
ATOMISTIC MODELING OF THE CHARGE PROCESS AND

OPTIMIZATION OF CATALYSTS POSITIONING

IN POROUS CATHODES

OF LITHIUM/AIR BATTERIES

Vom Fachbereich Produktionstechnik

der

UNIVERSITÄT BREMEN

zur Erlangung des Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

Dipl. Phys. Tatjana Dabrowski

Gutachter: Prof. Dr.-Ing. Matthias Busse

Prof. Dr. Michael Moseler, Albert-Ludwigs-Universität Freiburg

Tag der mündlichen Prüfung: 08. April 2016





iii



iv



Zusammenfassung

Die Reversibilität und die Kapazität der Lithium/Luft Akkumulatoren sind derzeit auf Grund des ho-

hen Überpotentials zwischen dem Lade- und dem Entladevorgang und auf Grund des Verschlusses

der porösen Struktur der aktiven Kathodenoberfläche durch die ungleichförmige Ablagerung des

Entladeproduktes Li2O2 enorm limitiert. In der vorliegenden Arbeit analysieren wir diese kapazität-

slimitierenden Probleme des Lithium/Luft Akkumulators in zwei separaten Teilen.

Im ersten Teil dieser Arbeit stellen wir eine kombinierte Methode aus klassischer und auf der

Dichtefunktionaltheorie basierender, molekulardynamischer Analyse zur Untersuchung der zu-

grunde liegenden Sauerstoffentstehungsreaktion während des Ladevorgangs des Lithium/Luft

Akkumulators vor. Als Modell des Li2O2 Materials an der Kathode verwenden wir kleine amorphe

Cluster mit einer 2:2 Li:O Stöchiometrie, deren stabilste atomare Konfiguration sowohl O Atome als

auch O−O Paare mit gemischtem Peroxid/Superoxid-Charakter beinhalten. Dies wurde mit Hilfe

ihrer Bindungslängen, Ladungen, Spinmomenten und Zustandsdichten aufgezeigt. Die Oxidation

der Li8O8 Cluster wird in einer auf der Dichtefunktionaltheorie basierenden Molekulardynamik-

Simulation über das Entfernen von einem bzw. zwei Elektronen untersucht. Dies erfolgt sowohl in

Vakuum als auch in der Umgebung von Dimethylsulfoxid-Lösungsmittelmolekülen mit einer zuvor

in einer klassischen Molekulardynamik-Simulation optimierten Struktur. Während das Entfernen

von einem Elektron die Erhöhung des Superoxid-Charakters der O−O Bindungen zur Folge hat,

führt das Entfernen von zwei Elektronen zu einer spontanen Abscheidung von entweder eines

O2- oder eines LiO+
2 -Moleküls. Diese Resultate werden hinsichtlich eines zwei-Stufen-Prozesses

interpretiert, in dem bei geringen Oxidationspotentialen ein Peroxid-zu-Superoxid-Übergang in

amorphen Li2O2 Phasen stattfinden kann, gefolgt von einer Abscheidung von molekularem Sauer-

stoff und Li+ Ionen bei höheren Potentialen.

Im zweiten Teil lösen wir numerisch eine Reaktions-Diffusionsgleichung zur Bestimmung des

Li2O2-Ablagerungsprofils in porösen Modellkathoden in An- und Abwesenheit diskreter aktiver

Katalysatoren unter Betrachtung von vier häufig verwendeten Elektrolyten. Wir implementieren

einen Greedy Optimierungsalgorithmus zur Maximierung der Kathodenkapaziät vor dem Ver-

schluss der Poren durch die optimale Positionierung diskreter Katalysatoren entlang der Pore. Die
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Ergebnisse deuten darauf hin, dass die maximale Kapazität in Abwesenheit von Katalysatoren

durch die Sauerstofflöslichkeit und -diffusivität limitiert ist und stark in den vier betrachteten Lö-

sungsmitteln variiert. Die optimale Katalysatorverteilung kann diese Unterschiede jedoch effektiv

kompensieren und einen sinnvollen Weg zur Konstruktion einer Kathodenstruktur mit einer hohen

Leistungsfähigkeit entsprechend der benötigten Einsatzbedingungen aufzeigen.
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Abstract

The reversibility and capacity of current lithium/air cells are severely limited by the high overpotential

between the charge and discharge process and the occlusion of the pores of the active cathode

surface due to non-uniform deposition of Li2O2 as the discharge product. In this thesis we present

a study of these capacity-limiting issues on the lithium/air battery in two parts.

First we present a combined classical and density functional theory based molecular dynamics

study of the mechanisms underlying the oxygen evolution reaction during the charging of lithium/air

batteries. As models for the Li2O2 material at the cathode we employ small amorphous clusters

with a 2:2 Li:O stoichiometry, whose energetically most stable atomic configurations comprise both

O atoms and O−O pairs with mixed peroxide/superoxide character, as revealed by their bond

lengths, charges, spin moments, and densities of states. The oxidation of Li8O8 clusters is studied

in unbiased density functional theory based molecular dynamics simulations upon removal of either

one or two electrons, either in vacuo or immersed in dimethyl sulfoxide solvent molecules with a

structure previously optimized by means of classical molecular dynamics. Whereas removal of one

electron leads only to an enhancement of the superoxide character of O−O bonds, removal of two

electrons leads to the spontaneous dissolution of either an O2 or a LiO+
2 molecule. These results

are interpreted in terms of a two-stage process in which a peroxide-to-superoxide transition can

take place in amorphous Li2O2 phases at low oxidation potentials, later followed by the dissolution

of dioxygen molecules and Li+ ions at higher potentials.

In the second part we solve numerically a reaction-diffusion equation to determine the Li2O2

deposition profiles in a model porous cathode in the absence and presence of discrete catalytic

sites, considering four commonly used electrolytes. We implement a Greedy optimization algorithm

to maximize the cathode capacity before pore clogging by optimal positioning of the discrete

catalysts along the pore. The results indicate that a maximal capacity is limited by the oxygen

solubility and diffusivity in each electrolyte in the absence of catalysts and vary widely in the four

cases considered. However, optimal catalyst distributions can effectively compensate for these

differences, suggesting a rational way of designing cathode structures with high performances

according to the required operation conditions.
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Motivation

The energy transition and the consequent requirement for renewable and environmentally friendly

alternatives to fossil fuels as well as the increasing demand for portable electronic devices motivates

the investigation of efficient, cost-effective, and safe secondary batteries. Advanced energy storage

devices are required for instance to provide intermediate energy storage between renewable but

unsteady energy sources and end users, or to improve the distance range and thus the public

acceptance of electric vehicles. The lithium/air battery is a promising candidate in this context,

since its theoretical energy/mass (specific energy) and energy/volume (energy density) ratios

are considerably higher than those of currently used lithium-ion batteries. A comparison of the

increased driving range due to the high specific energy of lithium/air batteries in comparison to

state-of-the-art and future Li-ion batteries is shown in Figure 1.1 (a). However, a number of critical

issues have to be overcome before commercially viable lithium/air batteries can be realized.
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Figure 1.1.: (a) Driving range for the state-of-the-art Li-ion, future Li-ion, and Li/air battery with
respect to the battery weight, [1] and (b) comparison of specific energies for different battery types. [2]
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The basic reacting species in the lithium/air battery are lithium (Li) and molecular dioxygen

(O2). Li provides the highest electrode potential relative to the standard hydrogen electrode, which

makes the light metal the strongest reducing agent. A combination with an also strong, non-toxic,

and easily available oxidizing agent such as O2 is the reason for the high specific energy and

hence the attractiveness of the Li/air battery. Although other attempts are under consideration,

such as Na/O2 and Li/S batteries, both provide own challenging issues. While Na/O2 cells show

a lack of safety due to the high reactivity of sodium with air humidity, Li/S cells offer only a low

capacity (electric charge that can be delivered) due to the insulating character of sulfur as well as

fast capacity fading due to the solubility of polysulfide intermediates. Simultaneously, the theoretical

specific energy for both battery types remains far below the expectations for Li/air batteries. [2,3]

Li/air cells based on non-aqueous electrolytes and lithium peroxide as the discharge product

present a 4 times higher specific energy and 2 times higher energy density than lithium-ion batteries

if the active materials alone are considered. If a whole practical cell is considered, still their specific

energy as well as their capacity are more than twice as much as ion-based alternatives, provided

an open-system battery, i. e., oxygen is assumed not to be stored on board in the charged state.

A comparison of the specific energies for different state-of-the-art battery types as well as future

concepts are shown in Figure 1.1 (b). Nonetheless, we should keep in mind that theoretical

calculations of the specific energy, energy density, and capacity even for an estimated practical cell

are only an upper limit and won’t be achieved in a real working cell.

The setup and the mode of operation are in principle the same for all concepts of Li/air batteries.

During the discharge process the metallic Li anode is oxidized releasing electrons into the external

conductor, while the resulting lithium ions, Li+, are dissolved in the electrolyte and transported to

the cathode. On the porous, conducting cathode molecular dioxygen enters the cell and is reduced

on the cathode surface receiving electrons from the external conductor. Both then react to form a

discharge product depending on the applied electrolyte. During the charge process the reverse

process takes place, releasing O2 from the cell and Li+ into the electrolyte, which form again the

metallic lithium anode receiving an electron form the external conductor.

Two general types of Li/air batteries are distinguished based on aqueous or non-aqueous

electrolytes. A standard overall reaction of the aqueous Li/air battery in a basic environment is

given by [4]

4Li+ 6H2O+O2 ⇄ 4(LiOH · H2O) .

At different pH values the discharge product strongly depends on the electrolyte environment. [1]

The aqueous Li/air battery provides the advantage that the discharge product of lithium salts is

dissolved in the electrolyte, and hence pore clogging of the porous cathode is inhibited (see below).
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However, the high chemical reactivity of alkali metals with water requires a reliable protection layer

between the metallic lithium and the electrolyte, the so-called Solid Electrolyte Interface (SEI),

which decreases the Li+-conductivity significantly. [4] On the other hand, SEIs form naturally in

most of the non-aqueous electrolytes, such that less attention has to be payed to the issue of anode

protection for initial studies. [5] Nonetheless, a chemically and physically stable, Li+-conductive,

and flexible SEI that can deal with the high volume changes during the charge/discharge cycle of a

Li/air battery is a challenging issue also in the case of non-aqueous electrolytes. [6] Since attempts

to fabricate aqueous Li/air batteries have resulted in much lower specific energies, most of the

literature concerning Li/air batteries as well as the present work focus on non-aqueous electrolytes.

A detailed comparison of specific energies, energy densities, and capacities for aqueous and

non-aqueous Li/air and Li-ion batteries as well as an assumption for practical cells can be found in

ref. 1.

The overall reaction in non-aqueous Li/air batteries is given by

2Li+O2 ⇄ Li2O2 .

The oxygen reduction reaction during the discharge process is assumed to be a multi-step process

starting with the oxidation of O2 on the cathode surface. This is followed by the formation of lithium

superoxide LiO2 from Li+ and the superoxide ion O−
2 . Finally, the superoxide is further reduced

chemically and electrochemically to form lithium peroxide Li2O2 on the cathode surface. [7–9] In

summary, the oxygen reduction reactions (ORR) are proposed as

O2 + e− −→ O−
2

O−
2 + Li+ −→ LiO2

2LiO2 −→ Li2O2 +O2 and/or LiO2 + Li+ + e− −→ Li2O2 . (1.1)

The oxygen evolution reaction (OER) has been suggested to be a direct two-electron decompo-

sition process according to [7–9]

Li2O2 −→ 2Li+ + 2e− +O2 . (1.2)

However, the complexity of the charge process via a multi-step process that strongly depends

on the morphology of the electrochemically grown Li2O2 on discharge has been revealed only

recently. [10–15]
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The enormous influence of the operat-

Figure 1.2.: FESEM images of the cathode (a) be-
fore and after discharge for current densities of
(b) 5 mA cm-2, (c) 10 mA cm-2, (d) 25 mA cm-2,(e)
50 mA cm-2, and (f) 100 mA cm-2; scaling bar:
400 nm. [16]

ing conditions of the battery on the Li2O2

morphology of the discharge product can

be seen in Figure 1.2 for a cathode dis-

charged at different current densities, as

investigated by Adams et al. [16] via Field

Emission

Scanning Electron Microscopy (FESEM).

Starting from a pure porous carbon cath-

ode in Figure 1.2 (a), the growth mechanism

proceeds in the form of small (toroidal) parti-

cles at low current densities in Figure 1.2 (b)

which decrease in size for increasing current

densities to form an amorphous thin Li2O2

film on the carbon surface (Figure 1.2 (c)-(f)).

The growth mechanism of the ORR, the cor-

responding morphology, and its impact on

the OER process are discussed in detail in

Part I, Chapter 2 of the thesis.

Understanding of the reaction mechanism on charge and discharge is crucial to enable a truly

reversible process and to clarify the origin of the high overpotential between the ORR and the OER

of more than 1 V [17] (see charge/discharge profile for the growth and decomposition of toroidal

Li2O2 particles in Figure 1.3 (a)). The high overpotential indicates a high cell impedance as well as

possible different chemical reactions on charge and discharge. The increasing impedance has

been referred to the insulating character of Li2O2
[18] and its effect of passivating the cathode sur-

face. [10,19,20] However, the impact of vacancies and dopants as well as metallic Li2O2 surfaces [21]

on conductivity have not been considered in the above studies. Furthermore, the mechanism and

the morphology of electrochemically grown Li2O2 forming toroidal particles which contain bulk

structures but also conductive shells, amorphous Li2O2 films, [16] and superoxide species [11–13] are

not well understood and still the subject of ongoing studies. A Raman spectrum of a discharged

cathode in Figure 1.3 (b) shows the composition of electrochemically grown discharge product in

comparison to commercial Li2O2. A peak at the LiO2 band confirms the existence of superoxide

4



(b)(a)

Figure 1.3.: (a) Charge/discharge profile of a Ketjen black cathode with corresponding SEM
images at the indicated points [15], and (b) Raman spectra of a discharged carbon cathode (red)
from the electrolyte/cathode separator side and commercial Li2O2 (blue). [14]

species in the peroxide, while the weak Li2O2 peak indicates only a small proportion of crystalline

lithium peroxide. Their impact has to be clarified before passivation of Li2O2 can be assumed to

be the only dominant effect.

Figure 1.4.: Electron per oxygen
consumption for the solvents 1,2-
dimethoxyethane (DME), ethy-
lene carbonate (EC) and dimethyl
carbonate (DMC). [22]

Another potential reason for the poor reversibility and high

impedance is the critical role of electrolyte stability. Many at-

tempts to develop suitable non-aqueous electrolytes have been

done, in order to gain the desired properties of electrochemical

stability, high Li+-conductivity, as well as a good oxygen sol-

ubility and diffusivity. Starting from carbonate-based solvents

that have been shown to decompose during the discharge pro-

cess, [23–27] newer attempts focus on ether-based electrolytes

and sulfoxides. [15,28–33] The decomposition of carbonates and

the improved stability of ethers have been shown by McCloskey

et al. [22] in an analysis of electron consumption per oxygen dur-

ing the charge process via a differential electrochemical mass

spectrometry (DEMS) coupled with isotopic labeling of oxygen.

As can be seen in Figure 1.4, carbonate-based electrolytes

as well as mixtures consume more than 2e−/O2, indicating

parasitic side reactions equivalent to solvent degradation.

Another category of feasible electrolytes is represented by

ionic liquids (low temperature liquid salts). Analyzing ionic liq-

uids as potential electrolytes, the project group for Electrical
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Energy Storage from the Fraunhofer IFAM ∗ could not find an

advantage over the currently used dimethyl sulfoxide (CH3)2SO (DMSO) and observed a good

performance only in the case of mixtures of ionic liquids and DMSO. Reasons for this are supposed

in the formation of complexes between Li+ and the anions of the ionic liquid.

Thus far, none of the proposed solvents has shown

Figure 1.5.: DEMS during the charge
process of a DMSO-based electrolyte,
where n′ is the gas generation rate. [33]

a sufficient long-term and high-potential stability. Even

the promising sulfoxides show degradation at high po-

tentials evolving CO2 in addition to O2 (Figure 1.5) [33]

and decompose in presence of superoxide species

upon long terms. [34] Again the importance of under-

standing the exact reaction mechanism becomes clear,

involving all intermediates to identify the reasons for

decomposition processes of the applied solvent. The

resulting solvent decomposition product lithium carbonate, Li2CO3, is also a candidate for passi-

vation effects of the cathode and pore clogging of its porous structure due to its insolubility and

insulating character. The permeability of the highly porous cathode has to be ensured to guarantee

a sufficient oxygen supply ideally from ambient air. Since storage of the required oxygen in a

tank on board decreases the specific energy of the Li/air battery back to the level of ion-based

battery types, [1] an oxygen supply from ambient air is essential. However, the search for a flexible

gas-selective membrane is quite challenging but inevitable to prevent electrolyte evaporation and

contamination with air humidity, carbon dioxide, and nitrogen, which cause side reactions that yield

the formation of Li2CO3 and gases such as H2 and NH3.

Apart from the purpose of a sufficient oxygen supply from outside the cell, the porous structure

has to ensure oxygen transport into the cell. Furthermore, the cathode provides a storage for

the discharge product as well as the active surface area for the ORR. Two main capacity-limiting

factors occur due to requirements set by the porosity. A sufficiently large surface area at constant

volume demands a highly porous structure (narrow pores) which results in a fast clogging of the

pore entrances by discharge product. An exemplary SEM image of the highly porous structure

(Super P carbon black on Ni-foam with MnO2 catalysts) is shown in Figure 1.6 (a). The inefficient

utilization of the pore volume and the low yield of discharge product result in an enormous capacity

loss of the battery. [14,35] Furthermore, low oxygen solubilities and diffusivities of the applied non-

aqueous electrolytes cause an oxygen concentration drop from the oxygen supplying side into the

interior regions of the cathode and the single pores. Consequently, discharge product deposition

(ideally Li2O2) proceeds at the open side of the cell, blocking further oxygen transport into the
∗Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Project Group for Electrical Energy

Storage, Oldenburg, Germany
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cathode. [36] Thus, the electrode design is another challenging issue towards the feasibility of Li/air

batteries and has to be considered along with the search for a suitable electrolyte to achieve a

large active surface area, prevent pore clogging, and ensure a uniform deposition of discharge

product to avoid passivation effects. A possible route to achieve a more uniform discharge product

deposition is a non-uniform distribution of catalytically active sites in order to counteract the

oxygen transport limitation and clogging. Many studies have been devoted to catalysis in Li/air

batteries. [37–43] Initially they solely aimed at the speeding up of the kinetically slow ORR and OER

to reduce the high overpotential between the charge and the discharge process via α-MnO2, Pd,

Pt, and Au nanoparticles. Figure 1.6 (b) shows the successful decrease of charge potential and

increase of discharge potential for a combined Pt/Au catalyst in comparison with an uncatalyzed

carbon cathode. [42] The stability of the discharge potential over several charge/discharge cycles

is demonstrated in Figure 1.6 (c) for Pt, Au, and Pd catalysts in different electrolytes. In terms

of a catalyzing effect and stability this is particularly successful for the electrolyte DMSO. [30]

The application of adequate catalysts distribution along the transport tunnel to counteract pore

clogging provides the potential of inhibiting a fast oxygen starvation of the porous cathode structure.

Furthermore, a smart catalyst distribution and hence a more uniform discharge product deposition

diminishes the effect of passivation and increases the pore volume utilization that yields a significant

increase in battery capacity.

In this work we focus on two issues which we assume to be highly capacity-limiting and/or of

fundamental importance for the understanding of the elementary processes in Li/air batteries.

Nonetheless, all issues concerning Li/air batteries are not stand-alone problems but interrelate in

a complex manner of mutual influence. The choice of analyzing tools is a purely computational

multi-scale approach. Due to the different nature of the applied computational methods, assets

and drawbacks of both approaches are discussed separately in the relevant parts.

In Part I of the present thesis our attention is focused on the reaction mechanisms of Li/air

batteries. In particular, we study the charge process on small amorphous LinOn clusters which we

assume to be a good representative model of the amorphous discharge product. The method of

choice is based on first principles using Car-Parrinello molecular dynamics and density functional

theory (DFT). DFT-based simulations offer a quantum-mechanical accuracy that is necessary to

gain information about structural stability, electronic properties as well as dynamical processes

without preconditions based on empirical assumptions. Concomitant with experiments, this tech-

nique provides the opportunity of a thorough understanding of the charge/discharge cycle in Li/air

batteries. In particular, in operando measurements of lithium-based battery cells are challeng-

ing due to the high reactivity of the involved species and often reduced to an analysis after a
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(a)

(b)

(c)

Figure 1.6.: (a) SEM image of the porous cathode of
Super P carbon black on Ni-foam with MnO2 catalysts [1],
(b) charge/discharge profiles of a pure carbon cathode and
with Pt/Au catalysts in the 3rd cycle at 0.04 mA cm-2 [42],
and (c) impact of catalysts on the onset potential and its
decrease with respect to the cycle number. [30]

charge/discharge process. The advantage of a computational approach based on DFT is an insight

into dynamical processes of chemical reaction mechanisms even on time scales of femtoseconds to

picoseconds. By this means, we can identify intermediates that are too short-lived to be observed

experimentally but can cause other (side) reactions, and thus obtain an overall description of the

multi-step charge process. Moreover, owning an insight onto the atomistic scale, we can study the

impact of morphology of the discharge product on the decomposition process, since we possess

full knowledge and control of the Li2O2 structure. However, due to these restrictions in system size

and in simulation time, our effort has to be focused on the essential processes.

Therefore, with the intention to study the decomposition process of Li2O2 in a realistic environ-

ment of the solvent DMSO, the restriction to small LinOn clusters is inevitable. In the beginning

of Part I the nature of the charge process in Li/air batteries and its dependency on the Li2O2

morphology are summarized in a preceding introduction in Chapter 2, followed by a brief overview

8



of the applied first principle approach and its computational implementation in Chapter 3 and 4.

Before simulating the charge process, we analyze the structural and electronic properties of bulk

crystalline lithium and lithium oxides at the level of DFT. A brief comparison and examination

of stability in presence of crystalline Li and Li2O2 surfaces of the two solvents PC (propylene

carbonate) and DMSO is performed with DFT-based calculations. Further analysis of the solvent

DMSO is then carried out with classical molecular dynamics simulations. All validating calculations

can be found in the second part of Chapter 4. Finally, we generate small LinOn clusters which are

decomposed in vacuo as well as in DMSO upon removal of electrons via DFT-based molecular

dynamics simulations. The results are analyzed in Chapter 5 and discussed in Chapter 6 in terms

of putative reaction mechanisms for the charge process in Li/air batteries.

In Part II of the thesis the main subject of interest is the highly capacity-limiting issue of pore

clogging. The oxygen starvation of the cathode and the unused free cathode volume concomitant

with a battery capacity loss is governed by the macroscopic growth of discharge product. An

atomistic approach is not appropriate to model the clogging of pores due to the much larger time

and size scales. Thus, the simulation technique chosen here is based on (macroscopic) physical

laws which are typically simpler and faster to solve. By this means, it is possible to describe the

macroscopic evolution of discharge product deposition. The experimental access to the exact

deposition is hindered by the highly porous and fragile carbon cathode, such that the analysis

is often limited to an analysis of the accessible cathode sides of separator and oxygen supply.

Modeling the Li2O2 deposition enables a detailed insight into the exact deposition inside the porous

structure and hence into the reasons for pore clogging. Moreover, this method simultaneously

provides the possibility of comparison with experimental results due to simulations on a macroscopic

scale. Using a reliable and experimentally verified model, a review of prevention mechanisms

as well as optimization techniques to preselect potential electrolytes and to maximize the pore

volume utilization is possible without the need of complex and expensive experiments. However,

this is done at the expense of the knowledge of the actual microscopic structure. Furthermore,

the applied physical laws (such as Fickian diffusion) and physical properties (such as oxygen

solubility and diffusivity) have to be justified by experimental results and/or atomistic simulations,

concomitantly being aware of the possibilities as well as the limitations of the model.

The dynamical processes and clogging of pores in the implemented model are realized via a

reaction-diffusion equation applied to porous structures. This model is based on the approach

of Sandhu et al., [44] a simplified version of the originally developed model for Li-ion batteries by

Newman et al. [45,46] It is introduced in the beginning of Chapter 8 after a preceding introduction

in Chapter 7, which gives a more detailed insight into the pore clogging issue. The implemented
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solver, the method of finite differences, is explained in detail in the second part of Chapter 8

with regard to the system-determining equations. Special attention is devoted to the stability

of the applied algorithm, which limits the time step and thus, indirectly, the choice of growth

mechanisms. Following the mathematical formulation, the numerical implementation of continuous

and locally catalyzed growth is described in Chapter 9. At this point we introduce the Greedy

optimization algorithm which is used to maximize the pore volume utilization via a non-uniform

catalyst distribution. All benchmark tests as well as a comparison between two applied solvers

can be found in the second part of Chapter 9. Finally, the continuous model and the developed

localized growth mechanism are studied in four commonly used solvent environments in Chapter 10.

Analyzing the continuous growth as a reference measurement, the optimization algorithm is applied

in all solvent environments for different growth mechanisms and pore geometries. The resulting

optimal catalyst numbers and distributions for the applied solvents are discussed in Chapter 11

with regard to pore volume utilization and improved battery capacity.

The majority of the content of Part I has been accepted for publication in The Journal of Physical

Chemistry C. [47]

The majority of the content of Part II has been accepted for publication in Journal of The Electro-

chemical Society. [48]
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Part 1.

Atomistic modeling of the charge process

in lithium/air batteries

Li-O2 (non-aq)

Charge

e-

O2

Porous
carbon +
catalyst

  Organic
electrolyte

   Li
metalLi+

e-

O2

-+

Li2O2

-0.51

-1.59
-0.42

0.03 0.04

-0.50

-0.38

-1.58

0.87

0.87
0.87

0.84

0.86

0.86

0.90

O1-O2

O7-O8

O5-O6

O3

O4

1.22Å; -1.93

1.38Å; 0.00

1.37Å; 0.00

Li2O2

O2

Model of a Li/air battery adapted from ref. 2 (top) and decomposition of Li2O2
based on a density functional theory study (bottom).
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CHAPTER 2

INTRODUCTION

The high overpotential occurring in the OER during the charge process in Li/air batteries is among

the main limiting factors of their efficiency and especially reversibility. Most of the existing literature

has focused on the ORR during the discharge process. In non-aqueous, non-carbonate organic

electrolytes, the ORR result in the formation of insoluble lithium peroxide, Li2O2. [7,22,28,49] Laoire

et al. [7,8] has proposed a three-step process for the cathodic reaction, according to equation (1.1)

with a chemical and electrochemical reduction of LiO2 to Li2O2 in the last step. Peng et al. [9]

confirmed in an experimental study that LiO2 is indeed an intermediate product in the discharge

process which forms at the cathode surface and disproportionates in a second step to Li2O2.

Based on atomic force microscopy measurements of the thickness of the deposition product,

Viswanathan et al. [10] suggested that the growth mechanism during the discharge process is not

a simple layer-by-layer growth of bulk Li2O2. As also confirmed by several recent experimental

studies, the initial growth of Li2O2 at higher voltages (2.7 V) proceeds with the formation of disc-like

particles composed of thin platelets with bulk (insulating) electronic properties. [11–13] These discs

form the core of larger toroidal particles developing at progressively low voltage and presenting

an electrically conductive shell. At the end of discharge, superoxide-like species and amorphous

Li2O2 are found at the surface of the toroidal particles. [11–15]

Importantly, the morphology of the deposited Li2O2 strongly influences the (electro-) chemical

mechanisms of the OER in the subsequent charge process which are comparatively less well

understood. [12] Laoire et al. and Peng et al. have formerly suggested a direct decomposition of

Li2O2 via a two electron process (equation (1.2)) with no formation of LiO2 as an intermediate.

However, recent work revealed that the OER is far more complex than first assumed and could

proceed through a multi-step decomposition process. At low voltages (hence with a small over-
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potential), decomposition of the amorphous and/or defective surface species takes place. This is

thought to be followed first by delithiation of the toroidal Li2O2, supposedly proceeding from the

lithium interlayer (Li1 sites in Figure 4.2) and forming LiO2-like phases, and then by an evolution of

molecular oxygen. [11,12,50–53] In a third stage, oxidation of the core discs takes place platelet by

platelet. Due to the insulating properties of crystalline Li2O2, this third step requires high voltages

to ensure sufficient electron transport through the material. Therefore, electrolyte degradation can

take place at the end of the charge process, since most of the currently used organic electrolytes

are not stable at voltages above 4 V.

Whereas a few theoretical works have addressed the electronic structural details of the charge

process limited to the case of crystalline Li2O2 phases [50,51] and employing static total energy

calculations, nothing is known about the dynamics of the initial decomposition of amorphous

Li2O2 discharge products. Models for such products have been suggested in the form of small

amorphous clusters with Li nuclearities from 2 up to 32 atoms. [14,54] In this part, we present a

computational study of the decomposition of similarly small LinOn clusters upon removal of one

or two electrons from the simulation system. In the framework of DFT, we perform both static

and dynamical analyses of the atomic and electronic structures of bulk lithium (per)oxides as

well as small amorphous clusters and of their oxidation reactions. The simulations are performed

both in vacuum and in a DMSO environment whose molecular arrangement in the liquid state is

optimized by a combination of DFT-based and classical molecular dynamics simulations. DMSO

has been chosen as the solvent, since formerly employed alkyl carbonate-based electrolytes

have been shown to decompose during the discharge process forming lithium carbonate rather

than the desired Li2O2. [23–27] Even ether-based electrolytes show a lack of reversibility over

several charge/discharge cycles despite the improved stability in comparison to carbonates. [29,30,55]

Although DMSO may also decompose when exposed to superoxide species upon very long

periods, [34] when combined with Au and TiC cathodes DMSO shows the highest stability during

repeated charge and discharge, resulting in a low capacity loss over several hundred cycles. [30–33]
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CHAPTER 3

FIRST-PRINCIPLES MOLECULAR DYNAMICS

First-principles molecular dynamics (FPMD) represent a molecular dynamics simulations, in which

the potential and the forces acting on the nuclei are determined from electronic structure calcula-

tions. Based on quantum mechanics they provide an insight into electronic structures and dynamics

of chemical reactions on time and size scales that are often not accessible experimentally. Fur-

thermore, an increase in CPU performance and computer memory, and particularly parallelization

techniques concomitant with a good communication system provide the possibility to increase

system sizes and to extend simulated trajectories (tens of picoseconds). These improvements

in computational resources give FPMD simulations the required chemical accuracy to determine

properties of matter as well as a qualitatively predictive character of chemical reaction pathways at

various conditions.

In the following we discuss the strategy of the FPMD method applied in the present work. In a

first step, after separating the nuclear and the electronic dynamics, we introduce the Car-Parrinello

molecular dynamics (CPMD) and reveal the differences and similarities to other approaches such

as the Ehrenfest (EMD) and the Born-Oppenheimer molecular dynamics (BOMD). This is followed

by a chronological development of the solution of the electronic problem based on density functional

theory. With regard to the actual implementation of the method, the chapter closes with a brief

introduction into the concept of pseudopotentials.

Unless otherwise specified, the approach is mainly based on the textbook of Marx & Hutter, [56]

but also on the textbooks of Burke [57] and Koch & Holthausen. [58]
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3.1. Born-Oppenheimer approximation

3.1. Born-Oppenheimer approximation

The challenge in the modeling of chemical systems is the mathematical formulation and the

computational implementation of a many-electron system in the presence of nuclei. Starting point

of the description of a many-electron system is the non-relativistic time-dependent Schrödinger

equation (in a position basis) ∗∗

i∂tΨ = ĤΨ , (3.1)

where the total wavefunction is Ψ =
⟨
{ri}, {RI}

⏐⏐Ψ(t)⟩ = Ψ
(
{ri}, {RI}, t

)
, and {ri} and

{RI} are the electronic and the nuclear degrees of freedom. The corresponding fundamental

Hamiltonian is given by

Ĥ =− 1
2 ∑

i
∇2

i + ∑
i<j

1
|ri − r j|

− ∑
i,I

ZI

|ri − RI |
− 1

2 ∑
I

∇2
I

MI
+ ∑

I<J

ZIZJ

|RI − RJ |

= T̂e + V̂ee + V̂eN + T̂N + V̂NN

= Ĥe + T̂N ,

(3.2)

where MI is the mass and ZI the charge of nuclei I, and T̂• and V̂• are the kinetic and the

potential energy operators. In general, electron-related parts are denoted by lower case subscripts

(i, j and e), nuclei related parts by upper case subscripts (I, J and N), and operators are indicated

by a hat “ˆ”. The electron-related terms are summarized in the electronic Hamiltonian Ĥe. The

last term V̂NN is included in the electronic part. Since the purely nuclear interaction acts solely as

a constant ENN, it is added to the electronic part causing only a shift of the eigenvalues.

Although considering only the electron-electron, electron-nuclear, and nuclear-nuclear Coulomb

interactions, the above problem is already not solvable for a many-electron system in a practical

sense. In particular, no separation of a purely electronic and nuclear Hamiltonian is possible due

to the coupling term V̂eN = V̂eN
(
{ri}, {RI}

)
. Nonetheless, an approximative separation of the

nuclear and electronic motion is performed based on the assumption of an adiabatic behavior of

the electrons, i. e., the much faster electrons have no heat exchange with their environment and

follow the nuclear motion adiabatically. Although both kinds of particles have the same electronic

charge, nuclei possess much smaller velocities due to the significantly larger mass MI ≫ me

and hence interact on different time scales than the electrons. From an electronic point of view

nuclei are quasi-static. Thus, the dependency of the electronic Hamiltonian Ĥe and the electronic

∗∗Unless otherwise specified, all equations are given in atomic units (a. u.), i. e., electron mass me, elementary charge
e, and the reduced Planck constant h̄ are set to one.
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3.1. Born-Oppenheimer approximation

wavefunction ψ on the nuclear degrees of freedom is reduced on a parametric dependency, i. e.,

nuclei are fixed with respect to the electron motion, and the Born-Oppenheimer separation leads to

Ψ = ψ
(
{ri}, {RI}

)
× χ

(
{RI}, t

)
,

where χ is the nuclear wavefunction. Thus, the electronic Schrödinger equation is reduced to the

time independent (stationary) form for every considered set of nuclear coordinates RI (eigenvalue

problem)

Ĥeψn = Enψn , (3.3)

where n denotes the number of eigenfunctions and corresponding eigenvalues En = En
(
{RI}

)
.

Since Ĥe is hermitian, ψn represent an orthonormal basis (see Appendix F, Definition F.1 and

Theorem F.1)

⟨ψn|ψk⟩ =
∫
ψ∗

n
(
{ri}, {RI}

)
ψk
(
{ri}, {RI}

)
dr = δnk ,

and we can expand the total wavefunction in this basis according to

ΨBO
(
{ri}, {RI}, t

)
= ∑

n
ψn
(
{ri}, {RI}

)
χn
(
{RI}, t

)
.

Returning to the time-dependent Schrödinger equation (3.1), we obtain

i∂tΨBO = ĤΨBO =
(
T̂N + Ĥe

)
ΨBO .

Multiplying from the left side with ψ∗
n and integrating over all electronic degrees of freedom

∫
dr

results in

i∂tχn =

{
− ∑

I

1
2MI

∇2
I + En

(
{RI}

)}
χn

+ ∑
k

{
− ∑

I

1
2MI

∫
ψ∗

n∇2
Iψkdr − 2 ∑

I

1
2MI

( ∫
ψ∗

n∇Iψkdr
)
· ∇I

}
χk

=
{
T̂N + Ek

}
χn + ∑

k

{
T̂ (2)

nk + 2T̂ (1)
nk

}
χk

(3.4)

using the product rule ∇2(ψχ) = ∇2ψχ+ 2∇ψ∇χ+ψ∇2χ. The resulting time evolution is an

entirely nuclear problem since the equation does not depend on the electronic degrees of freedom,

while the electronic problem is decoupled from the nuclear motion and provides only a parametric

dependency on the nuclear degrees of freedom. Nonetheless, equation (3.4) has to be solved to
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3.2. Molecular dynamics

determine chemical reactions.

In the Born-Oppenheimer approximation [59] both coupling terms T̂ (2)
nk and T̂ (1)

nk are neglected,

i. e., the nuclei are assumed to move in a potential of eigenenergies En
(
{RI}

)
of the electronic

solution (potential hypersurfaces) which depend only parametrically on the nuclear degrees of free-

dom. The Born-Oppenheimer approximation is valid if the electronic wavefunctions do not change

strongly with the change of nuclear coordinates, since both coupling terms contain derivatives of

the wavefunctions ψn. Finally, the approximated and decoupled nuclear Schrödinger equation is

given by

i∂tχn =
{
T̂N + En

}
χn .

3.2. Molecular dynamics

Nuclear motion according to classical molecular dynamics A promising ansatz for the deriva-

tion of classical molecular dynamics from the quantum mechanical description of the decoupled

nuclear wavefunction (in SI units) is given by

χn
(
{RI}, t

)
= An

(
{RI}, t

)
exp

[
iSn
(
{RI}, t

)
/h̄
]

,

where An ∈ R is the amplitude and Sn ∈ R the phase. Separating real and imaginary parts,

two equations arise for An and Sn. To derive the nuclear motion according to classical molecular

dynamics, we focus on the phase equation in the classical limit h̄ → 0

∂tSn + ∑
I

1
2MI

(
∇ISn

)2
+ En = 0 .

Using Sn as the generating function for the canonical transformation in the Hamilton-Jacobi

formalism, we write

∂tSn +H
(
{RI}, {PI}

)
= 0 ,

where PI = ∇ISn represents the momentum and H
(
{RI}, {PI}

)
= T

(
{PI}

)
+ En

(
{RI}

)
the Hamilton function. Thus, the Newtonian equation of motion is given by

∂tPI = −∇IH
(
{RI}, {PI}

)
⇒ ∂tPI = −∇IEn

(
{RI}

)
⇒ MI R̈I = −∇IEn

(
{RI}

)
. (3.5)
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3.2. Molecular dynamics

Again we can state the role of the energy eigenvalues En as an effective potential for the nuclear

motion.

Born-Oppenheimer molecular dynamics In the BOMD approach the electronic wavefunction

is restricted to the ground state wavefunction with corresponding energy E0 obtained from the

time-independent Schrödinger equation (3.3). The ground state energy, which determines the

effective potential of the classical nuclear dynamics, is calculated for a set of fixed nuclei with

corresponding coordinates RI via Ĥeψ0 = E0ψ0. Hence, the time evolution of the quantum

mechanical system is not maintained but dictated by the dynamics of the nuclei. On the basis of

the obtained energies E0
(
{RI}

)
, the potential energy surface and the corresponding gradient are

extrapolated. In a last step the Newtonian equation of motion is solved to obtain the propagation of

nuclear motion according to classical dynamics via

MI R̈I = −∇min
ψ0

{⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩}

.

Notably, although in contrast to the following EMD the minimization procedure has to be performed

in each BOMD step, which makes the BOMD computationally very expensive, these simulations

can be performed at much larger time steps.

Ehrenfest molecular dynamics In the EMD approach the electronic structure problem is solved

using the time-dependent Schrödinger equation and the Newtonian equation of motion to obtain

the nuclear dynamics. Both coupled equations (restricted to the ground state)

MI R̈I = −∇
⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩

i∂tψ0 = Ĥeψ0

are then solved simultaneously such that a calculation of the potential energy surface is not required.

The time-dependent Schrödinger equation, which determines the electronic wavefunctions, is

solved “on-the-fly”, obviating the minimization in each step and preserving the electronic time

evolution. Nonetheless, since the time evolution is defined by the fast electronic dynamics, only

very small integration time steps are feasible.

Car-Parrinello molecular dynamics In the CPMD approach we attempt to take advantage

from both the BOMD as well as the EMD, i. e., a larger integration time step comparable to the

BOMD while the electronic wavefunctions are kept in their minimum during the nuclear propagation
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3.2. Molecular dynamics

(smooth electronic time evolution) as in the EMD. For this purpose, the adiabatic separation idea of

Born and Oppenheimer of fast electronic and slow nuclear motion is used to transfer the combined

quantum mechanical/classical problem to a combined classical/classical problem on different

energy scales. Once again the separation and mapping on different scales is performed at the

expense of the electronic time evolution. Furthermore, we introduce single electron wavefunctions

(orbitals)ϕi in the sense of electronic dynamic variables such thatψ0 = ψ0
(
{ϕi}

)
. Their meaning

and significance for the solution of the electronic problem in a DFT approach are illuminated in

Section 3.3 and following. While the energy of the electronic system
⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩

has been

considered, so far, as a function of the nuclear coordinates (in a parametric dependency), we can

also assume the energy as a function of the wavefunction and hence the orbitals ϕi. In summary,

we state two classical problems with dynamic variables RI and ϕi for the nuclear and the electronic

problem. The corresponding Lagrangian introduced by Car and Parrinello [60] is given by

LCP = ∑
I

MI

2
Ṙ2

I + µ ∑
i

1
2
⟨ϕ̇i|ϕ̇i⟩ − ⟨ψ0|Ĥe|ψ0⟩+ constraints , (3.6)

where the first two terms determine the nuclear and the electronic kinetic energy with corresponding

fictitious mass µ and ⟨ψ0|Ĥe|ψ0⟩ the potential energy. The constraints are given for example

by an assumption of orthonormal orbitals via constraints = ∑i,j Λij(⟨ϕi|ϕi⟩ − δij), where Λij

are the Lagrange multipliers. Thus, the Euler-Lagrange equations with respect to the dynamic

variables

dt
(
∂ṘI

LCP
)
= ∂RILCP ⇒ MI R̈I = −∂RI

⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩
+ ∂RI{constraints}

dt
(
δϕ̇∗

i
LCP

)
= δϕ∗

i
LCP ⇒ µϕ̈i = −δϕ∗

i

⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩
+ δϕ∗

i
{constraints}

(3.7)

determine the nuclear motion and the forces on the orbitals ϕi. While the nuclear motion

proceeds at a temperature ∝ ∑I
MI
2 Ṙ2

I , the electronic evolution is determined by a tempera-

ture ∝ ∑i
µ
2 ⟨ϕ̇i|ϕ̇i⟩. That is to say, “cold” electrons remain close to their ground state energy

E0 = min{ϕi}⟨ψ0|Ĥe|ψ0⟩. Furthermore, also the wavefunctions, which have to be optimized only

for an initial configuration of nuclei, are assumed to remain close to the ground state configuration

during the nuclear time evolution. To ensure the thermal separation but maintain the adiabatic

behavior of the electrons following the nuclear motion, it is necessary to prevent an overlap in the

nuclear and electronic power spectra, i. e., to separate both motions on two different energy scales

via the assumption ωmin
e ≫ ωmax

N , where ωmin
e is the lowest electronic frequency and ωmax

N is

the highest nuclear frequency. Furthermore, the lowest electronic frequency is determined by the

22



3.3. Density functional theory

energy gap Egap between the lowest unoccupied and the highest occupied orbital according to

ωmin
e ∝

(
Egap

µ

)
.

Since ωmax
N and Egap are fixed by the physical conditions of the system, separation is controlled

solely by the fictitious mass µ, whose decrease cause a broadening of the entire spectrum

according to

ωmax
e ∝

(
Ecut

µ

)
⇔ ∆tmax ∝

(
µ

Ecut

)
, (3.8)

where Ecut is the maximum kinetic energy in a plane wave expansion of the wavefunction (for

details see Section 3.3.5) and ∆tmax governs the maximum time step for the CPMD step.

For extensions of the approach in the case of metallic systems (Egap = 0) see ref. 61 and 62.

3.3. Density functional theory

Density functional theory represents a fast access to the complex many-electron system, in

particular to the solution of the separated electronic problem. Based on the Hohenberg-Kohn

theorems, the main idea is to determine the total electronic wavefunction as well as the system-

regrading quantities via the electron density functional. By this means, the explicit treatment of the

3N spatial degrees of freedom of a N-body problem can be reduced to the 3 degrees of freedom

of the electron density.

In the next section we follow step-by-step the ideas that conclude in the development of DFT

and reveal the computational limits and practical implementations such as cutoff energies, finite

k-point grids and applied exchange-correlation functionals.

3.3.1. Hartree-Fock approximation

The ground state energy of the electronic system is determined by the ground state wavefunction

via the expectation value in this state

E0 =
⟨
ψ0
⏐⏐Ĥe

⏐⏐ψ0
⟩

.

On the other hand, we consider the ground state energy as a functional of the total wavefunction,

i. e., a mapping from the vector space of wavefunctions into a scalar field (“function of a function”,

Appendix F, Definition F.3). Thus, we convert the calculation of the ground state energy to a
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3.3. Density functional theory

minimization problem with respect to trial wavefunctions ψ according to

E0 = min
ψ

E0[ψ] .

Nonetheless, for a N-electron system characterized by a wavefunction ψ
(
{ri}

)
, where

i = 1, . . . , N, the problem has still 3N degrees of freedom. Since it is not possible to deter-

mine and test all feasible wavefunctions for the N-electron problem, the minimization is reduced to

the consideration of selected forms of the total wavefunction ψ. One of the simplest approaches

is the Hartree ansatz (H) of N uncorrelated electrons and can be realized as a product of single

electron wavefunctions ϕi in the form ψH ∝ ∏N
i=1ϕi(ri). Taking into account Pauli’s exclusion

principle, Hartree and Fock (HF) approximated the total wavefunction with an antisymmetric

product of the single electron wavefunctions in the case of fermions (and symmetric for bosons)

represented by a Slater determinant (SD)

ψSD =
1√
N!

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ2(r2) ϕ2(r2) · · · ϕN(r2)
...

...
. . .

...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
.

Demanding orthonormality of the single orbitals, the resulting Hartree-Fock energy is then given by

EHF
[
{ϕi}

]
=
⟨
ψSD

⏐⏐Ĥe
⏐⏐ψSD

⟩
=

N

∑
i=1

⟨
ϕi
⏐⏐F̂ ⏐⏐ϕi

⟩
.

The Fock operator F̂ is stated as

F̂ = ĥ +
1
2

N

∑
j=1

(⟨
ϕj
⏐⏐ŵ⏐⏐ϕj

⟩
−
⏐⏐ϕj
⟩⟨
ϕj
⏐⏐ŵ)

= ĥ +
1
2

N

∑
j=1

(
Ĵj(r)− K̂j(r)

)
  

Hartree-Fock potential

= ĥ + V̂H + V̂x ,
(3.9)

where ĥ = −∇2
r

2 + V̂eN + V̂NN and ŵ = |r − r′|−1. Acting on an electron i as

Ĵj(r)
⏐⏐ϕi
⟩
=
⟨
ϕj
⏐⏐ŵ⏐⏐ϕj

⟩⏐⏐ϕi
⟩
, the first term in the Hartree-Fock potential describes the Coulombic
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3.3. Density functional theory

effect on electron i in the presence of the N − 1 remaining electrons. Since the so-called Hartree

term does not require the knowledge of ϕi(r) over the whole space, the potential part is called

local, in contrast to the second operator K̂j(r)
⏐⏐ϕi
⟩
=
⟨
ϕj
⏐⏐ŵ⏐⏐ϕi

⟩⏐⏐ϕj
⟩
. Here, electrons i and j

are exchanged (subscript x) and the orbital ϕi(r) has to be evaluated over the whole space due to⟨
ϕj
⏐⏐ŵ⏐⏐ϕi

⟩
=
∫
ϕ∗

j (r) ŵ ϕi(r)dr. Thus, the second part of the Fock potential is non-local and

has no classical counterpart. Without the assumption of antisymmetry for fermions the exchange

part vanishes.

While electron exchange and electron correlation between parallel spins (Hartree/Coulomb

term) are taken into account in the Hartree-Fock approach, correlation is entirely neglected for

antiparallel spin leading to a Hartree-Fock energy EHF larger than the real ground state energy E0.

Despite this fact, the Hartree-Fock approach provides the basic ideas how to handle the electronic

problem, which we take advantage from in the following sections deriving the density functional

theory.

3.3.2. Hohenberg-Kohn theorems

The fundamental concept of the density functional theory is based on the two theorems of Hohen-

berg and Kohn. [63] Considering an interacting system in a system-dependent external potential

Vext = VeN + VNN, the idea is to reduce the 3N spatial degrees of freedom of the N-electron

wavefunction ψ to only three spatial degrees of freedom of the electron density

n(r) = N ∑
σ

∑
σ1

· · ·∑
σN

∫
· · ·

∫ ⏐⏐ψ(r, σ, r2, σ2 . . . , rN, σN)
⏐⏐2dr2 . . . drN .

Here ri denotes the spatial coordinate and σi the spin of electron i, i. e., an electron is fixed at

position r, and the sum is carried out over the probabilities of all possible positions of the N − 1
remaining electrons represented by the probability density

⏐⏐ψ⏐⏐2.

Since the electron density itself is a function of the electron position r, all electron density

dependent quantities are functionals of n (see Section 3.3.1 and Appendix F, Definition F.3).

According to the first theorem of Hohenberg and Kohn,

Theorem 3.1. (Hohenberg-Kohn I)

“Vext(r) is a unique functional of n(r), apart from a trivial additive constant” [63]

and has been demonstrated by the authors using proof by contradiction.

Since the kinetic energy Te as well as the electron-electron interaction Vee in the electronic

Hamilton function He (see equation (3.2)) are universal and Vext is a unique functional of the
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3.3. Density functional theory

electron density (according to the first theorem), all system-regrading quantities such as the total

energy
E[n] = Te[n] + Vee[n] + Vext[n] = FHK[n] +

∫
Vext(r)n(r)dr

can be expressed as functionals of the electron density in a unique way. Furthermore, determining

the correct electron density allows us to calculate the ground state energy E0 based on Hohenberg’s

and Kohn’s second theorem:

Theorem 3.2. (Hohenberg-Kohn II)

“E0[n] assumes its minimum value for the correct n(r), if the admissible functions are restricted

by the condition N[n] =
∫

n(r)dr = N.” [63]

Thus, under the normalization constraint for the electron density, minimizing the energy functional

E0 = E[n0] = min
n

{E[n]}

results in the ground state energy in a unique way, where n0 is the ground state electron density.

3.3.3. Kohn-Sham ansatz

While the external potential can be evaluated via an integration using the electron density, the

Hohenberg-Kohn functional FHK[n] is still unknown. Kohn and Sham (KS) proposed an ansatz

for the functional based on the idea of non-interacting electrons in a fictitious potential which

are chosen to produce the same ground state electron density n0(r) as the interacting sys-

tem. [64] For this reason, FHK[n] is divided into the classical part of the kinetic energy functional

Ts[n] of non-interacting electrons (single-electron equations) and the Hartree energy functional

EH[n] = 1
2

∫ ∫
n(r) ŵ n(r′)dr dr′ (equivalent to the Hartree potential V̂H(r) in the Hartree-Fock

approach in Section 3.3.1) which considers the classical Coulomb interactions. All non-classical

electron-electron interactions and correlations (Pauli’s exclusion principle, Coulombic correlation

between electrons with parallel and antiparallel spins) are covered via an exchange-correlation

energy functional Exc[n] such that the Kohn-Sham energy functional is given by

EKS[n] = Ts[n] + EH[n] + Vext[n] + Exc[n] ,

where Exc[n] = Te[n]− Ts[n] + Vee[n]− EH[n], i. e., the exchange-correlation energy is the

kinetic energy difference between the non-interacting and interacting system as well as the non-

classical part of the internal potential.

The advantage of the Kohn-Sham ansatz is based on the exact determination of the kinetic

energy of non-interacting electrons and hence the reduction of the uncertainty in the Hohenberg-
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3.3. Density functional theory

Kohn functional on a small contribution of the (still unknown) exchange-correlation functional.

Furthermore, in the framework of the Kohn-Sham ansatz, non-interacting electrons are given by

auxiliary orbitals {ϕi(r)} (KS orbitals) in an effective KS potential VKS(r). The electronic problem

is then reduced to the solution of the one-electron Kohn-Sham equations

ĤKS
e ϕi(r) =

{
−

∇2
i

2
+ VKS(r)

}
ϕi(r) = ϵiϕi(r) . (3.10)

A functional derivative with respect to the

Figure 3.1.: Flowchart for the self-consistent iter-
ative solution of the KS equations (adapted from
ref. 65 and 66).

electron density (Appendix F, Definition F.4) re-

sults in the KS potential

VKS(r) = VH(r) + Vext(r) + Vxc(r) ,

where

VH(r) =
∫ n(r′)⏐⏐r − r′

⏐⏐dr′

and

Vxc(r) =
δExc[n]
δn(r)

,

while the electron density is given by the sum

of the occupied KS orbitals

n(r) = ∑
i

⏐⏐ϕi(r)
⏐⏐2 .

The procedure of solving the KS equations

self-consistently is shown schematically in

Figure 3.1. Since the KS single-electron Hamil-

tonian ĤKS
e still includes the many-body ef-

fects via the exchange-correlation functional,

the

equations have to be solved self-consistently to obtain the ground state electron density and

the corresponding orbitals. Note that the KS orbitals as well as the energies have no strict physical

meaning. The relevant quantities are the ground state electron density and the total energy.

Although the uncertainty is reduced to the exchange-correlation functional, this part is still unknown.

A selection of broadly used approximation methods is subject of the next section.
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3.3. Density functional theory

3.3.4. Exchange-correlation functionals

The simplest approximation for the exchange-correlation functional is the so-called Local (Spin)

Density Approximation (L(S)DA). In this case the exchange-correlation energy density ϵxc in the

exchange-correlation functional

ELDA
xc [n] =

∫
n(r)ϵhom

xc
(
n(r)

)
dr

is approximated with the energy density of a homogeneous (but interacting) electron gas evaluated

at the local electron density n(r) at point r of the inhomogeneous system. The exchange-

correlation energy is separated into the exchange part, which can be calculated analytically using

Slater determinants (for details see the Hartree-Fock approach in Section 3.3.1), and the correlation

part which, however, has to be obtained from Quantum Monte-Carlo simulations. [67] The validity of

the LDA is given only for slowly changing densities and not strongly correlated systems. While

binding energies are overestimated in the LDA approach (bond lengths are underestimated by

1-3 %), ground state energies are usually too low. In a generalized formulation of spin polarized

systems (LSDA), the functional dependency on the electron density [n] is replaced with [n↑, n↓] of

the two spin states of opposite directions or with [n, ζ], where ζ(r) = n↑(r)− n↓(r) is the spin

density.

A more sophisticated approach to the exchange-correlation functional is the General Gradient

Approximation (GGA)

EGGA
xc [n] =

∫
n(r)ϵxc

(
n↑(r), n↓(r),∇n↑(r),∇n↓(r)

)
dr .

Although locality is still present in the GGA approach, variations of the electron density at point r
are taken into account in form of first derivatives, and thus GGA can provide more accuracy in the

determination of geometries as well as ground state energies. Some of the most successful and

broadly used GGA functionals have been developed by Becke, [68] Perdew, Burke, and Ernzerhof

(PBE) [69] and the functional of Perdew and Wang (PW91) [70] which is applied in the present work.

A comparison of both methods is performed on the example of metallic lithium. Figure 3.2 shows

the total energy E with respect to the lattice constant a obtained from a DFT-based calculation using

a LDA and a GGA functional. As evident from the simulation results, the equilibrium lattice constant

aLDA = 3.38 Å deviates from the experimental value of aexp = 3.49 Å [71] by about 3.2 %, while

the lattice constant aGGA = 3.45 Å differs only by 1.1 %. Despite the obvious improvement in the

present case, GGA does not always provide a more accurate solution, since it can overcompensate
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the weaknesses of LDA.
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Figure 3.2.: Total energy E with respect to the lattice constant a of metallic lithium for LDA (red)
and GGA (green) with corresponding equilibrium lattice constants and an experimental value in
black as crosses. The discrete data points are fitted based on the Murnaghan equation of states
(orange). [72]

Another group of very successful exchange-correlation functionals are represented by the so-

called hybrid functionals. These functionals are a combination of standard density functionals EDF
xc

such as GGA or LDA and an exchange functional EHF
x from the KS ansatz, obtained in a similar

way to the Hartree-Fock method in Section 3.3.1, e. g., Exc =
1
2

(
EDF

xc + EHF
x
)
. Although more

accurate, hybrid functionals increase the computational time significantly.

3.3.5. Bloch theorem and cutoff energy

The quantification of the electronic wavefunction requires an appropriate basis set of orbitals ϕi. In

the case of a crystalline structure the translational symmetry implies a periodic potential and hence

a periodic electron density. Thus, periodic boundary conditions (PBC) to save computational effort

and the choice of a plane wave basis set to expand the electronic wavefunction emerge naturally.

However, also in the case of surfaces and non-crystalline structures plane wave basis sets are

applied, provided that a sufficiently large supercell (vacuum region in the case of surfaces) is used,

such that undesired interactions with their periodic images are avoided. Starting from the idea of a

periodic potential, we can apply Bloch’s theorem: [71]
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Theorem 3.3. (Bloch) In a periodic potential

V(r) = V(r + a)

with periodicity a the solution of the stationary Schrödinger equation is given by plane waves

ϕj(r, k) = uj(r, k) exp (ikr) ,

where uj(r, k) is a periodic function with periodicity a, and k is a vector in the first Brillouin zone

of the reciprocal space.

Associating the periodic potential with the KS potential and expanding also the periodic function

in the plane wave basis for every state j

uj(r, k) = ∑
G

cj(G, k) exp (iGr) ,

we can write the KS orbitals as

ϕj(r, k) = ∑
G

cj(G, k) exp
(
i(G + k)r

)
,

where G are reciprocal space vectors and cj(G, k) ∈ C. Thus, the electron density is finally

expanded in the same basis set according to

n(r) = ∑
j

∫
∑

G,G′
c∗j (G

′, k)cj(G, k) exp
(
i(G + k)r

)
dk .

Note that the expansion of the electron density requires double the range of reciprocal space

vectors due to the sum over G and G′.

Two simplifications are made in the practical calculation of the electron density. First, the

integration over the first Brillouin zone is approximated with a finite sum of special weighted

k-points via
∫

dk ≈ ∑k wk. To reduce the computational effort even further, i. e., to reduce the

number of k-points, advantage is taken of translational and rotational symmetries of crystalline

structures. In which way symmetries can reduce the number of k-points is shown on a simple

two-dimensional equidistant lattice in Figure 3.3, where the number of k-points is reduced to

one third of the initially required value (Figure 3.3 (a)) due to a shift and a diagonal symmetry

(Figure 3.3 (b)).

The second approximation is the limitation of the infinite sum over reciprocal space vectors G
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(a) (b)

Figure 3.3.: Two-dimensional equidistant lattice (a) before a shift with 9 required k-points (blue)
and (b) after a shift with 3 required k-points (adapted from ref. 65).

via a maximum kinetic energy Ecut (cutoff energy) according to

1
2
|k + G|2 ≤ Ecut .

Apart from the limitation of reciprocal space vectors, the cutoff energy determines the maximum

time step in the CPMD, as introduced in Section 3.2 in equation (3.8). The simplification is based

on the assumption of a fast convergence of the KS potential and shown exemplary in Figure 3.4

for a supercell of a Li8O8 cluster in a solvent of 39 DMSO molecules (see Chapter 4 and 5 for

more details). The energy difference relative to the cutoff value of 80 Ry is about 0.17 % for

Ecut = 20 Ry and decreases to 0.004 % already for Ecut = 40 Ry. In the next step for Ecut = 60 Ry

the improvement is less dramatically of about 0.006 %. Simultaneously, the runtime is increasing

approximately linearly with increasing cutoff energy. Thus, a good compromise between accuracy

and computation time efficiency for the applied code and the addressed problem is an energy

cutoff of 40 Ry, which is chosen in the present work.

A huge advantage of a plane wave approach is its simple treatment in the Fourier-transformed

G-space, where derivatives are reduced to simple multiplications. Furthermore, due to the lack of

origin, the plane wave basis set is considered as an unbiased basis which does not depend on the

nuclei positions. The quality of the approximation is solely controlled by the cutoff energy.

Nonetheless, one should be aware of the disadvantages of a plane wave approach. An unbiased

basis set does not differentiate regions of high inhomogeneity such as surface supercells which

include large vacuum spaces. Furthermore, the treatment in the Fourier space results in a poor

resolution of small structures in the real space. Due to the reciprocal character of the Fourier

transformation, a high number of coefficients is required in the Fourier decomposition of the

orbitals for an adequate description of the real space. The issue of “small structures” arises in the

near-core area, where valence-electron wavefunctions show high frequency oscillations due to the
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Figure 3.4.: Total energy E (relative to 80 Ry) (green) and runtime trun (red) with respect to the
cutoff energy for a Li8O8 cluster in a solvent of 39 DMSO molecules. First 200 steps of the
electronic minimization calculation of a 17 Å edge length supercell at the Γ-point (center of the first
Brillouin zone).

assumption of orthogonality between core and valence electron wavefunctions and hence require

a vast plane wave basis set.

A way of bypassing this problem is a separate treatment of core and valence electrons since

the latter ones are mainly responsible for chemical processes. The core electrons are excluded in

the electronic consideration and approximated with effective potentials. Two concepts of effective

potentials, the pseudopotentials and the combined approach of the projector augmented wave

method, are briefly introduced in the next section.

3.4. Pseudopotentials and projector augmented wave method

To avoid the problem of an unmanageably large number of basis functions in the plane wave

approach, the Coulomb core-potential as well as the tight bound core electrons are fixed and

substituted via an effective potential Vpseudo (pseudopotential), such that the corresponding valence-

electron pseudo wavefunctionϕpseudo is represented by a smooth and nodeless function in the core

area r < rc and matches the all-electron wavefunction ϕ for r ≥ rc (frozen-core approximation).

Since the fusion of nuclei and core-close electrons in a single core is determined by a particular

state such as a single atom, this approach is called the frozen-core approximation.

The approximation of the potential and the corresponding pseudo wavefunction are shown

schematically in Figure 3.5. Notably, pseudopotentials have to be generated with the same

exchange-correlation functional that is used in further calculations. However, the choice of pseu-
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ϕpseudo

ϕ

V

Vpseudo
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r

Figure 3.5.: Approximation of the all-electron potential and wavefunction (red) via a pseudopotential
and pseudo wavefunction (green) up to a core radius rc (adapted from ref. 73).

dopotentials is not unique due to the variety of functionals as well as the freedom of core area

restriction . Nonetheless, conservation of scattering properties have to be ensured for all choices

of approximations to guarantee transferability, i. e., the application of the same potential in different

environments in a variety of molecules and crystal structures.

Two general classes of pseudopotentials are distinguished, the norm-conserving and the ultrasoft

pseudopotentials developed by Vanderbilt. [74] While the first provide the possibility to reproduce

the charge density of the all-electron system, simultaneously norm-conserving pseudopotentials

require a high number of plane waves to ensure this quality. In the case of ultrasoft pseudopotentials

the assumption of norm-conservation is relaxed in favor of even smoother wavefunctions and

a significantly lower number of plane waves, however, at the expense of orthogonality of the

wavefunctions.

The projector augmented wave (PAW) method developed by Blöchl [75] is a combination of the

pseudopotential approach and the linear augmented plane wave method. Starting point is a

“muffin-tin” approach in which we separate the system in a defined augmented region around every

atom and an interstice. The potential arising from the nucleus is given by a spherically symmetric

function in the augmented region and is constant outside. In the interstitial region all-electron

wavefunctions are used, while smooth pseudo wavefunctions are applied in the augmented region

and expanded in terms of plane waves. All-electron wave functions and pseudo wavefunctions are

related via a linear transformation T . The transformation acts solely in the augmented region, such

that the pseudo wavefunctions are mapped onto the all-electron wavefunctions in the augmented

region via

|ϕ⟩ = T |ϕpseudo⟩ = 1 + ∑
i

(
|ϕi⟩ − ⟨ϕi,pseudo|

)
⟨pi| ,
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3.4. Pseudopotentials and projector augmented wave method

but remain identically equal to the all-electron wavefunctions in the interstitial region. Here, |ϕi⟩ is

a basis set in the augmented region (solutions of the radial Schrödinger equation for an isolated

atom), |ϕi,pseudo⟩ is the smooth basis set (plane waves) generated using the linear transformation

on |ϕi⟩, and |pi⟩ is a projector function with ⟨pi|ϕj,pseudo⟩ = δij.

In summary, the PAW method provides an access to the entire all-electron wavefunction and

charge density and hence avoids transferability problems. Furthermore, the energy cutoff for the

plane wave expansion is comparable to the approach of ultrasoft pseudopotentials. Thus, within

the frozen-core approximation the PAW method provides the accuracy of an all-electron method

with simultaneous reasonable computational effort.
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CHAPTER 4

COMPUTATIONAL DETAILS AND SYSTEM

VALIDATION

In the following chapter we introduce the framework for the applied computational methods,

DFT-based and classical molecular dynamics simulations. A benchmark test for the DFT-based

LAUTREC (LAUsanne Total REal to Complex energy) code as well as all performed calculations

and their system parametrization are summarized in a brief manner. This is followed by the results

of preliminary system tests of solvents and bulk crystalline structures.

4.1. Density functional theory based simulations

All first-principles molecular dynamics simulations are carried out within density functional theory us-

ing the Car-Parrinello method [60] based on special algorithms developed for metallic systems, [61,62]

as implemented in the LAUTREC code. [76] The PW91 generalized gradient approximation [70] is

used for the exchange-correlation functional and the PAW method [75] to describe the electron-core

interactions. The PAW data sets for lithium and oxygen are generated with valence states of 1s2s

and 2s2p, respectively. The wave functions are expanded in plane-waves up to a kinetic energy of

about 40 Ry (540 eV). Convergence criteria are set to 10-5 eV for the total energy and to 0.05 eV Å-1

for all force components in the geometry relaxations.

The parallel scaling behavior of the LAUTREC code is shown in Figure 4.1. The parallelization

technique is based on the programming interface Message Passing Interface (MPI) and explained

more detailed in Section 9.5. Parallel calculations are performed distributing k-points as well

35



4.1. Density functional theory based simulations
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Figure 4.1.: Scaling behavior of the LAUTREC code (green) with respect to the number of CPUs
in comparison to an ideal linear scaling (orange).

reciprocal space vectors uniformly on the individual CPUs. Up to 32 CPUs the LAUTREC code

shows an excellent scaling and decreases not until 64 CPUs below the ideal linear behavior. The

performance drop is originated in the decreasing speed in communication, synchronization, and

exchange of data files between single nodes (4 or 8 CPUs) with increasing number of cores

involved in the calculation.

Total energy calculations of bulk crystal structures of metallic Li, Li2O, and Li2O2 are carried out

using k-point distributions of 4×4×4, 4×4×4, and 4×4×2 in the smallest unit cells, respectively.

Li surfaces in presence of 11 PC and 13 DMSO molecules and Li2O2 surfaces in presence of 8

PC and 10 DMSO molecules are carried out using a Γ-point calculation only. Slabs with surfaces

in z-direction are built according to 3a×3a×3.5a in units of the cubic Li unit cell with a total cell

length of 34.51 Å including the vacuum and 3a×3a×2c in units of the hexagonal Li2O2 unit cell

with an O-termination on each surface and a total cell length of 34.72 Å including the vacuum. The

structures of the solvent molecules are previously optimized using classical molecular dynamics

simulations (see Section 4.2).

A Fermi-Dirac distribution is applied to the occupation of the electronic states for metallic systems

according to a smearing energy of 0.1 eV. Small LinOn clusters are simulated in a cubic cell of

10 Å edge length using the Γ-point only. In order to determine their correct magnetic state, both

spin-restricted (triplet and singlet) and spin-unrestricted calculations with additional empty states

corresponding to 50-70 % of the occupied states are performed. In the spin-restricted calculations

the electronic occupations of each spin manifold are kept fixed to force the system in a given spin

state, In the unrestricted case, the occupancies are free to change the self-consistent energy

minimization loop. The dynamical simulations of the decomposition of Li8O8 clusters in vacuum
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4.2. Classical molecular dynamics simulations

upon removal of one and two electrons are performed in a larger cubic cell of 15 Å edge length,

in order to avoid interaction of the decomposition products with their periodic images. Charges

and spin moments are calculated using a Bader analysis [77] of the electron density and of the spin

density of each system, respectively.

The DFT-based simulations of the Li8O8 cluster decomposition in DMSO solvent are performed

in an even larger cubic cell of 17 Å edge length, in which the structure of the solvent molecules is

previously optimized using classical molecular dynamics simulations. The cell contains 41 DMSO

molecules which corresponds to a density of 1.08 g cm-3, to be compared with an experimental

value of 1.09 g cm-3 at 300 K. [78] The energetically most favored Li8O8 cluster is then inserted

in the center of the cell, replacing two DMSO molecules whose molecular volume corresponds

roughly to the molecular volume of the Li8O8 cluster (240 Å3 vs 220 Å3). Prior to the DFT-based

simulations each lasting about 14 ps, the solvent is relaxed classically around the fixed cluster

for 2 ns.

4.2. Classical molecular dynamics simulations

All classical molecular dynamics simulations are carried out using the LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) package. [79] The total energy is represented by

standard Lennard-Jones and Coulomb potentials for the intermolecular interactions and har-

monic bond-stretching, angle-bending, and torsional potentials for the intramolecular interactions

according to

E =
1
2 ∑

i,j
nonbonded

⎧⎨⎩ qiqj

4πϵ0rij
+ 4ϵij

⎡⎣(σij

rij

)12

−
(

σij

rij

)6
⎤⎦⎫⎬⎭

+ ∑
bonds

kb(b − b0)
2 + ∑

angles

kθ(θ − θ0)
2 + ∑

dihedrals

kϕ[1 + cos(nϕ − d)]2 ,

(4.1)

where b, θ, and ϕ are the bond distance, the bond angle, and the dihedral angle, b0 , θ0, ϕ0, and

d their equilibrium values and kb , kθ, and kϕ the corresponding force constants. The distance

between site i and j in two different molecules is denoted by rij and the Lennard-Jones parameters

are determined by the Lorentz-Berthelot mixing rule applied to atom-specific parameters

ϵij = (ϵiϵj)
1
2 , σij =

1
2
(σi + σj) .
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4.3. Bulk Li metal, oxide and peroxide structures

The simulation parameters for DMSO are taken from ref. 80, for PC from ref. 81–83, for lithium ions

from ref. 84 and for molecular oxygen from ref. 85. All parameters are summarizes in Appendix A,

Tables A.1 and A.2.

The structure of the liquid DMSO solvent in the absence and presence of Li+ ions and dissolved

O2 molecules is simulated in cubic cells of about 36 Å edge length, containing 410 molecules of

DMSO, 30 additional Li+ ions, or 30 additional O2 molecules. All systems are initially equilibrated

in an NVE ensemble for 200 ps and in an NPT ensemble for 6 ns at a temperature of 300 K and

an isotropic pressure of 1.0 atm using an integration time step of 2 fs. The temperature is relaxed

in a time span of 100 ps and the pressure in a time span of 500 ps. Comparison of the classical

results with DFT-based simulations is performed in smaller cells of 17 Å edge length containing 41

DMSO molecules (see previous section), alone and in the presence of three lithium ions or three

oxygen molecules. In this case, a classical NVE MD simulation is run for 200 ps, followed by a

DFT-based simulation for about 6 ps at a temperature of about 300 K. Classical relaxation of the

solvent around a Li8O8 cluster is performed in the same smaller cell in an NVT ensemble for 2 ns

at a temperature of 300 K, while the cluster is geometrically fixed.

4.3. Bulk Li metal, oxide and peroxide structures

Lattice parameters and energies of formation of Li, Li2O, and Li2O2 bulk structures are analyzed in

order to validate the framework of DFT parameters and pseudopotentials. At room temperature and

low pressures metallic Li crystallizes in a bcc structure (space group: Im3m) [86] and Li2O in a cubic

antifluorite structure (space group: Fm3m), [87] where every lithium ion is tetrahedrally coordinated

by oxygen atoms which are placed on a fcc sublattice. [88] Li2O2 assumes a Föppl structure [89]

based on a hexagonal crystal lattice (space group: P63/mmc), as verified experimentally and

computationally. [90,91]

Li2

Li1

Figure 4.2.: Bulk Li, Li2O, and Li2O2 with lithium (pink) and oxygen (red).
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4.3. Bulk Li metal, oxide and peroxide structures

The equilibrium lattice constants are obtained from a fit of the total energy of the relaxed crystal

structures (Figure 4.2) based on the Murnaghan equation of state [72] and are reported in Table 4.1.

All results are in good agreement with available experimental data as well as other DFT-based

calculations.

Table 4.1.: Lattice parameters for bulk Li, Li2O, and Li2O2 and energy of formation at zero
temperature per Li atom, ∆G f , with respect to bulk lithium and atomic oxygen. Other DFT-based
calculations are carried out using the PAW method, the PBE-GGA functional, a kinetic energy
cutoff of 430 eV, and a 9×9×9 k-point grid. [54]

this work other calculations exp.

Li a / Å 3.45 3.45 3.49 [71]

Li2O a / Å 4.63 4.62 4.61 [92]

∆G f / eV -3.08 -3.16 -3.06 [93]

Li2O2 a / Å 3.16 3.14 3.14 (Föppl) [89]

c/a 2.42 2.43 2.44 (Föppl) [89]

∆G f / eV -3.38 -3.26 -3.36 [93]

The Gibbs free energies of formation of Li oxide and peroxide at a pressure of 1 atm are

calculated for different temperatures via

∆G f = Ebulk
Li2O(2)

(NLi, NO)− NLiµLi − NOµO ,

where N• is the number of atoms and Ebulk
• is the total energy of the bulk structure. In so doing, we

assume entropic effects to be associated only with O2 gas and neglect the differences in zero-point

energy of the bulk phases. Moreover, the chemical potentials are assumed to be

µLi ≈ Ebulk
Li

and

µO(T, p) ≈ 1
2
(
2Egas

O − Ebind
O2

)
+

1
2

kBT ln
(

p
p0

)
+ µO(T, p0) ,

where

µO(T, p0) =
1
2
[HO2

(T, p0)− HO2
(0K, p0)− T(SO2

(T, p0)− SO2
(0K, p0))] .

The enthalpy HO2
and the entropy SO2

are taken from ref. 93 and the binding energy of molecular

oxygen Ebind
O2

= 5.18 eV from ref. 94.
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4.4. Solvent: DMSO vs PC
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Figure 4.3.: Gibbs free energy of formation per Li atom as a function of temperature for Li2O2 (red)
and Li2O (green) and best-fit lines of the linear regression in orange (in both cases the correlation
coefficient is r = 0.9984).

The calculated Gibbs free energies of formation as a function of temperature for both oxides

are shown in Figure 4.3. For a better visualization of the relative stability of the bulk phases at

different temperatures as well as a verification of the transition-point temperature with experimental

results a linear regression has been applied on the data. At the working temperature of a lithium/air

battery of 298 K the Gibbs free energy of formation of lithium peroxide is below the one of lithium

oxide with an energy difference of about 0.15 eV per lithium atom. A change in stability occurs at a

temperature of 595(36) K, to be compared with an experimental value for the thermal decomposition

of Li2O2 of 570 K. [95] While these results apply for the case of pure oxygen gas, it should be taken

into account that at an atmospheric pressure of 1 atm and a temperature of 298 K the oxygen

solubility in DMSOLi+ is 2.1·10-6 mol cm-3. [96] When the reduced oxygen concentration is taken

into account according to Henry’s law, the energy difference between oxide and peroxide at 298 K

is only slightly reduced to 0.12 eV per Li atom, confirming that Li2O2 remains the more stable

phase in the working pressure and temperature regime of Li/air batteries.

4.4. Solvent: DMSO vs PC

The stability of the solvents PC, which has been widely used in the first attempts to Li/air batteries,

and DMSO are tested on the (001) Li surface as well as on the O-rich (0001) Li2O2 surface. The

choice of the O-rich (0001) Li2O2 surface is determined by preliminary studies on the stability of

Li2O2 surfaces and has been found to be the most stable low Miller index surface. All analyzed

surfaces with different terminations and stoichiometries and their corresponding surface energies
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4.4. Solvent: DMSO vs PC

can be found in the Appendix in Figure B.1 and Table B.1. Figure 4.4 shows (a) DMSO and (b) PC

solvent in contact with metallic lithium in the initial configuration and after a MD simulation at about

300 K.

(a) (b)

MD MD

Figure 4.4.: (a) DMSO and (b) PC on the (001) Li surface in the initial state and after a MD
simulation at 300 K.

(a) (b)

MD MD

Figure 4.5.: (a) DMSO and (b) PC on the O-rich (0001) Li2O2 surface in the initial state and after
a MD simulation at 300 K.
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4.5. DMSO Solvent: Radial distribution function

According to expectations, both solvents undergo a decomposition process, as can be seen in

the splitting of the DMSO-O after about 0.6 ps and a CO unit in the case of PC after about 0.9 ps at

the Li surface. The same procedure is repeated at the O-rich (0001) Li2O2 surface and is shown

in Figure 4.5 for (a) DMSO and (b) PC. In the performed MD simulation of 10 - 12 ps at 300 K no

spontaneous decomposition has been observed, neither for DMSO nor for PC. This is in contrast to

a spontaneous ring opening of PC observed by Laino et al. [97] after a few ps in a similar simulation

of PC on the O-rich (101̄0) Li2O2 surface performed with the CP2K code. [98]

Although we can not confirm the role of bulk Li2O2 as a degrading agent for the solvent, we do

not exclude the possibility of a spontaneous decomposition which could not have been observed

due to a too short simulation time. Nonetheless, according to our simulations, both solvents are

stable in the performed simulation time and environment.

4.5. DMSO Solvent: Radial distribution function

The intermolecular radial distribution functions of pure liquid DMSO and of the reaction products of

the charge process Li+ and O2 dissolved in DMSO are obtained from classical and DFT-based MD

simulations and shown in Figure 4.6. In the latter two cases the integrals of the radial distribution

functions, which determine the number of DMSO molecules coordinating Li+ and O2, are also

presented. The radial distribution function g(r) between two particles X and Y denotes the number

density of particle Y at a distance r to particle X, i. e. between DMSO-O and Li+ or DMSO-CH3

and O2. In the case of pure DMSO the intermolecular atom-atom pair distribution functions S−S,

O−O, C−C, S−O, S−C and O−C are added up using the same weights as in the neutron

diffraction experiments from Luzar et al. [99].
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Figure 4.6.: Radial distribution functions g(r) of (a) DMSO, (b) Li+ in DMSO and (c) O2 in
DMSO with corresponding integrals n(r) performed with LAMMPS (red) and LAUTREC (green).
Experimental results for DMSO [99] are shown in black.
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4.5. DMSO Solvent: Radial distribution function

Although slightly different in the absolute intensity for r < 7 Å, there is a good agreement of

our results with the experimental data concerning the peak positions and the overall shape of the

curves. The first peak position and the number of DMSO molecules in the first coordination shell of

the dissolved Li+ and O2 species are shown in Table 4.2 in comparison with other calculations

and experimental results.

Table 4.2.: Peak position r1 and number of molecules in the first coordination shell n1 for Li+ and
O2 in DMSO. Experimental values and other classical MD calculations are taken from Megyes et.
al. [100]

this work other calculations exp.
DFT Class. MD DFT [101] Class. MD.

r1(Li+) / Å 1.95 1.95 1.96 1.93; [102] 1.98 2.02
n1(Li+) 3.70 4.02 4.00 4.00 4.10
r1(O2) / Å 3.76 3.79
n1(O2) 8.34 8.06

The Li+ ion is faced by oxygen atoms of DMSO at a distance of about 2 Å with an overall

coordination number of four molecules. The coordination number obtained from the DFT-based

simulation is 3.7, probably due to the shorter simulation time than in the classical simulations. The

oxygen molecule is faced by the methyl groups of eight DMSO molecules, at an average distance

of about 3.8 Å. The self-diffusion coefficient of DMSO and the diffusion coefficients of Li+ and O2

are calculated from the performed MD simulations based on the mean square displacement (MSD)

MSD = ⟨(x(t)− x0)
2⟩ = 2Dt ,

where x(t) is the molecule position at time t and x0 the initial position. The results are reported in

Table 4.3 and agree well with available experimental values.

Table 4.3.: Diffusion coefficients in DMSO carried out with classical MD simulations; experimental
values for DO2

performed by Laoire et al. [7] are obtained in 0.1 M LiPF6-DMSO and by Fujinaga et
al. [103] in 0.1 M (Et)4NClO4-DMSO, for DLi+ in 0.1 M LiPF6-DMSO.

D / 10-6 cm2 s-1 this work exp.

DDMSO 7.70 8.00 [104]

DO2
22.60 16.70; [7] 27.00 [103]

DLi+ 3.05 3.33 [105]
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4.5. DMSO Solvent: Radial distribution function

In summary, both the classical and the DFT-based MD simulations are able to reproduce the

correct behavior of liquid DMSO at 300 K. Therefore, we can rely on classical simulations to initially

optimize the distribution of DMSO molecules around Li2O2 clusters before performing DFT-based

studies of their decomposition due to oxidation processes. However, before doing that, in the

next chapter we first investigate the atomic and electronic structures of Li2O2 clusters and their

oxidation behavior in vacuo.
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CHAPTER 5

RESULTS

In the present chapter we present the results of the study of amorphous LinOn clusters which

are generated to model amorphous peroxide phases in actual Li/air batteries. Following this, the

decomposition of Li2O2 taking place during the charge process is studied in vacuo and in the

solvent DMSO via a DFT-based dynamic simulation. Furthermore, we analyze the geometrical as

well as electronic properties of the resulting structures and decomposed species using a Bader

charge and a density of states (DOS) analysis and interpret these in terms of possible reaction

mechanisms for the charge process in Li/air batteries.

5.1. LinOn clusters

Possible structures of lithium peroxide clusters LinOn are investigated in spin-restricted (triplet

and spin-paired states) as well as spin-unrestricted DFT-based simulations performed starting

from three different initial conditions. These correspond to (i) a portion of a bulk lithium peroxide

structure, (ii) randomly distributed lithium atoms and oxygen molecules with 2:1 stoichiometry,

and (iii) randomly distributed lithium and oxygen atoms with 2:2 stoichiometry. All initial structures

are first annealed in DFT-based simulations at 300 K lasting 1 to 10 ps depending on the size of

the system and eventually fully relaxed via geometry optimization. None of the obtained ground

states in spin-unpaired calculations present magnetization of single atoms and an overall singlet

character of the whole system (total spin zero), so that in the following we can refer to singlet and

triplet states only. The optimized structures of lowest energy for all sizes n = 2, 4, 6, 8 and for both

spin states are shown in Figure 5.1 together with the corresponding Bader atomic charges, lengths

45



5.1. LinOn clusters
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Figure 5.1.: Lowest-energy structures of LinOn clusters in singlet (left) and triplet (right) electronic
configurations along with the Bader atomic charges in e (same color as the atom type), O−O
bond lengths, and spin moments on O−O pairs (black), and their spin densities (blue isosurfaces).
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5.1. LinOn clusters

of O−O bonds, and spin moments on the O−O bonded pairs (in the case of triplet states). Both

the obtained geometries and the O−O bond lengths are in good agreement with the results of

similar DFT-based simulations performed by Lau et al. [106] Also, the values of atomic charges and

spin moments are comparable, although a Mulliken analysis is used in ref. 106, while a Bader

analysis is performed in the present work. Differences in the equilibrium geometries obtained here

and in ref. 106 are due to very small energy differences among different structures (all computed

structures and their relative energies are reported in Appendix C, Figures C.1-C.5 and Table C.1).
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Figure 5.2.: Difference in Gibbs free energies of formation between a singlet and a triplet state;
energies per lithium atom of singlet (red) states and triplet (green) states are given explicitly in the
inlay.

The Gibbs energies of formation of the lowest-energy clusters in the singlet and triplet states

as well as the energy difference between the two states are reported in Figure 5.2 as a function

of the cluster size. Triplet spin states are favored for Li nuclearities larger than n = 4, which is in

good agreement with the results of Lau et al. [106] In the spin-paired configurations the O−O bond

lengths are between 1.54 Å and 1.58 Å with an average O charge of -0.84 e, to be compared with

a distance of 1.58 Å and a charge of -0.82 e calculated in bulk lithium peroxide. Despite of the

2:2 Li:O stoichiometry, clusters in the spin-triplet configuration present O−O bonds of peroxide,

superoxide and intermediate peroxide/superoxide character. Namely, the distances vary from

1.38 Å to 1.53 Å, the charges from -0.47 to -0.81 e, and the absolute spin moments from 0.94

to 0.06 µB, to be compared with the peroxide values reported above and the superoxide values

computed for an isolated LiO2 molecule: 1.37 Å, -0.42 e and 1.00 µB, respectively. Notably, both

unrestricted spin calculations and spin-restricted calculations with total spin values higher than

2.0 confirm that the actual ground state of larger clusters is a triplet. This is an an initial hint

that the surfaces of deposited amorphous Li2O2 phases in Li/air batteries may present a partial
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5.2. Cluster decomposition in vacuum

superoxide character in spite of an overall 2:2 stoichiometry. To investigate whether the same order

of stability of Li2O2 and Li2O at the working temperature of Li/air batteries also applies in the case

of small clusters, Li8O4 clusters are generated in spin-unrestricted DFT-based simulations starting

from three different initial conditions, either from a Li2O crystal or from randomly placed Li and

O atoms or molecules with 4:1 or 2:1 stoichiometry. The Gibbs free energies of formation as a

function of temperature are then compared with that of the energetically most favored Li8O8 cluster

(Appendix C, Figures C.6 and C.7 and Table C.2). These indicate a higher stability of the peroxide

with respect to oxide phases also in the case of clusters, with an energy difference between the

Li8O4 and the Li8O8 clusters at 298 K varying between 0.34 and 0.53 eV per Li atom, depending

on the initial condition.

5.2. Cluster decomposition in vacuum

In a next step, starting from the most stable Li8O8 cluster in its ground-state triplet configuration in

vacuo, either one or two electrons are removed from the system and two DFT-based simulations

at 300 K lasting about 2 ps are performed, followed by geometry relaxations. The obtained

systems are reported in Figure 5.3 along with the O−O bond lengths, charges, and O−O spin

moments, both after the initial electron minimization before the dynamics and after the dynamics

and relaxation. After removal of one single electron, the cluster remains in a similar geometry with

an energy gain of -0.27 eV associated with the structural relaxation. Two of the three O−O bonds

shorten to distances of about 1.38 Å and increase their spin moment to about 1.0, thus, becoming

clearly of superoxide type.

After removal of two electrons, an oxygen molecule with a bond length of 1.22 Å, a mean oxygen

charge of 0.04 e, and an absolute spin moment of 1.93 is released from the cluster, according to

the formal reaction

Li8O8 −→ [Li8O6]
2+ +O2 + 2e− .

The energy difference associated with the partial decomposition after removal of two electrons

is -1.52 eV. The O − O pairs remaining in the cluster shorten their distances to 1.37 Å and

1.38 Å, respectively, and assume an average O charge of about -0.45 e. This is indicative of a

superoxide bond, although the [Li8O6]2+ cluster ends up in a spin-paired configuration. Separate

electron minimizations of this cluster structure with spin constraints indeed reveal that the triplet

configuration is slightly higher in energy, although by less than 0.02 eV. We could think of the

reaction product as a Li6O6 cluster with two electrostatically bound Li+ ions. However, it should

be noted that the two singly-coordinated Li atoms present the same Bader charge (0.87 e) as all
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5.2. Cluster decomposition in vacuum
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Figure 5.3.: Snapshots of DFT-based MD simulations of a Li8O8 cluster in vacuo after removal
of one and two electrons with Bader atomic charges in e (same color as the atom type), O−O
bond lengths and spin moments on O−O pairs (black), and their spin densities (blue and purple
isosurfaces).
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5.3. Cluster decomposition in DMSO

other Li atoms, so that they cannot be differentiated on the basis of electron-structure arguments.

To ensure that the release of an oxygen molecule after removal of only one electron is not

hindered by an activation barrier, we compute the total energy of an alternative structure, in which

the O1 −O2 pair is forceably detached from the cluster and placed at a distance of about 5.7 Å

far from it. After a short MD simulation of about 1 ps and a subsequent geometry relaxation,

the obtained energy is 0.58 eV higher than before O2 detachment, confirming that the release of

dioxygen is clearly not favored unless two electrons are removed from the system.

5.3. Cluster decomposition in DMSO

In order to study the influence of solvent on the OER process, MD simulations after electron

removal from the most stable Li8O8 cluster are performed in the presence of DMSO. To this aim,

the cluster is placed in a cell filled with DMSO molecules which are initially relaxed by means of

classical MD simulations as described in the Computational Details section. After that, DFT-based

simulations with the system deprived of either one or two electrons are started ((Figures 5.4

and 5.5)). As in the absence of solvent, removal of a single electron does not result in any dramatic

structural changes. Mobility of the O−O pairs is evident, though, leading to the O5 −O6 and

O7 −O8 pairs switching their positions. Nonetheless, the overall geometry of the cluster remains

stable and no decomposition is observed in a total of 15 ps of simulation, after which the dynamics

is stopped and the atomic positions fully relaxed. In the optimized final structure, the O−O bond

lengths are 1.34, 1.39, and 1.40 Å, the absolute spin moments are 1.07, 0.78, and 0.73, and the O

Bader charges are between -0.41 e and -0.53 e which implies O−O bonds of superoxide type.

The evolution of the system is markedly different after removal of two electrons. In this case, the

O1 −O2 pair is repeatedly observed to temporarily detach from the cluster and is eventually able

to leave it irreversibly after about 10 ps of simulation time. Upon completion of the dynamics after

15 ps, the O2 molecule released into the solvent presents a bond length of 1.27 Å, an absolute

spin moment of 1.61, and an average charge of -0.18 e which are fully consistent with molecular

dioxygen. Regarding the other two O−O pairs, one of them is clearly of superoxide type (bond

length 1.38 Å, spin moment 0.83, and O charge -0.48 e), while the second shows also a trend

toward molecular dioxygen (1.31 Å, -1.36, -0.27 e) which is different from the vacuum case (two

remaining superoxide bonds).

To obtain a further, statistically independent trajectory, we perform a second DFT-based sim-

ulation starting from a snapshot of the previous run after 8 ps of simulation. After an initial

randomization of the atom velocities and a brief thermalization to reach 300 K, the dynamics follows

50



5.3. Cluster decomposition in DMSO
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Figure 5.4.: Snapshots of DFT-based MD simulations of a Li8O8 cluster in DMSO after removal of
one electron with Bader atomic charges in e (same color as the atom type), O−O bond lengths
and spin moments on O−O pairs (black), and their spin densities (blue and purple isosurfaces).
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Figure 5.5.: Snapshots of DFT-based MD simulations of a Li8O8 cluster in DMSO after removal of
two electrons with Bader atomic charges in e (same color as the atom type), O−O bond lengths
and spin moments on O−O pairs (black), and their spin densities (blue and purple isosurfaces).
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5.4. Density of states evolution during decomposition

a different path. This time, instead of the detachment of an O2 molecule, after about 3 ps into the

new DFT-based run we observe a LiO2 molecule leaving the cluster. Notably, though, O−O bond

lengths of about 1.32 Å, spin moments between 1.23 and 1.31, and average O charges between

-0.35 e and -0.31 e both in the detached molecule and in the remaining cluster do not indicate pure

superoxide bond types, but a trend toward the formation of molecular dioxygen coordinated to Li+

ions.

5.4. Density of states evolution during decomposition

During the electron removal and cluster decomposition described above it is noteworthy that the Li

atoms barely change their Bader charge values of about 0.86 e (see Figures 5.3 and 5.5). The

changes are limited to the oxygen atoms, as reported in Table 5.1 and in Appendix D, Table D.1 for

the initial and final states in vacuo and in DMSO. A visual representation of the charge differences

are reported in Figure 5.6 and in Appendix D, Figure D.1.

MD MD

-2e--1e-

Figure 5.6.: Visualization of the Bader charge differences upon removal of electrons from negative
(red) values to positive (blue) values in vacuo.

For the case of solvated clusters, non-negligible charge differences are localized on the solvent
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5.4. Density of states evolution during decomposition

molecules, in part due to polarization of the DMSO molecules neighboring the cluster and in part

because of the well-known tendency of plane-wave-based DFT to over-delocalize electronic states.

Note that the electrons are not removed from a single O atom or O−O pair but rather uniformly

from all oxygen species.

Table 5.1.: Charge difference in e between the initial clusters before removal of electrons and the
final clusters after removal of electrons and an MD simulation in vacuum and in DMSO.

∆q-1e− ∆q-2e−

in vacuo

Li8O8 1.0000 1.9999
oxygens 0.8879 1.8312

in DMSO

DMSO 0.1712 0.3731 0.3600
Li8O8 0.8291 1.6261 1.6340
oxygens 0.8216 1.6552 1.6514

More precise information about the evolution of the electronic structure during the oxidation

process can be obtained by analysis of the DOS projected on selected atoms (Figure 5.7 and

Appendix E, Figures E.1, E.2, and E.3). As far as the Li atoms are concerned, differences in their

DOS are mostly governed by their coordination number to oxygen atoms and pairs (see Appendix E,

Figures E.1, E.2, and E.3). More interesting are the DOS changes experienced by the O−O pairs.

Before electron removal, the O− O pairs in the Li8O8 cluster present a mixture of superoxide

(O−
2 ) and peroxide (O2−

2 ) character, as evident especially for the O1 − O2 and O5 − O6 pairs,

respectively (Figure 5.7 (a), red curves). This is consistent with the neutral Li8O8 cluster being

composed by 8 Li+ ions, 2 O2− ions, and 3 O−O pairs with formal oxidation state O
4
3−
2 .

After removal of a single electron, all three pairs become of clear superoxide (O−
2 ) character

(Figure 5.7 (a), green curves), consistent with the formal oxidation states in a [Li8O8]+ cluster

(8Li+, 2O2−, 3O−
2 ). After removal of two electrons, one trajectory (both in vacuo and in DMSO)

leads to the removal of the O1 −O2 pair in the form of an oxygen molecule, as confirmed both by

analysis of the charge and bond distance and by analysis of the projected DOS (Figure 5.7 (c),

green curves). In the remaining [Li8O6]2+ cluster, both the formal oxidation states (8Li+, 2O2−,

2O−
2 ) and the DOS indicate superoxide bond type of the two O−O pairs. A second trajectory

leads to removal of the O7 −O8 pair together with a Li+ ion. Here, the DOS indicate, rather than
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Figure 5.7.: DOS for O−O pairs before removal of electrons (red) and after removal of electrons
and an MD simulation (green) (a) in vacuo upon removal of a single electron and (b) and (c)
in DMSO upon removal of two electrons. For comparison the DOS of the O2−

2 ion of a Li2O2

molecule, the O−
2 ion of a LiO2 molecule and the O2 molecule are shown in (a), (b), and (c) in gray.

a clear superoxide bond, a mixed superoxide/oxide character (Figure 5.7 (b), green curves). This

is consistent with the previously mentioned O− O bond length, spin, and charge intermediate

between O2 and O−
2 . We are thus inclined to write this second possible decomposition reaction as

Li8O8 −→ [LiO2]+ + [Li7O6]+ + 2e−, suggesting that a Li+ and a dioxygen molecule leave the

cluster concomitantly and are not able to dissociate within the short MD simulation.
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CHAPTER 6

DISCUSSION

Most of the available experimental literature about the mechanism of the OER during the charge

of Li/air batteries indicates the presence of lithium superoxide species prior to the evolution of

dioxygen molecules in the electrolyte. Starting from crystalline Li2O2, superoxide formation is sug-

gested to proceed via a delithiation process taking place initially at the peroxide surfaces. [11,12,53]

Static DFT-based total energy calculations have indeed confirmed that formation of Li vacancies

in the interlayer sites of bulk Li2O2 may be energetically favored under the battery operation

conditions. [50,51] However, recent evidence has suggested that the Li2O2 particles deposited

during actual discharge processes are characterized by the presence of amorphous phases at

their surfaces [12] or, with increasing current density, even purely amorphous peroxide films, [13]

whose atomistic structure may be well described by LinOn clusters. [106] The first stages of the

OER are dominated by the chemical composition of the Li2O2 particle surfaces, rather than by their

bulk composition and structure [11,12]. The small clusters studied in our work are a good model for

the amorphous Li2O2 particle surfaces, since they include all relevant lithium and oxygen species

(single O atoms as well as O−O pairs) participating in the OER. As has been shown by Lau et

al. [106] in a DFT-based calculation of (Li2O2)16 clusters, surface O−O pairs of peroxide, superoxide,

and mixed peroxide/superoxide type in a high-spin state are the system-characterizing species also

in the case of larger clusters. The authors concluded that their behavior do not differ, in essence,

from one of the smaller cluster models and do not present additional or different chemical/physical

properties than clusters of the size employed in the present work. The cluster size chosen in this

work represents a trade-off between a sufficiently large model size and computational effort.

Interestingly, both previous literature results and our own simulations have shown that LinOn

clusters are formed by Li+ coordinating not only peroxide O−O pairs, but also single O atoms.
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If, as usual, a formal oxidation state of 2− is assigned to such atoms, necessarily the O−O

pairs must assume intermediate peroxide/superoxide character. This situation emerges with clear

evidence from our analysis of the bond lengths, atomic charges, spin moments, and local DOS

of the O−O pairs present in our lowest-energy cluster structures which we have obtained from

unbiased MD simulations starting from various initial conditions including crystalline LinOn clusters

(see Figures 5.1 and 5.7 and Appendix E, Figures E.1, E.2, and E.3). Partial removal of electrons

from these clusters, which corresponds to the application of a low oxidation potential to the cathode

material, contributes to accentuate the superoxide character of the O−O pairs. Notably, removal

of only one electron from Li8O8 clusters is not sufficient to promote the spontaneous release of

O2 molecules, as instead observed in simulations of systems deprived of two electrons at the

same time. These results can be interpreted as a two-stage process in which a peroxide-to-

superoxide transition takes place at low oxidation potentials due to selective oxidation of O−O

pairs in amorphous Li2O2 phases, later followed by the evolution of dioxygen molecules at higher

potentials. Notably, neither of these two processes require the dissolution of isolated Li+ ions, at

least in the very initial decomposition stages simulated in this work.

However, we have observed that a Li+ ion is able to spontaneously leave the cluster bound

to an O2 molecule. While our DFT-based results indicate a mixed superoxide/oxide character of

the O−O bond in the leaving LiO2 unit, we believe that the effects of solvent polarization and

spurious electron delocalization contribute to lowering the total charge of the unit (+0.24 in our

Bader analysis), so that in fact we should consider it as a [LiO2]+ species. It is conceivable that

entropically driven effects not accessible within the short DFT-based MD simulation time could lead

to a later dissociation of this molecule, effectively leading to a concomitant release of dioxygen and

Li+ ions, but this is an issue that would require further investigations.

In summary, on the basis of our simulations we propose, as an additional possibility to the

reaction mechanisms suggested in the literature, [11–13,50,51,53] the following OER reaction steps:

(i) At low potential a partial oxidation of the amorphous Li2O2 phases present at the surface of the

deposited peroxide particles without release of ions or molecules

[Li2O2] −→ [Li2O2]
n+ + n e− .

As a consequence, since the electron removal takes place selectively from O−O pairs, the

particles assume a partial superoxide character consistently with a number of spectroscopic

investigations. [14]
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(ii) At high potential release of both O2 molecules and Li+ ions

[Li2O2]
n+ −→ [Li2O2]

(n−m+k)+ + m Li+ + sO2 + k e− .

Here, the different stoichiometric coefficients m, s, k express the idea that neither electron removal

nor release of dioxygen may be directly associated with dissolution of a corresponding number of

Li+ ions but the processes can take place independently of each other, at least until a critical high

decomposition potential is reached.

At the present stage we cannot exclude the possibility of early delithiation processes even at low

oxidation potentials, since our analysis is limited to spontaneous (i. e., not thermically activated)

processes. The quantification of possible kinetic barriers associated with decomposition processes

in a solvent is, however, a task that goes far beyond the goals of the present work. Moreover, our

short-time simulations do not allow us to reach any conclusion about the electrochemical stability

of the electrolyte under application of a high oxidation potential, an issue that is known to limit the

life-time of rechargeable Li/air batteries. [30,33] During our simulations, even after electron removal,

the DMSO molecules are nevertheless observed to remain stable and to play an important role

in the decomposition process, acting as complexing agents for the dissolving species. Finally,

complementary studies considering the recently proposed and currently discussed delithiation

during the OER [11,12,50–53] shall be performed in future work on extended Li2O2 crystalline surfaces.
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Part 2.
Optimization of catalytically active sites

positioning in porous cathodes of

lithium/air batteries filled with different

electrolytes
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Model of a Li/air battery adapted from ref. 2 (top), a porous cathode
adapted from ref. 107 (left) and schematic pore clogging (bottom).
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CHAPTER 7

INTRODUCTION

The capacity of current Li/air cells is severely limited by the early clogging of the porous cathode

due to the deposition of the discharge product Li2O2. [14,35] Assuming sufficient electrochemical

stability of the materials used for the electrolyte and the electrodes, this is directly influenced by (i)

the diffusivity and solubility of oxygen within the electrolyte, (ii) the structural details of the porous

cathode, and (iii) the use and positioning of catalysts therein. In this part we perform a theoretical

analysis of the progressive filling of a model porous cathode in different electrolytes. In particular,

we aim at optimizing the positioning of catalytically active sites within the pores in order to maximize

the volume of discharge products deposited before pore clogging sets in.

Since the non-aqueous electrolyte in an Li/air battery transports Li+ ions to the anode, it

should thus present a good Li+-conductivity, guarantee sufficient stability of all species during the

electrochemical reactions, and promote the formation of a protective SEI on the highly reactive

metallic Li anode. [1] These requirements have restricted the choice of electrolytes to only a relatively

small number of candidates. First attempts focused on alkyl carbonate electrolytes such as PC,

containing either LiTFSI (Li(CF3SO2)2N) or LiPF6 salts. [19,35,108–110] However, recent studies

have shown that carbonate-based electrolytes undergo possible degradation by side reactions

evolving CO2 rather than dioxygen. [23,25,27,28,111] Newer attempts focus on non-carbonate based

electrolytes with low viscosities, moderate oxygen solubilities, and small dielectric constants. [55]

Some of the most common representatives are TEGDME (tetraethylene glycol dimethyl ether),

2,3,4,5-tetrahydrothiophene-1,1-dioxide (Sulfolane - SL), DMSO and DME. The best performance

in stability, so far, has been obtained with DMSO which enables reversibility over several cycles with

low capacity loss. [30–33] In comparison, TEGDME and DME show a less stable behavior and tend to

decompose during the charge process, likely because of the high cell potential. [15,28,29] In addition
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to a suitable electrolyte, the electrode design provides a further mean of significantly improving

the cell capacity. Basic requirements for a cathode are low cost, low weight, a straightforward

fabrication and a good electron conductivity. Furthermore, the cathode has to provide enough

storage volume for the insoluble Li2O2 discharge product and among others a comparably large

surface area over which the ORR take place. The most commonly used cathodes are based on

carbon materials coated onto metal grids or foams with a highly porous structure or on carbon

nanotubes and fibers. [36,112] According to Viswanathan et al. [10] and Albertus et al. [19] passivation

of the electrode due to the insulating character of lithium peroxide can take place after deposition of

a 5 nm thick layer of Li2O2. Meini et al. [20] reported even a value below 1 nm limiting the discharge

capacity. Consequently, a variety of carbon coatings with different surface areas, pore radii, and

volumes as well as wettability properties have been investigated as potential cathode materials

promoting a uniform thin film growth of the discharge product. [14,35,107,110,113]

Furthermore, since the oxygen solubility and diffusivity are low in non-aqueous electrolytes,

there is a fast oxygen concentration drop from the oxygen supplying side into the interior regions of

each pore, as shown for instance by Read et al. [114] via a steady-state model and schematically in

Figure 7.1.

O2 concentration

Time

l

rpO2

Figure 7.1.: Schematic representation of the concentration drop in a half-pore of radius rp and
length l.

As a consequence, the electrochemical Li2O2 deposition takes place preferentially at the oxygen

supplying side, blocking the oxygen transport into the pore, as demonstrated by means of SEM

imaging by Zhang et al. [36] This clogging of the narrow pore entrances by Li2O2 leads to a loss

of active surface area for the electrochemical reaction and a lack of utilization of the cathode

volume. [14,35]

64



In an effort to alleviate these problems, different catalysts have been proposed to enhance

the electrochemical efficiency, [37–39] in particular α-MnO2, Pd, Pt or Au nanoparticles and their

combinations. [40–43] In order to prevent pore clogging, Williford et al. [115] suggested a dual pore

system composed of a catalyzed and a non-catalyzed part. Solving theoretically a diffusion model,

the authors could demonstrate an improvement of the cathode volume utilization when this dual

pore system is combined with a time-released activation of the catalytic sites. Also Andrei et al. [116]

studied how catalysts improve the discharge capacity. In their theoretical study the authors have

demonstrated that pore clogging and oxygen starvation are reduced by a non-uniform distribution

of catalytically active sites which they modeled via an exponential increase of the deposition rate

along the pore. In this particular case, the authors observed a significant enhancement of energy

density and specific capacity.

To take advantage of state-of-the-art achievements in stable electrolytes, cathode designs, and

catalyst use, the present part focuses on the improvement of the discharge capacity by means

of a smart catalyst distribution. In order to suggest a catalyst distribution that leads to a maximal

pore volume utilization, we first implement a numerical method for the solution of a reaction-

diffusion equation [117] that describes the catalytic growth of Li2O2 in narrow pores, based on

previous models by Sandhu et al. [44] and Andrei et al. [116] We then optimize the number of catalytic

sites and their positions along the pore by means of a Greedy optimization algorithm. [118] This

procedure is carried out for the case of different electrolytes (PCLi+ , TEGDMELi+ , SL, DMSOLi+

and DMELi+ ) presenting different combinations of oxygen diffusivities and solubilities. This allows

us to demonstrate that non-uniform and electrolyte-dependent catalyst distributions can lead to

a considerable increase in capacity with respect to uniform or non-catalyzed discharge product

depositions.
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CHAPTER 8

PORE CLOGGING AND FINITE DIFFERENCE

METHOD

The modeling of pore clogging in Li/air batteries is based on chemical and physical processes

within the battery as well as the mathematical methods which provide a solution of the considered

issue. Thus, the following chapter is focused on a brief introduction to reaction kinetics and diffusion

processes and concludes with a detailed guide for the applied method of finite differences with

regard to the particular form of the established partial differential equations.

8.1. Reaction rate of a chemical process

The reaction rate vR defines the change in molar concentration c of species in a chemical process

∑
i∈I

riRi → ∑
j∈J

pjPj, I, J ⊂ N f inite ,

where Ri are the reactants, Pj the products and ri and pj the corresponding stoichiometric

coefficients. According to ref. 119 we can write the reaction rate as

vR = − 1
rl

dcRl

dt
=

1
pm

dcPm

dt
∀l ∈ I, ∀m ∈ J . (8.1)
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8.1. Reaction rate of a chemical process

The negative sign indicates the consumption of reactants. A different approach to the reaction rate

is based on the conservation of mass and formulated in the rate law [120] as

vR = k · ∏
i∈I

cxi
Ri

. (8.2)

The reaction rate constant k of the reduction is dependent on extrinsic properties such as tem-

perature and potential, but does not depend on the concentration. The exponents xi have to be

determined experimentally and are added up to the reaction rate order ∑
i

xi. A combination of

both approaches in equations (8.1) and (8.2) results in the temporal change in concentration of a

reactant Rl during a chemical reaction

dcRl

dt
= −k · rl ∏

i∈I
cxi

Ri
∀l ∈ I . (8.3)

The derivation of the reaction rate constant is carried out from collision theory. We assume the

velocity distribution of two reacting particles A and B of a chemical process aA + bB → C as the

Maxwell-Boltzmann distribution of the kinetic theory of gases [121]

f (v) =
(

µ

2πkBT

) 3
2

· 4πv exp

(
−µ

2 v2

kBT

)
dv ,

where T is the temperature, kB the Boltzmann constant and µ = mAmB
mA+mB

the relative mass. The

mean velocity v of A relative to B is written as

v =

∞∫
0

v · f (v)dv =

(
8kBT
πµ

) 1
2

.

In a time ∆t particle A covers a collision volume ∆V = v∆tσAB, where σAB = πr2
AB defines the

cross section of particle A and B schematically shown in Figure 8.1 (a).

Hence, the number of collisions between all particles A and B per unit volume and time is given

by Z̃AB = σABvc̃A c̃B or in the molar notation using the Avogadro constant NA

ZAB =
Z̃AB

NA
= σABvNA

c̃A

NA

c̃B

NA
= σABvNAcAcB = σAB

(
8kBT
πµ

) 1
2

NAcAcB .
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Figure 8.1.: (a) Cross section of particles A and B, and (b) Maxwell-Boltzmann distribution for
different temperatures.

Provided that every collision causes a reaction, the number of collisions equals the reaction rate

vR = ZAB

k · cAcB = σAB

(
8kBT
πµ

) 1
2

NAcAcB .

However, the derived relation does not reproduce the temperature dependency of the reaction rate

constant k ∝ exp
(
− Ea

RT

)
that has been observed experimentally by Arrhenius, [122] where Ea is

the activation energy and R = NA · kB the universal gas constant. [123] The mismatch between

theory and experiment emerges from the assumption that all particles possess the same mean

velocity v, and every collision causes a reaction. However, a reaction takes place only if the

kinetic energy of a particle reaches the activation energy Ea, as illustrated in Figure 8.1 (b). This

assumption results in a velocity-dependent cross section σAB = σAB(v), such that the reaction

rate constant is calculated via an integral over all velocities according to the Maxwell-Boltzmann

distribution. Using the kinetic energy E = NAµ/2 · v2, we state

k(T) =
∞∫

0

σAB(v)vNA  
k

· f (v)dv

=

∞∫
0

σAB(E) f (E)
1
µ

dE

=
1

NA

(
8

πµ(kBT)3

) 1
2

∞∫
0

σAB(E)E exp
(
− E

RT

)
dE .
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8.1. Reaction rate of a chemical process

All particles that do not overcome the activation energy have a cross section of zero. Otherwise we

use the probability p = E−Ea
E that a reaction is caused by a collision and summarize for the cross

section

σAB(E) =

⎧⎨⎩0, if E ≤ Ea

σAB · E−Ea
E , if E > Ea

.

The reaction rate constant can now be written as

k(T) =
1

NA

(
8

πµ(kBT)3

) 1
2

∞∫
Ea

σAB · (E − Ea) exp
(
− E

RT

)
dE

= NA

(
8kBT
πµ

) 1
2

σAB exp
(
− Ea

RT

)
= k0(T) exp

(
− Ea

RT

)
.

(8.4)

The exponential temperature dependency as well as the pre-exponential factor k0(T) are in good

agreement with experimental results.

In a last step we analyze the dependency of the reaction rate constant on an external potential

U. The activation energy for the reduction of dioxygen is the provided Gibbs free energy ∆G,

schematically shown in Figure 8.2 (a). However, an external potential changes the required energy

according to ∆G = ∆G(U = 0) + αzFU = Ea + αzFU (see Figure 8.2 (b)). Thus, the required

energy is composed of the activation energy and the electric energy zFU, where z is the charge

number and F the Faraday constant (amount of charge of one mol of electrons). The charge

transfer coefficient α ∈ [0, 1] considers the dependency of the reaction rate on an external potential

reaction coordinate

G

U2

U3

ΔG(U3)

ΔG(U2)

U1

ΔG(U1)(b)

reaction coordinate

G

Ea = ∆G

O2
-

O
2
+ e-

(a)
U = 0

Figure 8.2.: (a) Gibbs free energy of a redox reaction, and (b) influence of an external potential on
the Gibbs free energy.
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and is most often set to α = 0.5.

Finally, we obtain the dependency of the reaction rate constant on temperature as well as on an

external potential U

k(T) = k0(T) exp
(
− Ea

RT

)
exp

(
−αzFU

RT

)
. (8.5)

8.2. Reaction-diffusion equation

Diffusion is a gradient-driven process that describes a compensation of differences in concentration

via a stochastic movement of particles induced by their kinetic energy. The ordinary diffusion

equation without a reactive term (reaction rate) results from the two Fickian laws. The first law can

be derived from collision theory [121] and is stated as follows.

Fick’s law 1. The particle current density j⃗ is proportional to the gradient of concentration c
against the direction of diffusion

j⃗ = −D · grad c . (8.6)

The constant of proportionality is called diffusion coefficient D. The second law is better known

as the continuity equation and is based on the conservation of mass, i. e., in a certain volume

particles are neither created nor destroyed. [121]

According to the continuity equation, the temporal change of the density of a conserved quantity

corresponds to the spatial change of its current density, i. e., in the present case using the particle

number as the conserved quantity

∂tc = − div j⃗ . (8.7)

Fick’s law 2. Assuming of a position-independent diffusion coefficient, a combination of Fick’s

first law (8.6) and the continuity equation (8.7) results in the diffusion equation

∂tc = D · div ( grad c) . (8.8)

The reaction-diffusion equation is based on the ordinary diffusion equation (8.8) considering a

chemical reaction which causes a variation of the concentration of diffusing particles. The general

form of the equation is given by

∂tc = D · div ( grad c) + vR(c) . (8.9)

The reaction rate vR(c) considers the change in concentration not because of diffusion and

hence the movement of particles, but because of an actual conversion of matter. According to

71



8.3. Diffusion dependent growth in a porous structure

equation (8.3) we can write the reaction rate for a reactant with stoichiometric coefficient r and

concentration c as

vR(c) = −k · r ∏
i∈I

cxi
i , (8.10)

where ci = c for an i.

8.3. Diffusion dependent growth in a porous structure

During the discharge process at the cathode oxygen is consumed by its reaction with lithium ions,

and the pore volume decreases due to the growth of Li2O2. The mathematical description of this

process is based on a diffusion-limited model introduced by Sandhu et al. [44]

A porous cathode of volume Vcath, length l,

2 rp

zp = 0 zp = l

O2

Figure 8.3.: Schematic representation of the
modeled cathode geometry with porosity ϵ and
tortuosity τ.

and porosity ϵ is modeled as a set of n cylindri-

cal pores of radius rp, length l, and tortuosity τ,

fully filled with electrolyte (see Figure 8.3). Ac-

cording to Bruggeman the tortuosity is a function

of porosity, and it is assumed that τ = ϵ−
1
2 . [124]

The cathode is thus characterized by a poros-

ity ϵ = πr2
plτn/Vcath and a specific pore area

acath = 2πrplτn/Vcath = 2ϵ/rp. As shown by

Andrei et al., [116] who considered the diffusion of

lithium ions from a finite-sized electrolyte phase,

the decrease of Li+ concentration from the sep-

arator to the oxygen supplying side of the cath-

ode decreases only very slightly. Thus, the Li+

concentration is kept constant, and the sole lim-

iting factor in the present model is the diffusion

of oxygen inside the pore. Moreover, if

rp ≪ l, we can assume angular symmetry

around the diffusion direction zp along the pore

axis and no change of the oxygen concentration

cO2
in the radial direction. Therefore, we can de-

scribe the dynamics of the discharge processes by two coupled partial differential equations using

zp as the only dimensional coordinate.
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8.3. Diffusion dependent growth in a porous structure

The first one is a reaction-diffusion equation introduced in Section 8.2, equation (8.9) based on

a Fickian diffusion in a porous structure without convection [44,125]

∂tp(ϵcO2
) = ∂zp

(
Deff

O2
· ∂zp cO2

)
+ vR(cO2

, ϵ, rp) . (8.11)

Here, the effective diffusion coefficient Deff
O2

considers the impact of porosity ϵ and tortuosity τ on

the oxygen mass diffusivity DO2
via Deff

O2
= DO2

· ϵ/τ. [126] The rate of Li2O2 formation per unit

of cathode volume (reaction rate) is represented by vR(cO2
, ϵ, rp). Based on the assumption of a

sufficiently high concentration of lithium ions, the reaction rate is given by the change of oxygen

concentration cO2
due to the first-order ORR O2 + e− → O−

2 with stoichiometric coefficient r = 1.

That is to say, we have a direct proportionality between the oxygen concentration and the reaction

rate (see equation (8.10)). Since the reduction is only taking place at the pore surface, we can

write the reaction rate as

vR(cO2
, ϵ, rp) = acath · ∂tp cO2

= −2ϵ

rp
· k · cO2

, (8.12)

where k is the reaction rate constant per unit of specific pore area. It should be noted that the

first-order approximation of the reaction rate may be considered as a simplification which is,

however, often used in the pertinent literature. [44,115,116,127] In several of these previous studies

first-order deposition rates have been shown to be a successful approximation if the modeling of

pore clogging is considered.

The second equation

∂tp ϵ = vR(cO2
, ϵ, rp) ·

MLi2O2

ρLi2O2

(8.13)

considers the decrease of free pore volume in terms of the reaction rate weighted by the molar

volume MLi2O2
/ρLi2O2

of the discharge product, where MLi2O2
is the molar mass and ρLi2O2

the density of Li2O2. Using the initial values ϵ0 = ϵ(tp = 0), r0
p = rp(tp = 0) and the above

Bruggeman relation, the porosity can be related to the pore radius via

(
ϵ

ϵ0

) 3
2

=

(
rp

r0
p

)2

.

The introduction of dimensionless quantities

t =
tpDO2

√
ϵ0

l2 , r =
rp

r0
p

, z =
zp

l
and c =

cO2

cO2,0
(0 ≤ r, z, c ≤ 1)
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8.3. Diffusion dependent growth in a porous structure

reduces the partial differential equations (8.11) and (8.13) to their final form

∂t(r
4
3 c) = ∂z

(
r2 · ∂zc

)
− β · r

1
3 c (8.14)

and

∂tr = −γc , (8.15)

where cO2,0 = cO2
(zp = 0) is the oxygen solubility at a temperature of 298 K and a pressure of

1 atm O2 in each of the considered electrolytes listed in Table 8.1.

Table 8.1.: Oxygen solubility cO2,0 and diffusivity DO2
of the five considered electrolytes. The

oxygen solubility at 1 atm and 298 K for DMSO is adopted from ref. 96, all other solubilities are
based on the Bunsen coefficients of the pure solvents from ref. 114. The diffusivities are taken
from ref. 7 with the exception of PC. [114]

cO2,0/10-6 mol cm-3 DO2
/10-6 cm2 s-1

PCLi+ 3.20 2.24
TEGDMELi+ 4.43 2.17
SL 1.47 12.00
DMSOLi+ 2.10 16.70
DMELi+ 9.56 12.20

The parameters β and γ are given by

β = k · 2l2

DO2

√
ϵ0r0

p
and γ = k · 3l2cO2,0

2DO2

√
ϵ0r0

p

MLi2O2

ρLi2O2

. (8.16)

They are calculated at a given time t under the condition of a constant cathode current density of

0.1 mA cm-2 which reflects the usual operation mode of Li/air electrochemical cells. [16,28,32]

Current density and reaction rate constant In the present work the current density is com-

puted with respect to the nominal accessible cathode surface. According to Faraday’s laws the

current density change di per unit of cathode length dzp is given by di = −neFdtcO2
dzp, where

ne is the number of electrons being transfered during the electrochemical process. Assuming a

two-electron process for the formation of one Li2O2 unit and using the above substitutions, the
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8.3. Diffusion dependent growth in a porous structure

total current density can be calculated via

i(t) = k · 4Fϵ0cO2,0l
r0

p
·

1∫
0

r
1
3 (z, t) · c(z, t)dz . (8.17)

Setting i(t) = i allows k to be calculated which is required to compute β and γ from equation (8.16)

along with all other parameters adopted from Sandhu et al. [44] and summarized in Table 8.2.

Pore radius, cathode length, porosity as well as the applied current density are consistent with

experimental data of typical porous cathodes. [14,35,109,114,128]

Table 8.2.: Parameters employed in the reaction-diffusion model for Li2O2 deposition. [44]

parameter

r0
p / 10-7 cm 2.00

l / cm 0.07
ϵ0 0.73
MLi2O2

/ g mol-1 45.8768
ρLi2O2

/ g cm-3 2.3
i / mA cm-2 0.1

Initial and boundary conditions At the beginning of the process we assume that the pore is

free from deposited Li2O2 and oxygen, i. e., for t = 0

r = 1 for 0 ≤ z ≤ 1 and c = 0 for 0 < z ≤ 1 .

The concentration at the pore entrance is fixed to the maximum, normalized solubility, and a

vanishing oxygen gradient is assumed for all t ≥ 0 at the end of the pore for an oxygen supply

on one side and in the center for an oxygen supply on both sides (in the following referred to as

one-sided and two-sided pore)

c = 1 for z = 0 and ∂zc = 0 for z = 1 or z =
1
2

.

Localized growth via catalysts In the previous model we assume a continuous catalyst dis-

tribution, i. e., the pore surface itself acts as a catalyst for the growth of Li2O2. To model a
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catalytically-induced growth on selected sites along the pore surface, the decrease of free pore

volume in equation (8.15) is modified by a catalytic function cat(z) : [0, 1] → [0, 1] according to

∂tr = −γc · cat(z) . (8.18)

The discretization and numerical implementation via a threshold is discussed in detail in Chapter 9.

8.4. Finite difference method

The two partial differential equations (8.14) and (8.15) describing the pore clogging are solved

numerically via a discrete finite difference method. This method is introduced in the following

chapter after a brief general characterization of partial differential equations and analyzed for its

consistency, stability, and convergence with regard to the considered problem. The approach is

mainly based on the textbooks of Großmann & Roos, [117] Samarskii, [129] and Thomas. [130]

8.4.1. Classification of partial differential equations

The classification of partial differential equations is based on four characteristics:

• number of independent variables

• order (highest partial derivative)

• linearity (are the considered function and all its partial derivatives linear?)

• homogeneity (does the function-independent term vanish identically?).

Both considered differential equations are linear, maximum of the order of two, and have two

independent variables time and space. The general form of a first-order equation for a sufficiently

often differentiable function u : Ω → R, where Ω = [a, b]× [c, d] ⊂ R × R and (z, t) ∈ Ω, is

stated as:

d(z, t)∂zu + e(z, t)∂tu + f (z, t)u = g(z, t) , (8.19)

the equation of second order as

a(z, t)∂zzu + b(z, t)∂ztu + c(z, t)∂ttu + d(z, t)∂zu + e(z, t)∂tu + f (z, t)u = g(z, t) . (8.20)
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Considering the discriminant of the quadratic part, we define the following classification for the

second-order equation on the basis of the general equation for conic sections.

Definition 8.1. Equation (8.20) is called

1. hyperbolic, if b2(z, t)− 4a(z, t)c(z, t) > 0 ∀(z, t) ∈ Ω

2. parabolic, if b2(z, t)− 4a(z, t)c(z, t) = 0 ∀(z, t) ∈ Ω

3. elliptic, if b2(z, t)− 4a(z, t)c(z, t) < 0 ∀(z, t) ∈ Ω .
[131]

A comparison of the general partial differential equations (8.19) and (8.20) with the partial differential

equations considered in the present work for the first-order equation (8.15)

∂tr + γc = 0

results in d(z, t) = f (z, t) = 0. Thus, the first equation is an ordinary, inhomogeneous differential

equation coupled with the second-order equation (8.14)

∂zzc +
(
2r−1∂zr

)
∂zc +

(
− r−

2
3
)
∂tc +

[
− r−

5
3

(4
3

∂tr + β
)]

c = 0 .

In this particular case we obtain for the coefficients b(z, t) = c(z, t) = g(z, t) = 0 and

a(z, t) = 1, i. e., the second partial differential equation is homogeneous and of parabolic type.

Thus, all following consideration are restricted to the resulting prototypes

∂tu = g (8.21)

and

∂zzu + d∂zu + e∂tu + f u = 0 . (8.22)

Boundary conditions Linear boundary conditions of partial differential equations of the consid-

ered prototypes are divided in three classes (for α, β, γ, δ ∈ R).
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Definition 8.2.

• Dirichlet boundary condition

u(a, t) = α, u(b, t) = β and u(z, c) = γ, u(z, d) = δ

• Neumann boundary condition

∂zu(a, t) = α, ∂zu(b, t) = β and ∂tu(z, c) = γ, ∂tu(z, d) = δ

• Robin boundary condition

A1u(a, t) + A2∂zu(a, t) = α, B1u(b, t) + B2∂zu(b, t) = β A1, A2, B1, B2 ∈ R

and

C1u(z, c) + C2∂zu(z, c) = α, D1u(z, d) + D2∂tu(z, d) = β C1, C2, D1, D2 ∈ R .
[117]

In the present work mixed boundary conditions (Dirichlet and Neumann) are used and denoted as

initial conditions for the second variable time.

8.4.2. Finite difference method

The basic idea of the finite difference method is the approximation of partial derivatives with

their difference quotient. For this purpose, we define the finite differences for a function u of two

variables z and t as
Definition 8.3.

• forward difference (D+
z u)(z, t) = u(z+∆z,t)−u(z,t)

∆z

• backward difference (D−
z u)(z, t) = u(z,t)−u(z−∆z,t)

∆z

• central difference (D0
z u)(z, t) = u(z+∆z,t)−u(z−∆z,t)

2∆z (1st order)

• central difference (D+
z D−

z u)(z, t) = u(z+∆z,t)−2u(z,t)+u(z−∆z,t)
(∆z)2 . (2nd order)

Analogously for the second variable t. [117]

In addition to the approximation with finite differences, a numerical description of differential

equations requires a restriction of the variables on a discrete grid. For both variables we define two
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equidistant grids as

zj = j · ∆z, j = 0, . . . , J

tn = n · ∆t, n = 0, . . . , N ,

where ∆z and ∆t are the chosen spacings (spatial resolution and time step). In this notation we

write the difference quotients as

Definition 8.4.

• forward difference D+
j un

j =
un

j+1−un
j

∆z

• backward difference D−
j un

j =
un

j −un
j−1

∆z

• central difference D0
j un

j =
un

j+1−un
j−1

2∆z (1st order)

• central difference D+
j D−

j un
j =

un
j−1−2un

j +un
j+1

(∆z)2 , (2nd order)

where un
j = u(j · ∆z, n · ∆t).

Analogously for the variable n.

The order of discretization of the partial differential equations is set to first in space z and second

in time t (vertical method of lines), in contrast to the horizontal method of lines (first in time and

second in space), or simultaneously in both. The discretization in space provides two different

approaches which are introduced in the following.

Explicit space discretization The explicit method is based on the calculation of the function

(un+1
j )j=0,...,J in the next time step based on known values of the present time step (un

j )j=0,...,J .

The first derivatives in the considered partial differential equations are approximated using a

forward difference, the second derivatives using a central difference according to

∂zu ≈ D+
j un

j =
un

j+1 − un
j

∆z
and ∂zzu ≈ D+

j D−
j un

j =
un

j−1 − 2un
j + un

j+1

(∆z)2 .

Implicit space discretization The implicit method is based on the calculation of the function

(un+1
j )j=0,...,J in the next time step using the function itself, i. e., the solution of a system of

equations is required and hence the method is implicit. In this approach we approximate the first
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derivatives using a forward difference and the second with a central difference according to

∂zu ≈ D+
j un+1

j =
un+1

j+1 − un+1
j

∆z
and ∂zzu ≈ D+

j D−
j un+1

j =
un+1

j−1 − 2un+1
j + un+1

j+1

(∆z)2 .

Explicit time discretization For all approaches the time derivatives are approximated using a

forward difference

∂tu ≈ D+
n un

j =
un+1

j − un
j

∆t
.

The resulting equations and system of equations to be solved are

D+
n un

j = gn
j (8.23)

and summarized for the explicit (σ = 0) and the implicit method (σ = 1)(
D+

j D−
j + dn

j D+
j

) (
σun+1

j + (1 − σ)un
j

)
+
(

en
j D+

n + f n
j

)
un

j = 0 . (8.24)

The parameter σ varies between 0 and 1 yielding further implicit methods such as the Crank-

Nicolson method for σ = 1
2 . To illustrate the procedure of the finite differences approaches, the

explicit, the implicit, and the Crank-Nicolson method are shown in Figure 8.4 as stencils.

j-1, n j, n j+1, n

j, n+1 j-1, n+1 j, n+1 j+1, n+1

j, n

j-1, n+1 j, n+1 j+1, n+1

j-1, n j, n j+1, n

(a) (b) (c)

Figure 8.4.: Stencils for (a) the explicit, (b) the implicit, and (c) the Crank-Nicolson method (adapted
from ref. 132).

The main difference between the various methods are their consistency and stability. Both terms

are introduced in the following section in addition to a definition of convergence of a method. Finally,

the considered problem is analyzed with regard to these properties.
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8.4.3. Consistency, stability, and convergence

The quality of the approximation of a differential operator is characterized by the consistency and

the corresponding order. To define the concept of consistency, we consider a linear differential

operator L : Ck(Ω) → C0(Ω) of the order k given by

Lu = ∑
|α|≤k

aα(z)
∂αu
∂zα

= g .

For non-stationary problems z ∈ Ω represents the variable in space as well as in time and α

denotes a multi-index α = (α1, . . . , αd) ∈ Nd
0 of the d-dimensional problem, where |α| = ∑d

i=1 αi.

Furthermore, let Lh : Gh → Rd be the discrete approximation of L restricted on a grid Gh with

spacing h. Using the discrete max norm ∥ · ∥∞, we define the consistency as follows.

Definition 8.5. Let Lh be an approximation of a differential operator L as above, then Lh is called

(discrete) consistent, if

Lh(u|Gh)− (Lu)|Gh


∞ → 0 for h → 0 .

The order of consistency is m, if

Lh(u|Gh)− (Lu)|Gh


∞ = O (hm) . (8.25)

[117]

Applied on the derived prototypes for the considered partial differential equations, we state:

Theorem 8.1.

(i) The order of consistency for the approximation (8.23) is O (∆t) for u ∈ C0,2(Ω).

(ii) The order of consistency for the approximation (8.24) is O (∆z + ∆t) for u ∈ C4,2(Ω) and

σ ∈ {0, 1}.

Proof. The proof is provided in Appendix G.

However, the consistency alone is not sufficient to ensure convergence. A finite difference method

can be consistent, in other words a good approximation of a differential operator, without being

stable. The stability is a measure of the influence of small disturbances on the solution, i. e.,

the stability does not describe the quality of the approximation of the differential operator but the

approximative solution itself. Only a combination of consistency and stability provides a convergent

method. Hence, we define and analyze the stability of a method.
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Definition 8.6. Let Lh be an approximation of a differential operator L as above. Furthermore, let

uh be the solution of a discrete problem Lhuh = gh. Then an approximation is called (discrete)

stable, if

∥uh∥∞ ≤ C · ∥gh∥∞ , (8.26)

where the constant C ≥ 0 is independent of the spacing h. [117]

For the applied approximations stability is given under the following assumptions.

Theorem 8.2.

(i) The approximation (8.23) is stable.

(ii) The approximation (8.24) is stable for

(a) 1 + dn
j ∆z ≥ 0

(b) en
j ≤ 0

(c)
⏐⏐⏐−en

j + f n
j ∆t

⏐⏐⏐ ≤ 1

(d) −en
j − θ(1 − σ)(2 + dn

j ∆z) + f n
j ∆t ≥ 0

∀j ∈ {0, . . . , J}, n ∈ {0, . . . , N} and θ = ∆t
(∆z)2 .

Proof. The proof is provided in Appendix G.

Finally, we define the convergence of a method.

Definition 8.7. Let Lh be an approximation of a differential operator L as above. Furthermore,

uh is the solution of the discrete problem Lhuh = g|Gh , then Lh is called convergent, if

uh − u|Gh


∞ → 0 for h → 0 .

The order of convergence is m, if

uh − u|Gh


∞ = O ((h)m) . (8.27)

[117]

Based on Lax’ equivalence theorem [133] consistency and stability are necessary and sufficient to

ensure the convergence of a method.

Theorem 8.3. Let Lh be a consistent and stable approximation of a differential operator L in the

meaning of Definition 8.5 and 8.6. Furthermore, let uh be the solution of Lhuh = gh, then the

approximation is convergent, and the order of convergence equals the order of consistency.
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Proof. Based on the stability defined in equation (8.26) and the linearity of the approximation, we

can state

∥uh − u|Gh∥∞ ≤ C∥Lh(uh − u|Gh)∥∞

= C∥Lhuh − Lh(u|Gh)∥∞

= C∥gh − Lh(u|Gh)∥∞

= C∥(Lu)|Gh − Lh(u|Gh)∥∞ .

The claim follows from the consistency defines in equation (8.25)

uh − u|Gh


∞ = O ((h)m) .

Thus, under the stability criteria in Theorem 8.2 both approximations in equation (8.23) and in equa-

tion (8.24) are convergent, and so is the numerical implementation of the methods. Nonetheless,

the validity of the stability criteria has to be ensured and verified for every individual problem.

Applying the parameters dn
j , en

j and f n
j of the reaction-diffusion equation and the growth of Li2O2

in porous structures on the stability criteria, results in severe constraints on the time step/spatial

resolution ratio ∆t/∆z as well as on the threshold in the implemented lateral propagation scheme

(see Sections 8.3 and 9.1). Furthermore, the demand for convergence and hence the validity of the

stability criteria reveals the huge advantage of the implicit scheme in comparison with the explicit

due to the use of much larger time steps at comparable accuracy. A detailed discussion of the

validity of the stability criteria in the present problem as well as the derivation of the lower and

upper limits for the ∆t/∆z-ratio are carried out in Section 9.2.
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CHAPTER 9

NUMERICAL IMPLEMENTATION

The discretization of the two applied solvers, the implicit and the explicit method, are shown in the

following chapter. Subsequently, the methods are analyzes with regard to the stability criteria and

briefly shown in a pseudo-code formulation.

Apart from the finite difference method, we introduce and discuss the Greedy algorithm which is

used to determine the optimal catalyst number and positioning. Furthermore, the parallelization

method implemented in the Greedy algorithm is explained and illustrated in a benchmark test.

Finally, the implicit and the explicit method are compared with regard to their accuracy and efficiency

for the continuous model as well as for the discrete model of catalysts in the Greedy algorithm.

9.1. Discretization of the implicit and the explicit method

Time discretization The discretization of dimensionless time t in the two differential equa-

tions (8.14) and (8.15)

∂tr = −γc and ∂t(r
4
3 c) = ∂z

(
r2 · ∂zc

)
− β · r

1
3 c

is approximated according to Definition 8.4 in Section 8.4.2 using a forward difference

∂tr ≈
1

∆t
(
rn+1

j − rn
j
)

and ∂tc ≈
1

∆t
(
cn+1

j − cn
j
)

,
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9.1. Discretization of the implicit and the explicit method

where ∆t = N−1 is the discrete time step. Thus, the radius in the next time step is calculated

directly via

rn+1
j = rn

j − ∆tγcn
j for j = 0, . . . , J and n = 0, . . . , N (9.1)

using the discrete initial conditions for n = 0

• r0
j = 1 for j = 0, . . . , J

• c0
j = 0 for j = 1, . . . , J

and the Dirichlet boundary conditions for j = 0

• cn
0 = 1 for n = 0, . . . , N .

Explicit space discretization In the explicit approach we approximate the derivatives with

respect to space z using a forward difference for the radius relative to position j and for the

concentration relative to j + 1 according to

∂zr ≈ 1
∆z
(
rn

j − rn
j−1
)

and ∂zc ≈ 1
∆z
(
cn

j+1 − cn
j
)

,

for the second derivative using a central difference

∂zzc ≈ 1
(∆z)2

(
cn

j+1 + cn
j−1 − 2cn

j
)

,

where ∆z = J−1 is the discrete spatial resolution. The index shift in the first equation results from

the coupling of the two partial differential equations and is required for the numerical calculation of

the coefficients that determine the concentration in the next time step. The concentration is then

calculated applying the approximations to equation (8.15) according to

cn+1
j = an

jj−1 · cn
j−1 + an

jj · cn
j + an

jj+1 · cn
j+1 for j = 1, . . . , J − 1, n = 0, . . . , N . (9.2)

The coefficients are given by

an
jj−1 =

∆t
(∆z)2

(
rn

j )
2
3

an
jj =

∆t
(∆z)2

(
rn

j )
− 1

3 2
(
rn

j−1 − 2rn
j
)
+
(
rn

j
)−1
[

1
3
(
7rn

j − 4rn+1
j
)
− β∆t

]
an

jj+1 =
∆t

(∆z)2

(
rn

j )
− 1

3
(
3rn

j − 2rn
j−1
)

.
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Once again we refer to the initial conditions and Dirichlet boundary conditions for the left boundary.

For the right boundary (j = J) Neumann boundary conditions are applied, according to

• cn
J+1 = cn

J

and the concentration is set to cn+1
J = an

J J−1 · cn
J−1 + (an

J J + an
J J+1) · cn

J for every time n. Thus, in

the explicit space discretization the concentration can be calculated directly using equation (9.2),

as in the case of time discretization.

Implicit space discretization The space discretization in the implicit approach is performed

using the concentration in the next time step n + 1 according to

∂zr ≈ 1
∆z
(
rn

j − rn
j−1
)

and ∂zc ≈ 1
∆z
(
cn+1

j+1 − cn+1
j
)

and

∂zzc ≈ 1
(∆z)2

(
cn+1

j−1 − 2cn+1
j + cn+1

j+1

)
.

Analogously to the explicit approach, the indexing is shifted to ensure the calculation of the

coefficient matrix.

The concentration in the next time step is calculated via

cn
j = an

jj−1 · cn+1
j−1 + an

jj · cn+1
j + an

jj+1 · cn+1
j+1 for j = 1, . . . , J − 1, n = 0, . . . , N (9.3)

applying the approximations to equation (8.14) in the previous chapter. The coefficients are given

by

an
jj−1 =

∆t
(∆z)2

(
rn

j )
2
3

[
1
3
(
4rn+1

j − 7rn
j
)]−1

an
jj =

[
∆t

(∆z)2

(
rn

j )
2
3 2
(
rn

j−1 − 2rn
j
)
− rn

j

][
1
3
(
4rn+1

j − 7rn
j
)]−1

an
jj+1 =

∆t
(∆z)2

(
rn

j )
2
3
(
3rn

j − 2rn
j−1
)[1

3
(
4rn+1

j − 7rn
j
)]−1

.

Furthermore, we obtain cn
J = an

J J−1 · cn+1
J−1 + (an

J J + an
J J+1) · cn+1

J using Neumann boundary con-

ditions for the right boundary and for the left boundary j = 1

cn
1 = an

10 · cn+1
0 + an

11 · cn+1
1 + an

12 · cn+1
2 ⇔ cn

1 − an
10 · cn+1

0 = an
11 · cn+1

1 + an
12 · cn+1

2 .
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9.1. Discretization of the implicit and the explicit method

Thus, the system of equation can be written as

Acn+1 = cn
j − corrn ,

where corrn =
(
an

10 · cn+1
0 , 0, . . . , 0

)T
is a correction vector due to the Dirichlet boundary condition.

The J × J system matrix A is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

an
11 an

12 0 · · · 0

an
21 an

22 an
23

...

0 . . . . . . . . . 0
... an

J−1J−2 an
J−1J−1 an

J−1J

0 · · · 0 an
J J−1 an

J J + an
J J+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The system of equations, which determines the concentration in the next time step, is solved

using a LU decomposition. The system matrix is partitioned in a lower triangular matrix L and

an upper triangular matrix U. The two resulting systems of equations Ldn+1 = cn − corrn and

Ucn+1 = dn+1 are solved via a Gaussian elimination. Since the system matrix A is a strictly

diagonally dominant tridiagonal matrix (see proof of stability in Appendix G), the matrix is invertible,

and there exists a LU decomposition according to

L =

⎛⎜⎜⎜⎜⎝
1
l2 1

. . . . . .

lJ 1

⎞⎟⎟⎟⎟⎠ and U =

⎛⎜⎜⎜⎜⎜⎝
u1 an

12

u2
. . .
. . . an

J−1J

uJ

⎞⎟⎟⎟⎟⎟⎠ .

The coefficients are given by

u1 = an
11, lj =

an
jj−1

uj−1
and uj = an

jj − ljan
j−1j for j = 2, . . . , J .

The concentration in the next time step is then calculated in two steps via

(i) dn+1
1 = cn

1 − an
10cn+1

0 and dn+1
j = cn

j − ljdn+1
j−1 for j = 2, . . . , J

(ii) cn+1
J =

dn+1
J
uJ

and cn+1
j =

dn+1
j −an

jj+1cn+1
j+1

uj
for j = J − 1, . . . , 1 .

Discretization of the reaction rate The calculation of the parameters β and γ in equation (8.16)

requires the knowledge of the reaction rate k. For this purpose, the integral in equation (8.17) is
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9.2. Stability criteria applied on the implicit and the explicit method

approximated at every time step n using the trapezoidal rule (Appendix F, Definition F.9) via

Qn(rncn) = ∆z
[

1
2
(
rn

0 cn
0 + rn

J cn
J
)
+

J−1

∑
j=1

rn
j cn

j

]
. (9.4)

Thus, we obtain a discrete reaction rate kn

kn =
ir0

p

4Fϵ0cO2,0l  
const.

· 1
Qn(rncn)

(9.5)

which is calculated at every time step n during the execution of the algorithm.

Discretization of the catalyst function The catalyst function is discretized via a switch function

catn
j : J → {0, 1}, i. e., for a catalyst at position j ∈ J we set catn

j = 1, otherwise zero. This

function is used to modify the differential equation that determines the pore radius r in equation

(9.1) according to

rn+1
j = rn

j − ∆tγcn
j · catn

j for j = 0, . . . , J, n = 0, . . . , N . (9.6)

The smooth growth of discharge product from the catalytic site along the pore wall is modeled in

our discrete implementation using a simple propagation scheme that activates neighbor sites after

the deposition of a certain fixed amount of Li2O2 at the initially defined position. Namely, once the

radius rn
j reaches a given threshold value S at time n, the catalytic function at the next neighbors

of the position j is switched on via catn
j−1 = 1 and catn

j+1 = 1. The threshold is defined as the

fraction S = (r0
j − rn

j )/r0
j of the initially free radius r0

j = 1 becoming occupied by newly deposited

material at time n.

9.2. Stability criteria applied on the implicit and the explicit

method

Both approximations of the differential equations are consistent according to Theorem 8.1 for

the explicit as well as the implicit method. However, to ensure stability and thus convergence all

stability criteria in Theorem 8.2

(a) 1 + dn
j ∆x ≥ 0
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9.2. Stability criteria applied on the implicit and the explicit method

(b) en
j ≤ 0

(c)
⏐⏐⏐−en

j + f n
j ∆t

⏐⏐⏐ ≤ 1

(d) −en
j − θ(1 − σ)(2 + dn

j ∆x) + f n
j ∆t ≥ 0

have to be fulfilled. The parameters in the present methods are given by

• dn
j = 2

(
rn

j
)−1(rn

j − rn
j−1
)
∆z−1

• en
j = −

(
rn

j
)− 2

3

• f n
j = −

(
rn

j
)− 5

3
(

4
3

(
rn+1

j − rn
j
)
∆t−1 + β

)
,

where β = il/
(
2DO2

Fϵ
3
2
0 cO2,0

)  
const.

·
[
∆z
(

1
2

(
rn

0 cn
0 + rn

J cn
J
)
+ ∑J−1

j=1 rn
j cn

j

)]−1
according to equa-

tion (8.16) and the discretization of the reaction rate constant in equation (9.5).

to (a) Using parameter dn
j we can write the first criterion as

rn
j−1

rn
j

≤ 3
2

. (9.7)

For a continuous catalyst distribution it is true that rn
j−1 ≥ rn

j for all grid points j, however,

choosing a reasonable (fine) discretization, large leaps between neighboring pore radii rn
j

and rn
j−1 are avoided and the criterion is valid.

In the case of a localized growth the criterion can be violated easier by an improper choice

of the threshold (see Section 9.6, Discrete model). Thus, criterion (a) is a strong restriction

on the threshold value and hence on the growth mechanisms that can be modeled (the

impact of the threshold on the applied growth mechanism is discussed in detail at the end of

Section 9.6).

to (b) Criterion (b) is always valid for both methods since rn
j ≥ 0 ∀j, n.

to (c) Criterion (c) can be written as −en
j + f n

j ∆t ≤ 1 and −en
j + f n

j ∆t ≥ −1. The resulting

restrictions are

∆t
∆z

≥ const ·
[

1
2

((
rn

0
) 1

3 cn
0 +

(
rn

J
) 1

3 cn
J

)
+

J−1

∑
j=1

(
rn

j
) 1

3 cn
j

][
1
3
(
7rn

j − 4rn+1
j
)
−
(
rn

j
)− 5

3

]
(9.8)
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and

∆t
∆z

≤ const ·
[

1
2

((
rn

0
) 1

3 cn
0 +

(
rn

J
) 1

3 cn
J

)
+

J−1

∑
j=1

(
rn

j
) 1

3 cn
j

][
1
3
(
7rn

j − 4rn+1
j
)
+
(
rn

j
)− 5

3

]
.

Thus, there is a linear dependency between the time step and the spatial resolution for both

methods.

to (d) The last criterion is analyzed for the explicit (σ = 0) and the implicit method (σ = 1)

separately. The implicit approach results in the criterion

∆t
∆z

≤ const ·
[

1
2

((
rn

0
) 1

3 cn
0 +

(
rn

J
) 1

3 cn
J

)
+

J−1

∑
j=1

(
rn

j
) 1

3 cn
j

][
1
3
(
7rn

j − 4rn+1
j
)]

(9.9)

which is stronger than the upper restriction of criterion (c) since rn
j ≥ 0 ∀j, n.

The explicit method results in a quadratic dependency (highlighted in red) between the time

step and the spatial resolution according to

∆t
(∆z)2+

∆t
∆z

· const.
[

1
2

((
rn

0
) 1

3 cn
0 +

(
rn

J
) 1

3 cn
J

)
+

J−1

∑
j=1

(
rn

j
) 1

3 cn
j

]−1[
2
(
rn

j
) 2

3
(
2rn

j − rn
j−1
)]−1

≤ 1
3
(
rn

j − 4rn+1
j
)[

2
(
rn

j
) 2

3
(
2rn

j − rn
j−1
)]−1

.

(9.10)

Since the upper as well as the lower limit are not accessible in a straightforward way, the

choice of time step and spatial resolution is based on the concentration domain and is

introduced in Section 9.6. However, criterion (c) reveals the vast advantage of a linear

dependency between time step and spatial resolution in the implicit approach. The explicit

method offers a straightforward implementation and a direct calculation of the concentration

in the next time step, while the implicit method requires a more complex implementation for

the solution of a system of equations. Nonetheless, the concomitant computational effort as

well as the higher need for memory space do not outweigh the higher stability of the implicit

method due to the use of distinctly larger time steps at comparable accuracy, what is shown

and discussed in Section 9.6 in detail.
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9.3. Greedy algorithm

The determination of the optimal number and distribution of catalysts to maximize the pore volume

utilization is based on a Greedy algorithm. The strategy of Greedy algorithms is the step-by-step

choice of a subsequent state that is selected on the basis of the minimization of an objective

function. A characteristic property of Greedy algorithms is the irreversibility of already taken

decisions. Due to this property and the restriction to a local minimization, Greedy algorithms do

not always result in a global minimum. An optimal solution requires an optimal substructure and is

ensured solely on matroids (specified in Appendix F, Definition F.8). [118]

To illustrate the procedure of a Greedy algorithm for the catalyst positioning, we transfer the

idea in a graph-theoretical model: Starting from the source node (vertex) the outdegree equals

the number of catalyst positions J, i. e., the directed graph branches in the number of possible

positions. The finite difference method is proceeded for every node until pore clogging is attained

at time N. Since the pore geometry and hence the pore surface are kept constant, we choose the

remaining free pore volume Vf ree as an objective function to evaluate the quality of the catalyst

position. The minimization of Vf ree is equivalent to the maximization of the amount of discharge

product Li2O2 and hence the capacity of the battery at a constant cathode volume. The free pore

volume represents the edge weights (costs) in the graph-theoretical picture, and is calculated

numerically according to

Vn
f ree = ∆z

[
1
2

((
rn

0
)2

+
(
rn

J
)2
)
+

J−1

∑
j=1

(
rn

j
)2
]

(9.11)

using the trapezoidal rule (Appendix F, Definition F.9) to approximate the integration. Following the

Greedy idea, we choose the node with the (locally) minimum free pore volume. In the next step the

catalyst is fixed on the selected position, and the procedure is repeated for the J − 1 remaining

edges. Again the calculated free pore volumes for the new configuration of catalysts (the fixed

catalyst and a newly set one) determine the choice of the next catalyst position. The algorithm

stops if no further improvement can be achieved, i. e., Vn
f ree > Vn−1

f ree = VN
f ree in the nth iteration

step. The applied Greedy algorithm trivially results in a feasible solution but not necessarily in an

optimal one, as can be seen in a small example in Figure 9.1.
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0
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2 23 3
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Figure 9.1.: Procedure and optimal solution in the
Greedy algorithm (green) and the global optimal solu-
tion (red) on an example.

While the Greedy algorithm follows the

green way of minimum edge weights (lo-

cal minima) with catalyst positions {1,3},

the globally optimal way is the red one

with catalyst positions {3,2} resulting in

the minimum free pore volume of 2 (min-

imum edge weight) which is not chosen

due to the lack of an optimal substruc-

ture. Despite the possibility not to gain

the globally optimal solution or to obtain

even the worst possible solution, [118] the

Greedy approach is an outstanding opti-

mization heuristic due to its comparably

fast runtime and straightforward objective

function. To clarify whether the Greedy algorithm results in a good solution for the considered

problem, we analyze the process of pore clogging in a qualitative way. For a continuous growth a

fast clogging of the pore occurs at the oxygen supplying entrance. Therefore, we expect a dense

catalyst occupation at the end of the pore for the optimal catalyst distribution, which decreases

to the pore entrance side in a reverse way as the deposition of Li2O2. This behavior has been

observed in the present study, suggesting a (locally) optimal solution.

In general, we cannot assume an optimal substructure for the considered problem of catalyst

positioning. The complex free volume landscape shown exemplary for the DMSOLi+ electrolyte

for the first eight steps of the Greedy algorithm in Figure 9.10 suggest even a lack of one. Thus,

instead of verifying or falsifying the existence of an optimal substructure via a test of the validity

of all three properties of matroids (Appendix F, Definition F.8), which is beyond the scope of the

algorithmic section, we demonstrate the absence on a simple counterexample. For this purpose,

we calculate the distribution of the first three catalysts on 34 possible catalyst positions via the

Greedy algorithm (minimum number of discretization points with at least three catalysts in the

optimal solution). This distribution is then compared with all feasible solutions(
n
k

)
=

n!
k!(n − k)!

,

where n = 34 and k = 3, hence, 5984 possible arrangements of three catalysts. The resulting free

volumes in descending order are shown in Figure 9.2 along with the free volume obtained from the
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Greedy algorithm. The global optimum provides a free volume of Vf ree = 8.12 % and a catalyst

distribution with positions at (32, 33, 34), while the Greedy algorithm results in Vf ree = 8.21 % and

(31, 32, 33). The difference is due to a local minimum of the free volume at position 31 in the

first step of the Greedy algorithm. In consequence of the irreversibility of the selected position in

the first step, the Greedy algorithm results in a slightly different optimal solution. However, both

solutions are very close to each other in this early stage of the optimization algorithm (second best

free volume and similar catalyst positioning), indicating that the Greedy optimal distribution is close

to the global minimum.
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Figure 9.2.: Greedy optimal free volume (green) in comparison with all feasible solutions in
descending order (blue) and the global minimum (red) of three catalysts on 34 possible catalyst
positions in the DMSOLi+ electrolyte at a threshold of 6 %.

9.4. Pseudo codes of the finite difference method and the

Greedy algorithm

The implicit and the explicit method as well as the Greedy algorithm are implemented in the

programming language C++. In the following each finite differences approach and a combination

with the optimization heuristic are shown as pseudo codes for the Algorithms 9.1, 9.2 and 9.3.

In the implicit case identical code parts to the explicit method are shown in gray to highlight the

differences between both approaches.
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Algorithm 9.1: Implicit finite difference method

Data: ∆z, ∆t, β, γ, J, S, EPS, cat0
j , an

jj for j = 0, . . . , J
Result: rN

j , cN
j for j = 0, . . . , J

for j = 0, . . . , J do
r0

j = 1; // initial condition for the pore radius

end
for j = 1, . . . , J do

c0
j = 0; // initial condition for the concentration

end
c0

0 = 1;
n = 0;
repeat

k = const.
[

∆z
(

1
2

((
rn

0
) 1

3 cn
0 + rn

J cn
J

)
+ ∑J−1

j=1

(
rn

j
) 1

3 cn
j

)]−1

; // reaction rate constant

for j = 0, . . . , J do
rn+1

j = rn
j − ∆tγcatn

j cn
j ; // pore radius in the next time step

end
u1 = an

11; // LU decomposition
for j = 2, . . . , J do

lj =
an

jj−1
uj−1

;

uj = an
jj − ljan

j−1j;

end
dn+1

1 = cn
1 − an

10cn+1
0 ;

for j = 2, . . . , J do
dn+1

j = cn
j − ljdn+1

j−1 ;

end
cn+1

0 = cn
0 ; // boundary conditions for the concentration

cn+1
J =

dn+1
J
uJ

;

for j = J − 1, . . . , 1 do

cn+1
j =

dn+1
j −an

jj+1cn+1
j+1

uj
; // concentration in the next time step

end
for j = 0, . . . , J do

// check the threshold
if rn+1

j < S then
catn

j−1 = 1;
catn

j+1 = 1;

end
end
n++;

until rn+1
j ≤ EPS for a j ;

N = n;



9.4. Pseudo codes of the finite difference method and the Greedy algorithm

Algorithm 9.2: Explicit finite difference method

Data: ∆z, ∆t, β, γ, J, S, EPS, cat0
j , an

jj for j = 0, . . . , J
Result: rN

j , cN
j for j = 0, . . . , J

for j = 0, . . . , J do
r0

j = 1; // initial condition for the pore radius

end

for j = 1, . . . , J do
c0

j = 0; // initial condition for the concentration

end

c0
0 = 1;

n = 0;

repeat

k = const.
[

∆z
(

1
2

((
rn

0
) 1

3 cn
0 + rn

J cn
J

)
+ ∑J−1

j=1

(
rn

j
) 1

3 cn
j

)]−1

; // reaction rate constant

for j = 0, . . . , J do
rn+1

j = rn
j − ∆tγcatn

j cn
j ; // pore radius in the next time step

end

for j = 1, . . . , J − 1 do
cn+1

j = an
jj−1 · cn

j−1 + an
jj · cn

j + an
jj+1 · cn

j+1; // concentration in the next time step

end

cn+1
0 = cn

0 ; // boundary conditions for the concentration

cn+1
J = an

J J−1 · cn
J−1 + (an

J J + an
J J+1) · cn

J ;

// check the threshold

for j = 0, . . . , J do

if rn+1
j < S then
catn

j−1 = 1;

catn
j+1 = 1;

end

end

n++;
until rn+1

j ≤ EPS for a j ;

N = n;
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Algorithm 9.3: Greedy algorithm

Data: ∆z, ∆t, β, γ, J, S, EPS, ajj for j = 0, . . . , J
Result: VN

f ree, rN
j , cN

j , catj for j = 0, . . . , J
V0

f ree = 1; // initialize volume

for j = 0, . . . , J do
catj = 0; // initialize catalysts

end

repeat
// Greedy iteration step

for j = 0, . . . , J do

if catj ̸= 1 then
catj = 1;

implicit/explicit finite difference method;

Vn
f ree,j = ∆z

[
1
2

((
rn

0
)2

+
(
rn

J
)2
)
+ ∑J−1

j=1

(
rn

j
)2
]
; // free pore volume

end

end

Vn
f ree = min

j
{Vn

f ree,j}; // minimum free pore volume

if Vn
f ree < Vn−1

f ree then

Vn−1
f ree = Vn

f ree; // update free pore volume

for j = 0, . . . , J do
catj = catmin

j ; // update catalysts

end

n++;
else

switch = 1;

end

until switch ̸= 1 ;
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9.5. Parallelization and scaling behavior

The principle of the Greedy algorithm is based on the idea to calculate all feasible solutions in an

iteration step and choose the optimal one according to the determining quantity of the free pore

volume. Since the calculation of the individual solutions in a Greedy iteration step are independent

from each other, the algorithm provides the opportunity of (ideal) parallelization.

The applied method for parallelization in the present work is the programming interface OpenMP

(Open Multi-Processing). [134] The crucial advantage of this software is the parallelization of single

parts of a process, so-called threads, which, however, require a shared memory. An example

for such a system are the cores P of a single computer. Although other approaches such as

MPI (Message Passing Interface), in which whole processes are parallelized, provide a higher

level of parallelization, they might be very time consuming due to the required communication,

synchronization, and exchange of data files between single processes. An example for such

a system is a cluster of computers which communicate via a network between the distributed

memory. The two parallelization methods are shown schematically in Figure 9.3. In modern high

performance and supercomputing a combination of both approaches is used.

shared memory

P P P P

network/bus/switch

memory

P P P P

M M M M

network

distributed memory

(a) (b)

Figure 9.3.: Approaches to parallelization via (a) a shared memory (OpenMP) and (b) a distributed
memory (MPI). [135]

Using OpenMP, all independent solutions in a Greedy step are calculated simultaneously. Since

the code still holds parts that have to be handled sequentially, we analyze the scaling behavior and

the time saving with respect to the number of cores. For this purpose, we perform several steps of
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9.6. Comparison between the implicit and the explicit method

the implicit method within the electrolyte DMSOLi+ using a threshold of 1% for a varying number of

cores P = 1, 2, 4, 5, 10, 20, 25. The maximum number of provided cores is 32, however, due to the

spatial resolution J = 100, the number of cores is chosen as a divider of the initial 100 parallelizable

threads and limited to 25. Figure 9.4 shows the resulting scaling behavior in comparison to an

ideal linear scaling. Although the applied parallelization shows a good scaling behavior and hence

implies an enormous time saving, the sequential parts inhibit an ideal scaling, in particular the

sequential input/output processing is seriously limiting.
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Figure 9.4.: Scaling behavior of the parallelized Greedy algorithm (green) for the implicit method
in comparison to an ideal linear scaling (orange).

9.6. Comparison between the implicit and the explicit method

Continuous model The comparison between the implicit and the explicit method is carried out

using DMSOLi+ as an exemplary electrolyte. Both methods are applied on four different numbers

of space discretization points J = 100, 200, 300 and 400. The resulting growth profiles and the

corresponding concentrations are shown in Figure 9.5 (a) for the implicit and (b) for the explicit

method. The oxygen reservoir is located here and in the following on the left side. The applied time

steps, which can be found in Table 9.1, are the largest time steps for which stability is not violated

until the termination condition is achieved, but not larger than the spatial resolution ∆z.
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Figure 9.5.: Growth profiles and concentrations as inlays for (a) the implicit and (b) the explicit
method for different numbers of space discretization points J.

Thereby, the stability is revised via the value of the normalized concentration at every time step

instead of the computationally intensive stability criteria. As soon as the concentration exceeds the

domain c ∈ [0, 1], the algorithm is stopped and the time step is decreased. Apart from the number

of space and time discretization points, Table 9.1 shows the remaining free pore volume after pore

clogging, the relative deviation

σVf ree =

⏐⏐⏐Vexp
f ree − Vimp

f ree

⏐⏐⏐
Vexp

f ree
,

and the runtime trun for the implicit and the explicit method.

Table 9.1.: Free pore volume, relative deviation, and runtime for the implicit and the explicit method.

J (∆t)-1 Vf ree / % σVf ree / % trun / s
implicit explicit implicit explicit implicit explicit

100 100 24000 61.6157 61.6152 0.0008 20.10 4762
200 200 92000 61.7067 61.7063 0.0006 82.01 37165
300 300 201000 61.7335 61.7332 0.0005 182.91 115751
400 400 352000 67.7460 61.7457 0.0004 326.21 268083

Pore clogging (termination condition) is defined as the point in time when the dimensionless

pore radius r decreases below 0.1.

The relative deviation between the implicit and the explicit method is below 0.001 % and de-

creases even further with increasing number of space discretization points, while the runtime
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9.6. Comparison between the implicit and the explicit method

increases enormously. The time evolution in the pore clogging and the concentration drop are

visualized in Figure 9.6 for the implicit and the explicit method for a space discretization of J = 100.
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Figure 9.6.: Time evolution in (a) the growth and (b) the concentration for the implicit (blue) and
(c) the growth and (d) the concentration for the explicit (red) method for a space discretization of
J = 100. Screenshots of the progression are taken every N time steps.

Thus, in the present continuous model of growth no disadvantages arise from the use of the

implicit method for the determination of the free pore volume. For the analysis of the actual runtime

with respect to J we fit the time of each method via the function trun(J) = a1 · Jp + a0. Due to the

few points an exact analysis of the scaling behavior is not possible, however, the applied regression

analysis provides a very good estimation for the exponent p. The resulting scaling behavior with

increasing J, as can be seen in the regression analysis in Figure 9.7, is quadratic in the case of the

implicit method and cubic for the explicit one.
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Figure 9.7.: Runtime with respect to the number of space discretization points for the implicit (blue)
and the explicit (red) method with corresponding regression analysis (orange).

This behavior is also evident from theoretical considerations. In the explicit method accord-

ing to equation (9.2) O(J) arithmetic operations are required for the direct computation of the

concentration at every time step at every point j = 1, · · · , J. If we refine the space discretiza-

tion, simultaneously the time step is decreasing quadratically, i. e., the last stability criterion in

Section 9.2, equation (9.10) is dominated by the dependency

1
∆t

∝
1

(∆z)2 = O(J2) .

Thus, the overall computational effort for the explicit method is of the order O(J3).

In the implicit method the concentration is not accessible directly but requires the solution of a

system of equations. Inverting the coefficient matrix causes a computational effort of the order

O(J3) at every time step. However, the applied LU decomposition as well as the tridiagonal form

of the coefficient matrix reduce the computational effort significantly. The LU decomposition of a

J × J matrix is dominated by the (J − k)2 multiplications and subtractions for every elimination

step k, i. e.,
J−1

∑
k=1

(J − k)2 =
J−1

∑
i=1

i2 =
1
2
(J − 1)J(2(J − 1) + 1) = O(J3) .

The solution of the system of equations via Gaussian elimination is only of subordinate order

O(J2). [136] In the case of band matrices with bandwidths q and p the computational effort is

reduced to O(J · p · q). Consequently, in the particular case of tridiagonal matrices with p = q = 1
we obtain a linear scaling behavior O(J). Considering again the stability criteria in Section 9.2,
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9.6. Comparison between the implicit and the explicit method

equation (9.9)
1

∆t
∝

1
∆z

= O(J) ,

the overall computational effort is of the order O(J2) and hence in very good agreement with the

simulation results.

In a last step we analyze the benefit of a finer spatial resolution. Based on the free pore volumes

in Table 9.1, we calculate the relative deviation between the free pore volumes for J = 100 and

J = 400 according to

sVf ree =

⏐⏐Vf ree(J = 400)− Vf ree(J = 100)
⏐⏐

Vf ree(J = 400)
.

The relative deviation is about sVf ree = 0.21 % for the explicit as well as for the implicit method.

Taking into account the enlarged computational effort with decreasing spatial resolution (even for

the implicit method we observe a quadratic increase in runtime), an increase in the number of

discretization points for a continuous model is of no benefit for the here-required accuracy.

Discrete model To model the catalytically-induced growth of Li2O2 on selected sites along the

pore surface, the decrease of free pore volume in equation (9.1) is modified by a catalytic function

according to equation (9.6). The effect of the catalytic function is to switch on (catn
j = 1) or off

(catn
j = 0) the Li2O2 growth at position j in the pore at a given time n. Smooth growth of discharge

product is realized via a threshold, as illustrated in Section 9.1.

Here, we first study eight different thresholds 1 - 7 % and 10 % in a pore with a single catalyst

placed at the center of the cathode length. This is done in order to (i) study the different growth

mechanisms (island vs layer-by-layer growth) with respect to the chosen threshold parameter and

(ii) optimize this parameter for the discrete catalyst model.

Figure 9.8 (b) shows the growth resulting from the applied model using DMSOLi+ and a threshold

of 6 %. Initially the discharge product grows solely at the catalytic site. Once the threshold is

reached, growth starts also at the neighboring sites (schematically shown in Figure 9.8 (a) with

decreasing brightness). Since oxygen enters the pore from the left, oxygen concentration and

deposition rate are higher on the left than on the right side of the initial catalytic site. Consequently,

the threshold is reached earlier at the pore entrance side and facilitates the spread of new growth

centers towards this direction, leading to an asymmetric growth profile.
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Figure 9.8.: Growth profiles of Li2O2 in the presence of a single catalyst at the pore center. (a)
Scheme of the employed propagation strategy for the catalytic function towards neighbor sites. (b)
Simulation results until pore clogging with a threshold of 6 % in DMSOLi+ . The time evolution of
the profiles is represented with colors ranging from dark to light blue.

Figure 9.9 shows the growth profiles obtained after pore clogging using a single catalyst and

different thresholds. The applied thresholds lead to different rates of growth along the pore axis

which correspond to different growth mechanisms, from an island formation for large thresholds

(Volmer-Weber growth) to a layer-by-layer growth for small thresholds (Frank-van-der-Merwe

growth). However, the choice of the threshold value is constrained by the stability criteria. In

particular, since pore radius and concentration at every time step and discretization point are

dependent on the chosen threshold, time step and spatial resolution have to be adjusted according

to its value. The validity of the stability criteria is thus a severe constraint on the type of growth that

can be considered in the present model. The morphology of lithium peroxide deposition observed
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Figure 9.9.: (a) Growth profiles of Li2O2 and (b) oxygen concentration after pore clogging in the
presence of a single catalyst at the pore center for different thresholds and in DMSOLi+ .
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experimentally on cathode surfaces is mainly governed by the applied current density. While at

low current densities of a few µA cm-2 the formation of toroidal-shaped lithium peroxide particles

takes place, [17,137,138] uniform thin film growth has been reported by Adams et al. [16] at current

densities larger than 50 µA cm-2. In the present work we use a current density of 100 µA cm-2,

which corresponds to a thin film growth. High threshold values are thus not representative of the

real deposition mechanisms. However, to allow for a certain degree of discrete growth, very low

values are also not appropriate, and the following simulations will be restricted to a threshold range

of 4 - 6 % of the initial pore radius.

The results of the iterative minimization procedure in the Greedy algorithm for the case of

the DMSOLi+ electrolyte and a threshold of 6 % are shown exemplary in Figure 9.10 (a) for the

implicit and (b) for the explicit method. The space discretization is set to J = 100 possible catalyst
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Figure 9.10.: Free pore volume with respect to the catalyst position during the first eight steps of
the Greedy algorithm for (a) the implicit (blue) and (b) the explicit (red) method in DMSOLi+ for a
threshold of 6 %. The positions of minimum free volume determined after each step are labeled
with corresponding red numbers.

positions along the pore length. The figure represents the calculated free pore volume Vf ree after

pore clogging for every catalyst position screened in each of the first eight Greedy steps. The

positions of the successively individuated minima of Vf ree are marked with red numbers indicating

the corresponding Greedy step, i. e., the order in which the catalysts are placed. Discrete growth

and concentration profiles resulting from the implicit and the explicit calculation differ only slightly.

The deviation between both methods has no influence on the optimization procedure. Catalyst

positions as well as the order of placement are identical for the implicit and the explicit method.

Furthermore, we note that the progressive placement of catalysts does not proceed from the end

of the pore towards the pore entrance, as one may have intuitively expected.
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In summary, we choose the implicit finite difference method for further analysis of pore clogging

in different electrolytes, since this method provides the significantly shorter runtime with simultane-

ously a negligible relative deviation of the free pore volume between the two methods. Furthermore,

the number of discretization points is set to J = 100, since no considerable advantage arises from

an increase of J in the continuous model. In the case of a discrete growth we assume J = 100

possible catalyst positions as appropriate to determine a catalyst distribution along the pore and to

state differences between the five solvent environments.
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CHAPTER 10

RESULTS

In the following chapter we present the results of the pore clogging analysis carried out in five

different electrolytes. The issue of pore clogging is studied first in a continuous growth model for a

one-sided and a two-sided oxygen supply into the pore. Subsequently, the discrete growth model

based on the Greedy algorithm is applied on the one-sided pore, and the optimal catalyst number

and positioning are determined using the free pore volume as an objective function. Finally, three

additional pore geometries are studied in the continuous and in the discrete growth model and

discussed with regard to the standard cylindric pore.

10.1. Continuous growth

Assuming every discretization point along the pore axis as a site for Li2O2 deposition, the discrete

mathematical model presented in the previous chapter is solved for a one-sided and a two-sided

pore and for all five electrolytes PCLi+ , TEGDMELi+ , DMSOLi+ and DMELi+ until clogging of

the pore. To ensure stability, the time step is adjusted in order to keep the concentration in a

reasonable range of c ∈ [0, 1]. Figures 10.1 (a) and (c) show the final growth profiles as a function

of cathode depth for a one-sided and a two-sided pore respectively and Figures 10.1 (b) and (d)

their corresponding concentrations. The resulting free pore volumes Vf ree and the corresponding

times until pore clogging are listed in Table 10.1. Vf ree varies between 30 % for DMELi+ to 92 % for

PCLi+ for the one-sided and between 17 % for DMELi+ to 84 % for PCLi+ for the two-sided pore,

depending on the combination of oxygen diffusivity and solubility.
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Figure 10.1.: Continuous growth profiles of Li2O2 after pore clogging for the electrolytes PCLi+

(green), TEGDMELi+ (red), SL (purple), DMSOLi+ (blue) and DMELi+ (orange) for (a) a one-sided
and (c) a two-sided pore with corresponding concentrations in (b) and (d). Oxygen molecules enter
the pore from the left side in the case of the one-sided pore.

Table 10.1.: Free pore volume and time until pore clogging for a one- and two-sided open pore.

Vf ree / % tp / h
one-sided two-sided one-sided two-sided

PCLi+ 92.02 84.44 83 321
TEGDMELi+ 89.44 79.32 109 426
SL 79.29 61.44 213 802
DMSOLi+ 61.62 40.84 399 1271
DMELi+ 30.13 17.33 771 1914
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Due to the poor mass diffusivity and the small oxygen solubility in PCLi+ and TEGDMELi+ , the

free pore volumes after pore clogging remain at 80 % and above the initial value for the one-sided

as well as for the two-sided pore. Despite the high mass diffusivity of DMSOLi+ , the lowest free

pore volumes and the longest times until pore clogging are achieved for DMELi+ . At this point

the about four times higher oxygen solubility combined with a good mass diffusivity is dominating

the delay of pore clogging. For all electrolytes, two-sided pores show a decrease in free pore

volume between 7.51 % and 21 % and about 2.5 to 4 longer times until pore clogging. The highest

decrease in free pore volume from one-sided to two-sides pores is achieved for DMSOLi+ and can

be explained by the high oxygen mass diffusivity. Nonetheless, mass diffusivity and solubility have

to be considered together to obtain a good utilization of the cathode volume.

10.2. Optimal number and distribution of catalysts

In this section we aim to estimate the optimal number and distribution of catalysts that lead to the

minimum free pore volume after clogging, i. e., to maximal utilization of the cathode capacity. The

optimization is carried out using a Greedy algorithm with the free volume Vf ree of a single pore

after clogging as the objective function. The algorithm is based on an iterative search scheme in

which at each iteration step a new single catalyst is placed in the pore, and its position is optimized,

while the previously set catalysts remain fixed at their already optimized positions. Namely, at each

iteration step a new single catalyst is placed at every position j not yet occupied by previously

set catalysts, and the deposition of Li2O2 is carried out as described in the previous chapter until

pore clogging. The position that leads to the minimum free pore volume is then chosen and fixed,

before adding a new catalyst and repeating the procedure until no further decrease of free pore

volume occurs with increasing number of new catalysts. This algorithm is implemented in parallel,

assigning to each computing core several positions j within the same iteration step, as illustrated in

Chapter 9.

The evolution of the minimum free volume obtained in every Greedy step is shown in Fig-

ure 10.2 (a) for the example of the electrolyte DMSOLi+ and a threshold of 6 %. The minimum free

volume decreases rapidly in the first steps and then more slowly until the optimal value is reached,

in this case after placement of 43 catalysts. Increasing the number of catalysts after this point

results in an increase of the free volume which eventually converges to the value obtained with the

continuous growth mechanism, proving the consistency of the method. The number of catalysts

corresponding to the maximum pore filling (43) as well as to 90 % and 99 % of the optimal filling

are highlighted in red. The actual distribution of catalysts along the pore axis corresponding to
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Figure 10.2.: (a) Evolution of the minimum free volume after pore clogging as a function of the
number of placed catalysts along the pore axis in DMSOLi+ for a threshold of 6 %. The red line
indicates the minimum free volume obtained with the continuous growth model. The numbers of
catalysts corresponding to 90 %, 99 %, and 100 % of the final occupied volume are marked in red.
(b) Optimal distributions of catalysts along the pore axis corresponding to the three different cases
marked in (a).

these three filling volumes are reported in Figure 10.2 (b). According to expectation, the closed

side of the pore is occupied more densely with catalysts, while no catalysts are placed close to the

pore entrance. A similar behavior can be observed for the three different thresholds considered as

well as for the five electrolytes and is summarized in Figure 10.3 (a). Figure 10.3 (b) shows the

profiles of the discharge product deposition for the optimal distributions of catalysts corresponding

to the five electrolytes for the exemplary threshold of 6 %.
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Figure 10.3.: (a) Optimal distributions of catalysts along the pore axis for thresholds of 4, 5, and
6 % for the electrolytes PCLi+ (green), TEGDMELi+ (red), SL (purple), DMSOLi+ (blue) and DMELi+

(orange). The numbers of placed catalysts are shown in parenthesis in each case. (b) Growth
profiles of Li2O2 after pore clogging for all electrolytes and a threshold of 6 %.
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The final minimum free volumes after pore clogging for all electrolytes and thresholds are listed

in Table 10.2 in comparison with the values relative to a continuous growth.

Table 10.2.: Free pore volume for the continuous model and for the discrete catalyst model for
thresholds of 4, 5, and 6 %.

Vf ree / %
cont. 4 % 5 % 6 %

PCLi+ 92.02 18.36 25.21 33.82
TEGDMELi+ 89.44 9.63 23.17 23.17
SL 79.29 5.70 21.58 44.07
DMSOLi+ 61.62 34.08 33.20 24.61
DMELi+ 30.13 10.36 12.75 14.81

In a last step we apply both the continuous growth model and the discrete Greedy optimization

algorithm on three additional pore geometries, a bullet-shaped, a funnel-shaped, and a reverse

funnel-shaped pore. The initial pore entrance radius is chosen to be equal for all geometries. The

Li2O2 profiles resulting from continuous growth in the three cases are shown in Figure 10.4 (a)-(c).

The final optimal number and positioning of catalysts in the discrete model are shown in Fig-

ure 10.4 (d). The corresponding free volumes after pore clogging for the continuous model and for

the discrete model for all four considered geometries are summarized in Table 10.3.

Table 10.3.: Free pore volume for the continuous model and for the discrete catalyst model for
all four pore geometries cylindric, bullet-shaped, funnel-shaped, and reverse funnel-shaped for a
threshold of 6 %.

Vf ree / % (continuous) Vf ree / % (discrete)
cylindric bullet funnel rev. funnel cylindric bullet funnel rev. funnel

PCLi+ 92.02 88.44 84.26 93.47 18.36 62.44 83.81 58.19
TEGDMELi+ 89.44 84.82 80.25 91.26 9.63 55.11 79.83 62.37
SL 79.29 73.62 69.30 83.57 44.07 35.91 67.47 58.81
DMSOLi+ 61.62 54.30 52.48 67.51 34.08 18.26 50.75 24.55
DMELi+ 30.13 20.60 19.98 35.98 10.36 11.49 20.86 12.85
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Figure 10.4.: Continuous growth profiles of Li2O2 after pore clogging for (a) a bullet-shaped, (b)
a funnel-shaped and (c) a reverse funnel-shaped pore and (d) optimal distributions of catalysts
along the pore axis for a threshold of 6 %, for all four pore geometries and for the electrolytes PCLi+

(green), TEGDMELi+ (red), SL (purple), DMSOLi+ (blue) and DMELi+ (orange).

In the continuous growth model the reverse funnel-shaped pore provides the worst performance

due to the unsuitable widening of the pore towards the closed side. However, a discrete optimized

positioning of catalysts results in a significant improvement of the relative pore volume utilization, in

particular for the favored electrolytes DMSOLi+ and DMELi+ . It should be noted that the absolute

pore volume and hence the amount of deposited Li2O2 is larger compared to the standard cylindric

pore. Some of the optimal distributions of catalysts are comparable to the distributions obtained

from a cylindric pore, i. e., a dense catalyst occupation at the closed side and less dense towards

the pore entrance. However, for the TEGDMELi+ electrolyte the distribution is far from intuitive and

is clustered in the central region of the pore. The bullet-shaped pore also shows an improvement

in the pore volume utilization for an optimized discrete positioning of catalysts using only a few
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10.2. Optimal number and distribution of catalysts

catalysts. Although the improvement is comparable to a cylindric and a reverse funnel-shaped pore

for the electrolytes DMSOLi+ and DMELi+ , the benefit is lower taken into account the decreased

absolute volume of the bullet shape. In the case of a funnel-shaped pore a discrete catalyst

distribution has virtually no effect on the utilization of the pore volume due to the strong tapering of

the pore. The algorithm stops after setting only one catalyst at the far pore end, resulting in pore

volume utilizations very similar to the continuous case.
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CHAPTER 11

DISCUSSION

Many approaches have been proposed to overcome the oxygen starvation of the cathode in Li/air

batteries which strongly limits their capacity. Several experimental [37,109] and theoretical [116,127,139]

studies have shown that the specific capacity increases with decreasing current density due to

transport limitations of oxygen into the cathode. However, a high current density is desired to

increase the battery performance and decrease the charging time. This has motivated in-depth

studies into the optimization of the oxygen transport properties which are influenced by the cathode

thickness and porosity as well as by the oxygen solubility and diffusivity in the electrolyte. [114,140] For

example, Li et al. [127] has shown in a theoretical study that a linear increase of the porosity towards

the oxygen supplying side preserves oxygen transport tunnels and simultaneously increases the

discharge capacity. The search for suitable electrolytes with high oxygen solubility and diffusivity

has been rather difficult because of limitations set by the required high electrochemical stability

and system safety. [1] Therefore, as mentioned in the introduction, recent effort has been devoted

to optimize the activity and distribution of catalytic centers at the cathode surface with the aim of

maximizing the volume occupied by the discharge products before passivation or pore clogging

takes place. [115,116]

In this part we have presented an efficient numerical solution of the reaction-diffusion equation

governing the deposition of Li2O2 in porous cathodes during the battery discharge process on

the basis of a previously suggested model. [44] We have then implemented a Greedy optimization

algorithm that has allowed us to determine the optimal number and position of catalysts within

the cathode pores for a given electrolyte characterized by its oxygen solubility cO2,0 and diffusivity

DO2
. Particular attention has been paid to ensure numerical stability of the employed algorithms

by accurate determination of the discrete time step ∆t and spatial resolution ∆z (equations (9.8)
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and (9.9)).

In our current implementation, the nucleation of Li2O2 at a specific position is defined by a binary

function that either allows or prevents its deposition. The lateral growth of the so-formed nucleus

is then modeled by a simple propagation procedure of the catalytic function towards neighbor

sites based on an arbitrary deposition threshold. However, we note that the implementation of

more complex nucleation and growth mechanisms, such as the definition of position-dependent

fractional reaction probabilities or time-dependent growth kinetics, is readily possible and shall

be investigated in future, possibly more realistic studies. Also the extension of the algorithm to

three-dimensional porosity models is in principle possible, although associated with a greatly

increased computational effort, especially if optimization of catalyst distributions are sought for.

However, even in its current implementation, the outcome of our simulations allows us to compare

the performance of different electrolytes. Considering homogeneous Li2O2 deposition at the whole

pore surface, about 90 % of the initial pore volume remains free after pore clogging for the case of

PCLi+ and TEGDMELi+ , mostly due to their poor mass diffusivity and small oxygen solubility (see

Table 10.2). Instead, the high diffusivity and high oxygen solubility of DMELi+ lead to a much better

pore utilization with a remaining free volume of about 30 %. It is important to note that efficient

utilization of the cathode volume requires not only a high diffusivity, but also, concomitantly, a high

solubility of molecular oxygen. Indeed, despite its high mass diffusivity, DMSOLi+ is considerably

less efficient than DMELi+ because of its lower oxygen solubility.

In the presence of catalysts the dominant factor determining a maximal pore utilization becomes

the distribution of the individual catalyst positions. Namely, the distributions obtained with the help

of our Greedy optimization algorithm results in similar final free volumes after pore clogging for

all five electrolytes (see Figure 10.3 and Table 10.2), although with very different number and

positions of catalysts.

A visual comparison of the specific capacities per mass of carbon averaged over the three

thresholds correspondent to the five electrolytes is shown in Figure 11.1. The calculation is

based on the volume of discharge product after pore clogging and an initial cathode porosity of

ϵ0 = 73 %:

cspec =
2FρLi2O2

ϵ0(1 − Vf ree)

MLi2O2
ρC(1 − ϵ0)

. (11.1)

All electrolytes show a high improvement in discharge capacity moving from a continuous growth

(limited by the intrinsic electrolyte properties) to a catalyzed, discrete growth (limited by the

positioning of the catalysts). The improvement is particularly evident for PCLi+ and TEGDMELi+ ,

whose initially poor performances can be compensated by a small number of catalysts placed far

from the oxygen entrance side. Because of the low oxygen diffusivities in these two cases, the
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Figure 11.1.: Specific capacities per mass of carbon (ρC = 2.3 g cm-3 [94]) for a continuous growth
(solid) and a discrete catalyst growth averaged over thresholds of 4, 5, and 6 % (striped) after pore
clogging in the five considered electrolytes. The correspondent oxygen solubilities and diffusivities
are shown with empty and filled circle symbols, respectively.

lateral spread of the initially formed nuclei is faster than their vertical growth, since the incoming

oxygen molecules are consumed by the ORR before reaching the far end of the pore. Overall,

the highest specific capacity is still presented by DMELi+ which is indeed among the most widely

used electrolytes along with DMSOLi+ whose advantage is the electrochemical stability especially

towards species being formed during the discharge.
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CHAPTER 12

CONCLUSION AND PERSPECTIVE

The realization of an established and commercially available Li/air battery is facing many challenges

and is still at the beginning of research. Although no long-term stability with a high energy per

mass ratio has yet been accomplished, the Li/air battery remains nonetheless of a matchless

attractiveness due to its theoretical expectations regarding the specific energy, in particular for

electric vehicles. The issues in enabling an operating full-battery-cell design are addressed to the

protection of the metallic Li anode via a Solid Electrolyte Interface and the percolation of oxygen

from ambient air with no simultaneous evaporation of the electrolyte via a selective membrane

which also provides the mechanical flexibility to deal with the occurring large volume changes in

the battery cycle.

However, the precondition for this is a working cathode half-cell, in which the main chemical

processes take place. To establish a truly reversible chemistry, the identification of the actual

reaction mechanisms of the charge and discharge process is essential, considering the enormous

impact of the morphology of the electrochemically grown Li2O2 on the discharge potential and

particularly on the charge process and the charge potential. Furthermore, without knowledge of

the processes and their intermediate species only a few suggestions can be done concerning

the stability of all participating agents (most of all the electrolyte, but also the separator and the

cathode itself). Thus, we have dedicated the first part of the present thesis to the charge process in

Li/air batteries. By means of an unbiased technique as first principles molecular dynamics based

on density functional theory without requirements of empirical data and approximative models, we

have gained insight into electronic structures and chemical reaction pathways and the involved

intermediates, comparable to experimental in situ measurements. The proposed two-stage process

for the decomposition of amorphous LinOn clusters based on our simulation results contributes to
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the clarification of possible reaction pathways in the decomposition of Li2O2 which deposits on

the cathode surface as amorphous thin film at large current densities. [16] Particular attention has

been paid to a realistic environment (within the capability of DFT-based simulations) to study the

impact of a solvent on the reaction pathway. In doing so, we have shown that a possible reaction

mechanism in the charge process is first a peroxide-to-superoxide transition of the amorphous

clusters at low potentials followed by a release of O2 (with or without Li+) at higher potentials,

while Li+ detachment from the cluster occurred only as a compound structure with O2, and

no preceding delithiation process could be observed in our simulations. However, the recently

proposed and currently discussed delithiation during the charge process is usually referred to

crystalline bulk Li2O2, which represents the main part of the toroidal Li2O2 particles grown at low

current densities. [11–15] A next step that we would propose regarding the investigation of the charge

process in Li/air batteries is hence the decomposition of crystalline Li2O2 in the presence of a

solvent to study a possible delithiation process and its specific reaction pathway. By this means,

we could establish an overall image of the charge process and the decomposition of Li2O2 with its

complex structure composed of crystalline, amorphous, and superoxide-like species.

However, this is only one direction of the (ideally) reversible process in Li/air batteries. The

analysis of the discharge process with particular attention paid to nucleation, crystal growth and

morphology is inevitable, but could go beyond the scope of DFT-based simulations. Furthermore,

the oxidation of molecular dioxygen on the carbon matrix is not a simple task from a computational

point of view due to the delocalization of the electrons. An alternative for the analysis of crystal

growth is provided by the reactive force field (ReaxFF) method which allows large system sizes

as well as longer simulation times in terms of the reaction coordinate. [141] However, this method

should be treated with caution while modeling an unknown crystal growth mechanism. Apart from

molecular dynamics simulations, another approach to dissolution and growth of Li2O2 discharge

product could be represented by Monte Carlo simulations, in particular kinetic Monte Carlo, which,

however, have to be parametrized, for example, by means of DFT-based simulations, to obtain the

kinetic parameters. [142,143] Finally, the passivation of the cathode surface should not be disregarded.

Based on the results on morphology and growth mechanisms, which could be obtained from the

above simulations, the effect of dopants, vacancies, surface conduction, impact of crystallographic

directions, and layer thickness could be studied. [21,144] A potentially suitable technique for the

analysis of band structures and electron transport is offered by the DFTB+ (Density Functional

based Tight Binding) code based on a Green’s function formalism. [145]
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Concomitant with simulations, an experimental study of discharge product morphologies and

composition is necessary and planed at the Fraunhofer IFAM∗ to identify the factors determining

the discharge process, such as current density, electrolyte and cathode materials, and in so doing

to figure out dependencies on the resulting morphologies of discharge product. This has to be

followed subsequently be a similar analysis on charge to define dependencies on the reaction

pathway(s) also on the reverse process between external factors and the actual discharge product.

Schwager et al. [146] developed at the Carl von Ossietzky University in Oldenburg in cooperation

with the Fraunhofer IFAM∗ an in-situ detection of dioxygen permeation through a gas diffusion

electrode (GDE) in Li+-based organic electrolyte via a positionable microelectrode. Thereby, the

authors detected also soluble ORR products, which they assigned to superoxide species. Although

this method presents a powerful tool to distinguish between soluble and insoluble discharge

product species, in particular in a Li+ environment, on time and size scales considered in chemical

reactions, exact predictions of reaction products and pathways as well as their intermediates in the

charge/discharge cycle are only possible by combining both experimental expertise and DFT-based

or beyond DFT simulations.

Once a reversible chemistry is established, the next challenge is the maximization of the battery

capacity. Apart from the mentioned passivation effect, the deposition and yield of discharge

product is critical to achieve a maximum cathode utilization and capacity, since pore clogging and

poor oxygen transport restrict a full cathode volume access significantly. In this study we have

presented a first step in controlling the discharge product deposition via an optimized discrete

catalyst distribution. By this means, we have improved the battery capacity and achieved a

comparable performance for electrolytes with initially widely varying capacities. Nonetheless,

the model has been kept simple to examine the possibilities of heuristic optimization applied

on diffusion-based growth models. A next step in the analysis and control of discharge product

deposition should address the combination of optimization methods with more sophisticated

models describing transport phenomena. These have been already established in the modeling

of Li-ion batteries based on Newman models [45,46] and transfered to Li/air batteries. [44,115,116]

In this way, we can take into account the electrolyte phase and the corresponding lithium ion

concentration, electrostatic potential effects as well as the impact of resistivity of grown discharge

product. [115,116] Furthermore, it would be interesting to study the effect of partial wettability in

comparison to fully flooded cathodes as well as the impact of active cathode surface, pore radius,

and in particular pore geometry. [107] The study of an appropriate pore geometry, however, should

be carried out in higher-dimensional models than the, so far, broadly used one-dimensional pores

∗Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Project Group for Electrical Energy
Storage, Oldenburg, Germany
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to prevent the violation of the assumptions of angular symmetry and constant concentration in

the radial direction. On the basis of these two or three dimensional models including the above

enhancements, the initially basic model can be extended to a pore network to mimic a macroscopic

cathode structure which contains macroscopic oxygen transport tunnels as well as meso- and

micropores.Thus, an advanced cathode model could be established to understand the complex

processes taking place during discharge of the Li/air battery and provide the opportunity to support

an electrode design of maximum capacity gain. However, as already implied in the motivation of

this thesis, a macroscopic model has to be provided with empirical and experimental data and/or

results from atomistic simulations. Since the experimental analysis of morphology and growth

mechanisms of the discharge product Li2O2 in the porous structure is a challenging issue, growth

mechanisms gathered from atomistic simulations could help to derive a more realistic discharge

product propagation scheme in a catalyst induced growth than the one that has been used in the

present thesis. Furthermore, classical molecular dynamics can be applied to determine required

dynamical constants, such as diffusion constants, or to support the understanding of complex

formation of lithium ions and electrolyte salt anions even in a more realistic setup of potential-driven

dynamics.

On the experimental side of cathode investigation first steps toward catalysis as well as analysis

of pore clogging in different GDE structures have already been taken. An intensive study on

the catalytic activity of manganese oxides, which have a considerable advantage in cost over

the broadly used noble metals, has been performed by Augustin et al. [43,147] at the Fraunhofer

IFAM∗. In Cyclic Voltammetry measurements in a LiTFSI/DMSO electrolyte the authors observed a

significant increase in peak potential during the ORR and hence a decreased overall overpotential

for α-Mn2O3, indicating a strong catalytic activity of the molecule. This is ascribed to an alternative

reaction pathway of the rate-determining one-electron reduction of oxygen during the discharge

process, which is now taking place at the catalyst particle surface, such that the discharge process

is primary limited by the oxygen diffusion toward the cathod surface. Electocatalytic activity as

well as a modification of the cathode surface with catalyst particles have been shown in the

above studies. However, since we aim not only to enhance the electrochemical reaction during

discharge but also to benefit from this quality by controlling the discharge product deposition, in

a next step based on the already established and available infrastructure a mechanism has to

be developed to control the catalyst distribution along the cathode. Moreover, the advantage of

catalytic active sides can be utilized only for an appropriate choice of the porous carbon cathode.

Bardenhagen et al. [112] investigated at the University of Bremen in cooperation with the Fraunhofer

IFAM∗ different GDE designs containing macro- and mesopores in a LiTFSI/DMSO electrolyte.
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By in situ Electrochemical Impedance Spectroscopy in a three electrode setup the authors could

separate the different transport and electrochemical processes at the anode and the cathode

in terms of time and space, identifying pore clogging as one of the main limiting factors in the

discharge of Li/air batteries. Furthermore, in macroporous materials (Freudenberg GDE) a planar-

surface-like behavior has been observed, and the ORR are limited by passivation of the cathode

surface due to a thin Li2O2 film growth. On the other hand, mesoporous cathodes (xerogel GDE)

have demonstrated the highest specific capacity among the investigated GDEs and a long and

constant oxygen reduction due to a high storage capability and a large specific surface area

but, however, suffer from pore clogging. In a further study, [148] the same group analyzed the

distribution and composition of discharge products along the cathode as a function of pore size

by X-ray Photoelectron Spectroscopy. This study revealed that marcroporous cathodes provide

a homogeneous discharge product deposition, while mesoporous cathodes show a high amount

of discharge product at the interfaces and a concentration drop toward the inner parts. This is

due to the large oxygen transport tunnels in a macroporous structure and an impeded diffusion of

Li+ and O2 in mesopores. For the same reason discharge product composition varies widely in

mesoporous structures. At the electrolyte facing side deposition of the desired Li2O2 discharge

product can be observed until a lack of replenishment of both components occurs, while at the

oxygen supplying side Li2CO3 represents the main part of the solid discharge product due to

a decreased lithium ion concentration. In the central region of the cathode both Li+ and O2

concentrations are low, such that less discharge product is observed.

These findings, namely time and space resolution of the processes during discharge and discharge

product distribution along the cathode as a function of two different sizes of pores, provide the

opportunity to modify influencing and limiting factors in the present model in a more realistic

manner and to verify the new settings within a LiTFSI/DMSO test system for two different GDEs.

On this basis a geometry optimization can be proceeded to identify the optimal porous network for

a maximized cathode capacity without a costly experimental setup. In a last step both experimental

studies from Augustin et al. and Bardenhagen et al. can be combined, using an optimal catalyst

positioning obtained from simulations. Preliminary, applying catalytically active sides on the porous

cathode, the mechanism of catalysis and the concomitant growth mechanism have to be adopted

by the model, such that more reliable predictions about the performance of different electrolytes

can be done. In summary, in future work the wide range of simulation methods on different time and

size scales as well as experimental studies have to be combined to achieve a broad understanding

of the promising Li/air battery and hence to establish a long-term working, reversible and efficient

alternative to present energy storage concepts.
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APPENDIX A

PARAMETERS FOR CLASSICAL MOLECULAR

DYNAMICS SIMULATIONS

Table A.1.: Simulation parameters for the classical MD simulations (see equation (4.1)) for
DMSO, [80] Li+, [149] and O2. [85]

atom/ion ϵii / eV σii / Å qi / e m / g mol-1

S 0.015050 3.563595 0.312 32.065
O 0.005160 3.029056 -0.556 15.999
C 0.003354 3.634867 -0.148 12.011
H 0.001032 2.387609 0.090 1.008
Li+ 0.000703 2.073000 1.000 6.941
O (from O2) 0.004619 2.960000 0.000 15.999

bond kb / eV Å-2 b0 / Å

S−O 23.220 1.53
S−C 10.320 1.80
C−H 13.846 1.11
O−O (from O2) 20.000 1.21

angle kθ / eV rad-1 θ0 / deg

O−S−C 1.4620 95.00
C−S−C 3.3970 106.75
S−C−H 1.9823 111.30
H−C−H 1.5265 108.40

dihedral kΦ / eV n d / deg

O−S−C−H 0.0086 3 0
C−S−C−H 0.0086 3 0
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Table A.2.: Simulation parameters for the classical MD simulations for PC with ϵii, σii, and qi (see
equation (4.1)) from ref. 81. All other parameters are taken from ref. 82 unless otherwise specified.
Labels are given in Figure A.1.

atom/ion ϵii / eV σii / Å qi / e m / g mol-1

O 0.009030 2.96 -0.510 15.999
OS1 0.007310 3.00 -0.484
OS2 -0.442
C 0.004515 3.75 0.857 12.011
C1 0.002838 3.50 0.166
C2 0.401
C3 -0.362
H1 0.030
H2 0.000645 2.42 0.002 1.008
H3 0.104

bond kb / eV Å-2 b0 / Å

O−C 13.760 1.202 [81]

C−OSn 13.760 1.380
OS−Cn 13.760 1.410
Cn−Cm 11.524 1.529
Cn−Hn 14.620 1.090

angle kθ / eV rad-1 θ0 / deg

O−C−OSn 3.56900 [83] 123.4 [83]

OSn−C−OSm 3.98180 111.5
C−OSn−Cn 2.58000 109.5
OSn−Cn−Cm 2.15000 109.5
OSn−Cn−Hn 1.50500 109.5
Cn−Cm−Hn 1.61250 110.7
C1−C2−C3 2.50905 112.7
Hn−Cn−Hm 1.41900 107.8

dihedral K1 / eV K2 / eV K2 / eV K4 / eV

C−OSn−Cn−Cm 0.027950 -0.010750 0.028810 0.000000
C−OSn−Cn−Hn 0.000000 0.000000 0.032680 0.000000
OSn−C1−C2−C3 -0.057448 0.000000 0.000000 0.000000
OSn−Cn−Cm−Hn 0.000000 0.000000 0.020124 0.000000
Cn−Cm−Ck−Hn 0.000000 0.000000 0.015738 0.000000
Hn−Cn−Cm−Hm 0.000000 0.000000 0.013674 0.000000
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The OPLS dihedral style is based on the potential [79]

E =
1
2

K1[1 + cos(ϕ)] +
1
2

K2[1 − cos(2ϕ)] +
1
2

K3[1 + cos(3ϕ)] +
1
2

K4[1 − cos(4ϕ)] .

O

C

OS1 OS2

C1 C2

C3

H1

H1 H2

H3
H3

H3

Figure A.1.: PC molecule with corresponding labels.
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APPENDIX B

LITHIUM PEROXIDE SURFACES

O-rich Li-richstoichiometric

s
u
rfa

c
es

u
rf

a
c
e

(a)

(b)

(c)

Figure B.1.: (a) (0001), (b) (101̄0), and (c) (112̄0) Li2O2 surfaces in the three terminations
stoichiometric, O-rich, and Li-rich. In the case of a (112̄0) surface no reasonable Li termination
could be found.
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Table B.1.: Surface energies in meV Å-1 for different Li2O2 surfaces and stoichiometries (stoichio-
metric, O-rich, and Li-rich).

surface Boesing Radin et al. [21] Seriani [150]

(0001) stoi. 55.190 32 41
(0001) O-rich 12.557 6 45
(0001) Li-rich 149.048 − 138

(101̄0) stoi. 40.157 34 52
(101̄0) O-rich 23.898 31 43
(101̄0) Li-rich 117.999 − 105

(112̄0) stoi. 59.347 52 −
(112̄0) O-rich 29.174 36 −
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APPENDIX C

CLUSTER STRUCTURES AND ENERGIES

Li2O2
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Figure C.1.: Li2O2 clusters in a singlet and a triplet state.
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Figure C.2.: Li4O4 clusters in a singlet and a triplet state.
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Figure C.3.: Li6O6 clusters in a singlet and a triplet state.
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Figure C.4.: Li8O8 clusters in a singlet and a triplet state.
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Figure C.5.: Li8O8 clusters in a quintet and a septet state.
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Table C.1.: Cluster energies per Li2O2 unit with respect to the lowest energy for the particular
LinOn cluster(for singlet (red) and triplet (green) states, respectively). The (i) restricted Li8O8

cluster (gray) is not considered in the evaluation of the energy minimum of the peroxide-type
clusters, since its structure does not form a closed Li8O8 cluster, and is assumed as an artifact of
the initial conditions.

Gibbs free energy of formation / eV
singlet triplet

Li2O2

(i) restricted 0.0004 (i) restricted 1.9150
(ii) restricted 0.0012 (ii) restricted 1.9147
(iii) restricted 0.0028 (iii) restricted 0.9050
(i) unrestricted 0.0011
(ii) unrestricted 0.0153
(iii) unrestricted 0.0000

Li4O4

(i) restricted 0.0000 (i) restricted 0.1283
(ii) restricted 0.0698 (ii) restricted 0.6930
(iii) restricted 0.0002 (iii) restricted 0.0637
(i) unrestricted 0.0035 (iii) unrestricted 0.0840
(ii) unrestricted 0.0885

Li6O6

(i) restricted 0.2570 (i) restricted 0.2177
(ii) restricted 0.2645 (ii) restricted 0.2155
(iii) restricted 0.4711 (iii) restricted 0.5016
(i) unrestricted 0.2641 (iii) unrestricted 0.0000
(ii) unrestricted 0.2752

Li8O8

(i) restricted 0.0035 (i) restricted 0.0140
(ii) restricted 0.2085 (ii) restricted 0.1431
(iii) restricted 0.2878 (iii) restricted 0.3557
(ii) unrestricted 0.3049 (i) unrestricted 0.0000

(iii) unrestricted 0.0140

quintet septet

(i) restricted 0.5263 (i) restricted 1.0371
(ii) restricted 0.2932 (ii) restricted 0.9341
(iii) restricted 0.2137 (iii) restricted 0.9341
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Table C.2.: Cluster energies of the
Li8O4 clusters per Li atom with respect
to the lowest energy for the Li8O8 clus-
ters at 298 K.

Gibbs free energy of formation / eV
Li8O4

(i) unrestricted 0.5266
(ii) unrestricted 0.3410
(iii) unrestricted 0.3601

Figure C.7.: Gibbs free energy of formation per Li atom as a function of temperature for Li8O4

(red) and Li8O8 (green) clusters, and best-fit lines of the linear regression in orange (correlation
coefficient is r = 0.9984).

153



154



APPENDIX D

BADER CHARGE DIFFERENCES

Table D.1.: Bader charge difference between the initial clusters before removal of electrons and
the clusters after removal of electrons and an electron minimization (min.) and between the initial
clusters before removal of electrons and the final clusters after removal of electrons and a MD
simulation (MD) in vacuum and in DMSO.

∆q-1e− / e ∆q-2e− / e
min. MD min. MD

in vacuum

Li8O8 1.0000 1.0000 2.0001 1.9999
O1−O2 0.2274 0.2420 0.4645 1.1701
O3 0.0740 0.0144 0.1698 -0.0517
O4 0.1540 0.0904 0.3164 -0.2771
O5−O6 0.2229 0.4856 0.4321 0.5414
O7−O8 0.2645 0.0371 0.4938 0.2205
sum(oxygens) 0.9428 0.8879 1.8766 1.8312

in DMSO

DMSO 0.3829 0.3599 1.0808 0.3731 0.3660
Li8O8 0.6171 0.6479 0.9186 1.6261 1.6340
O1−O2 0.1714 0.2408 0.2190 0.3666 0.7016
O3 0.0633 -0.0029 0.0954 -0.0321 -0.0230
O4 0.1128 0.0825 0.1531 -0.0153 -0.0940
O5−O6 0.1723 0.2281 0.2195 0.6197 0.6988
O7−O8 0.1517 0.2731 0.1973 0.7163 0.3680
sum(oxygens) 0.5916 0.6404 0.8843 1.6552 1.6514
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Figure D.1.: Visualization of the charge differences upon removal of electrons from negative (red)
values to positive (blue) values in DMSO.
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APPENDIX E

DENSITIES OF STATES
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Figure E.1.: DOS for Li+ and O−O pairs in vacuo before removal of electrons (red), after
removal of electrons and an electron minimization (purple), and after a MD simulation (green).
The initial and final clusters with corresponding atom numbers are shown below the DOS. For
comparison, the DOS of the spinpaired O2−

2 ion of a Li2O2 molecule, the O−
2 ion of a LiO2

molecule, and the O2 molecule are shown in gray.
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Figure E.2.: DOS for Li+ and O−O pairs in DMSO, before removal of electrons (red), after removal
of one electron and an electron minimization (purple), and after a MD simulation (green). The initial
and the final cluster with corresponding atom number are shown below the DOS. For comparison,
the DOS of the spinpaired O2−

2 ion of a Li2O2 molecule and the O−
2 ion of a LiO2 molecule are

shown in gray.
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Figure E.3.: DOS for Li+ and O−O pairs in DMSO, before removal of electrons (red), after
removal of two electrons and an electron minimization (purple), and after a MD simulation (green).
The initial and both final clusters with corresponding atom number are shown below the DOS.
For comparison, the DOS of the spinpaired O2−

2 ion of a Li2O2 molecule, the O−
2 ion of a LiO2

molecule, and the O2 molecule are shown in gray.
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APPENDIX F

MATHEMATICAL THEOREMS AND DEFINITIONS

Definition F.1. Matrix A = (aij) ∈ Cn×n is called hermitian if

aij = āji or AT = Ā .

[151]

Definition F.2. Matrix A = (aij) ∈ Cn×n is called unitary if

A∗ = ĀT = A−1 .

[151]

Theorem F.1. (Spectral theorem) For every hermitian matrix A there is an orthonormal basis on

(Cn, ⟨·, ·⟩C) which is composed solely of eigenvectors of A. In particular, there exists a unitary

matrix U (Definition F.2) such that Ū · A · U has diagonal form. [152]

Proof. See ref. 152.

Definition F.3. Let V be a K-vector space, where K ∈ {R, C}. A functional F is a mapping of

the form F : V → K such that f ↦→ F[ f ].
Usually V = { f (x)|x ∈ K} is referred to a function space. [153]

Definition F.4. Let F be a functional as defined in F.3, then the functional derivative δF[ f ]
δ f (x) is

defined as the function which fulfills

δF[ f ] =
∫

δF[ f ]
δ f (x)

δ f (x)dx = lim
ϵ→0

F[ f + δ f ]− F[ f ]
ϵ

,

where δ f is the variation of the function f . [153]
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Definition F.5. (Landau notation) Let f , g : R → R be two functions, one writes

• f = O(g) if there are a constant C > 0 and a neighborhood U = U(x0) of x0 such that

| f (x)| < C|g(x)| for all x ∈ U

• f = o(g) if for every constant ϵ > 0 there is a neighborhood U = U(x0) of x0 such that

| f (x)| < ϵ|g(x)| for all x ∈ U .
[154]

Theorem F.2. (Taylor series) Let u : I → R be an (n + 1) times continuously differentiable

function and a ∈ I, one writes for all x ∈ I

u(x) = u(a) +
u′(a)

1!
(x − a) +

u′′(a)
2!

(x − a)2 + · · ·+ un(a)
n!

(x − a)n + Rn+1(x)

and for the remainder

Rn+1 =
1
n!

x∫
a

(x − t)nu(n+1)(t)dt .

[155]

Proof. Proof by mathematical induction with respect to n. [155]

Corollary F.1. (Lagrange form of the remainder) The remainder in the Lagrange form is stated as

u(x) =
n

∑
k=0

u(k)(a)
k!

(x − a)k + η(x)(x − a)n

=
n

∑
k=0

u(k)(a)
k!

(x − a)k +O(|x − a|n) ,

where limx→a η(x) = 0. [155]

Proof. Proof by the mean value theorem for integration. [155]

Definition F.6. A matrix A ∈ Rn×n is called

(i) L0-matrix if aij ≤ 0 ∀ i ̸= j

(ii) inverse monotone if there exists A−1 and A−1 ≥ 0

(iii) M-matrix if the matrix is an inverse monotone L0-matrix .
[117]
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Definition F.7. (Row-sum norm) The row-sum norm of a matrix A ∈ Rn×n is a matrix norm

(derived from the max norm) stated as

∥A∥∞ = max
i=1,...,n

n

∑
j=1

|aij| .

[154]

Theorem F.3. Let A ∈ Rn×n be a strictly diagonally dominant matrix, i. e., |aii| >
n
∑

j=1
j ̸=i

|aij| for

i = 1, . . . , n, then A is invertible.

Proof. Suppose that A is singular, this means ∃ Rn ∋ x ̸= 0 such that Ax = 0. Choose i0 such
that |xi0 | = max

i
|xi|, consequently |xi0 | > 0 (since x ̸= 0). It follows from Ax = 0

n

∑
j=1

ai0 jxj = 0 ⇔ ai0i0 xi0 = −
n

∑
j=1
j ̸=i0

ai0 jxj

and hence

|ai0i0 ||xi0 | ≤
⏐⏐⏐ n

∑
j=1
j ̸=i0

ai0 jxj

⏐⏐⏐ ≤ n

∑
j=1
j ̸=i0

|ai0 j||xj| ≤
choice of i0

n

∑
j=1
j ̸=i0

|ai0 j||xi0 | <
strictly

diagonally
dominant

|ai0i0 ||xi0 | �

⇒ A is invertible.

Theorem F.4. (M-criterion) Let A ∈ Rn×n be a L0-matrix, then A inverse monotone if and only

if there exists a vector e ∈ Rn and e > 0 such that Ae > 0. Furthermore, using the row-sum

norm in Definition F.7, we obtain the estimate

∥A−1∥∞ ≤ ∥e∥∞

min
i
(Ae)i

.

[117]

Proof. See ref. 117.
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Definition F.8. Let E be a finite set and U ⊆ B(E) a family of subsets of E. The pair M = (E, U)

is called matroid, if following properties are fulfilled:

(i) ∅ ∈ U

(ii) A ∈ U, A′ ⊆ A ⇒ A′ ∈ U

(iii) A, A′ ∈ U, |A′| = |A|+ 1 ⇒ ∃ a ∈ A′ \ A such that A ∪ {a} ∈ U ,

where | · | denotes the cardinality of a set. [118]

Definition F.9. (Trapezoidal rule) The trapezoidal rule is an approximation of the integral

b∫
a

f (x)dx ≈ Q( f )

by a Newton-Cotes formula Q : R[a,b] → R regarding x0, . . . , xn ∈ [a, b] stated as

Q( f ) = h

(
f (x0) + f (xn)

2
+

n−1

∑
i=1

f (xi)

)
,

where the grid spacing of the interval [a, b] in n subintervals of length h := b−a
n and the ap-

proximation of the integral of f in every subinterval [xi, xi+1] is given by a trapezoid with vertices

(xi, 0), (xi+1, 0), (xi+1, f (xi+1)) and (xi, f (xi)) for i = 0, . . . , n − 1. [154]
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APPENDIX G

PROOF OF CONSISTENCY AND STABILITY OF

THE APPLIED METHODS

Proof. (Consistency)
(i) Via the Taylor series (Theorem F.2) or the Lagrange remainder (Corollary F.1) we can write the
differential operator in equation ∂tu = g as

un+1
j − un

j

∆t
= ∂tu|G∆ +O(∆t)

restricted on the grid G∆ = {(j · ∆x, n · ∆t) | n ∈ {0, . . . , N}, j ∈ {0, . . . , J}}, thus followsD+
n un

j − ∂tu|G∆


∞
= O(∆t) .

(ii) For the partial differential equation ∂xxu + d∂xu − ∂tu + f u = 0 we analyze the differential
operators separately and apply analogously to (i) the corollary of the Lagrange remainder

un+1
j − un

j

∆t
= ∂tu|G∆ +

1
2

∆t · ∂ttu|G∆ +O
(
(∆t)2)

un
j+1 − un

j

∆x
= ∂xu|G∆ +O(∆x)

1
∆x

un+1
j+1 − un

j+1

∆t
− 1

∆x

un+1
j − un

j

∆t
= ∂xtu|G∆ +O(∆x + ∆t) .

Hence the finite differences for the explicit and the implicit method can be written as

σ
un+1

j+1 − un+1
j

∆x
+ (1 − σ)

un
j+1 − un

j

∆x
= ∂xu|G∆ + σ∆t · ∂xtu|G∆ +O

(
∆x + (∆t)2)
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and

σ
un+1

j−1 − 2un+1
j + un+1

j+1

(∆x)2 + (1 − σ)
un

j−1 − 2un
j + un

j+1

(∆x)2

= ∂xxu|G∆ + σ∆t · ∂xxtu|G∆ +O
(
(∆x)2 + (∆t)2) .

For the last term f u in the particular case of the Crank-Nicolson method we choose

un+ 1
2

j = u|G∆ +
1
2

∆t∂tu|G∆ +O
(
(∆t)2) .

In summary, the resulting order of consistency isL∆(u|G∆)− (Lu)|G∆


∞

=

σ∆t · ∂t(∂xx + d∂x  
=−e∂t− f

)u|G∆ +
1
2

∆te∂ttu|G∆ +
1
2

∆t f ∂tu|G∆


∞
+O

(
∆x + (∆t)2)

=

(σ − 1
2

)
∆t(−e∂tt − f ∂t)u|G∆


∞
+O

(
∆x + (∆t)2)

= O
(
∆x + ∆t

)
for all σ ∈ [0, 1] und σ ̸= 1

2 . Only for the Crank-Nicolson method for σ = 1
2 the order of consistency

is L∆(u|G∆)− (Lu)|G∆


∞ = O

(
∆x + (∆t)2) .

Remark. Although u ∈ C4,3 is assumed in the above proof, this assumption is solely necessary
for the Crank-Nicolson method and can be reduced in all other cases.

Proof. (Stability) W.l.o.g. we assume homogeneous Dirichlet boundary conditions (see remark).
(i) The approximation in equation (8.23) in the discrete formulation un+1

j = un
j +∆tgn

j is estimated
by

max
j

|un+1
j | ≤ max

j
|un

j |+ ∆t max
j

|gn
j |

for every time step n. Is the inequality carried on iteratively, we receive

max
j,n

|un+1
j | ≤ max

j
|u0

j |+ ∆t
n

∑
k=0

max
j

|gk
j | .
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Using the number of time steps N and u0
j → u(x, 0) for ∆t, ∆x → 0 we obtain in particular

max
j,n

|un
j | ≤ max |u(x, 0)|+ ∆t

n−1

∑
k=0

max
j

|gk
j | ≤ max |u(x, 0)|+ tN max

j,n
|gn

j | .

Thus the solution of the problem can be estimated using the initial values and the right-hand side
independent of the discretization, hence the approximation is stable.
(ii) In the second case we follow a similar procedure. The approximation in equation (8.24)

0 =D+
j D−

j

(
σun+1

j + (1 − σ)un
j

)
+ dn

j D+
j

(
σun+1

j + (1 − σ)un
j

)
+ en

j D+
n un

j + f n
j un

j

=
σ

(∆x)2

(
un+1

j−1 − 2un+1
j + un+1

j+1

)
+

1 − σ

(∆x)2

(
un

j−1 − 2un
j + un

j+1

)
+

σ · dn
j

∆x

(
un+1

j+1 − un+1
j

)
+

(1 − σ) · dn
j

∆x

(
un

j+1 − un
j

)
+

en
j

∆t

(
un+1

j − un
j

)
+ f n

j un
j

is written as

− θσun+1
j−1 +

[
−en

j + θσ(2 + dn
j ∆x)

]
un+1

j − θσ(1 + dn
j ∆x)un+1

j+1

=θ(1 − σ)un
j−1 +

[
−en

j − θ(1 − σ)(2 + dn
j ∆x) + f n

j ∆t
]

un
j + θ(1 − σ)(1 + dn

j ∆x)un
j+1 ,

where θ = ∆t
(∆x)2 . In a condensed form using homogeneous Dirichlet boundary conditions the

resulting solution scheme is
Aun+1 = Bun ,

where the vector are stated as

un+1 = (un+1
1 , . . . , un+1

J )T und un = (un
1 , . . . , un

J )
T .

Both matrices A and B are tridiagonal matrices and the matrix entries are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aii = −en
j + θσ(2 + dn

i ∆x) for i = 1, . . . , J − 1

aii+1 = −θσ(1 + dn
i ∆x) for i = 1, . . . , J − 1

aii−1 = −θσ, for i = 2, . . . , J − 1

aJ J = −en
j + θσ
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and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

bii = −en
j − θ(1 − σ)(2 + dn

i ∆x) + f n
i ∆t for i = 1, . . . , J − 1

bii+1 = θ(1 − σ)(1 + dn
i ∆x) for i = 1, . . . , J − 1

bii−1 = θ(1 − σ), for i = 2, . . . , J − 1

bJ J = −en
j − θ(1 − σ) + f n

J ∆t

The last entries j = J are modified according to the applied Neumann boundary conditions and is
illuminated in detail in Chapter 9. In the next step using the M-criterion F.4 we estimate the matrix
A. Following assumption (a), we conclude 1 + dn

j ∆x ≥ 0 and hence aij ≤ 0 for i ̸= j, i. e., A is
an L0-matrix. Furthermore, the matrix is strictly diagonally dominant for assumption (b), since

|aii| = −en
i + θσ(2 + dn

i ∆x) > θσ(2 + dn
i ∆x) =

J

∑
j=1
j ̸=i

|aij| for i = 2, . . . , J − 1

and

|a11| = −en
1 + θσ(2 + dn

1 ∆x) > θσ(1 + dn
1 ∆x) =

J

∑
j=1
j ̸=1

|a1j|,

|aJ J | = −en
J + θσ > θσ =

J

∑
j=1
j ̸=J

|aJ j| .

Thus, A is regular according to Theorem F.3. Using the M-criterion in Theorem F.4 anew and the
vector e = (1, . . . , 1)T > 0 such that

(Ae)i =

⎧⎪⎨⎪⎩
−en

j for i = 2, . . . , J

−en
j + θσ

≥0

for i = 1

⎫⎪⎬⎪⎭ > 0

we identify A as an M-matrix and the inverse is

∥A−1∥∞ ≤ ∥e∥∞

min
i
(Ae)i

≤ 1 . (G.1)

Finally, we need the estimation of matrix B. Since θ > 0 and 0 ≤ σ ≤ 1, the super- and
subdiagonal are positive according to assumption (a) and so is the main diagonal according to (d)
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and we can state

∥B∥∞ = max
i

n

∑
j=1

|bij| = max
i

⎧⎪⎨⎪⎩
| − en

j + f n
i ∆t| for i = 2, . . . , J

| − en
j − θ(1 − σ)  

≥0

+ f n
i ∆t| for i = 1

⎫⎪⎬⎪⎭
= | − en

j + f n
i ∆t| ≤ 1 .

(G.2)

The estimation in the last step is based on the assumptions (c) and (d). In summery, we obtain for
the estimation of the solution un+1

∥un+1∥∞ = ∥A−1Aun+1∥∞ ≤ ∥A−1∥∞∥Aun+1∥∞

≤
eq. (G.1)

∥Bun∥∞ ≤ ∥B∥∞∥un∥∞

≤
eq. (G.2)

∥un∥∞ ,

thus the solution of the problem can be estimated using the initial values and the right-hand side
independent of the discretization as in (i), hence the approximation is stable.

Remark. W.l.o.g. we are allowed to assume Dirichlet boundary conditions, since inhomoge-
neous boundary conditions can be transformed in homogeneous ones. Let Lu = g on Ω, where
u : Ω → R and L is a linear differential operator, and u = u0 ̸= 0 on the boundary ∂Ω. We
construct a function ū : Ω → R, where ū = u0 on ∂Ω and ū sufficiently smooth. In that case
the homogeneous problem is written as

Lv = ḡ on Ω and v = 0 on ∂Ω ,

where v = u − ū. Furthermore, u = v + ū is a solver of the original problem, since

Lu = L(v + ū) = Lv + Lū = ḡ + Lū = g − Lū + Lū = g on Ω

and
u = v + ū = 0 + u0 on ∂Ω .
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