. The standard de-
viation of O2 fluxes was much larger than that of CO2 fluxes,
in part due to this effect. Furthermore, as the total pool of
O2 in the water column is far less than the total pool of CO2
(i.e. DIC), the determination of NEPDO is more sensitive to
the parameterization of gas transfer than NEPDIC. This is
highlighted in Fig. S1 in the Supplement, where the differ-
ence between the two k600 parameterizations is much larger
for NEPDO than for NEPDIC.

Further explanations for this discrepancy between NEPDO
and NEPDIC can be related to differing responses of DO and
DIC to variations in light availability. When PAR was plot-
ted against NEPDO, a clear pattern of hysteresis arose, with

higher NEPDO values during the morning hours than the af-
ternoon at the same PAR intensity (shown by the arrows in
Fig. 7a). Such a hysteretic pattern indicates that the response
of NEPDO to light is not uniform and that photosynthetic ef-
ficiency may vary with factors such as nutrient availability,
history of carbon acquisition (carbon-concentrating mecha-
nisms), or temperature. Such a hysteretic pattern has been
observed between PAR and NEC, but not for NEP, for a
coral reef (Cyronak et al., 2013). This has important impli-
cations for the modeling of carbon processing in seagrass
meadows, which generally assume a time-invariant relation-
ship between light and photosynthesis (Zimmerman et al.,
2015; Koweek et al., 2018).

4.2 Drivers of NEC

We found no relationship between PAR and NEC at our study
sites, indicating that light-driven calcification by photoau-
totrophs (algal epiphytes, calcifying macroalgae, and sea-
grass itself) does not dominate NEC or that carbonate disso-
lution driven by respiration in the sediments dominated NEC.
However, it is possible that the use of carbon-concentrating
mechanisms could cause calcification by photoautotrophs to
become decoupled from direct irradiance. While not listed
in Table 1, we did observe a variety of bivalves and tube-
building polychaetes that may have contributed to the high
NEC at both sites. Furthermore, while �calcite was always
greater than 1, NEC was negative on average over the study
period, indicating that the overall ecosystem was net dis-
solving. This co-occurrence of high �calcite with overall net
dissolving conditions (negative NEC) can be reconciled by
considering the seagrass ecosystem as a vertically decoupled
system, where positive NEC in the water column is more than
balanced by carbonate dissolution in the sediments. Such a
relationship has been observed or inferred in seagrass else-
where (Millero, 2001; Burdige and Zimmerman, 2002; Bur-
dige et al., 2010).

Our Keeling plot approach indicated potential endmember
δ13CDIC values that lie between the δ13C of seagrass organic
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Figure 9. Map showing 1[H+] vs. 1DO relationship for sites associated with LTER (SB, BA, DK, and LM) and the present study (high
density – HD – and low density – LD). At the top of the figure, we present the general east-to-west pattern in seagrass primary productivity
(PPR), phosphorus content ([P]; Fourqurean et al., 1992), and TA (Millero et al., 2001) within Florida Bay. All LTER sites failed to meet the
assumptions for a test of slope significance (gvlma package in R), so we simply report the R2.

matter (∼−8 to −10; Fourqurean et al., 2015; Röhr et al.,
2018) and sediment inorganic carbon (∼ 0 ‰; Deines 1980),
indicating that both sediment organic matter respiration and
carbonate dissolution were sources of DIC. It should be noted
that this approach involves the extension of measurements to
a theoretical δ13CDIC value at infinite DIC concentration, in-
volving a substantial extrapolation (Fig. 10). Furthermore,
this isotopic analysis implicitly assumes a closed system,
which clearly is not the case in Florida Bay.

From these lines of evidence, we infer that organic car-
bon (OC) remineralization in sediments, combined with car-
bonate dissolution, contributed to the net upward DIC and
TA fluxes from the sediments, which appear to have driven
the observed negative NEP (heterotrophy) and NEC (disso-
lution), respectively. Such net heterotrophy must be fueled
by Corg captured by the system, either from allochthonous
sources or from autochthonous sources occurring at some
time in the past. This study was conducted at two sites with
relatively deep water during autumn, with relatively low light
levels and short days, so it is quite possible that there could
be a different net annual signal when the bright summer
months are included, highlighting the need for annually re-

solved measurements. However, the results of our benthic
flux experiments support the isotopic evidence for the role
of sediment OM remineralization in NEP and NEC at these
sites. When expressed as aerial fluxes, sediment-water DIC
exchange was 79 % and 109 % of average NEPDIC at the
high- and low-density sites, respectively. Likewise, benthic
TA flux was 18 %–120 % of cumulative NEC. Together, these
benthic flux measurements, along with isotopic evidence,
support the role of sediment biogeochemical cycling in the
overall carbon budget at these sites. Prior studies have shown
high rates of denitrification (Eyre and Ferguson, 2002) and
SO2

4 reduction (Hines and Lyons, 2007; Holmer et al., 2001;
Smith et al., 2004) in seagrass soils, so it seems quite possi-
ble that these processes contributed to much of the inferred
net ecosystem heterotrophy here. The extent to which these
anaerobic TA-generating processes also affect our NEC esti-
mates is largely dependent on the fraction of reduced species
that are re-oxidized in oxygenated micro-zones within sur-
face sediments. There is a clear need for more research ex-
ploring the linkages between sediment early diagenesis and
water-column biogeochemistry over seagrass. This is espe-
cially important, given the recent attention that seagrass sys-
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Figure 10. Keeling plot of 1/[nDIC] versus δ13CDIC, suggesting
potential endmember isotopic values. These y intercept δ13CDIC
values were−6.9±3.7 and−8.8±6.8 ‰ (95 % confidence interval)
for the high- and low-density sites, respectively. The inset figure
is zoomed to the extent of collected data, while the large figure is
scaled to demonstrate the extrapolation required in order to extend
the data to the y intercept.

tems have received as potential “buffering” mechanisms for
coastal ocean acidification (Manzello et al., 2012; Unsworth
et al., 2012; Hendriks et al., 2014; Cyronak et al., 2018;
Koweek et al., 2018; Pacella et al., 2018).

However, there is a geologic context for this observed neg-
ative NEC in the northeastern region of Florida Bay. Florida
Bay is geologically young, having formed during the retreat
of the Holocene shoreline following the end of the last ma-
jor glaciation, approximately 4–5000 years ago (Bosence et
al., 1985). The sedimentary deposits that filled in this basin
are dominated by calcareous mud formed by extensive Tha-
lassia meadows, and their associated epibionts and macroal-
gae (Bosence et al., 1985), and these autochthonous sources
are sufficient to explain the observed sediment distributions
(Stockman et al., 1967). Early work suggests that calcare-
ous sediments in Florida Bay can be separated into distinct
zones of calcareous sediment formation, migration, and de-
struction, the last of which extends across NE Florida Bay,
where this study took place (Wanless and Tagett, 1989). A
limited sediment supply of ∼ 0.01 mmyr−1 in this “destruc-
tional” zone, compared to the rate of sea level rise, results
in the presence of a thin veneer of sediment on the bottoms
of the basins and narrow, erosional mudbanks (Stockman et
al., 1967). Our primary sites were in this destructional zone,
and our finding of negative NEC indicates that at these sites
(during the fall season), the destructional nature of this part
of the bay may be partly explained by net carbonate dissolu-
tion. It is important to note the limited spatial and temporal
scope of this study, and we caution that our findings of net

negative NEP and NEC are likely not applicable to Florida
Bay as a whole or even to these sites across seasons. In-
deed, prior studies have shown substantial seasonal and spa-
tial variability in carbonate chemistry (Millero et al., 2001;
Zhang and Fischer, 2014) and seagrass primary productivity
(Fourqurean et al., 2005).

Lastly, it is clear that sediments below seagrass in Florida
Bay have been accumulating autochthonous organic car-
bon (Corg) and carbonate sediments for over 3000 years
(Fourqurean et al., 2012b), suggesting that the ecosystem is
producing more organic matter than it is consuming and is
storing more carbonates than it is dissolving (Howard et al.,
2018). To reconcile our finding of net negative NEP and NEC
with the knowledge that this system is a net producer of Corg
and CaCO3, we must infer that NEP and NEC are not homo-
geneous throughout Florida Bay or throughout the year.

4.3 Regional implications and future outlook

Variations in TA and DIC exports affect the carbonate buffer-
ing of adjacent ecosystems, further complicating the rela-
tionship between NEPDO and NEPDIC. In Fig. 9, we show
that correlations between1[H+] and1DO at the LTER sites
were generally poor. This poor fit is partially caused by the
existence of the carbonate buffering system, which dampens
the magnitude of pH variability, in comparison with the un-
buffered nature of DO. However, we maintain that lateral TA
transport also affects the relationship between 1[H+] and
1DO, given the phosphorus-driven spatial gradient in sea-
grass primary production in Florida Bay (Zieman et al., 1989;
Fourqurean et al., 1992) and the realization that ecosystem
production is linked with increased calcification (Frankovich
and Zieman, 1994; Enríquez and Schubert, 2014; Perez et
al., 2018). In addition, the mangroves that lie upstream of
Florida Bay export water high in DIC and TA, and low in
DO to Florida Bay (Ho et al., 2017), so that areas immedi-
ately affected by this runoff (like LTER site LM) will have
a larger range in 1[H+] and 1DO. Likewise, we can infer
that the relationship between NEPDO and NEPDIC is also al-
tered by spatio-temporal variations in TA, although data are
lacking in the present study that conclusively demonstrate
this effect. Prior studies have shown that TA varies season-
ally (Millero et al., 2001) and over diel cycles (present study;
Yates et al., 2007) in response to fluctuations in calcification
(Yates and Halley, 2006) and salinity (net water balance), of-
fering some explanation for the poor across-site relationship
between 1DO and 1[H+]. TA generated by calcite dissolu-
tion or anaerobic biogeochemical processes like denitrifica-
tion and SO2−

4 reduction likely play an important, yet cur-
rently unknown, role. Anaerobic generation of TA through
denitrification or SO2−

4 reduction in seagrass soils is an addi-
tional source not quantified here but should be addressed in
the future. However, we can conclude that the observed lack
of a relationship between 1DO and 1[H+] holds across the
seagrass productivity gradient in Florida Bay, indicating that
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this discrepancy between NEPDO and NEPDIC may extend
across broad regions of the subtropics. This may challenge
the application of new in situ approaches that rely on vari-
ations in pH and DO alone to infer rates of biogeochemical
processes (e.g. Long et al., 2015b).

Our results also suggest that the role of seagrass carbon
cycling in larger, regional, or global carbon cycles may be
much more complex than originally thought. Modern esti-
mates of carbon uptake by seagrass ecosystems are based
largely on measurements of Corg burial rates or changes in
standing stock of Corg (Duarte et al., 2005; Fourqurean et al.,
2012a, b). While valuable, studies based solely on rates of
Corg burial integrate processes over long timescales and may
miss the impact of seagrass NEP and NEC on air–water CO2
exchange and lateral CO2(water) and TA export. Indeed, it has
been suggested that the dissolution of allochthonous carbon-
ates in seagrass soils is an unrecognized sink of atmospheric
CO2 that exports TA to the coastal ocean on scales signifi-
cant to global CO2 budgets (Saderne et al., 2019). If we are
to more accurately constrain the role of seagrass ecosystems
in the global carbon cycle, we must begin to consider the net
ecosystem carbon balance (NECB), which is the residual car-
bon produced or consumed after all sources and sinks have
been accounted for (Chapin et al., 2006). In aquatic systems,
this will involve a precise measurement of the net ecosystem
exchange (NEE) of CO2 between the air and water. In the
present study, we used a bulk-transfer equation (Eqs. 4 and
5) to estimate NEE, but new technologies such as eddy co-
variance and improved flux chambers mean that direct mea-
surements of seagrass NEE are on the horizon. The combina-
tion of direct NEE measurements with rigorous assessments
of NEP and NEC is one promising avenue through which
NECB may be approached.

5 Conclusion

In this study, we present the first direct NEPDIC measure-
ments in a representative seagrass meadow by combining
rigorous carbonate system analysis with a diel sampling ap-
proach. We found negative NEPDIC and NEC at both sites,
indicating that despite typical values of seagrass biomass and
productivity (Table 1), both sites were net heterotrophic and
net dissolving over the study period. When metabolic rates
were low, they were likely affected by error due to the com-
bined effect of advection and spatial concentration gradients,
which can break the assumptions required for our open-water
approach. On the contrary, this source of uncertainty was
less important when metabolic rates were high. While we
had some success in applying this open-water approach at
these sites, we caution that error due to advection must be
considered in sites where water currents are greater or when
the water depth is greater. Multiple lines of evidence point
to sediment respiration and carbonate dissolution (Fig. 10)
as drivers of negative NEP and NEC. While our isotopic

and benthic flux measurements were coarse, they support
the role of aerobic and anaerobic remineralization (denitri-
fication and SO2

4 reduction; Holmer et al., 2001; Eyre and
Ferguson, 2002; Smith et al., 2004) coupled with carbonate
dissolution (Jensen et al., 1998, 2009; Burdige and Zimmer-
man, 2002) as under-recognized components of total ecosys-
tem NEP and NEC. Because of this, we express caution in
interpreting our NEC results as strictly net production of
CaCO3; it appears that TA generated by anaerobic processes
in the sediment likely influenced our estimates of NEC. Fur-
ther studies should refine our estimates of benthic DIC and
TA fluxes from seagrass sediments (with benthic chambers in
the present study, underwater eddy covariance in Long et al.,
2015b, and Yamamoto et al., 2015, or pore-water modeling)
and compare these values to other component fluxes of NEP
and NEC (seagrass primary production, CO2 flux, etc.).

A key finding of this study was the divergence between
NEPDO and NEPDIC, which we attribute to the following
factors: (1) carbonate system buffering, which retains NEP-
generated CO2 in the water as DIC, (2) more rapid gas trans-
fer, combined with a larger exchangeable pool for O2 than
for CO2, and (3) a clear time-variant response of NEPDO to
irradiance (Fig. 7a). While DO-based approaches offer many
advantages in cost and temporal coverage, we suggest that
future studies should first constrain the underlying carbon-
ate chemistry and assess the relationship between NEPDIC
and NEPDO. Unfortunately, given the very limited temporal
scope of this study, just 8 d, it is impossible to extend the
results of this study to longer timescales. At present, we can-
not determine whether the seagrass ecosystem at this site is
net dissolving and heterotrophic throughout the year or even
across seasons. More research is needed to assess the role
of seasonal- to annual-scale variability in NEP and NEC on
coastal ocean acidification trends. The use of new techniques,
such as eddy covariance and improved autonomous instru-
ments for pH, pCO2, and TA, should allow future studies to
build on this work and fill in our understanding of carbonate
chemistry dynamics over longer, annual timescales. In partic-
ular, these new approaches should be targeted at constraining
NEE (air–water CO2 exchange) in conjunction with direct
and rigorous measurements of NEP and NEC. The combina-
tion of these approaches will allow for the first direct assess-
ments of seagrass NECB, a critical next step in the valuation
of seagrass in the context of the global carbon cycle.
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