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Abstract 

Dye-sensitized ZnO nanowire (NW) electrodes were fabricated using Ru polypyridyl complexes that 

use nitrile instead of carboxylic group as anchoring unit to the NW surfaces. The complexes 

formula is [Ru(bpy)3−x(Mebpy-CN)x]
2+

 (x =1−3, bpy = 2,2’-bipyridine, Mebpy-CN = 4-methyl-2,2’-

bipyridine-4’-carbonitrile). The ZnO NWs were grown by a vapor transport method on insulating 

SiO2/Si substrates. The sensitized ZnO NW electrodes were studied by electron microscopy, Raman 

and PL spectroscopies, and spectral and relaxation photocurrent measurements. The Raman 

spectra confirm that the complexes were effectively anchored to the ZnO NWs through one of the 

pendant nitrile groups of the bipyridyl ligands. The nanostructured morphology of the NW 

electrodes was maintained so that their light trapping characteristics were preserved. The Ru 

complexes were found to be excellent sensitizers of the ZnO NWs, improving by orders of 

magnitude their photocurrent in the visible region. The Fe-based complex of formula [Fe(Mebpy-

CN)3](PF6)2 was also tested; however it did not show any sensitizing effect. An order of magnitude 

shortening of the persistent photocurrent relaxation times (after the illumination is interrupted) was 

found to occur upon successful sensitization of the ZnO NWs with the Ru complexes. This effect is 

interpreted in terms of hole traps at  eV above the ZnO valence band edge, which are loweredby 

50-60 meV in the soaked samples due to screening of the trap centers provided by the extra 

photoexcited charge carriers transferred from the sensitizing complex to the NWs.  

 

 

 

1. Introduction 

The increasing global energy demands and the need to find more efficient and cost-effective 

renewable energy sources have led to the development of new materials with optoelectronic 

properties relevant for energy conversion. Si is currently the most used material in the manufacture 

of commercial solar cells. However, high manufacturing cost and the low band gap of Si (1.12eV), 

which derives in a severe efficiency limit due to high portions of the solar optical energy lost into 

heat [1], has motivated the development of new generations of solar cells. 

 

One of the most promising alternatives is the Grätzel or dye-sensitized solar cell (DSSC), which 

produces electricity from the sun radiation through a photo-electrochemical principle [2]. 

Advantages of this technology reside in being cost effective, easy to implement, and that cells can 
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be made to be semiflexible and semitransparent. In a DSSC, the semiconductor acts as an electrode 

and as such it can be nanostructured to become a convenient scaffold for dye molecules designed to 

be efficient visible light absorbers [3]. The most frequently used semiconductor in this cell type has 

been TiO2 [2] in different morphologies, such as nanoparticles [4]–[7] and nanowires [8]–[11]. Up 

to now, DSSCs with as high as 12% photovoltaic power conversion efficiency have been developed 

using TiO2 mesoporous nanoparticulate electrodes [12]. 

 

Recently, ZnO semiconductor has attracted great attention as a promising candidate for DSSC 

applications [13]. Among the very interesting properties of ZnO are its direct bandgap of 3.37 eV, 

carrier mobility and electron diffusion coefficient higher than in TiO2, low production and 

environmental costs [14], and high environmental stability [15]–[18]. In addition, ZnO can be easily 

grown in a wide variety of morphologies such as nanowires, nanotubes, nanosheets, nanoparticles, 

and nanoflowers [19]–[22], and can be combined with other materials in composites and core-shell 

systems [23],[24]. 

 

As for the dye, systems based on the cis-[Ru(LH2)2(NCS)2)] (L=4,4’-dicarboxy-2,2’-bipyridine), 

sensitizer adsorbed onto nanostructured TiO2 films are currently the most extensively studied and 

the ones used in the most efficient DSSCs [2], [25]. Nevertheless, for ZnO, many other dyes have 

been proposed and tried, such as chlorophyll [26], [27], phthalocyanines [28], rhodamine B [29], 

coumarins [30], rose-bengal [31], Cu(I)- [32] and Ru(II)-complexes [33], and some encouraging 

results have been obtained [34]–[37]. Power conversion efficiency η of as high as 7.5% has been 

reported for hierarchical assembled ZnO nanocrystallites sensitized with cis-[Ru(LH2)2(NCS)2], 

known as N3 dye [38]. Ruthenium polypyridyl complexes appear as very appealing alternatives due 

to their excellent photosensitizing properties: high absorptivities in the visible region, long lifetimes 

of their lowest energy triplet excited states, and relatively high thermal stabilities [39]. In addition, 

these sensitizers can be readily anchored to the semiconductor surface through carboxylic acid 

groups [40]. However, the carboxylic anchored complexes have been often shown to be prone to 

decomposition processes, such as hydrolysis, which are detrimental to the device stability [41].  

 

Recently [42], new sensitizers based on ruthenium polypyridyl complexes have been reported 

where the bpy ligands (bpy = 2,2’-bipyridine) were replaced by Mebpy-CN ligands (Mebpy-CN = 

4-methyl-2,2’-bipyridine-4’-carbonitrile) coordinated to the metallic center. In these complexes, 

nitrile groups in the periphery of the polypyridyl ligands act as the anchoring groups preserving the 

integrity of the ZnO nanostructures. Considering that the lifetimes of excited states can be increased 

by increasing the number of nitrile groups [43], the number of ligands was varied. The new series of 

ruthenium complexes, of formula [Ru(bpy)3−x(Mebpy-CN)x]
2+

 (x =1−3) described in [42], present 

lifetime and quantum yield of emission of the lowest 
3
MLCT excited state increasing steadily when 

going from x = 1 to x = 3 (RuL1, RuL2, and RuL3, respectively). These three complexes have been 

adsorbed in TiO2 nanoparticulate electrodes [44], showing very good charge transfer properties and 

good behavior as electrode in a DSSC prototype. A similar complex based on Fe, of formula 

[Fe(Mebpy-CN)3](PF6)2, has also been reported [45], but its performance on a semiconductor 

surface has not been yet been tested.  

 

In this work, we report the fabrication of ZnO nanowire-based electrodes sensitized with the three 

Ru complexes RuL1, RuL2 and RuL3 and study their sensitizing properties, in particular the 

electronic transfer between the complex and the semiconductor surface using electrical and opto-

electrical measurements. A ZnO nanowire electrode with adsorbed FeL3 was also studied. We 

found that the Ru complexes lead to large increases in the measured ZnO photocurrents, evidencing 

their excellent sensitizing properties. This is important for future use of ZnO in DSSCs because the 

Ru complexes with nitrile groups as ligands used here eliminate decomposition problems found in 

carboxylic anchored complexes used previously. In addition, we find an order of magnitude 

shortening of the ZnO persistent photocurrent relaxation times for the successfully sensitized 
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samples. These results are promising for future developments of efficient ZnO nanowire-based dye-

sensitized solar cells and contribute to the understanding of photoconductivity phenomena in 

surface modified ZnO nanomaterials.  

 

 

2. Experimental details 

The ZnO nanowires (NWs) were fabricated through a vapor transport method, under controlled 

ultra-high purity Ar and O2 flows on Au-nanocluster covered, electrically insulating SiO2/Si 

substrates, as described in [20-22][1], [2]. The source-to-substrate distance within the tube furnace 

(25 cm) and the O2 flow rate (3 sccm) were chosen to produce a dense interconnected ZnO NWs 

network with electrical resistance in the 10
2
 M range [21]. The source temperature was 1100ºC 

and the Ar flow rate was 125 sccm. Five ZnO NW samples were made under identical growth 

conditions. One was kept as a reference, while the other four were soaked with each one of the 

polypyridyl Ru complexes RuL1, RuL2 and RuL3 and the FeL3 complex. A detailed 

physicochemical characterization of the Ru sensitizers has been presented in [42], [44], [46]: they 

have a Ru atom coordinated to bipyridyl ligands with pendant nitrile groups that act as “anchoring 

units”. The absorption spectra of the RuL1, L2 and L3 complexes in acetonitrile are presented in 

[42], and that of the FeL3 complex in [45]. 

 

Soaking of the ZnO NWs was carried out by dipping each ZnO NWs sample within a different 

complex solution during 24hs. Then, samples were dried in atmospheric air at room temperature 

and finally rinsed with acetonitrile.  

 

The samples morphologies were studied with a Zeiss Supra 55VP scanning electron microscope. 

Photoluminescence (PL) spectra were obtained at room temperature under atmospheric air using the 

325 nm, 15 mW line from a 200 mW KIMMON IK Series He-Cd LASER as the excitation source, 

and an AvaSpec-ULS3648 grating-CCD system for detection. Raman spectra were recorded using a 

Raman DXR spectrometer from Thermo Scientific equipped with a binocular Olympus Microscope. 

 

For electrical and opto-electrical measurements, two co-planar Au contact pads 1.5 mm apart were 

Ar sputter-deposited on each sample. Then, Au wires were connected to the Au pads using Ag paint. 

The electrical characterization was made with this two-point probe configuration in rough vacuum 

from a rotary vane pump (100 mTorr). Current-voltage (IV) curves were obtained by voltage 

scanning between -1V and 1V using a Agilent 663B voltage source and monitoring the current by 

measuring the voltage across a test resistance connected in series with the sample using a Keithley 

182 nanovoltimeter (1nV resolution). Photocurrent (PC) experiments were carried out by measuring 

the current in the sample with the same setup while illuminating it with an excitation source 

consisting of a Xenon Oriel 6267 arc lamp (free of ozone emission), quartz lenses and a computer 

controlled monochromator (Cornerstone 74000) provided with water and a series of second order 

diffraction high-pass filters. In a first type of experiments, the illumination wavelength was scanned 

between 300 and 700 nm to obtain photocurrent spectra. In a second measurement, each sample was 

illuminated at a fixed wavelength using a LED at 400 nm with 5% spectral definition (estimated 

irradiance flux density at the samples of ∼10 mW cm
−2

) during 60 minutes; then the illumination 

was interrupted and the PC relaxation in the dark was recorded, as in [47].  

 

 

3. Results 

Figure 1 a) and b) show cross-section SEM images from bare ZnO NWs on the SiO2/Si substrates, 

and ZnO NWs sensitized with RuL1, respectively. The ZnO NWs are preferentially oriented 

perpendicular to the substrate with wide angular dispersion, and are about 1 µm long and 60 nm 

thick. These NWs grow after the formation of a thin, porous ZnO layer, which is expected for these 

growth conditions [20-22][2]. After soaking the samples with the complexes [Fig. 1 b)], the 

Page 3 of 16 AUTHOR SUBMITTED MANUSCRIPT - MRX-108230.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



4 

 

nanostructured morphology is maintained through a conformal coating of the NWs with a thin (10 

nm) solid complex layer. Similar results are observed for all other soaked ZnO NWs samples. The 

preservation of the “brush type” morphology dictated by the NWs after the soaking procedure, 

achieved here through the deposition of thin, conformal complex layers, is very important to 

maintain the low reflectance and high absorbance of the electrode that results from light trapping by 

multiple reflections between the NW lateral walls. This is of great relevance for the application of 

the electrode in solar cell devices. 

 

 
        

Figure 1: SEM images of a) reference sample of ZnO NWs on SiO2/Si, and b) ZnO NWs +RuL1. 

   

 Anchoring through a nitrile group of all the complexes adsorbed on the surface of ZnO nanowires 

was evidenced by Raman spectra, as shown in Figure 2 (a-d). Indeed, all species display a weak 

band (indicated by arrows in the Figure) at  = 2330 cm
-1

, which is absent in the isolated complexes. 

This band corresponds to a stretching mode, (C N), of a nitrile group bonded to the ZnO surface 

and is shifted 90 cm
-1

 to higher frequencies when compared to the value of the pure complexes ( = 

2240 cm
-1

). The same effect was already observed when sensitizing TiO2 mesoporous films with 

these species [44] and was attributed to coordination of the free N of the nitrile group to a metallic 

center on the surface. For RuL1, since there is only a single nitrile group, the nitrile band (C N) 

disappears completely from its original position in the Raman spectrum for the sensitized ZnO due 

to the bonding of this nitrile group to the semiconductor surface. In contrast, for FeL3, RuL2 and 

RuL3, bands corresponding to (C N) of non-anchored nitrile groups appear at the same value as 

for the free complexes ( = 2240 cm
-1

), indicating that (as may be expected) only one nitrile group 

coordinates to the semiconductor surface while the other (RuL2) or other two (RuL3 and FeL3) 

remain uncoordinated. 

a) b) 
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Figure 2. Red lines: Raman spectra of the complexes adsorbed onto ZnO nanowires. Dashed lines: Raman 

spectra of the pure complexes. (a) RuL1, (b) RuL2, (c) RuL3 and (d) FeL3. 

 

 

Figures 3(a) and 3(b) show the PL spectra for the studied samples in linear and logarithmic scales. 

The spectrum for the unsensitized ZnO NW sample is dominated by a band in the visible peaked at 

about 503 nm and is due to transitions involving deep defect states in the ZnO bandgap [20],[21]. 

The RuL1, RuL2 and RuL3-sensitized samples exhibit a band in the visible as well, however 

redshifted and less intense than the band for the reference sample. The reason for the observed 

changes in intensity and wavelength positions is mainly the selective absorption of portions of the 

ZnO optical emissions in the short wavelength region by the complex layers covering the samples. 

Indeed, the Ru complexes present prominent absorption bands peaked at about 450 nm [42] [see 

Figure 3(b)], which are responsible for the suppression of the intensity of the emission around this 

region of the PL spectra, thus leading to the observed redshift of the PL bands positions. For the 

case of the ZnO NW sample soaked with FeL3, the whole PL band is strongly suppressed. This is 

mainly because of the broad absorption band for the FeL3 complex peaked at a higher wavelength 

(540 nm) [45] [see Figure 3(b)], which overlaps the ZnO emission band. In addition, the 

complexes covering the ZnO NWs are also expected to absorb part of the excitation power at 325 

nm [42], [45]. We note that, while the complexes themselves have some PL (data obtained from the 

pure complex films, not shown), their contributions to the observed spectra in Fig. 3(a) are very 

small. 
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Figure 3. Photoluminescence spectra from the ZnO NW reference sample (black) and from the ZnO NW 

samples soaked with RuL1(red), RuL2 (blue), RuL3 (green) and FeL3 (pink) in (a) linear and (b) logarithmic 

scales. In (b), the position regions of the Ru and Fe complexes maxima of absorption bands are also shown. 

 

The dark I- V curve for the reference ZnO NW sample is shown together with those corresponding 

to samples sensitized with RuL1, RuL2, RuL3 and FeL3 in Fig. 4. The I-V characteristics are linear 

in all cases, and the electrical resistances of the samples are obtained through the fitting of the data 

points with a linear function.  
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Figure 4: I-V curves (in log- linear scale) for the reference bare ZnO NWs (black) and ZnO NWs soaked 

with RuL1 (red), RuL2 (blue), RuL3 (green) and FeL3 (pink) samples, in air at room temperature and dark 

condition.  

 

The resistances for the soaked samples are larger than for the bare ZnO NWs sample. This effect is 

due to the very high series resistance contributed by the thin solid complex films. We confirmed 

this by fabricating films of each complex on insulating SiO2/Si substrates using the dip coating 

method with the same parameters used for the NW samples. Then, a pair of electrical coplanar 

contacts was made on each film. The resulting currents were too low, indicating that the films’ 

resistances were above the measurement limit of our equipment of about 5x10
9
 . 

 

The PC was measured as a function of the incident photon energy by scanning the excitation 

wavelengths between 700nm (1.77eV) and 300 nm (4.13eV). The experiments were made in 

atmospheric air at room temperature, while applying a voltage of 1V on the samples. The results are 

shown in Fig. 5:  in the (1.88- 3.21)eV region, the PC for samples sensitized with the Ru complexes 

are of approximately 1.5 order of magnitude larger than for the ZnO NW reference sample.  In 

addition, this enhancement is seen to span a broader spectral range for the ZnO NW sample 

sensitized with RuL2 the for the other two. In contrast, the data for the ZnO NW sample soaked 

with FeL3 does not show any PC enhancements with respect to the reference sample.   

 

 
Figure 5: PC vs. incident photon energy, from unsensitized and sensitized with RuL1, RuL2, RuL3 and FeL3 

ZnO NW samples, at room temperature and in atmospheric air. The emission spectrum from the commercial 

LED used as the excitation source in PC time evolution measurements is also shown in grey color. 
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Since the complex layers are not photoconducting (we detected no currents in the illuminated films 

of pure Ru and Fe complexes deposited on the SiO2/Si substrates), the photocurrent enhancements 

observed in Fig. 5 are clearly due to photon absorption and charge excitation within the Ru complex 

layers, followed by the transfer of the photocharges to the ZnO NWs.  

 

With the aim of studying the photoexcited current relaxation processes within the samples, and to 

analyze in what way these processes are affected by the presence of the sensitizing complexes, 

measurements of the PC time evolution were also performed on selected samples. The illumination 

in these experiments was performed with LED radiation peaked at 400 nm (3.1eV) (see emission 

spectrum in Fig. 5) during 1 hour, and the PC was measured both during the illumination and after 

interrupting it. Fig. 6 shows the resulting PC as a function of time for the unsensitized and for the 

RuL2 and FeL3 sensitized samples. It is worth noting that, due to the LED emission band width of 

5% around the average (peak) value (see Fig. 5), although peaked at a ZnO subgap region, a small 

portion of the emission spectrum overlaps the ZnO absorption edge. Hence, the PC data in Fig. 6 

have contributions from carriers directly excited within the ZnO NWs in addition to those excited 

within the sensitized complex films and then transferred to the NWs.  

 
Figure 6: Photocurrent build up under 400 nm LED illumination and its subsequent relaxation in the dark as 

measured as a function of time on unsensitized (black) and sensitized RuL2 (blue) and FeL3 (pink) ZnO NW 

samples. 

 

 

Discussion 

From the SEM images (Figure 1), and from the Raman (Figure 2) and PL spectra (Figure 3), we 

conclude that a uniform, conformal layer of the sensitizing complexes form on the ZnO NWs as a 

result of the soaking procedure. The Raman spectra give evidence for the successful anchoring on 

the ZnO NWs through one of the nitrile groups, while the PL spectra give indirect evidence on the 

presence of the complex layer through the selective absorption of photons in the short wavelength 

part of the band emitted from defect centers within the ZnO NWs. This absorption is detected as a 

reduction of the PL intensity precisely around the region where the complexes have their absorption 

maxima. The thicknesses of the complex layers are on the order of 10 nm. As the typical size of 

the complex molecules is around 1 nm, the solid complex layers on the ZnO NWs comprise several 

molecular monolayers. Hence, photons will be efficiently absorbed within the complex layers when 

the samples are illuminated with photons in the visible from outside. However, for the sensitizing to 

be effective, the resulting excited electrons must be transferred to the ZnO semiconductor. Since 

electronic states within the complex film are localized, the excited electrons must surmount 

potential barriers in order to transport from monolayer to monolayer between vacant electronic sites. 

This results in low carrier mobilities and electrons can only travel (either by hopping or diffusion) a 

very short distance (on the order of 1 nm [48]) before they recombine. Evidence for low carrier 
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mobilities within the complex layers is provided by the very low electrical currents (both in the dark 

and under illumination) exhibited by the complex films under bias (data not shown). Therefore, it 

can be stated that there will be a layer from the ZnO/complex interface within the sensitizer beyond 

which the photoexcited electrons will not be able to contribute to the PC. This issue has been 

studied on ZnO nanoparticles with different ruthenium based dyes, with varying immersion times 

[49]–[51]. An optimum immersion time was found for best electron injection between the dye and 

the semiconductor, which however depended on the complex solution concentration.   

 

From the electrical measurements in the dark, (Fig. 4), the I-V characteristics for the reference 

sample are linear and symmetric around the origin, indicating that the electrical contacts are ohmic. 

Therefore, the measured current is not limited by a space charge region at the 

contact/semiconductor interface, but mainly by the semiconductor resistance. The measured 

resistance for the ZnO NW samples is 250 MΩ. The sensitized ZnO NW samples present linear I-

V characteristics as well, however with much larger resistances (on the order of GΩ). This is clearly 

because, as mentioned before, the deposited sensitizing layers are highly resistive due to the very 

low carrier mobilities. 

 

The most important result from the present study is perhaps the demonstration of the excellent 

sensitization properties of the the Ru complexes with nitrile groups as anchoring units on ZnO 

nanowires (Figure 5). Since ZnO is essentially transparent in the visible region of the 

electromagnetic spectrum, the important enhancements of the PC in this spectral region for the three 

studied Ru complexes-sensitized samples with respect to the reference ZnO NW sample are clearly 

due to the contribution from the photoelectrons excited within the Ru complex layers, which are 

successfully transferred to the semiconductor. Note that, in the contact configuration used in the 

present work, this transfer is not in the direction of (and therefore not stimulated by) the applied 

electric field. The PC enhancements are limited by the fact that a fraction of the photoelectrons 

(those generated too far away from the interface) may not be able to reach the ZnO before 

recombining. In the case of the sample sensitized with FeL3, no PC enhancement in the visible is 

observed. This is probably due to the presence of a very short-lived metal-centered quintet energy 

state in the Fe(II)-based complex [52], where electrons can be trapped rapidly, thus inhibiting 

charge transfer to the semiconductor.  

 

In order to compare the semiconductor sensitization characteristics with the optical properties of the 

Ru complexes, in Fig. 7 we have plotted the effective increase of the PC in the visible for the ZnO 

NW samples sensitized with RuL1, RuL2 and RuL3 as a function of the photon energy. The 

effective PC maxima are found to be very close to the respective maxima of the complexes 

absorption spectra [42]. Furthermore, the wider enhancement curve observed for RuL2 is consistent 

with the wider absorption peak for this complex as compared to those for the other two. 

Nevertheless, it should be noted that the spectral dependence of PC may not be determined by the 

complex absorption band alone, but also by the charge transport and transfer mechanisms whose 

details may also depend on the photon energy.  
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Figure 7: Difference between PC spectra for ZnO NW samples sensitized with RuL1, RuL2, RuL3 and that 

corresponding to the reference (unsensitized) ZnO NW sample. 

 

As for the PC measurements as a function of time shown in Fig. 6, one can deduce that the 

resistance of the NW sample sensitized with RuL2 complex is reduced by as much as three orders 

of magnitude upon illumination, becoming lower than the resistance of the reference sample 

without complex under the same illumination. This clearly indicates that there is a strong 

component of photocharge generated in the complex layer that transfers to the ZnO, which 

dominates over the contribution from carriers photogenerated directly there, evidencing again the 

excellent sensitization properties of RuL2. In contrast, in the case of the ZnO NW sample soaked 

with FeL3 complex, the photocurrent reached under the same illumination conditions is lower than 

for the sample without complex. This confirms that, in this case, the photons absorbed in the 

complex are lost because fast recombination processes within the complex layer before they can 

hop to and cross the complex/ZnO interface. However, it is interesting to note that, for both soaked 

samples, the PC leveling off towards saturation upon illumination is clearly inhibited compared to 

the reference ZnO NW sample. This is similar to the behavior observed on ZnO NW samples under 

conditions where atmospheric air has been removed from the ZnO NW walls, and it is related to the 

role of atmospheric adsorbates as electron traps [53]. When the illumination is interrupted, the 

current for the three cases decreases very slowly, showing a quasi-persistent behavior that is well-

known for ZnO [21]. In is interesting to note that the relaxation curve for the sample sensitized with 

RuL2 presents much faster relaxation than the data for the other samples (Fig. 6). Relaxation 

profiles can be analyzed to quantify changes that occur in relaxation characteristic times due to the 

sensitizing procedure, see Fig. 8.  
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Figure 8: Normalized current relaxation curves taken from the data in Fig. 6 and plotted from the instant the 

illumination is interrupted (defined here as Time=0) for the (a) reference ZnO NW sample and for the (b) 

RuL2 and (c) FeL3 soaked ZnO NW samples. Corresponding double exponential fits are also shown. 

 

As typical for ZnO, the decays are non-exponential. However, a double-exponential function was 

found to provide reasonable fits of the experimental current relaxation curves. The main parameters 

of the fitting function are the characteristic relaxation times τ1 and τ2, which are shown in Table I: 
 

 

Table I: Characteristic relaxation times deduced from the fit of a double exponential function to the current 

versus time data of Fig. 8 for the reference ZnO NW, and for the RuL2- and FeL3-soaked ZnO NW samples. 

 

τ Reference RuL2 FeL3 

τ1 (s) 1120 165 815 

τ2 (s) 10920 1000 11330 

 

 

The much shorter relaxation times for the RuL2 soaked sample (1/7 and 1/11 for the fast and 

slow components, respectively) are probably related with the successful sensitizing process in this 

case. In contrast, the FeL3 soaked sample shows relaxation times that are not much different from 

those for the reference sample, since in this sample the sensitizing effect is negligible.  

 

The slow relaxation of the current after illumination (i.e the quasi-persistent photoconductivity) in 

ZnO NWs is not completely understood, but it has been suggested that it may be related to the long 

reemission times expected for holes in deep traps in n-type wide bandgap semiconductors [54]. The 

model claims that, as trapped holes are reemitted back to the valence band in the depletion region, 

they recombine promptly with the photoexcited electrons, producing the decrease of the carrier 

density and the current. The problem is actually much more complex, as recombination rates may 
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be affected by changes in surface traps type and density distributions due to photoinduced surface 

reactions, such as photodesorption of atmospheric adsorbates. However, if the thermal reemission 

of carriers from deep traps is assumed to be the rate-limiting step, relaxation times  can be used to 

estimate the trap energies E above the valence band edge, using the equation [54], [55]: 

 

1 E kTe


       (1) 

 

where  is the attempt-to-escape frequency (approximated by the typical phonon frequency of  

10
13

 Hz), k is the Boltzmann constant and T is the absolute temperature. With this model, the 

energies corresponding to our experimental relaxation times are estimated and listed in Table II.   

 

 
Table II: Trap energies corresponding to τ values in Table I and using Eq. 1 for the bare ZnO NWs and for 

ZnO NWs with RuL2 and FeL3. 

 

E Unsensitized RuL2 FeL3 

E1 (eV) 0.96 0.91 0.95 

E2 (eV) 1.02 0.96 1.02 

 

The trap energies are in rough agreement with the value of ~1 eV deduced earlier from PC decay 

studies in ZnO films [54] and are close to bandgap state energies inferred from optical studies on 

ZnO nanoparticles [55], nanosheets [56] and thin films [57]. Some of these bandgap states have 

been associated with the double-ionized oxygen vacancy, which may act as a hole trap within the 

surface depletion region where photoholes accumulate due to the upwards band bending [58, 59]. 

The lower trap energies by 50-60 meV obtained for the RuL2 complex-sensitized NW sample 

could be a consequence of an increased electronic screening of the trap centers produced by the 

extra charge injected from the complex in this case. This result is important because it shows that 

the present Ru complexes can be used to reduce the persistent photoconductivity effect for slight 

subgap illumination. 

 

5. Conclusions 

Efficient dye-sensitized ZnO NW electrodes have been fabricated using novel Ru complexes that 

use a nitrile instead of carboxylic group as anchoring unit. The electrodes were studied by electron 

microscopy, Raman and PL spectroscopies, and spectral and relaxation photocurrent measurements. 

We arrive at the following conclusions: 

1) The complexes are effectively anchored through one of their nitrile ligands of their bipyridyl 

ligands onto the ZnO NW walls after the soaking, drying and rinsing procedures reported in 

this work. The nanostructured morphology of the NW electrodes is preserved. This is very 

important so the benefits of this morphology such as light trapping for various applications, 

mainly in DSSCs, are not lost in the sensitization process.   

2) The Ru polypyridyl complexes with pendant nitrile groups (RuL1, RuL2 and RuL3) have 

been shown to have excellent sensitizing properties on the ZnO NWs, improving by orders 

of magnitude their photocurrent in a subgap spectral region (from the violet to the yellow-

orange) where the ZnO NWs have negligible absorption. The broadest sensitization 

wavelength span is provided by RuL2 as a result of its broader absorption band.  

3) The FeL3 complex does not show any sensitizing effect on ZnO NWs. 

4) The coating of the NWs with the Ru and Fe complexes increases the time for photocurrent 

buildup saturation under illumination. We propose that this effect is associated with the 

elimination of the ZnO NW walls interaction with atmospheric air in the coated NWs. 

5) The successful sensitization of ZnO NWs with Ru complexes leads to about a factor of 10 

reductions of the relaxation times after the illumination is interrupted. This reductions are 
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interpreted in terms of diminishing hole trap energies at  eV above the valence band 

edgeby 50-60 meV due to the screening effect on trap centers provided by the extra charge 

transferred from the sensitizing complex layer to the ZnO.  
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