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Abbreviations: 

ATF6, activating transcription factor 6; B.W., body weight; EC, (-)-epicatechin; eIF2�, eukaryotic 

initiation factor 2 alpha; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinases; 

GTT, glucose tolerance test; HFr, high fructose; I�B,  inhibitor of nuclear factor �B; IKK, I�B 

kinase; IR, insulin receptor; IRS1, insulin receptor substrate 1; IRE1�, inositol requiring enzyme 

1 alpha; ITT, insulin tolerance test; JNK, c-Jun N-terminal kinase; MAPKs, mitogen activated 

protein kinases; MCP-1, monocyte chemotactic protein-1; MetS, metabolic syndrome; NOX, 

NADPH oxidase; PERK, PKR-like ER-regulated kinase; PKC, protein kinase C; PTP1B, protein 

tyrosine phosphatase 1B; TG, triglycerides; T2D, type 2 diabetes; TNF�, tumor necrosis factor 

alpha; UPR, unfolded protein response; XBP1, X-box binding protein 1. 

Abstract 

We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance 

through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome 

(MetS). Adolescent rats were fed a regular chow diet without or with high fructose (HFr) (10% 

(w/v)) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in 

the diet. HFr-fed rats developed insulin resistance which was mitigated by EC supplementation.  

Accordingly, the activation of components of the insulin signaling cascade (insulin receptor (IR), 

IRS-1, Akt and ERK1/2) was impaired, while negative regulators (PKC, IKK, JNK and PTP1B) 

were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or 

totally prevented by EC supplementation. In addition, EC inhibited events which contribute to 

insulin resistance: HFr-associated increased expression and activity of NADPH oxidase , 

activation of redox-sensitive signals , expression of NF-�B-regulated pro-inflammatory cytokines 

and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, 
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these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and 

are relevant to define interventions that can prevent/mitigate MetS-associated insulin resistance.  

 

INTRODUCTION 

The metabolic syndrome (MetS) is defined as a cluster of symptoms that include increased 

waist circumference, plasma tryglicerides (TG), and fasting glycemia, reduced high-density 

lipoprotein (HDL) cholesterol, and hypertension [1]. The increasing incidence of MetS, which 

currently affects 34% of the world population, is associated with the development of insulin 

resistance and type 2 diabetes (T2D), obesity, and cardiovascular disease, constituting a major 

public health concern worldwide [2, 3].   

Diet can play a major role in the prevention of MetS and its associated pathologies.  

Flavonoids are naturally occurring plant compounds that have a multiplicity of biological effects. 

The ability of flavonoids to modulate cell signaling could contribute to the health benefits 

associated with the consumption of fruit and vegetables [4]. Significantly, epidemiological 

studies show that the consumption of fruits and vegetables in humans decreases the risk for 

MetS [5-8].  Among flavonoids, the flavan-3-ol (-)-epicatechin (EC) is one of the most abundant 

in human diets.  EC is present in large concentrations in fruit and vegetables (e.g. cocoa, 

grapes, tea, berries) and derived foods [9].  EC has a basic chemical structure of two aromatic 

rings linked by an oxygenated heterocycle with a hydroxyl group in position 4 (Fig. 1A). 

Consumption or supplementation with EC or EC-containing foods in humans and experimental 

animals is associated with improvement of several MetS hallmarks, including: a- decreased 

blood pressure and improved vascular function [10-14]; b- improved insulin sensitivity [15-20]; c- 

decreased plasma cholesterol [11]; d- improved oxidative stress parameters [11], and e- 

decreased risk for cardiometabolic disorders [21]. Previously, we demonstrated that in 
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differentiated 3T3-L1 adipocytes EC prevents tumor necrosis factor alpha (TNF�)-induced 

signals that perpetuate inflammation and contribute to insulin resistance [22]. Importantly, 

consumption of cocoa flavanols (a particularly pure source of EC and its derived procyanidins), 

is associated with improvements in parameters of insulin sensitivity in healthy human adults 

[17], glucose-intolerant hypertensive subjects [15], and overweight/obese individuals [18].   

Increased production of cellular oxidants via the activation of NADPH oxidases (NOX) 

has been proposed as one contributing mechanism to the development of insulin resistance in 

MetS [23-25].  Increased oxidant production can activate redox-sensitive signals that: i) 

negatively regulate insulin signaling pathway (c-Jun N-terminal kinase (JNK), inhibitor of nuclear 

factor �B (I�B) kinase (IKK)), and ii) promote and sustain chronic inflammation and oxidative 

stress (NF-�B).  EC has been previously shown to inhibit NOX activity [26], mechanism that 

could provide EC with the capacity of improve insulin sensitivity in MetS. 

In this study we evaluated the capacity of dietary EC to influence insulin resistance in a 

rat model of MetS, induced by consumption of a high fructose (HFr) diet. The contribution of 

redox-dependent mechanisms to the capacity of EC to improve fructose-induced impairment of 

the metabolic phenotype were investigated. Dietary EC supplementation improved insulin 

sensitivity in HFr-fed rats.  The beneficial effect of EC is due, at least in part, to decreased NOX 

activity and expression, mitigation of chronic redox signaling activation, inflammation, and 

endoplasmic reticulum (ER) stress. Our findings support the relevance of designing effective 

dietary or supplementation interventions for the prevention/amelioration of MetS-induced T2D. 
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MATERIALS AND METHODS  

 

Materials 

 Cholesterol, HDL cholesterol, and triglyceride concentrations were determined using kits 

purchased from GTLab (Buenos Aires, Argentina). Antibodies for eIF2�, p-eIF2� (Ser51), ERK, 

p-ERK (Thr202/Tyr204), JNK, p-JNK (Thr183/Tyr185), NOX2, NOX4, p47phox, �-tubulin, MCP-

1, TNF�, p-PERK (Thr980), PERK, PTP1B, sXBP1, cATF6, IRE1�, p-IR (Tyr1162/Tyr1163), 

and IR were from Santa Cruz Biotechnology (Santa Cruz, CA).  Primary antibodies for p-PKC� 

(Thr505), p65, p-p65, IK��, p-I�B� (Ser32), IKK�, p-IKK�/� (Ser178/180), p-AKT (Ser473), 

AKT, and were obtained from Cell Signaling Technology (Danvers, MA). Antibody for p-IRE1� 

(Ser724) was purchased from Abcam (Cambridge, MA). Antibodies for p-IRS1 (Tyr608) and 

IRS1 were from Millipore Corp. (Billerica, MA). Catalogue numbers for all antibodies are 

included in supplemental table 1.  PVDF membranes and protein standards were obtained from 

BIO-RAD (Hercules, CA). The ECL Western blotting system was from Thermo Fisher Scientific 

Inc. (Piscataway, NJ). Fructose was purchased from Saporiti Labs (Buenos Aires, Argentina).

EC and all other reagents were from the highest quality available and were purchased from 

Sigma (St. Louis, MO).  

 

Animals and animal care  

 All procedures were in agreement with standards for the care of laboratory animals as 

outlined in the NIH Guide for the Care and Use of Laboratory Animals.  All procedures were 

performed according to institutional guidelines for animal experimentation and were approved 

by the Technical and Science Secretary at the National University of Cuyo, School of Medicine; 

and by the Animal Resource Services of the University of California, Davis, which is accredited 
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by the American Association for the Accreditation of Laboratory Animal Care. Rats were housed 

under conditions of controlled temperature (21 - 25ºC) and humidity with a 12 h light/dark cycle. 

Thirty-day-old male Wistar rats, weighing 100-130 g, were randomly divided in 3 groups (10 rats 

per group) that were fed a standard rat chow (Gepsa-Feeds, Buenos Aires, Argentina) (Table 2, 

supplemental material)  and water ad libitum (control group; C), chow diet and fructose (10% 

w/v)-supplemented water (high fructose group; HFr), or chow diet supplemented with 20 mg 

EC/Kg body weight and the fructose-supplemented water (HFr + EC).  The amount of EC used 

for dietary supplementation was based on levels that are feasible to reach through dietary 

supplementation in humans, on our preliminary studies using the same amount of the EC 

isomer, catechin, and on studies by other groups in models of hypertension and streptozotocin-

induced type 1 diabetes  [27, 28]. Food and water intake were recorded twice per week. The 

average daily food intake is shown in Table 1.  The concentration of EC in the diet was adjusted 

weekly to account for changes in body weight and food intake. After 8 weeks on the dietary 

treatments, and after overnight fast rats were weighed and 5 animals per group were 

intraperitoneally injected with insulin (10 mU/g B.W. human insulin (HumulinR; Eli Lilly)) or 

saline, and euthanized after 10 min. Blood was collected from the abdominal aorta into 

heparinized tubes, and plasma obtained after centrifugation at 1,000 x g for 15 min at 4ºC. 

Epididymal and mesenteric adipose tissue, and liver were collected and weighed.  Tissues were 

flashfrozen in liquid nitrogen and then stored at -80ºC for further analysis.   

 

Metabolic measurements  

Glucose was measured in blood collected from the tail using a glucometer (Accu-Chek 

Performa, Roche, Argentina). Total and HDL cholesterol, TG (GTLab, Buenos Aires) and insulin 

(Coat-A-Count, Siemens, CA) concentrations were determined using commercial kits following 

manufacturer’s guidelines.  Hepatic lipids were extracted with chloroform/methanol as described 
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previously [29, 30] and assayed for TG and cholesterol content as described above. Fed 

glucose measurements were taken in tail bleeds using a glucometer (Home Aide Diagnostics) 

between 7-9 am and, where indicated, from rats fasted for 12 h. For insulin tolerance tests (ITT), 

rats were fasted for 4 h and injected intraperitoneally with 1 mU/g body weight human insulin. 

Blood glucose values were measured before and at 15, 30, 60, 90 and 120 min post-injection. 

For glucose tolerance tests (GTT), overnight fasted rats were injected with D-glucose (2g/kg 

B.W.), and blood glucose was measured before and at 15, 30, 60, 90 and 120 min post-

injection. ITT and GTT tests done after 4 weeks on the respective diets were similar among the 

groups. 

 

Western blot analysis 

 Tissues were homogenized in radio-immunoprecipitation assay (RIPA) buffer (10 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% w/v sodium dodecylsulfate, 1% w/v Triton X-100, 1% 

sodium deoxycholate, 5 mM EDTA, 1 mM NaF, 1 mM sodium orthovanadate and protease 

inhibitors). Homogenates were centrifuged at 15,000 x g for 30 min,  the supernatant collected, 

and protein concentration measured [31]. Aliquots of total cell lysates containing 25-40 �g 

protein were denatured with Laemmli buffer, separated by reducing 10-12.5% polyacrylamide 

gel electrophoresis, and electroblotted to PVDF membranes. Membranes were blotted for 2 h in 

5% (w/v) bovine serum albumin and subsequently incubated in the presence of the 

corresponding primary antibodies (1:1,000 dilution for all the antibodies except TNF�, 1:500) 

overnight at 4°C. After incubation for 90 min at room temperature in the presence of the 

secondary antibody (HRP conjugated) (1:10,000 dilution) the conjugates were visualized using 

enhanced chemiluminescence (Amersham Biosciences). Pixel intensities of immunoreactive 

bands were quantified using FluorChem Q Imaging software (Alpha Innotech). 
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NADPH oxidase activity and protein carbonyls 

 

The lucigenin-derived chemiluminescence assay was used to determine NAD(P)H 

oxidase activity in  liver membrane fractions. Liver tissue (100 mg) was homogenized in 1 ml of 

ice-cold Krebs buffer (20 mM HEPES pH 7.4, containing 119 mM NaCl, 4.7 mM KCl, 1 mM 

MgSO4, 0.4 mM NaH2PO4, 5 mM NaHCO3, 1.25 mM CaCl2, and protease inhibitors), and then 

centrifuged at 800 x g, at 4°C for 10 min. The supernatant was collected and then centrifuged at 

100,000 x g for 1 h at 4°C.  The supernatant (cytosolic fraction) was discarded and the pellet 

(membrane fraction) was resuspended in Krebs buffer and protein concentration measured [31]. 

To determine NOX activity, aliquots containing 10 μg of protein were added to Krebs buffer 

containing NADPH (0.5 mM) and lucigenin (5 �M). Light emission was measured for 10 min at 

30 s intervals using a VICTOR 1420, Multi-label Counter (WALLAC Oy, Turku, Finland).  The 

area under the curve was calculated and results referred to controls values. 

 Protein carbonyl content was evaluated using the OxyBlot Protein Oxidation 

Detection Kit Millipore Corp. (Billerica, MA) following the manufacturer’s protocol.  Briefly, 

protein carbonyl groups in total tissue homogenates were initially derivatized by reaction with 

2,4-dinitrophenylhydrazine (DNP).  Western blots were performed as previously described and 

DNP-proteins detected with a specific HRP-antibody.  

 

RNA isolation and real-time PCR 

RNA was extracted from liver and adipose tissue using TRIzol reagent (Invitrogen). 

cDNA was generated using high-capacity cDNA Reverse Transcriptase (Applied Biosystems). 

Expression of NOX2 and NOX4 was assessed by reverse transcription PCR (iCycler, BioRad) 
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and normalized to TATA-Box binding protein (TBP). For RT-PCR, Absolute blue qPCR premix 

(Fisher Scientific) was mixed with each primer. The following primers were used: NOX2 primers: 

5’-CCAGTGAAGATGTGTTCAGCT-3’ (Forward), 5’-GCACAGCCAGTAGAAGTAGAT-3’ 

(Reverse); NOX4 primers: 5’-AGTCAAACAGATGGGATA-3’ (Forward), 5’-

TGTCCCATATGAGTTGTT-3’ (Reverse); TBP primers: 5’-CAGCCTTCCACCTTATGCTC-3’ 

(Forward), 5’-TGCTGCTGTCTTTGTTGCTC-3’ (Reverse). The threshold cycle (Ct) was 

determined and the relative gene expression was calculated as follows: fold change=2-�(�Ct), 

where �Ct=Cttarget gene-CtTBP (cycle difference) and �(�Ct)=CtHfr/HFr+Ec-CtC. 

 

Statistical analysis 

Data were analyzed by one-way analysis of variance (ANOVA) using Statview 5.0 (SAS 

Institute Inc., Cary, NC). Fisher least significance difference test was used to examine 

differences between group means. A P value < 0.05 was considered statistically significant. 

Data are shown as mean ± SEM. 

 

 

Results 

EC treatment improves metabolic parameters in HFr-fed rats.  

To investigate whether EC treatment regulates metabolic status in vivo, thirty-day-old 

rats were fed high fructose (HFr) and HFr with EC-supplemented diets, as detailed in Methods.  

Adolescent rats were studied since adult humans have a particularly high intake of fructose [32] 

which renders them a segment of the population particularly susceptible to the adverse effects 

of excess dietary fructose. Furthermore, high fructose consumption in adolescents  is 

associated with cardiometabolic risk markers and visceral adiposity, both components of MetS  

[33].  
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After 8 weeks on the corresponding diets, metabolic parameters were assessed (Table 

1). The average daily food intakes of HFr and HFr-EC rats were significantly lower than in 

controls; the daily water intake was significantly higher in the HFr-EC rats compared with control 

and HFr groups.  Thus, rats provided fructose in the drinking water had a daily fructose intake of 

5.3 and 5.7 g/rat for the HFr and HFr +EC groups, respectively.  After 8 weeks on the respective 

diets, body weight, epidydimal and mesenteric adipose tissue and liver weights were 

comparable among groups (Table 1).  High fructose consumption caused dyslipidemia, as 

evidenced by elevated plasma TG and LDL-cholesterol in HFr-fed rats compared with controls.  

EC supplementation partially or completely prevented HFr-induced plasma TG and LDL 

increase, respectively, and increased HDL cholesterol levels over control values (Table 1).  

Fasting and fed glucose levels were comparable among groups.  Of note, HFr-fed rats required 

a higher concentration of insulin to maintain glucose levels compared with controls, suggestive 

of insulin resistance. In addition, EC treatment decreased the amount of insulin required to 

maintain comparable glucose concentration (Table 1).  To assess insulin sensitivity, rats were 

subjected to ITT as detailed in Methods (Fig. 1B). Comparable response was observed for ITT 

values and the area under the curve (AUC) was similar among groups (Fig. 1D). On the other 

hand, HFr-treated rats exhibited decreased ability to clear glucose from the circulation 

compared with controls during an intraperitoneal GTT (Fig. 1C).  AUC for the GTT was 

significantly (p < 0.05) higher in the HFr group compared with controls (Fig. 1D).  In the EC-

supplemented rats the GTT AUC was comparable to HFr values. It is worth noting that plasma 

insulin concentrations at 0, 2 and 10 min during the GTT were higher in HFr rats compared with 

controls while HFr-EC treated rats exhibited insulin concentrations that were comparable to 

controls (Fig. 1E). Together, these data indicate that EC consumption improves the systemic 

metabolic status of rats with chronic consumption of HFr.  
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EC treatment enhances insulin signaling in the liver and adipose tissue.   

To investigate the molecular basis for altered glucose tolerance in HFr-fed rats, we 

determined alterations in insulin signaling. Fasted control (C), HFr and HFr + EC rats were 

injected with saline or insulin (as detailed in Methods), then basal and insulin-stimulated 

signaling was determined in the liver and epididymal adipose tissue (Fig. 2). In the adipose 

tissue, insulin-induced insulin receptor (IR) tyrosyl phosphorylation at Tyr1162/Tyr1163 was 

attenuated in HFr rats compared with controls, while EC supplementation enhanced insulin-

induced IR phosphorylation and restored it to control levels (Fig. 2A).  Similarly, insulin-induced 

IR substrate 1 (IRS1) tyrosyl phosphorylation at Tyr608 (one of the PI3K binding sites) was 

attenuated in HFr rats compared with controls but was elevated upon EC supplementation (Fig. 

2A). Consistent with IR and IRS1 tyrosyl phosphorylation, HFr-attenuated insulin-stimulated 

extracellular signal-regulated kinases 1/2 (ERK) phosphorylation (Thr202/Tyr204) and was 

elevated upon EC supplementation. Moreover, insulin-stimulated Akt Ser473 phosphorylation 

was decreased in HFr rats compared with controls but was elevated upon EC supplementation. 

Further, basal ERK and Akt phosphorylation was higher in HFr rats supplemented with EC than 

in adipose tissue from control and HFr animals.  Comparable effects of HFr feeding and EC 

supplementation on insulin signaling were observed in the liver (Fig. 2B). Together, these data 

demonstrate that the HFr-induced attenuation of insulin signaling in liver and adipose tissue is 

mitigated by EC supplementation.  

 Serine phosphorylation of IRS1 by the kinases JNK, IKK, or protein kinase C (PKC), and 

IR tyrosine dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), lead to 

downregulation of the insulin signaling cascade. High fructose consumption caused the 

activation of kinases IKK�/�, JNK and PKC, as evaluated by phosphorylation levels, and 

increased PTP1B expression.  Phosphorylation of IKK�/� (Ser 178/180), JNK (Thr183/Tyr185) 
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and PKC� (Thr505), and PTP1B protein expression were high in both the adipose tissue (Fig. 3 

A) and liver (Fig. 3B) of the HFr rats.  EC supplementation prevented HFr-induced increased 

IKK�/�, JNK and PKC phosphorylation and PTP1B expression in both tissues. 

 

EC treatment mitigates HFr-induced increased NOX expression, oxidative stress, NF-�B 

activation and inflammation 

 Increased production of superoxide anion via NADPH oxidase (NOX) activation can 

trigger JNK, IKK/ NF-�B activation and contribute to the overall MetS pro-inflammatory scenario.  

Thus, the expression of NOX subunits NOX2 (gp91 phox), NOX4, and p47 was assessed.  In 

HFr rats, protein levels of NOX2, NOX4, p47phox in liver and adipose tissue were significantly 

higher than in controls (Fig. 4A, B).  EC supplementation prevented the effects of HFr feeding 

on NOX subunits except for p47phox (Fig. 4A, B).  Further, evaluation of NOX2 and NOX4 

mRNA  demonstarted increased expression of NOX2 and NOX4, which was prevented by EC 

supplementation in both liver and adipose tissues (Fig. 4C). In the liver, NOX activity was 2.1-

fold higher in the HFr group compared with controls, and EC supplementation prevented this 

increase (Fig. 4B).  Together, these data suggest an increased capacity of liver and adipose 

tissues to generate superoxide anion in MetS, which is mitigated by EC supplementation.  To 

evaluate if NOX upregulation was associated with tissue oxidative stress we measured tissue 

protein carbonyl levels.  Protein carbonyls result from direct protein oxidation and from protein 

derivatization by by-products of lipid oxidation [34]. Indeed, higher levels of protein 

carbonylation were detected in liver and adipose tissue from rats fed HFr diet compared with 

controls, which were prevented by EC supplementation (Fig. 4D).   

 

Inflammation is a major contributor to insulin resistance.  Oxidative stress and activation 

of the redox-sensitive transcription factor NF-�B are at the center of a self-feeding cycle that 

perpetuates inflammation.  Consumption of fructose for 8 weeks led to the activation of the NF-
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�B pathway, as evidenced by increased IKK�/� (Ser178/180) (Fig. 3A,B) phosphorylation, I�B�  

phosphorylation (Ser32) and degradation of the NF-�B inhibitory peptide (I�B�) in adipose 

tissue and liver (Fig. 5A).  Other NF-�B activation step, p65 phosphorylation (Ser536) was also 

significantly higher in liver from the HFr rats than in controls.  The activation of these steps in 

the NF-�B signaling pathway was not observed in the HFr rats supplemented with EC.  

 The cytokine TNF� and the chemokine monocyte chemotactic protein-1 (MCP-1) are 

NF-�B-regulated proteins that have central roles in MetS- and obesity-induced insulin 

resistance.  TNF� and MCP-1 expression was significantly higher in adipose tissue and liver of 

HFr rats than in controls, while EC supplementation partially or totally prevented the HFr-

associated upregulation (Fig. 5B).   

 

EC supplementation attenuated HFr-induced ER stress in liver and adipose tissue.  

A growing body of evidence indicates that endoplasmic reticulum (ER) dysfunction is a 

contributor to metabolic diseases [35, 36]. When the folding capacity of the ER is exceeded, 

misfolded proteins accumulate and lead to ER stress [37]. Cells use adaptive mechanisms to 

mitigate ER stress and to restore homeostasis known as the unfolded protein response (UPR). 

This protective response  consists of three major branches that are controlled by the ER trans-

membrane proteins PKR-like ER-regulated kinase (PERK), inositol requiring protein 1� (IRE1�), 

and activating transcription factor 6 (ATF6).  We determined the effects of HFr-consumption and 

EC supplementation on UPR in liver and adipose tissue. After 8 w of HFr consumption the three 

branches of the UPR were markedly upregulated in adipose tissue (Fig. 6A) and liver (Fig. 6B), 

as assessed by PERK (Tyr980) and eIF2� (Ser51) phosphorylation, ATF6 cleavage IRE1� 

(Ser724) phosphorylation and the levels of X-box binding protein 1 spliced isoform (sXBP-1).  Of 

note, EC supplementation of HFr rats attenuated specific subarms of the UPR.  In adipose 

tissue, EC supplementation attenuated HFr-induced IRE1� (Fig. 6A).  In addition, in the liver, 

EC supplementation partially or totally attenuated HFr-induced expression of the spliced XBP-1 
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isoform, IRE1� and PERK phosphorylation (Fig. 6B).  Together, these data indicate that EC 

supplementation can attenuate sepcific sub-arms of ER stress induced by HFr feeding in liver 

and adipose tissue.   

 

Discussion 

 This work presents evidence that in vivo EC supplementation mitigates the impairment 

of metabolic parameters induced by high fructose feeding.  This occurs in parallel with the 

inhibition by EC of events associated with altered tissue redox status and impaired insulin 

sensitivity: NOX upregulation, activation of redox-sensitive signals (JNK, IKK/NF-�B), 

inflammation, and ER stress.  The capacity of EC to modulate NOX subunit expression and to 

directly inhibit NOX [26] is likely a central mechanism in the beneficial action of EC on MetS

 The long-term consumption of fructose-rich diets by humans [38] and experimental 

animals causes the typical pathogenic features of MetS: insulin resistance, obesity, 

dyslipidemia, and hypertension.  In the current study, metabolic parameters in HFr-fed rats 

indicated an early stage of insulin resistance which was mitigated by EC supplementation. 

Accordingly with the present results, human consumption of food/food extracts containing EC is 

associated with improvements of insulin sensitivity.   In this regard, a systematic review and 

meta-analysis of randomized, controlled trials showed a relationship between the short-term 

consumption of EC-rich cocoa and improvement in insulin sensitivity (HOMA-IR) in humans [20]. 

Consumption of cocoa extracts was associated with improvements in parameters of insulin 

sensitivity in different populations, including healthy human adults [17], glucose-intolerant 

hypertensive subjects [15], and overweight/obese individuals [18].  Findings that EC 

supplementation improved plasma and lipid profiles in the HFr rats suggest that EC can also 

influence the altered lipid metabolism associated with HFr consumption. 

 In the liver and adipose tissue, HFr consumption causes inflammation, oxidative and ER 

stress which can lead to insulin resistance [39-41].  The in vivo response to insulin by liver and 
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adipose tissues was impaired in the HFr rats as evidenced by decreased insulin-mediated 

phosphorylation of IR, IRS-1, Akt and ERK1/2. However, EC supplementation improved or 

restored liver and adipose tissue response to insulin.  Several mechanisms can act in concert to 

induce insulin resistance as a consequence of HFr consumption. Fructose preferential uptake 

by the liver leads to an overproduction of glyceraldehyde-3-P, and acetyl CoA which fuels de 

novo lipogenesis, and activates (diacylglycerol) novel PKC. HFr-induced metabolic burden can 

also increase oxidant production with a consequent activation of redox-sensitive signals (JNK, 

IKK/NF-�B). PKC, JNK and IKK activation can impair insulin sensitivity.  One of the proposed 

mechanisms is the serine/threonine phosphorylation of IRS-1 by these kinases which can exert 

a negative regulation of the insulin pathway [42, 43].  This is further supported by findings that 

genetic deficits of JNK or IKK mitigate obesity-induced insulin resistance [44, 45]. In addition, 

insulin signaling is attenuated through the dephosphorylation of IR/IRS-1 by PTP1B [46, 47]. We 

observed that the impaired response to insulin in liver and adipose tissue from HFr rats was 

associated with high levels of PKC, JNK and IKK phosphorylation, and increased PTP1B 

expression, which were prevented by EC supplementation.  Furthermore, in HFr rats 

supplemented with EC, basal ERK and Akt phosphorylation were higher than controls in liver 

and adipose tissue.  Of note, it was previously shown that EC can activate ERK and Akt in 

cortical neuronal cultures [48]. 

The activation of redox-sensitive signaling (NF-�B), and associated expression of pro-

inflammatory genes constitute a self-feeding cycle that contributes to insulin resistance. NOX is 

the major enzymatic source of cellular superoxide anion.  Through the production of small and 

transient amounts of superoxide, NOX co-activates membrane receptor-mediated signaling 

cascades, including those triggered by cytokines (e.g. TNF�), growth factors, and hormones 

(e.g. insulin) [49-51].  However, sustained NOX and/or uncontrolled activation (e.g. chronic 

inflammation) leads to oxidative stress, which is proposed to be a major contributor to MetS and 

T2D development [52, 53].  EC can modulate NOX activation through its capacity to directly 
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inhibit enzyme activity [26, 54], or to regulate the expression of its subunits [55].  We observed 

that HFr consumption caused an increase in the activity and mRNA and protein expression of 

NOX subunits (NOX2, NOX4, and p47). EC supplementation prevented hepatic NOX activation, 

and NOX2 and NOX4 increased mRNA and protein expression, but not that of p47. The latter 

could be due to different mechanisms of transcriptional/translational regulation, which can vary 

among tissues and stimuli [55].  NOX upregulation in HFr-fed rats was associated with 

increased liver and adipose tissue oxidative damage (protein carbonyls) which was prevented 

by EC supplementation.  Thus, EC-mediated NOX downregulation could mitigate MetS-

associate oxidative stress, which can both decrease the damage to cellular components and 

improve insulin sensitivity. 

 HFr consumption leads to the activation of the redox-regulated NF-�B with an 

associated increased expression of the NF-�B target proteins PTP-1B, MCP-1, and TNF�.  

MCP-1 acts recruiting pro-inflammatory cells, while TNF� activates mitogen activated protein 

kinases (MAPKs) and transcription factors AP-1 and NF-�B [56-58], which can act re-feeding 

the pro-inflammatory cycle.  EC supplementation mitigated HFr-mediated NF-�B activation, and 

PTP1B, TNF� and MCP-1 expression. In line with these observations, we recently observed 

that EC inhibits TNF�-mediated activation of NF-�B, AP-1 and the MAPKs  in 3T3-L1 adipocytes 

[22].  EC-mediated modulation of NF-�B can occur through the previously described inhibition of 

NOX, and also through specific interactions of EC with the NF-�B proteins p50 and p65 

preventing their binding to DNA �B sites [59, 60] (reviewed in [61]).   

Increasing evidence supports a major role of ER stress in the development of insulin 

resistance and T2D in obesity and MetS.  Several pathogenic phenotypes of MetS, including 

inflammatory cytokines [62], hyperglycemia [63, 64]; obesity [36], high cholesterol [65], high fatty 

acids [62, 66] trigger ER stress in different cells and tissues.  Importantly, markers of increased 

ER stress are observed in human mononuclear cells from MetS patients [64], and in adipose 

tissue from obese and insulin resistant individuals [67], which improve after weight loss [68]. 
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Notably, chemical chaperones that relieve ER stress in liver cells, increase systemic insulin 

sensitivity and reduce fatty liver disease in obese mice [69].  We currently observed that HFr 

feeding activated the three branches of the UPR both in liver and adipose tissue, while EC 

supplementation mitigated the activation of select subarms: IRE1� in adipose tissue; XBP-1, 

IRE1�, and PERK in the liver.  Attenuation of ER stress, and in particular of the associated 

negative regulator of the insulin signaling cascade JNK, can in part explain the capacity of EC to 

improve insulin sensitivity.  The flavan-3-ol epigallocatechin gallate (EGCG) inhibits the ATPase 

activity of the UPR protein GRP78 [70].  EC is chemically different from EGCG, but some of the 

observed effects could be ascribed to the capacity of select flavonoids to mimic ATP and 

interfere with ATP-dependent enzymes. However, GRP78 inhibition by EC should affect all UPR 

sub arms, while we currently observed a sub arm-specific effect.  Thus, additional  studies to 

investigate the mechanim(s) underlying regulation of ER stress signaling by EC are warranted.. 

 

In summary, EC capacity to modulate liver and adipose tissue superoxide production 

(NOX  down regulation), the consequent activation of the redox sensitive pathways JNK and 

IKK/NF-�B, and the UPR would converge in the mitigation of inflammation.  This would 

decrease a self-feeding cycle which would ultimately lead into MetS-induced insulin resistance 

and T2D.  Given the high and increasing prevalence of MetS and the associated T2D, there is 

an urgent need to identify nutritional factors that can co-operate to prevent and/or treat these 

conditions.  The current findings indicate that EC is a dietary component that may have 

mitigating actions on MetS and the associated insulin resistance. 
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Legend to Figures 

Figure 1.  Effects of EC supplementation on metabolic parameters in HFr-fed rats.  

A- (-)-Epicatechin chemical structure, B- ITT, C-GTT, D- Area under the curve from ITT and 

GTT performed on week 7 on the respective treatments, and E-plasma insulin concentration 

during GTT in rats fed control diet and regular drinking water (empty circles and empty bars), a 

control diet and drinking water supplemented with 10% (w/v) fructose (black circles and black 

bars), or a diet supplemented with 20 mg EC/kg body weight and fructose-containing drinking 

water (grey circles and grey bars).  Results are shown as means ± SE and are the average of 8 

animals/group. D- Values having different symbols (*,#) are significantly different;  E- *are 

significantly different from the other groups at the corresponding time points; (p < 0.05, one way 

ANOVA). 

 

Figure 2. EC supplementation enhances insulin signaling in epididymal adipose and liver 

tissues in HFr-fed rats.  After 8 weeks on the corresponding diets, rats were fasted overnight 

then injected with saline or insulin (10 mU/g body weight) and then sacrificed after 10 minutes. 

Phosphorylation of IR, IRS1, ERK1/2, and Akt are shown for A- epididymal adipose tissue and 

B-liver. Bands were quantified and results for the HFr and HFr + EC were referred to control 

group values (C).  Results are expressed as the ratio of phosphorylated/total protein level. 

Results are shown as mean ± SEM of 5 animals/treatment.  *, # are significantly different 

between them and from the insulin untreated groups, &are significantly different from the insulin 

untreated control and HFr groups, and ** are significantly different from all other groups (p<0.05, 

one way ANOVA test). 

 

Figure 3.  Effects of EC supplementation on epididymal adipose and liver tissue insulin 

signaling in HFr-fed rats: inhibitory signaling. A,B- Phosphorylation of IKK�/� (Ser178/180, 
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JNK (Thr183, Tyr185) and PKC� (Thr505), and PTP-1B protein levels in epididymal adipose 

tissue (A) and liver (B) after 8 weeks on the corresponding diets.  Bands were quantified and 

results for the HFr (HF) and HFr + EC (EC) were referred to control group values (C).  Results 

are expressed referred to either total protein or �-tubulin levels. Results are shown as mean ± 

SEM of 8 animals/treatment.  *, # are significantly different from all other groups (p<0.05, one 

way ANOVA test);  

 

Figure 4.  Effects of EC supplementation on epididymal adipose and liver tissue NOX 

upregulation. A,B: Protein levels of NOX subunits (NOX2, NOX4, p47) were measured by 

Western blot in A- adipose tissue and B- liver, and bands were quantified.  B- NOX activity was 

measured in liver as described in methods.  Results for the HFr (HF) and HFr + EC (EC) were 

referred to control group values (C).  C- NOX2 and NOX4 mRNA were measured by 

quantitative real-time PCR, normalized against TATA-Box binding protein (TBP) and 

were referred to control group values (C).  D- Protein carbonyls were measured as 

described in methods. Results are shown as mean ± SEM of 4-8 animals/treatment. 

*Significantly different from other groups (p<0.05, one way ANOVA test). 

 

Figure 5.  Effects of EC supplementation on epididymal adipose and liver tissue 

activation of the pro-inflammatory NF-�B signaling pathway. Different steps in the NF-�B 

pathway were evaluated in rat epididymal adipose tissue and liver after 8 weeks on the 

corresponding diets, measuring: A- phosphorylation (Ser32) and total levels of I�B�, and 

phosphorylation of p65 (Ser536); B- TNF� and MCP-1 (NF-�B target genes) protein levels.  

Bands were quantified and results for the HFr (HF) and HFr + EC (EC) were referred to control 

group values (C).  Results are shown as mean ± SEM of 5 animals/treatment.   *,# are 
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significantly different from the untreated controls, and are significantly different among them. 

(p<0.05, one way ANOVA test). 

 

Figure 6.  Effects of EC supplementation on parameters of ER stress in epididymal 

adipose tissue and liver.  The three branches of the UPR response were evaluated by 

Western blot measuring PERK (Tyr980), eIF2� (Ser51), and IRE1� (Ser724) phosphorylation, 

sXBP-1 and cleaved ATF6 (cATF6) in A- adipose tissue and B- liver. Bands were quantified and 

results for the HFr (HF) and HFr + EC (EC) were referred to control group values (C).  

Phosphorylated/total ratios were calculated for PERK, eIF� and IRE1�; sXBP-1 and cATF6 

were normalized to tubulin content.  Results are shown as mean ± SEM of 5-8 

animals/treatment. *Significantly different from other groups (p<0.05, one way ANOVA test). 

References 

[1] Alberti, K. G.; Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z.; Cleeman, J. I.; Donato, K. A.; 

Fruchart, J. C.; James, W. P.; Loria, C. M.; Smith, S. C., Jr. Harmonizing the metabolic 

syndrome: a joint interim statement of the International Diabetes Federation Task Force on 

Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart 

Association; World Heart Federation; International Atherosclerosis Society; and International 

Association for the Study of Obesity. Circulation 120:1640-1645; 2009. 

[2] Ford, E. S.; Giles, W. H.; Dietz, W. H. Prevalence of the metabolic syndrome among US 

adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287:356-

359; 2002. 

[3] Cameron, A. J.; Shaw, J. E.; Zimmet, P. Z. The metabolic syndrome: prevalence in 

worldwide populations. Endocrinol Metab Clin North Am 33:351-375; 2004. 

[4] Fraga, C. G.; Oteiza, P. I. Dietary flavonoids: Role of (-)-epicatechin and related 

procyanidins in cell signaling. Free Radic Biol Med 51:813-823; 2011. 



21

[5] Hostmark, A. T. The Oslo Health Study: a Dietary Index estimating high intake of soft 

drinks and low intake of fruits and vegetables was positively associated with components of the 

metabolic syndrome. Appl Physiol Nutr Metab 35:816-825; 2010. 

[6] Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F. B.; Willett, W. C. Fruit 

and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84:1489-

1497; 2006. 

[7] Kouki, R.; Schwab, U.; Hassinen, M.; Komulainen, P.; Heikkila, H.; Lakka, T. A.; 

Rauramaa, R. Food consumption, nutrient intake and the risk of having metabolic syndrome: the 

DR's EXTRA Study. Eur J Clin Nutr 65:368-377; 2011. 

[8] Panagiotakos, D. B.; Pitsavos, C.; Skoumas, Y.; Stefanadis, C. The association between 

food patterns and the metabolic syndrome using principal components analysis: The ATTICA 

Study. J Am Diet Assoc 107:979-987; 2007. 

[9] Harnly, J. M.; Doherty, R. F.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Bhagwat, 

S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 

54:9966-9977; 2006. 

[10] Galleano, M.; Oteiza, P. I.; Fraga, C. G. Cocoa, chocolate, and cardiovascular disease. 

Journal of cardiovascular pharmacology 54:483-490; 2009. 

[11] Fraga, C. G.; Actis-Goretta, L.; Ottaviani, J. I.; Carrasquedo, F.; Lotito, S. B.; Lazarus, 

S.; Schmitz, H. H.; Keen, C. L. Regular consumption of a flavanol-rich chocolate can improve 

oxidant stress in young soccer players. Clin Dev Immunol 12:11-17; 2005. 

[12] Heiss, C.; Finis, D.; Kleinbongard, P.; Hoffmann, A.; Rassaf, T.; Kelm, M.; Sies, H. 

Sustained increase in flow-mediated dilation after daily intake of high-flavanol cocoa drink over 

1 week. J Cardiovasc Pharmacol 49:74-80; 2007. 

[13] Taubert, D.; Roesen, R.; Lehmann, C.; Jung, N.; Schomig, E. Effects of low habitual 

cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA 

298:49-60; 2007. 



22

[14] Ottaviani, J. I.; Momma, T. Y.; Heiss, C.; Kwik-Uribe, C.; Schroeter, H.; Keen, C. L. The 

stereochemical configuration of flavanols influences the level and metabolism of flavanols in 

humans and their biological activity in vivo. Free Radic Biol Med 50:237-244; 2011. 

[15] Grassi, D.; Desideri, G.; Necozione, S.; Lippi, C.; Casale, R.; Properzi, G.; Blumberg, J. 

B.; Ferri, C. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, 

hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. The Journal 

of nutrition 138:1671-1676; 2008. 

[16] Curtis, P. J.; Sampson, M.; Potter, J.; Dhatariya, K.; Kroon, P. A.; Cassidy, A. Chronic 

ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and 

attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 

diabetes: a 1-year, double-blind, randomized, controlled trial. Diabetes Care 35:226-232; 2012. 

[17] Grassi, D.; Lippi, C.; Necozione, S.; Desideri, G.; Ferri, C. Short-term administration of 

dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood 

pressure in healthy persons. Am J Clin Nutr 81:611-614; 2005. 

[18] Davison, K.; Coates, A. M.; Buckley, J. D.; Howe, P. R. Effect of cocoa flavanols and 

exercise on cardiometabolic risk factors in overweight and obese subjects. Int J Obes (Lond) 

32:1289-1296; 2008. 

[19] Montagut, G.; Blade, C.; Blay, M.; Fernandez-Larrea, J.; Pujadas, G.; Salvado, M. J.; 

Arola, L.; Pinent, M.; Ardevol, A. Effects of a grapeseed procyanidin extract (GSPE) on insulin 

resistance. J Nutr Biochem 21:961-967; 2010. 

[20] Shrime, M. G.; Bauer, S. R.; McDonald, A. C.; Chowdhury, N. H.; Coltart, C. E.; Ding, E. 

L. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-

analysis of short-term studies. J Nutr 141:1982-1988; 2011. 

[21] Buitrago-Lopez, A.; Sanderson, J.; Johnson, L.; Warnakula, S.; Wood, A.; Di 

Angelantonio, E.; Franco, O. H. Chocolate consumption and cardiometabolic disorders: 

systematic review and meta-analysis. BMJ 343:d4488; 2011. 



23

[22] Vazquez-Prieto, M. A.; Bettaieb, A.; Haj, F. G.; Fraga, C. G.; Oteiza, P. I. (-)-Epicatechin 

prevents TNFalpha-induced activation of signaling cascades involved in inflammation and 

insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys; 2012. 

[23] Elnakish, M. T.; Hassanain, H. H.; Janssen, P. M.; Angelos, M. G.; Khan, M. Emerging 

role of oxidative stress in metabolic syndrome and cardiovascular diseases: important role of 

Rac/NADPH oxidase. J Pathol 231:290-300; 2013. 

[24] Henriksen, E. J.; Diamond-Stanic, M. K.; Marchionne, E. M. Oxidative stress and the 

etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 51:993-999; 2011. 

[25] Pepping, J. K.; Freeman, L. R.; Gupta, S.; Keller, J. N.; Bruce-Keller, A. J. NOX2 

deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J 

Physiol Endocrinol Metab 304:E392-404; 2013. 

[26] Steffen, Y.; Gruber, C.; Schewe, T.; Sies, H. Mono-O-methylated flavanols and other 

flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469:209-219; 

2008. 

[27] Gomez-Guzman, M.; Jimenez, R.; Sanchez, M.; Zarzuelo, M. J.; Galindo, P.; Quintela, 

A. M.; Lopez-Sepulveda, R.; Romero, M.; Tamargo, J.; Vargas, F.; Perez-Vizcaino, F.; Duarte, 

J. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative 

stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic 

Biol Med 52:70-79; 2012. 

[28] Quine, S. D.; Raghu, P. S. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation 

and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacological 

reports : PR 57:610-615; 2005. 

[29] Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can J 

Biochem Physiol 37:911-917; 1959. 

[30] Salmon, D. M.; Flatt, J. P. Effect of dietary fat content on the incidence of obesity among 

ad libitum fed mice. Int J Obes 9:443-449; 1985. 



24

[31] Bradford, M. M. A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254; 

1976. 

[32] Vos, M. B.; Kimmons, J. E.; Gillespie, C.; Welsh, J.; Blanck, H. M. Dietary fructose 

consumption among US children and adults: the Third National Health and Nutrition 

Examination Survey. Medscape J Med 10:160; 2008. 

[33] Pollock, N. K.; Bundy, V.; Kanto, W.; Davis, C. L.; Bernard, P. J.; Zhu, H.; Gutin, B.; 

Dong, Y. Greater fructose consumption is associated with cardiometabolic risk markers and 

visceral adiposity in adolescents. The Journal of nutrition 142:251-257; 2012. 

[34] Berlett, B. S.; Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J 

Biol Chem 272:20313-20316; 1997. 

[35] Hummasti, S.; Hotamisligil, G. S. Endoplasmic reticulum stress and inflammation in 

obesity and diabetes. Circ Res 107:579-591; 2010. 

[36] Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A. H.; Iwakoshi, N. N.; Ozdelen, E.; Tuncman, G.; 

Gorgun, C.; Glimcher, L. H.; Hotamisligil, G. S. Endoplasmic reticulum stress links obesity, 

insulin action, and type 2 diabetes. Science 306:457-461; 2004. 

[37] Schroder, M.; Kaufman, R. J. The mammalian unfolded protein response. Annu Rev 

Biochem 74:739-789; 2005. 

[38] Stanhope, K. L.; Schwarz, J. M.; Keim, N. L.; Griffen, S. C.; Bremer, A. A.; Graham, J. 

L.; Hatcher, B.; Cox, C. L.; Dyachenko, A.; Zhang, W.; McGahan, J. P.; Seibert, A.; Krauss, R. 

M.; Chiu, S.; Schaefer, E. J.; Ai, M.; Otokozawa, S.; Nakajima, K.; Nakano, T.; Beysen, C.; 

Hellerstein, M. K.; Berglund, L.; Havel, P. J. Consuming fructose-sweetened, not glucose-

sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity 

in overweight/obese humans. J Clin Invest 119:1322-1334; 2009. 



25

[39] Morino, K.; Petersen, K. F.; Shulman, G. I. Molecular mechanisms of insulin resistance 

in humans and their potential links with mitochondrial dysfunction. Diabetes 55 Suppl 2:S9-S15; 

2006. 

[40] Seppala-Lindroos, A.; Vehkavaara, S.; Hakkinen, A. M.; Goto, T.; Westerbacka, J.; 

Sovijarvi, A.; Halavaara, J.; Yki-Jarvinen, H. Fat accumulation in the liver is associated with 

defects in insulin suppression of glucose production and serum free fatty acids independent of 

obesity in normal men. J Clin Endocrinol Metab 87:3023-3028; 2002. 

[41] Kotronen, A.; Seppala-Lindroos, A.; Bergholm, R.; Yki-Jarvinen, H. Tissue specificity of 

insulin resistance in humans: fat in the liver rather than muscle is associated with features of the 

metabolic syndrome. Diabetologia 51:130-138; 2008. 

[42] Samuel, V. T.; Liu, Z. X.; Wang, A.; Beddow, S. A.; Geisler, J. G.; Kahn, M.; Zhang, X. 

M.; Monia, B. P.; Bhanot, S.; Shulman, G. I. Inhibition of protein kinase Cepsilon prevents 

hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739-745; 2007. 

[43] Wei, Y.; Pagliassotti, M. J. Hepatospecific effects of fructose on c-jun NH2-terminal 

kinase: implications for hepatic insulin resistance. Am J Physiol Endocrinol Metab 287:E926-

933; 2004. 

[44] Hirosumi, J.; Tuncman, G.; Chang, L.; Gorgun, C. Z.; Uysal, K. T.; Maeda, K.; Karin, M.; 

Hotamisligil, G. S. A central role for JNK in obesity and insulin resistance. Nature 420:333-336; 

2002. 

[45] Yuan, M.; Konstantopoulos, N.; Lee, J.; Hansen, L.; Li, Z. W.; Karin, M.; Shoelson, S. E. 

Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of 

Ikkbeta. Science 293:1673-1677; 2001. 

[46] Haj, F. G.; Zabolotny, J. M.; Kim, Y. B.; Kahn, B. B.; Neel, B. G. Liver-specific protein-

tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J 

Biol Chem 280:15038-15046; 2005. 



26

[47] Matsuo, K.; Bettaieb, A.; Nagata, N.; Matsuo, I.; Keilhack, H.; Haj, F. G. Regulation of 

brown fat adipogenesis by protein tyrosine phosphatase 1B. PLoS One 6:e16446; 2011. 

[48] Schroeter, H.; Bahia, P.; Spencer, J. P.; Sheppard, O.; Rattray, M.; Cadenas, E.; Rice-

Evans, C.; Williams, R. J. (-)Epicatechin stimulates ERK-dependent cyclic AMP response 

element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101:1596-1606; 

2007. 

[49] Yang, B.; Rizzo, V. TNF-alpha potentiates protein-tyrosine nitration through activation of 

NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic 

endothelial cells. Am J Physiol Heart Circ Physiol 292:H954-962; 2007. 

[50] Jung, Y.; Kim, H.; Min, S. H.; Rhee, S. G.; Jeong, W. Dynein light chain LC8 negatively 

regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J Biol Chem 

283:23863-23871; 2008. 

[51] Goldstein, B. J.; Mahadev, K.; Wu, X. Redox paradox: insulin action is facilitated by 

insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 

54:311-321; 2005. 

[52] Guichard, C.; Moreau, R.; Pessayre, D.; Epperson, T. K.; Krause, K. H. NOX family 

NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and 

diabetes? Biochem Soc Trans 36:920-929; 2008. 

[53] Hink, U.; Li, H.; Mollnau, H.; Oelze, M.; Matheis, E.; Hartmann, M.; Skatchkov, M.; 

Thaiss, F.; Stahl, R. A.; Warnholtz, A.; Meinertz, T.; Griendling, K.; Harrison, D. G.; 

Forstermann, U.; Munzel, T. Mechanisms underlying endothelial dysfunction in diabetes 

mellitus. Circ Res 88:E14-22; 2001. 

[54] Steffen, Y.; Schewe, T.; Sies, H. (-)-Epicatechin elevates nitric oxide in endothelial cells 

via inhibition of NADPH oxidase. Biochem Biophys Res Commun 359:828-833; 2007. 

[55] Litterio, M. C.; Jaggers, G.; Sagdicoglu Celep, G.; Adamo, A. M.; Costa, M. A.; Oteiza, 

P. I.; Fraga, C. G.; Galleano, M. Blood pressure-lowering effect of dietary (-)-epicatechin 



27

administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic 

Biol Med 53:1894-1902; 2012. 

[56] Chuang, C. C.; Martinez, K.; Xie, G.; Kennedy, A.; Bumrungpert, A.; Overman, A.; Jia, 

W.; McIntosh, M. K. Quercetin is equally or more effective than resveratrol in attenuating tumor 

necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human 

adipocytes. Am J Clin Nutr 92:1511-1521; 2010. 

[57] Ruan, H.; Hacohen, N.; Golub, T. R.; Van Parijs, L.; Lodish, H. F. Tumor necrosis factor-

alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 

3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 

51:1319-1336; 2002. 

[58] Gil, A.; Maria Aguilera, C.; Gil-Campos, M.; Canete, R. Altered signalling and gene 

expression associated with the immune system and the inflammatory response in obesity. Br J 

Nutr 98 Suppl 1:S121-126; 2007. 

[59] Mackenzie, G. G.; Carrasquedo, F.; Delfino, J. M.; Keen, C. L.; Fraga, C. G.; Oteiza, P. 

I. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at 

multiple steps in Jurkat T cells. FASEB J 18:167-169; 2004. 

[60] Mackenzie, G. G.; Oteiza, P. I. Modulation of transcription factor NF-kappaB in 

Hodgkin's lymphoma cell lines: effect of (-)-epicatechin. Free Radic Res 40:1086-1094; 2006. 

[61] Fraga, C. G.; Litterio, M. C.; Prince, P. D.; Calabro, V.; Piotrkowski, B.; Galleano, M. 

Cocoa flavanols: effects on vascular nitric oxide and blood pressure. J Clin Biochem Nutr 48:63-

67; 2011. 

[62] Kharroubi, I.; Ladriere, L.; Cardozo, A. K.; Dogusan, Z.; Cnop, M.; Eizirik, D. L. Free fatty 

acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of 

nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145:5087-5096; 2004. 



28

[63] Werstuck, G. H.; Khan, M. I.; Femia, G.; Kim, A. J.; Tedesco, V.; Trigatti, B.; Shi, Y. 

Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated 

atherosclerosis in a hyperglycemic mouse model. Diabetes 55:93-101; 2006. 

[64] Sage, A. T.; Holtby-Ottenhof, S.; Shi, Y.; Damjanovic, S.; Sharma, A. M.; Werstuck, G. 

H. Metabolic syndrome and acute hyperglycemia are associated with endoplasmic reticulum 

stress in human mononuclear cells. Obesity (Silver Spring) 20:748-755; 2012. 

[65] Li, Y.; Schwabe, R. F.; DeVries-Seimon, T.; Yao, P. M.; Gerbod-Giannone, M. C.; Tall, 

A. R.; Davis, R. J.; Flavell, R.; Brenner, D. A.; Tabas, I. Free cholesterol-loaded macrophages 

are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- 

and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763-

21772; 2005. 

[66] Karaskov, E.; Scott, C.; Zhang, L.; Teodoro, T.; Ravazzola, M.; Volchuk, A. Chronic 

palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute 

to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147:3398-3407; 2006. 

[67] Boden, G.; Duan, X.; Homko, C.; Molina, E. J.; Song, W.; Perez, O.; Cheung, P.; Merali, 

S. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of 

obese, insulin-resistant individuals. Diabetes 57:2438-2444; 2008. 

[68] Gregor, M. F.; Yang, L.; Fabbrini, E.; Mohammed, B. S.; Eagon, J. C.; Hotamisligil, G. 

S.; Klein, S. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight 

loss. Diabetes 58:693-700; 2009. 

[69] Ozcan, U.; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R. O.; Gorgun, 

C. Z.; Hotamisligil, G. S. Chemical chaperones reduce ER stress and restore glucose 

homeostasis in a mouse model of type 2 diabetes. Science 313:1137-1140; 2006. 

[70] Ermakova, S. P.; Kang, B. S.; Choi, B. Y.; Choi, H. S.; Schuster, T. F.; Ma, W. Y.; Bode, 

A. M.; Dong, Z. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell 



29

death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66:9260-

9269; 2006. 

 

 

 

Parameter  Groups  

Control HFr      HFr + EC 

Food intake (g/d) 
Water intake (ml/d) 
Fructose intake (g/d) 
BW  (g) 
Epididymal fat (mg)/BW 
Mesenteric fat (mg)/BW 
Liver (mg)/BW 
Plasma Chol (mg/dl) 
Plasma HDL (mg/dl) 
Plasma LDL (mg/dl) 
Plasma TG (mg/dl) 
Liver TG (mg/g) 
Liver Chol (mg/g) 
Fasting glucose (mg/dl) 
Fed glucose (mg/dl)  
Insulin  (nmol/l) 

24.9 ± 1.5a 

45 ± 2a 

- 

344 ± 36 

10.5 ± 2.4 

2.3 ± 0.7 

26.5 ± 2.1 

46 ± 2 

19.5 ± 1.3a 

26 ± 2a 

46.8 ± 9.1a 

71 ± 9a 

169 ± 21 

88.2 ± 5.9 

124.7 ± 13.8 

1.26 ± 0.09a 

19.9 ± 0.8b 

53 ± 4a,b 

5.3 ± 0.7 

313 ± 34 

9.2 ± 2.7 

2.3 ± 0.8 

26.2 ± 2.1 

51 ± 3 

15.7  ± 1.5a 

35 ± 3b 

96.8 ± 23.1b 

90 ± 17b 

176 ± 32 

84.7 ± 11.7 

116.4 ± 4.9 

1.96 ± 0.26b 

18.1 ± 1.3b 

57 ± 4b 

5.7 ± 0.5 

325 ± 40 

12.2 ± 3.3 

2.7 ± 1.0 

27.1 ± 2.6 

46 ± 5 

24.6 ± 1.4b 

20 ± 3a 

79.9 ± 26.8c 

80 ± 22a 

167 ± 22 

86.3 ± 5.8 

124.0 ± 14.0 

1.48 ± 0.17a 

Table 1.  Metabolic parameters from rats fed for 8 weeks without (control) or with 10% (w/v) 
fructose in the water, in the absence (HFr) or presence (HFr + EC) of 20 mg EC/kg BW. Values 
are shown as means ± SE (n = 10). Values having different superscripts are significantly 
different (P < 0.05, one way ANOVA) 
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(-)-Epicatechin mitigates high fructose-induced  insulin resistance. 
 (-)-Epicatechin mitigates  metabolic syndrome phenotypes. 
(-)-Epicatechin improves insulin sensitivity through redox-dependent mechanisms. 
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