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ABSTRAK 

 
Makalah ini membahas kecenderungan dampak pemanasan global yang terjadi 

akhir-akhir ini. Estimasi dilakukan dengan parameter fraksional dari catatan relatif 
panjang menggunakan tehnik outlier aditif sebagai pengamatan bebas yang dihasilkan di 
atmosfer karena pemanasan global. Selanjutnya penelitian ini mengamati secara empiris 
dampak pemanasan global terhadap aspek tertentu produksi pertanian global. 
Berdasarkan simulasi Monte Carlo, proses menghasilkan data diterapkan dimana outlier 
aditif dihasilkan melalui cara discrete atau tidak kontinyu. Hasil observasi menunjukkan 
bahwa outlier aditif mempengaruhi bias dan MSE parameter fraksional estimasi. Ukuran 
outlier aditif dalam proses menghasilkan data juga memiliki pengaruh penting terhadap 

parameter farksional estimasi yang tergantung pada nilai parameter fraksional yang 
sebenarnya. Hasilnya menunjukkan variabilitas non tren atau siklus alami yang 
dipengaruhi oleh proses stokastik dalam hal sifat perubahan iklim dengan observasi 
bebas (outlier) yang menghasilkan outcome berlawanan dari ketidakpastian yang intensif 

terhadap tren data temperatur dunia pada kondisi riil. Hasil pengamatan empiris 
menyimpulkan bahwa pada akhir abad 21 secara meyakinkan pemanasan global akan 
mempunyai dampak negatif terhadap agregat produksi pertanian global dan dampaknya 
bisa sangat parah jika manfaat fertilizasi karbon (peningkatan hasil dalam lingkungan 
yang kaya karbon) tidak tampak, terutama jika kelangkaan air membatasi irigasi. Lagi 
pula, jika pemasan global tidak berhenti pada tahun 2080, tetapi temperatur global terus 
meningkat pada abad 22, kegagalan produksi pertanian bisa semakin parah. Studi ini 
juga menunjukkan bahwa akumulasi pengaruh produksi pertanian kemungkinan lebih 
serius bagi negara berkembang dengan kerugian terbesar di Afrika, Amerika Latin, dan 
India.  

 
Kata kunci: outliers aditif, parameter fraksional, simulasi Monte-Carlo, dampak 

pemanasan global, pengaruh tren  temperatur, ketidakpastian, 
keberlanjutan, produksi pertanian 

 
ABSTRACT 

 
This paper primarily attempts to detect the trend in the present upshots of global 

warming temperature data. It has been done through the estimation of the long memory 
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fractional parameter using a simulation technique in the presence of additive outliers 
which stands as wild observations generated in the atmosphere due to global warming. 
Then, the study investigates empirically the impact of global warming on the particular 
aspect of global agricultural production. Based on Monte Carlo simulations, a data 
generating process is applied where additive outliers are generated in a discrete way. 
Observed facts reveal that additive outliers affect the bias and the MSE of the estimated 
fractional parameter. The size of the additive outliers in data generating process has also 
important effects on the estimated fractional parameter depending on the value of true 
fractional parameter. The result exhibits a non-trend or a natural cyclical variability 
influenced by a stochastic process in the case of climate change behavior with wild 
observations (outliers) that produce a contradictory outcome of profound uncertainties 
against the case of true world temperature data trend. The results of empirical 
investigations assert that in the late 21

st
 century unabated global warming would have a 

negative impact on global agricultural production in the aggregate and the impact could 
be severe if carbon fertilization benefits (enhancements of yields in a carbon-rich 
environment) do not materialize, especially if water scarcity limits irrigation. In addition, if 
warming would not halt in the 2080s, but would continue on a path toward still higher 
global temperatures in the 22

nd
 century, agricultural damage could be more severe. The 

study also shows that the composition of agricultural effects is likely to be seriously 
unfavorable to developing countries with the most severe losses in Africa, Latin America 
and India.  
 
Key words : additive outliers, fractional Parameter, Monte-Carlo simulations, impact of 

global warming, temperature trend effect, uncertainty, sustainability, 
agricultural production 

 
 

INTRODUCTION 

 

In recent times, issues of climate change and global warming upshot 
uproars in the media, because global ecological change resulting in rising 
surface air temperature poses a common threat as a „highway to extinction‟ (see 
e.g. IPCC, 2007; Rahman, 200; and Toronto Sun, April 1, 2007). In reality, 
observed data on world temperature over the last century exhibit an 
unambiguous upswing drift from the second half of the eighteenth century upend 
till the present (Cohn and Lins, 2005 ), which is consistent with the hypothesis 
that manmade emissions of greenhouse gasses into the atmosphere should 
cause average global temperature to rise (Seater, 1993). This behavior of data 
raises concern whether the trend is genuine. The controversy surrounds mainly 
on the impact and nature of the information provided by the investigations of 
scientific communities (Kallache et al., 2005). One school of thought argues that 
there has been a deterministic trend of world temperature readings, which imply 
that the consequence of anthropogenic influence is present (Solow, 1987; 
Bloomfield, 1992; Beran, 1994, Woodward and Gray, 1995; Percival and 
Walden, 2000; Craigmile et al., 2004). The other school maintains the argument 
of non-trend or a natural cyclical variability that is influenced by a stochastic 
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process (Seater, 1993; Jones et al., 1986; Ribsky et al., 2006; Mills, 2007). This 
result increases contradictions and uncertainties over that issue of climate 
change and economics of global warming that could have a drastic impact on 
the sustainability of agricultural food production all over the world. 

Overall, uncertainties develop out of three conflicting results of 
investigations. First, temperature readings for the last century yield trend 
estimates of about 0.45 degrees Celsius per century, which is consistent with 
those reported in the scientific literature. The trend is significant statistically, but 
the 95% confidence interval is substantially wide (0.15, 0.75). Second, the two 
data sets for the last century produce proximate equal trend estimates, but 
temporal and geographical patterns seem inconsistent with greenhouse gas 
emissions as to be the source of the observed trend. Third, a study of the 
temperature record for the past 15 centuries shows that the recent rise in 
temperature is nothing unusual. The rise may be a local upswing in a cyclical 
process that has no overall trend, but that may appear to be a trend when 
viewed in isolation (Seater, 1993). Similar analogy of the last case is observed 
when Craigmile et al. (2004) maintain that there is typically little argument about 
the magnitude of observed trends whether estimated by eye or statistical 
methods. Moreover, some even express doubts about the existence of a 
rigorous and consistent definition of trend (Cohn and Lins, 2005). Some others 
consider the statistical significance or p-value associated with an observed trend 
as more difficult to assess, because it depends upon subjective assumptions 
about the underlying stochastic process (von Storch and Zwiers, 1999). 

Long memory means to rely on past experiences. That is, if something 
has happened in the past, it is likely to repeat again in the future. In other words, 
history repeats itself over and over again. Statistically, in the case of a stationary 
process with long term autocorrelation function, ρ(k) is said to be a long memory 
process if ∑ 

∞
k=0 │ ρ(k) │ does not converge (Beran, 1994). An intuitive way to 

such behavior is to say that the process is divergent and has a long memory 
(Kallache et al., 2005; Chatfield, 1996). 

Many applications of this approach have been proposed in the 
econometric literature. However, while econometricians have been using long 
memory models since around 1980, they have rutted the mark in physical 
sciences since at least 1950 with the seminal work of Hurst (1951, 1957). Very 
often, time series are contaminated due to the presence of aberrant or wild 
observations, which do not necessarily originate in the true data generating 
process but in time series modeling. These observations are called outliers 
(Ashraf, 2006). There are different sorts of outliers. Here, this paper focuses its 
attention on additive outliers that by definition affect the level of time series but 
not the disturbance term associated with it. 

However, the intent of this paper is to observe the effect of global 
warming data-trend, treated as additive outliers, on the bias and the MSE of the 
estimated fractional parameter, which subsequently produce stochastic shocks 
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or uncertainties. The study has employed long memory model as proposed by 
Geweke and Porter-Hudak (1983). The model is used the artificial data 
generated by Vogelsang (1999) and Perron and Rodriguez (2000) by 
implementing a Monte Carlo design. If there is any observation that affects the 
size and the probability of occurrence of the additive outliers as well as the drift 
parameter in data generating process on the estimated fractional parameter, 
conclusions could be drawn that the bias, MSE and the size of t-statistic would 
be influenced which could be used adequately as to be the evidence of affecting 
the trend stationarity. Thus, the present temperature-trend measures are 
uncertain, which are in some ways quantifiable and in some ways that are not. 
These evidence outcome enormous uncertainties that enhance responses to 
shocks in agricultural food production, which can be drastically reduced in the 
near future and could cause a catastrophic famine all over the world. In that 
case a cautious approach of economic policy options for food production is 
warranted and that is the central theme of this paper.  

 

METHODOLOGY 

 

Theoretical Framework 

There are a variety of ways of estimating the parameter d.  In the 
present study, the estimation procedure is followed as proposed by Geweke and 
Porter-Hudak (1983), which generalized the definitions of fractional Gaussian 
noise and integrated or fractionally differenced series and showed that the two 
concepts are equivalent. Here, the procedure is based on estimation in the 

paradigm of frequency domain. For the model (1 - L)
d
 xt = t, where {xt} is 

assumed to be a time series process, d Є (-.5, .5) and t is serially uncorrelated, 
the spectral density of the time series {xt} is: 

f2(ω ; d) =  (σ
2
/2π)   |1 – e

-iω
  |

 -
 
2d

 = (σ
2 
/2π){4sin

2
 (ω /2)}

-d
  (1) 

A time series with the spectral density f2 (ω; d) is called an integrated or 
fractionally differenced series, which suggests that lim ω→ 0 ω

2d
 f2 (ω; d) =  

(σ
2
/2π) and the autocorrelation function (for d ≠ 0) is ρ2 (τ ; d) = Γ(10d) Γ(τ + d) / 

Γ(d) Γ(τ + 1 – d), which leads to lim τ →∞  τ
1-2d

 ρ2 (τ; d) = Γ (1 - d) / Γ(d). 

Now consider (1 –L)
d
 yt = ut, where ut is a linear and stationary 

distributed process with the spectral function fu (λ), which is supposed to be 
finite, bounded away from zero and continuous on the interval { -π,  π}. Based 
on this methodology, one has  

 log {fy (ωj)} = log {fu (0)} – d log {4sin
2
 (ω j / 2)} + log [ fu ((ω j) / fu (0)]  (2) 

and d can be estimated from a regression based on the above equation using 
spectral ordinates ω 1, ω 2,…, ω m, from the periodogram of yt, that is Iy (ω j) : 
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log {Iy (ω j)} = а - d log {4sin
2
(ω j / 2)} +  vj ,  j = 1….n  (3)  

where 

vj = log [fu (ω j) / fu (0)]  (4) 

and vj is supposed to be i.i.d. with zero mean and variance π
2
/6. Thus, the least 

square estimator of d is asymptotically normal. If the number of ordinates n is 
chosen such that n = g (T), where g(T) is such that lim T→∞  g(T) = ∞,  lim T→∞ { g 
(T) / T} = 0 and  limT→∞ {(log(T)

2
 / g(T) = 0 then the OLS estimator of d in (3) 

takes the limiting distribution as follows: 

(est d
 
- d) / {var (d)}

1/2
         ~N (0,1)  (5) 

When the OLS estimator d is significantly different from zero, the sample of the 
specific size is fractionally integrated. Here, in this estimation, n = g (T) = √T.  

 

Data Sources 

For the simulation, the study uses artificial data generated for different 
sample sizes following specific methods. Based on these data, a Monte Carlo 
simulation method was carried out in order to estimate the fractional parameter, 
d. For experimenting on the field evidence, the data are actual county averages 
collected from the 1982 U.S. Census of Agriculture and the U.S. Bureau of the 
Census, 1988. These data are used for the agricultural information including 
values of farm products sold per acre, farm land, building values and market 
inputs for farms in every county in the United States. 

 

Data about soils are extracted from the National Resource Inventory 
(NRI) available in the U.S. Department of Agriculture along with the Statistics 
Canada, 2001. Climatic data are obtained the National Climatic Data Centers. 
The data include information on precipitation and temperature for each month 
from 1951 through 1980. The data on developing countries are collected from 
World Bank farm surveys done in different phases worldwide upend till 1990s. 
Climatic projections are available in the programs of standardized analysis 
compiled by the Intergovernmental Panel on Climatic Change (IPCC) in different 
years.  

 

Method of Analysis 

A Monte Carlo simulation method has been used in this study which 
consists of generating repeated samples of artificial data for some sample size 
and analyzing the behavior of the relevant statistics (Kennedy, 2003). In this 
case, the attention is focused on the behavior of the estimates of the fractional 
parameter. One way to do this is to calculate some characteristics of this 
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estimate such as the Mean Square Error (MSE) and the bias (e.g. Ashraf, 2001). 
While the size and power of one statistic is the principal object, the number of 
rejections of the null hypothesis having found in all the used replications is 
calculated.  

The same data generating process is followed as that of considered in 

Vogelsang (1999) and Perron and Rodriguez (2000). It involves the case where 

additive outliers are fixed. The process could be defined as follows: 

 yt  =  nt  + ∑
m

i=1 δi D(Tao, i )t + ut    (6) 

 (1-L)
d
 ut  =  vt  (7) 

where, vt  ~ i.i.d. N (0,1), d is the fractional parameter, D (Tao, 1)t = 1 if t = Tao, i 

and 0 otherwise and δi is the size of the additive outliers. Four sizes of additive 

outliers are considered (that is m = 4 in expression (6)), along with two different 

assumptions about their values. In the first case, δi = 0 (for i = 1, 2, 3, 4). This 

case illustrates that no outliers, no size distortions and no bias are observed in 

the estimates. In the second case, δ1=10, δ2=5, δ3=2, δ4=2. This case indicates 

that the effects of additive outliers of “large” size are present. The second 

specification is close to that used by Perron and Rodriguez (2000). The goal is 

to see the effects of large additive outliers. The variable nt represents the 

deterministic components. In the experiment, it considers only the case where a 

constant is included in the regressions; that is, nt = μ. In the simulations of the 

expression (6), it, without loss of generality, includes the case where μ = 0. 

The sample sizes considered in the study are T = 50, 100, 200, and 500. 

These sample sizes are fairly common as in any empirical work. The number of 

replications considered for each set of parameters is 1000 and a seed of 12345 

is used. The number of simulations used is similar to those of used in the 

literature of Lima de Pedro (2001).  

 

RESULTS AND DISCUSSION 

 

Uncertainties Generated by Global Warming: Simulation Evidence  

Tables 1- 4 present the results for the case where there are no additive 

outliers.  In terms of the bias and the MSE, there are no significant variations for 

all of the fractional parameter values ascribed. The MSE is observed to be 

different for the
 
two extreme values of d. In fact, when d is close to unity, the 

MSE is smaller. This is because of the bias and the variances are smaller, 

probably as a consequence of a better estimation of the fractional parameter in 

opposition to the case where d is close to –1 (Table 1). 
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Table 1. Bias, MSE and t-statistic with no additive outliers and sample size 50 
 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d = 1 

-0.96 0.18 0.20 0.61 0.96 

-0.72 0.09 0.17 0.46 0.95 

-0.48 0.05 0.16 0.30 0.92 

-0.24 0.03 0.16 0.16 0.85 

0.00 0.02 0.16 0.10 0.75 

0.24 0.02 0.16 0.20 0.56 

0.48 0.03 0.16 0.38 0.35 

0.72 0.05 0.15 0.60 0.17 

0.96 0.02 0.13 0.82 0.11 

 
 

When the true parameter d = 0, the exact size is closer to the nominal 
size when sample size increases that is the result expected. When the true 
fractional coefficient is closer to –1, the null hypothesis is strongly rejected that 
the fractional coefficient is equal to zero (Table 2). On the other hand, as one 
can expect, when the true fractional coefficient is close to unity, it is very difficult 
to reject the null hypothesis that the coefficient is different from one. This is also 
true for very large sample sizes such as T = 500. It is consistent even for higher 
sample sizes (Table 3 and Table 4). 
 
Table 2. Bias, MSE and t-statistic with no additive outliers and sample size 100 
 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d = 1 

-0.96 0.21 0.14 0.74 1.00 

-0.72 0.09 0.10 0.62 1.00 

-0.48 0.02 0.09 0.40 0.99 

-0.24 0.01 0.09 0.20 0.97 

0.00 0.01 0.09 0.08 0.90 

0.24 0.01 0.09 0.19 0.73 

0.48 0.02 0.09 0.46 0.46 

0.72 0.03 0.09 0.76 0.20 

0.96 0.02 0.07 0.92 0.09 
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Table 3. Bias, MSE and t-statistic with no additive outliers and sample size 200 
 

Parameter 

d 
Bias MSE 

Size of t-statistic 

H0: d = 0 

Size of t-statistic 

H0: d = 1 

-0.96 0.20 0.13 0.86 1.00 

-0.72 0.07 0.06 0.80 1.00 

-0.48 0.02 0.05 0.56 1.00 

-0.24 0.00 0.05 0.22 1.00 

0.00 0.00 0.05 0.06 0.98 

0.24 0.00 0.05 0.27 0.90 

0.48 0.01 0.05 0.62 0.64 

0.72 0.03 0.06 0.89 0.24 

0.96 0.01 0.05 0.97 0.07 

 
 
Table 4. Bias, MSE and t-statistic with no additive outliers and sample size 500 

 

Parameter 

d 
Bias MSE 

Size of t-statistic 

H0: d = 0 

Size of t-statistic 

H0: d = 1 

-0.96 0.24 0.12 1.00 1.00 

-0.72 0.09 0.04 1.00 1.00 

-0.48 0.03 0.03 1.00 1.00 

-0.24 0.01 0.03 1.00 1.00 

0.00 0.01 0.03 0.05 1.00 

0.24 0.01 0.16 1.00 1.00 

0.48 0.02 0.03 1.00 1.00 

0.72 0.04 0.03 1.00 1.00 

0.96 0.01 0.03 1.00 0.09 

 

Tables 5 - 8 present the results for the case when there are some large 
and small additive outliers. For the sample sizes T= 50, 100, and 200, the exact 
size for the null hypothesis that d = 0 is closest to zero when the true fractional 
parameter is closer to –1. The reverse is true when the true fractional parameter 
is closer to unity. The opposite case arises when the true exact size of the null 
hypothesis that the fractional parameter is equal to unity. However, no size 
distortion is observed when we use T = 500, a sample size that is, unfortunately, 
not frequently available in macroeconomic applications (Table 5). 
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Table 5. Bias, MSE and t-statistic with large /small additive outliers and sample 
size 50 

 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d = 1 

-0.96  0.86 0.76 0.03 0.95 

-0.72  0.61 0.41 0.04 0.95 

-0.48  0.37 0.18 0.04 0.93 

-0.24  0.13 0.08 0.06 0.92 

0.00 -0.09 0.11 0.07 0.86 

0.24 -0.23 0.18 0.08 0.77 

0.48 -0.27 0.19 0.13 0.58 

0.72 -0.24 0.19 0.35 0.34 

0.96 -0.19 0.16 0.63 0.15 

 

The results with respect to the bias and the MSE are also related to the 
behavior of the true fractional parameter. In fact, when this parameter is closer 
to –1, bias and MSE appear to increase. The reverse is true when d > 0 but less 
than unity. For this sample size, the bias is important when d < 0. Although bias 
and MSE are smaller for T = 500, the exact size of the t-statistic of the null 
hypothesis that d = 1 is higher compared to other sample sizes (Table 6). Under 
the given condition of the case of d is close to unity, this behavior is similar to 
the power problems observed for most of unit root tests in the econometric 
literature (Table 7). 

 
Table 6. Bias, MSE and t-statistic with large /small additive outliers and sample 

size 100 
 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d =1 

-0.96  0.82 0.68 0.05 0.99 

-0.72  0.57 0.34 0.06 0.99 

-0.48  0.32 0.13 0.07 0.98 

-0.24  0.07 0.05 0.10 0.98 

0.00 -0.11 0.08 0.09 0.96 

0.24 -0.18 0.11 0.08 0.88 

0.48 -0.17 0.11 0.26 0.68 

0.72 -0.12 0.11 0.63 0.33 

0.96 -0.08 0.08 0.87 0.12 
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Table 7. Bias, MSE and t-statistic with large /small additive outliers and sample 
size 200 

 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d = 1 

-0.96  0.93 0.88 0.01 1.00 
-0.72  0.67 0.46 0.02 1.00 
-0.48  0.40 0.18 0.03 0.99 
-0.24  0.14 0.06 0.07 0.99 
0.00 -0.01 0.05 0.07 0.98 
0.24 -0.05 0.06 0.19 0.92 
0.48 -0.03 0.06 0.56 0.69 
0.72  0.00 0.06 0.87 0.28 
0.96  0.00 0.05 0.97 0.07 

 

 

Finally, some issues that pertain to all sample sizes need to be 
mentioned here. First, when Table 2 is compared with Table 1, it observes the 
direct effects of additive outliers against a case where no aberrant observations 
exist. The evidence with respect to higher bias and MSE is also obvious. 
Moreover, it can be readily observed that there are size distortions for the t-
statistic of the null hypothesis that d = 0 (Table 8). 
 
Table 8. Bias, MSE and t-statistic with large /small additive outliers and sample 

size 500 
 

Parameter 
d 

Bias MSE 
Size of t-statistic 

H0: d = 0 
Size of t-statistic 

H0: d =1 

-0.96  0.91 0.84 1.00 1.00 
-0.72  0.65 0.43 1.00 1.00 
-0.48  0.36 0.14 1.00 1.00 
-0.24  0.09 0.03 0.96 1.00 
0.00 -0.01 0.03 0.05 1.00 
0.24 -0.01 0.03 0.98 1.00 
0.48  0.01 0.03 1.00 1.00 
0.72  0.03 0.03 1.00 1.00 
0.96  0.01 0.03 1.00 0.63 

 

The result of simulation discussed above suggests that wild 
observations of global warming have a significant impact on generating 
uncertainties in the climate change rather than having any systematic variation 
of it. In presence of wild observations the estimate of long memory fractional 
parameter d is influenced through the test statistic of the bias, the MSE and also 
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the size of t-statistic. When the wild observation of world temperature data is 
construed as the abnormal temperature record, a shock is appeared to exist in 
the climate system. This shock leads to a cyclical variation rather than a trend. 
Thus, ultimately, the findings of this research are producing more uncertainties 
rather than helping to resolve the conflicting situation and easing policy 
formulation for the policy makers. 

 

Climate Change, True Temperature-Trend and Their Impacts on 
Agricultural Production: Field Evidence  

A number of models have been proposed to describe the long memory 
feature of time series (Wang et al., 2007). Many studies have been carried out 
on detecting and modeling long memory in various areas such as climate 
change (e.g. Hussain and Elbergali, 1999; Haslett and Raftery, 1989), economic 
and financial fields (e.g. Lo, 1991; Meade and Maire, 2003). In climatic research 
many authors such as Ribsky et al. (2006) used the detrended fluctuation 
analysis. 

As a matter of fact, climate change is a reality in the measured 
temperature regardless of the selection of a noise model (Bloomfield, 1992). 
This has led to the accompanying assumptions that also extreme events, such 
as heavy rains, droughts or floods in Europe in summer 2002 cost 22 billion 
EUR and in South Asia in summer 2004 claim 1600 casualties and millions of 
displaced people (Kallache et al., 2005), will increase in frequency and/or 
magnitude (IPCC, 2001). According to the Statistics Canada Reports, about 
1,300 of Canada‟s glaciers have lost between 25 per cent and 75 per cent of 
their mass since 1850 and water in the St. Lawrence at Montreal is as much as 
two meters below its level at the beginning of the 20

th
 century (Paraskevas, 

2003). Meaningful global temperature change can be obtained for the past 
century, despite the fact that the meteorological stations are confined mainly to 
continental and island locations. The results indicate a global warming of about 
0.5

0
 – 0.7

0
C in the past century, with warming of similar magnitude in both 

hemispheres; the northern hemisphere result is similar to that found by several 
other investigators (Hansen and Lebedeff, 1987). Unfortunately, this observable 
fact of global warming trend is highly inconsistent with the quantitative 
information on many things. Data on temperature measurements inferred from 
tree rings over the past 1,500 years show no trend (Briffa et al., 1990).  
Nonetheless, a large number of scientific literatures have investigated the 
historical temperature data in order to determine the magnitude, but still the 
results are unsatisfactory for policy formulations.  

The study of Hansen and Lebedeff (1987) reveals that there is more 

warming in northern hemisphere and it takes place in the first half of the last 

century. In the Jones et al. (1986), the warming takes place in the second half of 

the century but in the southern hemisphere. Neither data set is fully consistent 
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with greenhouse gasses being the causal mechanism for the observed warming 

(Seater, 1993). The study of Briffa et al. (1990) also show that there is no trend 

behavior found in the tree rings data analysis.  Thus, it comes out from the 

foregoing discussions that, if the temperature process displays no-trend but 

cyclical behavior as the tree rings, then it will imply that more uncertainty seems 

substantial, which consequently makes it difficult to quantify the uncertainty as 

well. 

All of these findings imply that the policy formulators encounter massive 

scale of uncertainty in response to the possibility of climate change or global 

warming. The most important presage of this article that obtained from the 

simulation evidence in the presence of extreme observations that global climate 

displays considerably cyclical variability but evolves slowly. Prima facie, it cannot 

be expected the climate data to reveal for a long period of time whether any 

abnormal warming trend is taking place. Consequently, it appears to imply an 

irreducible component of uncertainty that contains any information based on 

short term analysis. Therefore, the policy makers will have to formulate 

decisions about the taxation and regulation of industrial practices such as 

carbon dioxide emissions without confirmation from the climate data of whether 

implemented rules are the right things to do. Otherwise, this massive uncertainty 

will affect the global agricultural sector in terms of sustainable food production 

for the world population. In the next section, impacts of global warming on 

agricultural production based on econometric estimates are represented, which 

are adapted from a recent study of Cline (2007).  

„In the list of potential damages from global warming the risk to world 

agriculture stands out as among the most important‟ (Cline, 1992). The grounds 

of importance are of two-fold: first, the aggregate global impacts are on high risk 

and second, the distribution of likely impacts is skewed across countries 

because of equity issues. There has, however, been relatively wide consensus 

that developing countries in general posit to loss more from the effects of global 

warming on agriculture than the industrial countries, because developing 

countries incline to have less capability to adjust with the new environment. In 

addition, agriculture in these countries comprises a much larger proportion of 

GDP than in industrial countries. Consequently, smaller percentage loss in 

agricultural production would impose a larger proportionate loss of income in 

developing countries. Cline (2007) finds that agricultural production in 

developing countries may fall between 10 and 25 percent, and if global warming 

progresses unabated India's agricultural capacity, for instance, could fall as 

much as 40 percent. Thus, policymakers should address this phenomenon now 

before the world's developing countries are adversely and irreversibly affected. 

In the following section, a more detailed and systematic estimates are 

represented in order for affirming the impacts of global warming on agricultural 

production.  
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In order to show the potential effect of global warming on agriculture, 

two principal sets of models such as Ricardian and crop models are widely used 

(Cline 2007). In so doing, specific agricultural impact models are reviewed 
beginning with the estimates of Mendelsohn and Schlesinger (1999). Then, crop 

model estimates by Rosenzweig and Iglesias (2006) is examined. The Cross-

section or Ricardian agricultural impact function identified by Mendelsohn and 
Schlesinger (1999) is  

v = (r). (g). (x) [-475.5 + 223.2T – 7.87T
2
 + 0.063P – 0.000026P

2
 +  

480 ln(c/350)]           (8) 

where r is the interest rate and g is a factor for the growth rate of agricultural 

output, set at 0.03 and 1.02 respectively. In the cross-section function the value 

in brackets is the capital value of land per hectare, multiplying it by the interest 

rate   yield estimated rental equivalent opportunity cost of land per hectare, v in 
dollars in dollars per hectare. In principle, this amount should be significantly 

smaller than the output value per hectare in the following reduced-form equation 

(9), because it is only the land factor share of output rather than the total. The 
impact of global warming through the 2080s is obtained using this equation to 

estimate the difference between agricultural productivity using the base period 

(1961-90) and future period (2070-99) climate estimates of this study.  

A reduced-form agronomic crop model‟s summary results are derived as 

follows: 

 y = (2.16) [-308 + 53.7 T – 2.3 T
2
 + 0.22 P + 36.5 ln (c/350)]      (9) 

 

where y is annual agricultural output in 1990 dollars per hectare of agricultural 

land, T is average annual temperature in degrees Celsius, P is average annual 

precipitation in millimeters, and c is atmospheric concentration of carbon dioxide 
ppm (parts per million). Note that in the base period, carbon concentration 350 

ppm, so that the final term becomes 36.5 times the natural logarithm of unity, 

which is zero, so the carbon fertilization (carbon-rich environment) term drops 
out when examining the present influence of climate on agriculture. The 

following figure 1 shows curves corresponding to zero output and output of $200 

per hectare on the basis of equation (9). Both curves show the optimal 
temperature at 11.7

o
 C (Figure 1). 

Figure 1 shows curves corresponding to zero output (q=0) and output of 

$200 (q=200) per hectare of land on the basis of equation (9). Both curves show 
the optimal temperature at 11.7

0
C. At this temperature, output is $200 per 

hectare at daily precipitation of about 2.5 mm. With zero precipitation, output is 

zero even at this optimal temperature. At higher temperature, more precipitation 

is required to keep productive potential positive. 
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Figure 1. Iso-production curves for the Mendelsohn-Schlesinger reduced-form 
function (Adapted from Mendelsohn and Schlesinger, 1999) 

 

For industrial countries (e.g. the United States), Mendlelsohn and 
Neumann (1999) as well as Mendelsohn and Nordhaus (1999) use cross-section 
models in order to provide the Ricardian estimates. For developing countries of 
Asia, Africa and Latin America, Cline (2007) provides estimates based on the 
following model structure: 

 z = i [ αi Ti + βi Ti
2
 + γi Pi + δi Pi

2
] + K  (10) 

where z is the measure of agricultural productivity (net revenue per hectare for 
Africa, natural logarithm of net revenue per hectare for Asia (India) and land 
value per hectare for the Latin American studies), T is average temperature, P is 
average monthly precipitation, i refers to the season and K is a composite 
variable that reflects the regression constant. The impact of global warming 
through the 2080s is obtained using this equation to estimate the difference 
between agricultural productivity using the base period (1961-1990) and future 
period (2070-2099) climate estimates of this study. 
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In principle, the reduced-form model of Mendelsohn and Schlesinger 
(1999) takes account of the potential for adaptation. The specific observation of 
Adams et al. (1999) on the aspect of possibilities of adaptation is that 
“adaptation could potentially offset roughly half of the negative impacts of a 
moderate climate change. However, this evidence suggests adjustment 
possibilities are smaller for larger temperature change.” (p. 32) 

The crop-model results of Rosenzweig et al. (1993) provide a query-
based database that shows estimates of the impact of prospective global 
warming, under alternative climatic scenarios and using climate projections for 
general circulation models (GCMs), on four major crops: wheat, rice, maize and 
soybeans. The underlying research was developed in the 1990s, by a team of 
agricultural scientists from 18 countries, who estimated compatible crop models 
at 125 agricultural sites using consistent climate change scenarios. The process-
based dynamic crop growth models incorporate the effects of change in 
temperature, precipitation, and solar radiation; the effect of carbon fertilization 
from carbon dioxide; and crop management, particularly with respect to timing of 
planting and extent of fertilization and irrigation. The estimates are used for three 
levels of adaptations.    

The two basic frameworks discussed earlier in above discussion 
(Ricardian statistical model, on the one hand, and crop models on the other) 
provide the basis for identifying a set of estimates that synthesize the alternative 
model results in showing the impact of global warming on overall agricultural 
outputs. Table 9 presents several alternative aggregations to show such 
agricultural impact by major regions of developing and industrialized countries. 
Besides, it provides overall weighted results using population weights to 
examine how the implications differ from global averages by agricultural 
productions. In the table, it is evident that with carbon fertilization, output-
weighted agricultural potential rise for industrial countries by a synthesized 
estimate of 7.7 percent, whereas for developing countries defined as excluding 
developing Europe it falls by 9.1 percent. The table also shows that in the 
synthesized estimate (with carbon fertilization) output potential falls by about 17 
percent in Africa excluding North Africa, by 7 percent in Asia, 9 percent in the 
Middle East and North Africa and 13 percent in Latin America. In contrast for 
developing Europe, it was by 4 percent (Table 9). 

These results indicate that Africa (excluding Egypt and other North 
Africa) and Latin America are the developing regions most vulnerable to global 
warming. This finding is consistent with the IPCC (1996) pattern noted in the 
survey above. Asia on average is less vulnerable, but this masks the divergence 
between more favorable results for China in particular and more unfavorable 
results for India (Mendlesohn et al., 1994) , reflecting in part the differences in 
their latitudes. Table 9 also provides the global impact weighting by population 
rather than outputs. In this case, output potential falls by a weighted average of 
18 percent without carbon fertilization and by about 6 percent with carbon 
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fertilization. The greater decline in output potential weighting by population 
reflects the predominance of more severe adverse effects in developing 
countries in contrast to milder losses or even gains in industrial countries.  
 
Table 9. Impact by Major Regions: Developing and Industrial Countries 
 

Country/Region 
Base Output 

(Billions of 2003 
dollars) 

Population 
(Million) 

Changes in Agricultural 
Output Potential 

Synthesized Estimates 
(percent) 

Without 
Carbon 

Fertilization 

With 
Carbon 

Fertilization 
Developing Countries 
  Excluding Europe 
 
  Africa 
    Nigeria 
    South Africa 
 
  Asia 
    China 
    India 
    Indonesia 
 
  Mid-East North Africa 
    Algeria 
    Egypt 
    Iran 
 
  Latin Amerika 
    Argentina 
    Brazil 
    Mexico 
 
  Europe 
    Poland 
    Russia 
    Turkey 
 
Industrial Countries 
  Australia 
  Canada 
  Germany 
  United Kingdom 
  United States 
 
World 
   Population weighted 

838 
745 

 
73 
15 
6 

 
500 
213 
132 
35 

 
61 
7 

13 
15 

 
11.1 

14 
30 
25 

 
93 
5 

22 
27 

 
338 
13 
17 
17 
13 
99 

 
1,176 

5,202 
4,807 

 
660 
136 
46 

 
3,362 
1,288 
1,064 

215 
 

280 
32 
68 
66 

 
506 
37 

177 
102 

 
395 
38 

143 
71 

 
846 
20 
32 
83 
59 

291 
 

6,049 

-19.7 
-21.0 

 
-27.5 
-18.5 
-33.4 

 
-19.3 
-7.2 

-38.8 
-17.9 

 
-21.2 
-36.0 
11.3 

-28.9 
 

-24.3 
-11.1 
-16.9 
-35.4 

 
-9.4 
-4.7 
-7.7 

-16.2 
 

-6.3 
-26.6 
-2.2 
-2.9 
-3.9 
-5.9 

 
-15.9 
-18.2 

-7.7 
-9.1 

 
-16.6 
-6.3 

-23.4 
 

-7.2 
6.8 

-28.8 
-5.6 

 
-9.4 

-26.4 
28.0 

-18.2 
 

-12.9 
2.2 

-4.4 
-25.7 

 
4.1 
9.5 
6.2 

-3.6 
 

7.7 
-15.6 
12.5 
11.7 
10.5 
8.2 

 
-3.2 
-6.0 

Source : Cline (2007). 
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CONCLUSIONS AND RECOMMENDATIONS 

 

Broadly, this paper has two goals --- one is to observe the simulation 

evidence of global warming and another is to collate that simulation evidence to 

the available field evidence in order to show the impacts of global warming on 
world agricultural food production. With these ends in view, the paper first 

investigates the simulation process to see the nature of the impact of global 

warming, which is treated here in the simulation process as additive outliers (i.e. 
wild observations of global warming temperature-readings), on the estimated 

value of the fractional difference parameter, d and their subsequent impacts on 

the sustainability of overall global agricultural food production. The principal 
criteria for analyzing the behavior of the estimated parameter are the bias, the 

MSE and the exact size of t-statistic of the estimated fractional parameter. 

Overall, additive outliers (wild observations of temperature) are observed to 

affect the bias and the MSE. Besides, the size of the additive outliers and a drift 
parameter has also important effects on the estimated value of d, depending on 

the true value of d. Having applied this result to the case of global warming, it 

implies that there has been a momentary shock process involved rather than a 
systematic trend in the atmospheric change. This outcome appears to be grim 

and lead to conclude that in the contradictory climatic condition it produces no 

more than a complex process of stochastic uncertainty.  

The paper then investigates the field evidence. From the field evidence, 

the paper reaches two more fundamental conclusions. The first is that in the late 

21
st
 century unabated global warming would have at least a modest negative 

impact on global agricultural production in the aggregate and the impact could 

be severe if carbon fertilization benefits (enhancements of yields in a carbon-rich 

environment) do not materialize, especially if water scarcity limits irrigation. In 

addition, if warming would not halt in the 2080s, but would continue on a path 
toward still higher global temperatures in the 22

nd
 century, agricultural damage 

could be more severe. And the second conclusion is that the composition of 

agricultural effects is likely to be seriously unfavorable to developing countries 
with the most severe losses in Africa, Latin America and India.  

The results of this study strongly suggest that the global warming would 

turn malignant for agriculture globally and that the damages would be the most 
severe in the developing countries if not the proper measures of mitigating this 

global problem are formulated. Besides, it would turn to be a serious mistake to 

downplay the risks of future agricultural losses from global warming on grounds 
that technological advancement, for instance, will offset any negative climatic 

damages. Hence, the Kyoto Protocol as one of the principal initiatives to date 

against global warming is recommended as a policy measure in order to have a 

more positive position on global warming abatement for long term interests of 
developing and developed countries equitably. 
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Last but not least, in the long list of potential damages from global 
warming, the risk to world agriculture stands out as among the most important 
(Cline, 1992). In the development of international policy, it is particularly 
momentous for policymakers to share the sense of not only the aggregate global 
impacts, but also the distribution of similar effects across countries, for reasons 
of equity. 
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