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Abstract 

Biometric-based authentication systems are becoming the preferred choice to 

replace password-based authentication systems. Among several variations of biometrics 

(e.g., face, eye, fingerprint), iris-based authentication is commonly used in every day 

applications. In iris-based authentication systems, iris images from legitimate users are 

captured and certain features are extracted to be used for matching during the 

authentication process. Literature works suggest that iris-based authentication systems can 

be subject to presentation attacks where an attacker obtains printed copy of the victim’s 

eye image and displays it in front of an authentication system to gain unauthorized access. 

Such attacks can be performed by displaying static eye images on mobile devices or iPad 

(known as screen attacks). As iris features are not changed, once an iris feature is 

compromised, it is hard to avoid this type of attack. Existing approaches relying on static 

features of the iris are not suitable to prevent presentation attacks. Feature from live Iris (or 

liveness detection) is a promising approach. Further, additional layer of security from iris 

feature can enable hardening the security of authentication system that existing works do 

not address. 

 To address these limitations, this thesis proposed iris signature generation based 

on the area between the pupil and the cornea . Our approach relies on capturing iris images 

using near infrared light. We train two classifiers to capture the area between the pupil and 

the cornea. The image of iris is then stored in the database. This approach generates a QR 

code from the iris. The code acts as a password (additional layer of security) and a user is 
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required to provide it during authentication. The approach has been tested using samples 

obtained from publicly available iris database. The initial results show that the proposed 

approach has lower false positive and false negative rates. 
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Chapter IIntroduction 

Security is based on three principal elements commonly known under CIA trad: 

Confidentiality, Integrity, and Availability. Authentication is a security control that is used 

to protect the system with regard to the CIA properties. Authentication is an essential step 

for accessing resources and/or services. Authentication is an essential step for giving access 

to resources to authorized individuals and prevent leakage of confidential information 

while maintaining the integrity of a system. There are many forms of biometrics that are 

currently being used for authentication such as fingerprint matching, facial recognition, 

shape of ear, iris pattern recognition and gait movement [26].  Among all, iris pattern 

recognition is a widely used biometric-based authentication approach [1, 2]. In an iris-

based authentication system, iris images are captured from users, and features are extracted 

to be matched at a later stage for authentication. Iris is unique for everyone. It has distinct 

textures and patterns that can be used for authentication. Iris-based authentication can 

overcome the limitations of traditional password-based authentication systems that are 

vulnerable to brute force and dictionary-based attacks. Several iris-based commercial tools 

are available, including Iridis [13] and Eyelock [12]. The research literature shows a rise 

in the application of iris-based authentication systems in areas such as immigration and 

border control [10], healthcare, public safety, point of sales and ATM [26], and finance 

and banking [8].  

Recently, iris spoofing attacks have emerged as a significant threat against 

traditional iris-based authentication systems. For example, an attacker may obtain a printed 

copy of the iris of a victim or using a reconstructed iris image sample and display the image 
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in front of an authentication system to gain unauthorized access (known as presentation 

attack) [4, 18]. Such attack can be performed by displaying static eye images on mobile 

devices or iPad (known as screen attack) [3]. This attack would lead to the risk of the wrong 

person gaining access or being misidentified; therefore, render security vulnerability. There 

are approaches to prevent presentation attacks  [4, 5, 6, 9]. However, most of them rely on 

static features of the iris. Feature from live Iris (or liveness detection) is a promising 

approach [14, 16, 19], where iris images are taken with high quality camera and features 

are extracted. Further, additional layer of security from iris feature can enable hardening 

the security of authentication system that existing works do not address.  

 This thesis proposes iris code generation between the area of the pupil and the 

cornea. Figure 1 shows the red and yellow circles, which represent the area of cornea and 

iris. Our approach analyzes live images taken in a camera in infra-red light. .  

 

Figure 1: Iris area between cornea and pupil  

Haar-Cascade [20] and LBP classifiers [7] are used to capture the area between the 

pupil and the cornea. The captured area is stored in database repository for future matching 

purpose. The approach generates QR code from the iris image. The code is then used as a 

password. During authentication, iris images are matched, and the user is required to 

provide the QR code to be authenticated. The combination of the QR code and the iris 

images make hacking harder. I A prototype has been implemented using OpenCV library. 
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The approach has been tested using samples of iris images obtained from publicly available 

iris dataset [18]. The initial results show that the proposed approach has lower false positive 

and false negative rates. Furthermore, Haar Cascade classifier works better than LBP 

classifier [28, 29].  

This thesis is organized as follows. Section 2 discusses related work that detect 

attacks against iris-based authentication systems. Section 3 provides an overview of Haar-

Cascade and LBP classifiers. Section 4 discusses the proposed framework in detail. Section 

5 highlights the implementation details and evaluation of results. Finally, Section 6 

concludes the paper and discusses future work. 

 

 

 

 

Chapter II 

Background and Related Work 

2.1 Attacks on Iris-Detection System 

It has been found that Media based Forgery and Spoofing are the most common kind of 

attacks in biometric based authentication system.  Similarly, we find replay attack against 

iris is common [25].  Those kinds of attack method can be detected as liveness detection. 

Liveness detection allows system to validate the authentication process of valid user by 
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real biometric identifiers. Below we define several attack types that this thesis is intended 

to mitigate. 

1. Media based forgery:  Media based forgery is one of the common intrusion methods to 

deceive any biometric based authentication or processing system.  Intruder can present 

printed images or frames of images of authenticated user and slip out of liveness detection 

to get authenticated user’s access in the system. For finger print authentication system, 

attackers can use authenticated user’s printed finger print in polymer plastic to 

authenticated access in the system. 

2.  Spoofing: Spoofing is a method of biometric liveness attack against identification 

system where a dummy artificial object of a user is presented by an intruder to the system 

to imitate the identification feature which the process is designed to check so that it can 

allow authentication to attacker. It is like using the cloned biometric part of any 

authenticated user and apply a biometric part to get access in the system. Spoofing is mostly 

used by most attackers in biometric authentication attack. In context of our topic we can 

do face spoofing attack by using printed iris image or any cosmetic contact lens. These 

kinds of attacks can be crucial and alarming points for system authentication and cause a 

serious damage to system. 

3. Fake Iris: Iris recognition system uses data stored in the system that are merely bits of 

code in binary form. Reverse engineering is possible to obtain the actual image of the iris. 

Genetic algorithm can be used to make different attempts using synthetic iris to be 

recognizable to iris detection. It takes about 100 to 200 iterations to produce a similar iris 

image that is stored in iris recognition system. 
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4. Presentation attacks: The presentation of biometric spoof is called presentation attack. 

Biometric spoof could be some image, video instead of a live person; or fake silicon or 

gelatin fingerprints or fake synthetic iris instead of real eye. Recognition system should be 

equipped with liveliness detection systems. It detects whether the presentation is alive or a 

spoof. 

2.2 Related Work 

In this section we describe related work and the approached used to detect attacks on iris-

based authentication systems.  

We searched in IEEE and ACM digital libraries with keywords “iris liveness detection” 

during year 2000 and 2019, which resulted in 67 papers. We further narrow down the list of 

papers that are intended for presentation attack detection and removed survey papers from 

the list. This led to the list of papers shown in Table I. The list may not be exhaustive but 

represents the common cited works from the literature.  

Pacut et al. [4] detect liveness of iris by analyzing the frequency spectrum as it reveals 

signatures within an image. Ratha et al. [5] split images of biometric fingerprints known as 

shares. These shares are stored in different databases. During authentication, one of the 

shares acts as an ID while another share is retrieved from the central database to be matched 

with a known image. Andreas et al. [6] rely on PRNU which the difference between the 

response of a sensor and the uniform response from light is falling on camera sensor. This 

approach captures the noise level information (irrelevant data) from iris images. Given that 

a new iris image is required to authenticate, the PRNU fingerprints from stored images are 

compared with the given one. 
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Puhan et al. [19] detect iris spoofing attacks using texture dissimilarity. As the 

illumination level is increased to an open eye, the pupil size decreases. Printed iris does not 

demonstrate such change of the pupil. High value of normalized Hamming distance between 

a captured image and known image results in warning of spoofed image. Adam et al. [9] 

detect live iris based on amplitude spectrum analysis. In this approach, a set of live iris 

images are analyzed to obtain the amplitude levels while performing Fourier transformation. 

A fake iris image has dissimilar amplitude levels compared to the real iris image.  

Karunya et al. [11] assess captured iris image quality to detect spoofing attacks. color, 

luminance level, quantity of information, sharpness, general artifacts, structural distortions, 

and natural appearance are qualities that can be used to differentiate between real images 

from fake images. Thavalengal [14] detects liveness of iris based on multi spectral 

information. This method exploits the acquisition workflow for iris biometrics on 

smartphones using a hybrid visible (RGB)/near infrared (NIR) sensor. These devices are 

able to capture both RGB and NIR images of the eye and iris region in synchronization. 

This multi-spectral information is mapped to a discrete feature space. The NIR image 

detects flashes in a printed paper and no image in case of a video shown for authentication. 

If a 3D live model is shown, an image shows ‘red-eye’ effect which could be used to detect 

iris liveness. 

Huang et al. [15] rely on pupil constriction to detect iris liveness detection. The ratio of 

iris and pupil diameters is used as one of the considerations during authentication. Liveness 

prediction is evaluated based Support Vector Machine (SVM) classifier. A database of fake 

irises, printed images, and plastic eye balls is built for training and testing of SVM classifier. 
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As the intensity of light increases, the pupil size decreases. The SVM can differentiate the 

real iris from a fake one. 

Kanematsu et al. [16] detect liveness based on variation of brightness. This approach 

relies on the variation of iris patterns induced by a pupillary reflex for various brightness 

levels of light. Like anti-virus programs that include database of viruses, this approach 

relies on database of fake irises to detect fake authentication attempts. 

Mhatre et al. [17] extract features and encrypt with Bio-Chaotic Algorithm. The input 

image is divided into parts to apply the Bio-Chaotic algorithm. An image is segmented and 

randomly one block of image is selected to hide a secret message using a unique key. The 

entire image is encrypted. The graph of both original and encrypted iris image is generated 

so that one can see the difference after the encryption process. Only authorized user knows 

about the random block selected and the key so an attacker fails to fraud. The decryption 

process is the reverse of encryption process. 

Gowda H D et al. [27] propose a CNN architecture modeling a robust and reliable 

biometric verification system using traits face (ORL dataset) and iris (CASIA dataset). The 

datasets are divided into small batches, then processed into the network. In the experiment, 

they resize the image to 60 × 60 × 1 from the original size and use two convolution layers. 

The output of first convolution layer is the input for the next. After using suitable filters and 

the convolution process done, the rectified linear unit  (ReLU) and Max pooling operations 

are carried out in each layer. The CNN framework architectures proposed performs feature 

extraction in just two convolution layers using a complex image. 

Xu et al.[28] propose a deep learning approach to iris recognition using an iterative 

altered Fully Convolutional Network (FCN) for iris segmentation and a modified resnet-18 



 

13 

model for iris matching. The segmentation architecture is built upon FCNs that have been 

modified to accurately generate pixel-wise iris segmentation prediction. There are 44 

convolutional layers and 8 pooling layers in this architecture. Two datasets (UBIRIS.v2 and 

CASIA-Iris-Interval) in this experiment where they show that generating a more accurate 

iris segmentation is possible by combining networks such as FCN and resnet-18. The results 

show that the architecture proposed outperforms prior methods on several datasets. 

Le-Tien et al. [30] propose an iris-based biometric identification system using a modified 

CNN used for feature extraction combined with Softmax classifier. The system is based on 

the CNN model Resnet50 where the CASIA Iris Interval dataset is used as an input .The iris 

recognition consists of 2 separate processes: feature extraction and recognition. to obtain 

the normalized image with dimensions 100x100 and 150x150 pixels as the input image of 

CNN, the system starts by image preprocessing. During the image preprocessing, the system 

uses a threshold algorithm to estimate location of pupil regions and Hough transform after 

performing equalize histogram algorithm to calculate pupil center, pupil’s radius and iris 

boundary’s radius, iris boundary’s center. After image preprocessing, CNN and a Softmax 

classifier are combined to feature extraction and classification. 

Şahin et al. [31] applied traditional and convolutional neural network based deep learning 

methods for iris-sclera segmentation. They compare performance on two distinct eye image 

datasets (UBIRIS and self-collected data). Their results show that deep learning based 

segmentation methods outperformed conventional methods in terms of dice score on both 

datasets. Our appraoch is difference in the sense we design an iris-based authentication 

system instead. 
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TABLE 1: SUMMARY OF RELATED WORK 

Work Approach Feature type Performance (FP, FN) 

Pacut et al. [4] Analysis of frequency of Iris images Static 2.8%, 0% 

Ratha et al. [5] Splitting of data Static N/A, N/A 

Andreas et al. 

[6] 

Camera Photo Response Non-

Uniformity (PRNU) Fingerprint 
Dynamic 

[0.21%-23.26%], 

[0.21%-23.26%] 

Puhan et al. 

[19] 

Liveness detection based on texture 

dissimilarity of Iris for contact lens 
Static N/A, N/A 

Adam et al. [9] 
Liveness detection based on 

amplitude spectrum analysis 
Static N/A, 5% 

Karunya et al. 

[11] 
Image Quality Assessment Static N/A, N/A 

Thavalengal 

[14] 

Liveness detection based on multi 

spectral information 
Static N/A, N/A 

Huang et al. 

[15] 
Pupil constriction Dynamic 0.3%-1.4%, N/A 

Kanematsu et 

al. [16] 

Liveness detection based on 

variation of brightness 
Dynamic N/A, N/A 

Mhatre et al. 

[17] 

Feature Extraction and Encryption 

Using Bio-Chaotic Algorithm 

(BCA) 

Static N/A, N/A 

Le-Tien et al. 

[30] 

Modified Convolutional Neural 

Network (CNN) for feature 

extraction combined with Softmax 

classifier 

Static 4%, N/A 
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Şahin et al. 

[31]  

Convolutional Neural Network 

based deep learning for iris-sclera 

segmentation 

Static N/A, N/A 

Our work Iris code and QR code generation 
Static and 

dynamic 
5.3%, 4.2% 

 
 
Table I shows a summary of related works and their characteristics, approaches, feature 

type, and performance measures (false positive and false negative rate). As illustrated, most 

works rely on static features of image, whereas we rely on dynamic response to light in the 

pupil area to generate iris code and subsequently the QR code. 
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Chapter III 

Classifiers for Iris Detection System 

In this section we discuss the two classifier that we use to detect iris patterns from images. 

These classifiers are Haar-Cascade and Local Binary Pattern. We choose these two 

classifiers as they are readily available with OpenCV development environment to access. 

Other classifiers can be used for evaluation as future work plan. 

3.1 Haar-Cascade Classifier 

Haar-cascade classifier is popular for iris detection as it can be trained to achieve higher 

accuracy. We rely on the classifier built in OpenCV platform to train 1000 positive samples 

images having eyes and 1000 negative sample images that are not related to eyes. More 

specifically, we configured the parameters of the classifier to achieve the highest level of 

accuracy to identify the iris region. The classifier is divided by three key contributors. 

 

Integral Image: It allows fast computation and optimization to recognize objects of 

interests. For example, in Figure 2, the sum within D can be calculated using Equation (i).  
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Figure 2: Representation of Haar like feature 

W(D) = L (4) + L (1) – L (2) – L (3)   … … … (i) 

𝑊(𝐷) = 𝐿(4) + 𝐿(1) − 𝐿(2) − 𝐿(3)……… 

 

In Equation (i), W(D) represents the weight of the image and L(i) is the value of color level 

at the ith point. The sum of pixel values over rectangular regions are calculated rapidly 

using integral images. 

 

Learning Features: A minimum number of visual features are selected from a large set of 

pixels. Three common features are recognized: edge feature, line feature, and center-

surround feature. 

 

Cascade: It allows excluding background regions that are discarded based on integral 

image and learning features. The detection process generates a decision tree by boosted 

process (known as cascade). Figure 3 shows that each image is being processed by positive 

and negative images and having the similarity result by choosing True or False. The 

learning algorithm keeps matching to next available positive image until a match is found 

with a given image.  
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Figure 3: Representation of Cascade decision tree 

 

     A positive result introduces the evaluation of second classifier which is adjusted to 

achieve high detection rates. A negative result leads to immediate rejection of images. 

Currently, the process uses Discrete Ada boost and a decision tree as basic classifier. The 

classifier builds a decision tree for the image environment. Cascade stages are built by 

training classifiers using Discrete Ada Boost [20]. Then it is adjusted for the threshold to 

minimize false negative rates. In general, a lower threshold yields to higher detection rates 

from positive examples and higher false position rates from negative examples. After the 

cascade classifier training is fully accomplished, it can be applied as a given reference to 

detect objects from new images. 

3.2 LBP Classifier 

 

Local Binary Patterns (LBP) [32] are visual descriptors for texture classification. It 

combines Histogram of Oriented Gradients (HOG) descriptor used for detection and 

recognition of objects. Figure 4 explains three neighborhoods to define texture and 
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calculate local binary pattern as per given steps. Steps for LBP cascade classifier feature 

calculation is given below: 

1. Divide the image under consideration into cells (small units). The more the cells, the 

more possibilities of detection. 

2. Compare the pixel value of the center with each of the 8 neighboring pixels in a cell. 

3. If the center pixel value is greater than the neighbor's value, consider "0". Otherwise, 

"1". This gives an 8-digit binary number. 

4. Determine the histogram of the frequency of each "number" over the cell. This 

histogram can be seen as a 256-dimensional feature vector.  

5. Concatenate histograms of all cells. This gives a feature vector for the entire window. 

Like Haar-Cascade classifier, we trained LBP classifiers with a set of negative and positive 

image samples. The feature vectors used were from OpenCV platform. 

 

Fig 4: Pixel calculated by LBP classifier 
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Chapter IV. 

Proposed Iris-Signature Generator Framework 

At the heart of our proposed approach, we generate iris code using the classifiers discussed 

in Section III. The iris code is generated by enrolling real world users and the code is saved 

in a repository. The code is generated again from a new image during authentication for 

matching. We first discuss the authentication process followed by code generation process 

in subsections 4.1 and 4.2, respectively. 

4.1 Authentication Process 

Figure 5 shows the authentication process. In the proposed approach, there are two 

databases for each user; one for iris code and another for assigned user code. First, a 

camera is used to take images of the iris detection and recognition. Features are extracted 

from captured iris images and the user provides QR code (as a password). If there is a 

match between the iris of the user and the database of iris code, and user code matches 

the provided QR code, then the user is granted access. 
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Fig 5: Flowchart of iris code and QR code-based authentication 

4.2 Iris code and QR code generation 

Here we discuss how we generate iris code (used as user ID) and the QR code (used as 

password) from given iris images. Figure 6 shows iris code generation process from live 

eye. Iris is the situated colored ring of muscle around the eye pupil which controls the 

diameter and the size of the pupil and the amount of light that could reach the retina. Using 

an iris scanner (a camera for scanning iris), a person’s eye is scanned. The data of the iris 

is unique to each person. 

The camera takes a picture in infrared light. Most cameras (e.g., laptop camera) now 

support infrared lights have longer wavelengths than normal red lights and are not visible 

to the human eye. The infrared light helps to reveal unique features for dark colored eyes 

which cannot be detected by normal light. 
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Fig 6: Iris code generation process for authentication 

 

We implemented a prototype [32] using OpenCV [22] platform that detects iris region with 

pupil (using classifiers). Next, we identify the pupil area in the center of iris region and 

normalize the iris area image in black and white mode. We then subtract the iris area from 

the pupil area (which reflects the area based on pupillary response for current illumination 

level). An iris code is generated using the pupillary response area, which is a 512-digit 

number. The iris code is stored in the database for a new user during enrollment. It is 

checked for matching during the authentication process. For matching, we rely on 

Hamming distance between the two images. Hamming distance computes the number of 

dissimilar bits among two codes assuming the code length for both images is the same. For 

example, if image A=1001, and image B=1100, the H(A, B) = 2 (as the second and fourth 

bits of A and B are dissimilar). 

One limitation of storing only iris code and relying on it for authentication is that the 

approach is vulnerable to presentation attack. If an attacker can obtain the printout of the 

iris image under correct illumination level, then the attacker would obtain access to the 

system. To prevent this, we generate a QR code to act as a password. Unlike traditional 

text-based password, the QR code is an image representation, it can be read by a reader 
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and converted to a bit string to compare with known strings. We now discuss our proposed 

approach of generating the QR code. From the iris image, we separate the Red, Green, and 

Blue color planes. The color information is presented as matrix (Mat object in OpenCV 

[23]). We then generate Hash value by combining hashes for each of the planes as follows: 

                 H = H(R)  XOR  H(G)  XOR  H(B) 

Here, H(R) is the hash generated from the Red color plane matrix, and XOR the Boolean 

operator. The length of the hash is 128 bits (16 bytes). We apply Message Digest (MD5) 

hash algorithm to generate hashes out of matrix information. We then generate a micro QR 

code using the hash information. A micro QR code can have 25 alphanumeric characters 

(for error correction level M [21]). The provided length is sufficient to our goal. 
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Chapter V. 

Implementation and Evaluation 

 

     We implemented a prototype using OpenCV platform [32] to detect iris recognition and 

spoofing attack detection using the proposed framework. We collected a dataset of iris 

images from [18] to evaluate our approach. This dataset is commonly used by other 

literature works. It contains 2,854 images of authentic eyes and 4,705 images of the paper 

printouts collected from 400 sets of distinct eyes. The photographed paper printouts have 

been applied to successfully forge iris recognition system. For our evaluation, we randomly 

selected 300 samples from authentic eyes to train the classifiers, and then applied it to 200 

samples of printed iris images.  

Figure 6 shows a sample of images from the dataset where (a) real eye image, (b) printed 

image of the iris of same eye. 

(a)           (b) 

Figure 6: (a) real eye image (b) printed eye image from dataset 

Figure 8 shows a set of results where (a) sample eye image, (b) iris recognition output of 

Haar-Cascade classifier (the yellow circle), and LBP classifier (red circle), (c) result of 
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iris center and its radius, (d) converting to iris code by normalization of the iris image. 

Figure 9 shows a sample of QR code. 

 

Fig 8: Screenshots of classifier output (top row) and iris code (bottom row) 

 

 

Fig 9: Screenshots of micro QR code 

TABLE 2: SUMMARY OF EVALUATION 

Classifier 
# of authentic 

samples 
FP 

# of paper 

samples 
FN 

Haar-

cascade 
300 4.5% 200 3.6% 

LBP 300 5.7% 200 4.6% 

Avg. 300 5.2% 200 4.3% 
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Table 2 shows a summary of the evaluation. Among 300 samples used for training, the 

reported false positive rate for Haar-cascade and LBP classifiers is 4.5% and 5.7%, 

respectively. The last row of Table II shows the average of Haar-cascade and LBP classifier 

FP rate (5.2%). The paper printed samples were replayed to test the system for attacks. The 

FN rate for Haar-cascade and LBP classifiers is 3.6% and 4.6%, respectively. The micro 

QR code could prevent this false acceptance of images as defense in depth. The underlying 

cause of FP and FN is due to classifier parameter tuning which can be improved further by 

considering large number of samples and other machine learning approaches.  
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Chapter VI.   

Conclusions 

Iris spoofing attacks have emerged as a significant threat against traditional iris-

based authentication systems. In this thesis, an iris-based authentication framework has 

been developed which extracts iris patterns from live image followed by QR code. The 

information can be used to detect presenation attacks. The iris pattern recognition applied 

two common machine learning approaches namely Haar Cascade and Local Binary Pattern. 

A prototype tool using OpenCV library has been developed. The approach has been 

evaluated with a publicly available dataset and the initial results look promising with lower 

false positive and negative rates. The initial results look promising with lower false positive 

and false negative rates. The future work plan includes evaluating with more samples and 

employing other machine learning techniques. 
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