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Abstract

Motivated by copying models of the web graph, Bonato and Janssen
[3] introduced the following simple construction: given a graph G, for
each vertex x and each subset X of its closed neighbourhood, add a
new vertex y whose neighbours are exactly X. Iterating this construc-
tion yields a limit graph ↑G. Bonato and Janssen claimed that the
limit graph is independent of G, and it is known as the infinite locally
random graph. We show that this picture is incorrect: there are in
fact infinitely many isomorphism classes of limit graph, and we give a
classification. We also consider the inexhaustibility of these graphs.

1 Introduction

The Rado graph R is the unique graph with countably infinite vertex set such
that, for any disjoint pair X, Y of finite subsets of vertices, there is a vertex
z that is joined to every vertex in X and no vertex in Y . If 0 < p < 1, and G
is a random graph in G(N, p), then with probability 1 we have G ∼= R. For
this reason, the Rado graph is also known as the infinite random graph (see
[5] for a survey).

The Rado graph can be obtained deterministically by beginning with any
finite (or countably infinite) graph G and iterating the following construction:

[E1] For every finite subset X of V (G) add a vertex y with neighbourhood
N(y) = X.
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Here N(x) = {y ∈ V (G) : xy ∈ E(G)} is the neighbourhood of x; we also
write N [x] = N(x) ∪ {x} for the closed neighbourhood of x.

Motivated by copying models of the web graph, Bonato and Janssen [3]
(see also [1] and [4]) introduced the following interesting construction. For
a finite graph G, the pure extension PE(G) of G is obtained from G by the
following construction:

[E2] For every x ∈ V (G) and every finite X ⊆ N [x] add a vertex y with
neighbourhood N(y) = X.

Iterating this construction, we obtain a limit graph, denoted by ↑G.
Bonato and Janssen ([3], Theorem 3.3) claimed that ↑G ∼=↑H for every

pair G, H of finite graphs. The (claimed) unique limit graph, which has
become known [1] as the infinite locally random graph (see Proposition 1
below for the reason for this name). As we show below, Bonato and Janssen’s
claim is incorrect. There are in fact infinitely many limit graphs G (for
instance, ↑C5, ↑C6, ↑C7, . . . are all distinct), and we give a simple criterion
that determines when ↑G ∼=↑H.

In the next section, we give a few simple properties of limit graphs ↑G;
we prove our classification result in section 3. Finally, in section 4, we prove
that for every finite G, ↑G is inexhaustible, that is (↑G) \ x ∼=↑G for all
x ∈ V (↑G). This corrects another result from [3].

2 Simple properties of ↑G
We begin with some notation. We shall refer to the vertices y that are
introduced in [E2] above with neighbourhoods contained in N [x] as clones of
x. Thus a vertex of degree d in G has 2d+1 clones in PE(G) (note that we
take all subsets of the closed neighbourhood N [x]), and PE(G) contains |G|
isolated vertices, each one a clone of a different vertex from G. As indicated
above, iterating construction [E2] gives a sequence of graphs G ⊆ PE(G) ⊆
PE2(G) ⊆ · · · , where PEn(G) = PE(PEn−1(G)); we write ↑G for the limit
of this sequence. We define the level L(x) of a vertex of ↑G to be the least
integer k such that it is contained in PEk(G) (where L(x) = 0 for all x ∈
V (G)), and for a finite subset X ⊆ V (↑G), we write L(X) = maxx∈X L(x).
We also write L(k)(↑G) for the vertices of level k in ↑G, and L(≤k)(↑G) for
the vertices of level k or less. Note that, by the construction, L(k)(↑G) is an
independent set for every k ≥ 1.
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Given a graph H, a graph G is locally H if, for every vertex x of G, the
graph induced by the neighbourhood N(x) of x is isomorphic to H.

Bonato and Janssen note the following property of the construction de-
fined above.

Proposition 1. [3] For every finite graph G, ↑G is locally R

Proof. For every x ∈ V (↑G), and every X and Y finite disjoint subsets of
N(x), we want to find a vertex z such that z is adjacent to every vertex in
X and to none in Y . This is possible by the definition of ↑G by taking a
suitable vertex z of level L(X ∪ Y ) + 1.

Since R is the (unique) infinite random graph, it therefore makes sense
to refer to ↑G as an infinite locally random graph.

Corollary 2. Let G be a finite graph. Then ↑G is ℵ0-universal (that is, ↑G
contains every countable graph H as an induced subgraph).

Another easy but important remark concerns the distance between ver-
tices.

Proposition 3. Let G be a finite graph and x and y two vertices of PEk(G),
for some integer k ≥ 0. Then the distance between x and y is the same in
PEk(G) and in ↑G.

Proof. It is sufficient to note that the pure extension construction [E2] does
not change the distance between vertices.

We also note the following simple property.

Lemma 4. Let G be a finite graph and x a vertex of ↑G. Let X be a finite
subset of N(x). Then there exists a vertex y with L(y) ≤ L(X) such that
X ⊆ N [y].

Proof. Let x0 be a vertex of minimal level with X ⊆ N [x0]. If L(x0) ≤ L(X)
then we can take y = x0. Otherwise, L(x0) > L(X) and so x0 6∈ X. But x0
was constructed on level L(x0) as the clone of some vertex x1 with L(x1) <
L(x0). In particular, N(x0) ∩ L(<L(x0))(↑G) ⊆ N [x1] and so X ⊆ N [x1],
which contradicts the minimality of L(x0).
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For x ∈ V (↑G), we write

N−(x) = N(x) ∩ L(<L(x))(↑G).

Note that N−(x) is the set of neighbours assigned to x at time L(x), when x
is first introduced. We say that a subgraph G1 of G is good if it is an induced
subgraph ofG and, for all x in V (G1), N

−(x) ⊆ V (G1). Equivalently, G1 is an
induced subgraph such that N(y)∩V (G1) ⊆ N−(y) for all y ∈ V (G)\V (G1).

In this context, Lemma 4 gives the following result.

Lemma 5. Let G be a finite graph and suppose that H is a good subgraph of
↑G. Then

∀x ∈ V (↑G), ∃y ∈ V (H) such that N(x) ∩ V (H) ⊆ N [y] ∩ V (H)

Proof. We can assume that x 6∈ V (H). Let X = N(x) ∩ V (H). Then
X ⊆ N−(x), and by Lemma 4 there exists y of level at most L(X) with
X ⊆ N [y]. If L(y) = L(X) then, since the levels are independent sets and
X ⊆ N [y], y must belong to X, and thus to H. If L(y) < L(X), then y
belongs to H as H is a good subgraph of ↑G.

3 Classification

We now investigate when ↑G and ↑H are isomorphic. In [3], the authors
claim that ↑G ∼=↑H for any pair of finite graphs G and H (this is their
Theorem 3.3). Here we disprove this. Their proof seems to fail on page 209
at the end of the first paragraph: the equality Hn+1−S ∼= G1]Km does not
hold because these vertices can be linked by edges. Moreover, it is not clear
why this equality would imply H − S ∼=↑(G1 ]Km) on the following line, as
some vertices in H can be constructed by cloning elements in S.

We begin with the following useful consequence of Lemma 5.

Theorem 6. Let G and H be finite graphs. Suppose that G1 ⊇ G is a good
subgraph of ↑G and H1 ⊇ H is a good subgraph of ↑H. If G1

∼= H1 then
↑G ∼=↑H

Proof. Let φ : V (G1) → V (H1) be an isomorphism (note that, as G1 and
H1 are good, they are induced subgraphs of ↑G and ↑H, respectively, so
this is an isomorphism between induced subgraphs). Using a classical ‘back
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and forth’ argument, we extend φ one vertex at a time until, in the limit, we
obtain an isomorphism between ↑G and ↑H. Let x ∈ V (↑G) be a vertex of
minimal level with x 6∈ V (G1). By Lemma 5, there exists y ∈ V (G1) such
that N(x) ∩ V (G1) ⊆ N [y] ∩ V (G1). Let z 6∈ V (H1) be a clone of φ(y) with

N−(z) = N(z) ∩ V (H1) = φ(N(x) ∩ V (G1)).

Such a clone is easily found: let k = L(V (H1)), and take the clone of φ(y) on
level k+ 1 with exactly this neighbourhood in L(≤k)(↑H). Then V (H1)∪{z}
induces a good subgraph of ↑H and, by minimality of x, V (G1)∪{x} induces
a good subgraph of ↑ G. We can therefore extend φ by setting φ(x) =
z. Repeating the construction in alternate directions we clearly obtain an
isomorphism between ↑G and ↑H.

We shall say that a vertex x of a graph G is inessential if there exists
y ∈ V (G), y 6= x such that N(x) ⊆ N [y]. A graph is essential if it contains
no inessential vertices. Given a graph G, a sequence of vertices x1, . . . , xk is
a maximal sequence of removals if xi is inessential in G \ {x1, . . . , xi−1} for
each i, and G \ {x1, . . . , xk} is an essential graph.

We shall show below that every maximal sequence of removals yields the
same essential graph (up to isomorphism). However, we first prove a simple
lemma. We say that two vertices x and y in a graph G are equivalent if
N(x) = N(y) or N [x] = N [y]. Equivalently, N(x) ⊆ N [y] and N(y) ⊆ N [x].
Clearly, if x and y are equivalent in G then G \ x ∼= G \ y, with the obvious
isomorphism given by exchanging x for y and leaving the other vertices fixed.

Equivalent vertices play an important role in the removal of inessential
vertices.

Lemma 7. Suppose that x and y are inessential in a graph G, but x is not
inessential in G \ y. Then x and y are equivalent.

Proof. Note first that since x and y are inessential in G, there are x′ and y′

such that N(x) ⊆ N [x′] and N(y) ⊆ N [y′]. If x′ 6= y then considering the
vertex x′ in G \ y shows that x is inessential in G \ y, a contradiction. So
x′ = y, and N(x) ⊆ N [y].

Now consider y′. If y′ 6= x then N(x) ⊆ N [y] = {y}∪N(y) ⊆ {y}∪N [y′]
implies that N(x) \ y ⊆ N [y′], and so y′ shows that x is inessential in G \ y,
a contradiction. Thus we have y′ = x, and so N(y) ⊆ N [x]. It follows that
x and y are equivalent.
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We now show that maximal sequences of removals define a unique graph
up to isomorphism.

Theorem 8. Suppose that x1, . . . , xk and y1, . . . , yl are two maximal se-
quences of removals in a finite graph G. Then G \ {x1, . . . , xk} ∼= G \
{y1, . . . , yl}.

Proof. We claim that we can modify the sequence {y1, . . . , yl} to obtain the
sequence {x1, . . . , xk} without changing the isomorphism type of the resulting
essential graph G \ {y1, . . . , yl}.

Suppose first that x1 6∈ {y1, . . . , yl}. Then (by maximality) x1 is inessen-
tial in G but not in G \ {y1, . . . , yl}. Let i be maximal such that x1 is
inessential in G \ {y1, . . . , yi}. Then, by Lemma 7, x1 and yi+1 are equiv-
alent in G \ {y1, . . . , yi}, and so we can replace yi+1 by x1 in the sequence
y1, . . . , yl, without effecting the isomorphism type of G\{y1, . . . , yl} (the iso-
morphism is given by exchanging x1 and yi+1). We may therefore assume
that x1 ∈ {y1, . . . , yl}.

We now show that we can modify y1, . . . , yl so that y1 = x1. Suppose that
x1 = yi+1 for some i ≥ 1. If there exists some 0 ≤ j < i − 1 such that x1 is
inessential in G\{y1, ..., yj} and not in G\{y1, ..., yj+1}, Lemma 7 implies that
x1 and yj+1 are equivalent in G\{y1, ..., yj}. Therefore we can exchange them
in the sequence. We can repeat this operation as long as such an integer j
exists, and thus we can assume that x1 = yi+1 is inessential in G\{y1, . . . , yj}
for all j ≤ i. Now, if yi is not inessential in G \ {y1, . . . , yi−1, x1} then (as
it is inessential in G \ {y1, . . . , yi−1}) Lemma 7 shows that x1 and yi are
equivalent in G\{y1, . . . , yi−1}. It is clear that we may therefore exchange yi
and yi+1 = x1 in the sequence y1, . . . , yl. Repeating this argument, we move
x1 forward in the sequence y1, . . . , yl until x1 = y1.

Finally, if x1 = y1, we can work instead with the graph G \ x1 and the
sequences x2, . . . , xk and y2, . . . , yl, continuing until one (and hence both) of
the sequences is exhausted.

We shall denote the (isomorphism type of the) subgraph of G obtained by
deleting a maximal sequence of removals ↓G. For instance, ↓Kn =↓C4 = K1,
but ↓Ck = Ck for all k ≥ 5.

We next show that inessential vertices have no effect on limit graphs.

Corollary 9. Let G be a finite graph and x an inessential vertex of G. Then
↑G ∼=↑(G \ x)
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Proof. Let H = G \ x. Since x is inessential, there exists y in G such that
N(x) ⊆ N [y] in G. In ↑H, y has a clone x′ such that N−(x′) = N(x)∩V (G).
Clearly G1 = G is a good subgraph of ↑G and V (H) ∪ {x′} induces a good
subgraph H1 of ↑H. Thus it suffices to apply Theorem 6 to G1 and H1.

Corollary 9 implies the following theorem.

Theorem 10. Let G be a finite graph. Then ↑G ∼=↑(↓G)

If H is an induced subgraph of ↑G, then we define two kinds of transfor-
mations on this subgraph, called reductions.

(i) Delete an inessential vertex of H.

(ii) For a pair of vertices x ∈ V (H) and y 6∈ V (H) with N(x) ∩ V (H) ⊆
N(y) ∩ V (H), replace H by the subgraph of ↑G induced by (V (H) \
x) ∪ {y}.

Lemma 11. If H is a finite induced subgraph of ↑G, it is possible to apply
a sequence of reductions to transform H into a subgraph of G.

Proof. Define the weight w(H ′) of an induced subgraph of ↑G by

w(H ′) =
∑

v∈V (H′)

L(v).

If w(H) = 0 then H is a subgraph of G. If w(H) > 0, then we look for a
reduction that decreases the weight or the number of vertices. If H contains
an inessential vertex, then delete it (this can occur at most |H| − 1 times).
Otherwise, let x ∈ V (H) be a vertex of highest level. Then N(x) ∩ V (H) =
N(x) ∩ V (H) ∩ L(<L(x))(↑G), as L(L(x))(↑G) is an independent set. Since x
was built at level L(x) as the clone of some vertex y that satisfies N(x) ∩
V (H) ∩ L(<L(x))(↑G) ⊆ N [y] ∩ V (H) and L(y) < L(x), we can replace x by
y, to obtain H ′ with w(H ′) < w(H). Repeating this process, we eventually
obtain an induced subgraph of ↑G with weight 0 which, as already noted, is
a subgraph of G.

We are now ready to prove our main result.

Theorem 12. Let G and H be finite graphs. Then ↑G ∼=↑H ⇐⇒↓G ∼=↓H
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Proof. By Theorem 10, we may assume that G and H do not contain any
inessential vertices, that is ↓G = G and ↓H = H. Suppose that ↑G ∼=↑H,
and fix an isomorphism.

Let {1, 2, . . . , n} be the vertices of G. We partition the vertices of ↑G
into n classes in the following way. For i = 1, . . . , n, let Ai,0 = {i}, and for
j ≥ 1, let Ai,j be the vertices of ↑G which are clones of vertices in Ai,j−1. We
then define Ai =

⋃∞
j=0Ai,j. Thus Ai is the smallest set of vertices containing

i and closed under taking clones. It is easy to see that, for i 6= k, there is an
edge between class Ai and Ak if and only if there is an edge between i and k
(as creating a clone cannot create adjacencies between a new pair of classes).
We shall say that edges between classes respect G.

Now consider an isomorphic embedding φ of G into ↑G. We say that
φ is good if φ(i) ∈ Ai for every i ∈ V (G). Suppose that φ is good and let
G′ be the image of G under φ. If we apply a type (ii) reduction to some
vertex of G′, say vi := φ(i), then it is replaced by a vertex x such that
N(x) ∩ V (G′) ⊇ N(vi) ∩ V (G′). Let Aj be the class containing x. Since φ is
good, there is an edge between Aj and Ak whenever k ∈ N(i). Since edges
between classes respect G, this implies N [j] ⊇ N(i). But since we assumed
that G contains no inessential vertices, this is possible only if i = j. Indeed,
N(x) ∩ V (G′) = N(vi) ∩ V (G′), or else we would introduce edges between
new pairs of classes. It follows that we obtain a good embedding φ′ of G
by setting φ′(i) = x and φ′(j) = φ(j) otherwise. This remains true for any
sequence of reductions starting from a good embedding. In particular, any
sequence of reductions starting from G produces an induced copy of G (note
that reductions of type (i) are not possible at any stage).

By Lemma 11, any induced subgraph of ↑ H isomorphic to G can be
reduced to a subgraph of H. It follows that G must be isomorphic to a
subgraph of H. Arguing similarly the other way round, we see that H is
isomorphic to a subgraph of G, and so G ∼= H.

Now it is clear that ↑G is not independent of G: it suffices to consider two
circuits of different length (larger than 4). In fact, Theorem 12 immediately
gives the following classification of possible limit graphs.

Corollary 13. The isomorphism classes of limit graphs ↑G of finite graphs
G are in bijective correspondence with the class of essential finite graphs.
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4 Inexhaustibility

A graph G is inexhaustible if G \ x ∼= G for every vertex x ∈ V (G). For
instance, the infinite complete graph Kω and its complement are trivially
inexhaustible; the Rado graph R is also inexhaustible. On the other hand,
the infinite two-way path is not inexhaustible, as deleting any vertex increases
the number of components. For results on inexhaustible graphs, see Pouzet
[7], El-Zahar and Sauer [6] and Bonato and Delić [2].

Bonato and Janssen [3] consider the inexhaustibility of infinite graphs
satisfying various properties, and claim a rather general result. Let us define
define two properties of (infinite) graphs as follows. We say that a graph G
has Property A if it satisfies the following condition.

(A) For every vertex x of G, every finite X ⊆ N [x], and every finite Y ⊆
V (G) \ X, there is a vertex z 6∈ X ∪ Y such that X ⊆ N(z) and
Y ∩N(z) = ∅,

and G has Property B if it satisfies the following.

(B) For every vertex x of G, every finite X ⊆ N(x), and every finite Y ⊆
V (G) \ X, there is a vertex z 6∈ X ∪ Y such that X ⊆ N(z) and
Y ∩N(z) = ∅.

Note that the only difference between (A) and (B) is that (A) is concerned
with closed neighbourhoods, while (B) is only concerned with neighbour-
hoods. Clearly Property A implies Property B; furthermore, for any finite
G, it is clear from the constructive step [E2] that ↑G has Property A (and
therefore Property B).

Bonato and Janssen ([3], Theorem 4.1) claim that every graph with Prop-
erty B is inexhaustible. However, there is a simple counterexample to this
assertion: let G be the Rado graph R with an additional isolated vertex x.
Since the Rado graph is connected, and G is not, it is clear that G \ x 6∼= G.
(The proof of Bonato and Janssen in [3] appears to fail with the definition
of their sets Si.)

In fact, even the stronger Property A does not imply that a graph is inex-
haustible. Consider the graph G defined by starting from the path x1x2x3x4
of length 3, and alternating the pure extension construction [E2] with the
following step.

[E3] For every pair of vertices {x, y} 6= {x1, x4}, add a vertex z with N(z) =
{x, y}.
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Note that x1 and x4 are at distance 3 in the initial graph. The pure extension
step [E2] does not change the distance between vertices, while [E3] does not
create a path of length 2 from x1 to x4. Thus x1 and x4 are at distance 3
in the limit graph. On the other hand, there are infinitely many paths of
length 2 between any other pair of vertices. Thus G \ {x1, x4} 6∼= G, and so
G cannot be inexhaustible (if G is inexhaustible, then clearly G \X ∼= G for
every finite X ⊆ V (G)).

On the positive side, we can show that for any finite G, the limit graph
↑G is actually inexhaustible.

Theorem 14. For every finite graph G, ↑G is inexhaustible.

Proof. Let v be any vertex of ↑G. We shall show that ↑G ∼= (↑G) \ v. Note
that since ↑G ∼=↑PEL(v)(G), we can replace G by PEL(v)(G), and so we may
assume that v ∈ V (G).

On the first level above G, v has a clone v′ with N(v) ∩G = N(v′) ∩G.
Thus we have an isomorphism between G1 = G and G2 = G \ v ∪ {v′}.
It is clear that G1 and G2 ∪ {v} are good subgraphs. We will extend this
isomorphism by a ‘back and forth’ argument.

Suppose we are given a partial isomorphism φ between two subgraphs G1

and G2 of ↑G, with the following properties:

1. G1 and G2 ∪ {v} are good subgraphs of ↑G

2. V (G) ⊆ V (G1), V (G) \ v ⊆ V (G2) and v 6∈ V (G2)

3. There is a vertex ṽ ∈ V (G2) such that N(v) ∩ V (G2) ⊆ N(ṽ) ∩ V (G2)

The vertex ṽ (in the third property) will change at each step of our construc-
tion. We begin by setting ṽ = v′, and note that our initial G1 and G2 satisfy
the conditions above.

Let x ∈ V (↑ G) be a vertex of minimal level with x 6∈ V (G1). This
property implies that N−(x) ⊆ V (G1) and so G1 ∪ {x} is still a good graph.
By Lemma 5, there exists y ∈ V (G1) such that N(x) ∩ V (G1) ⊆ N [y] ∩
V (G1) and we can define φ(x) by taking a clone of φ(y) of level greater than
L(V (G1) ∪ V (G2)) such that

N−(φ(x)) = N(φ(x)) ∩ V (G2) = φ(N(x) ∩ V (G1)).

This extends the isomorphism, implies that G2 ∪ {φ(x), v} is still a good
graph and that the vertex ṽ still satisfies the desired property.
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We now go in the opposite direction. Let z be a vertex of minimal level
with z 6∈ V (G2) ∪ {v}: we attempt to define φ−1(z).

We distinguish two cases:

• zv 6∈ E(↑G), or zv ∈ E(↑G) and zṽ ∈ E(↑G).

As before, we can apply Lemma 5 to get y ∈ V (G2) ∪ {v} such that
N(z) ∩ V (G2) ⊆ N [y] ∩ V (G2). If y = v, we can instead choose y = ṽ.
We can then define φ−1(z) as previously to be a suitable clone of φ−1(y).

• zv ∈ E(↑G) and zṽ 6∈ E(↑G).

In this case we will have to change ṽ, because we want the condition
N(v) ∩ V (G2) ⊆ N(ṽ) ∩ V (G2) to hold after adding z to G2. Let w
be a clone of v such that L(w) > L(V (G1) ∪ V (G2)) and N−(w) =
(N(v)∩V (G2))∪{z}. Such a vertex exists, since z is a neighbour of v.
The only reason why the subgraph induced by V (G2)∪{v, w}might not
be a good graph is the edge zw. We therefore extend the isomorphism
to G2∪{z, w}. Since G2 is a good graph, we can use Lemma 5 as before
to first extend the isomorphism to z. Since, by minimality of z, the
subgraph induced by V (G2) ∪ {z, v} is also a good graph, we can use
Lemma 5 again to extend the isomorphism to w. Finally, the definition
of w implies that G2∪{z, w, v} is a good graph, and we can choose the
new ṽ to be w, as it satisfies the desired property.

Repeating the argument gives, in the limit, an isomorphism between ↑G
and (↑G) \ v.
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