

RENORBIO

Programa de Pós-Graduação em Biotecnologia

Diversidade de Bacteria e Archaea do solo do Cariri paraibano e prospecção de celulases e xilanases em clones metagenômicos e isolados bacterianos

TERESA CRISTINA SOARES DE LIMA GRISI

João Pessoa - PB

2011

RENORBIO

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA UNIVERSIDADE FEDERAL DA PARAÍBA

TERESA CRISTINA SOARES DE LIMA GRISI

Diversidade de Bacteria e Archaea do solo do Cariri paraibano e prospecção de celulases e xilanases em clones metagenômicos e isolados bacterianos

Tese apresentada como requisito para a obtenção do grau de Doutor pelo Programa de Pós-Graduação da Rede Nordeste de Biotecnologia – RENORBIO - Área Biotecnologia em Recursos Naturais da Universidade Federal da Paraíba

Orientadores:

Dr. Demetrius Antonio Machado Araújo Dra Krystyna Gorlach-Lira

TERESA CRISTINA SOARES DE LIMA GRISI

Diversidade de Bacteria e Archaea do solo do Cariri paraibano e prospecção de celulases e xilanases em clones metagenômicos e isolados bacterianos

DATA DA DEFESA: OA 112 12012
BANCA EXAMINADORA
(authorized)
Prof. Dr. Demetrius Antonio Machado de Araújo (RENORBIO/UFPB)
(Orientador)
Mpleeelle
Profa. Dra. Krystyna Gorlach-Lira (DBM/UFPB)
(Co-Orientadora)
Andréa Amara
Profa. Dra. Andréa Amaral do Nascimento (ICB/UFMG)
Significant
Prof. Dr. José Pinto de Siqueira Júnior (RENORBIO/UFPB)
Sario Vorres de Faris
Prof. Dr. Sávio Torres de Farias (DBM/UFPB)
Jan Se
Prof. Dr. Cosme Rafael Martínez Salinas (DQ/UFPB)

Aos meus pais,

Ubirajara Marques de Almeida Lima (*In Memoriam*) e Dione Soares de Almeida Lima...que me ensinaram a importância da vida e fundamentalmente pelo exemplo de esforço e dedicação, que serviram de modelo para nunca desistir de meus objetivos...

Ao meu marido,

Breno Machado Grisi, "meu eterno professor", pelo apoio, carinho e compreensão...

Aos meus filhos,

Diego, Isabelle e Luca por serem o motivo de eu querer continuar avançando...

AGRADECIMENTOS

À Deus, Criador do universo, acima de todas as coisas.

À minha família, pelo amor, apoio e paciência em todos os momentos.

Aos professores Dr Demetrius Araújo e Dra Krystyna Gorlach-Lira, meus orientadores que muito admiro, pela competência e dedicação, agradeço pela orientação e pelo crescimento pessoal e profissional.

À professora Dra Lucymara Fassarella (UFRN), pela oportunidade de participação no audacioso projeto Metagenoma Nordeste.

Ao Dr Javier Pastor (Universidade de Barcelona – UB), professor colaborador nesse projeto, pela oportunidade de fazer parte de sua equipe e pelos ensinamentos que foram fundamentais para a conclusão desse trabalho.

Aos professores, Dra Andréa Amaral e Dra Mônica Bucciarelli (UFMG), Dra Pilar Dìaz (UB), pela amizade e por todas as contribuições que auxiliaram na realização desse trabalho.

Aos professores e funcionários do Dpto de Biologia Molecular – UFPB, nas pessoas de Regina Emi, Dione, Célia, S. Moreira, Alda e Rosângela, pela amizade e carinho.

Aos amigos dos LABIMES, Gláucia, Itácio (meu fiel escudeiro), Alethéia, Renatinha, Bruna, Bruno, Caio, Erick, Juan, Alan, Hervé, Milena, Laís e Luana, pela amizade inesquecível, "sem condição", "Jesus, apaga!", "King Kong", que me ajudou a superar todos os desafios.

Aos amigos do Laboratório de Genética (UFMG), Patrícia, Fran, Cláudia, Mari, Isabela, pelo carinho e desprendimento.

Aos novos amigos do Lab 2 (UB), Susana, Sílvia, Mônica, Eriel, André, Arnau, Marta, Enric e demais amigos da Universidade de Barcelona, pelo acolhimento, amizade e principalmente pelo enriquecimento pessoal e científico.

Aos amigos da RENORBIO, turmas 2006 e 2007, pelos bons momentos juntos.

Aos coordenadores das oficinas ERASMUS MUNDUS, Dra Marta Camps (UB), Sra Marta Ares (UB), Sra Carolina (UB) e Sra Marília Cunha (Universidade do Porto), pelo profissionalismo, respeito e sempre disponibilidade, que me auxiliaram durante o período de mobilidade.

Ao Sr Moraes (chefe da Estação Experimental UFPB) e ao Sr Gaudêncio (proprietário da fazenda Boa Vista), ambos na cidade de São João do Cariri-PB, pelas realizações das coletas.

Ao CNPq pelo financiamento desse projeto.

E a todos que direta ou indiretamente colaboraram para a realização deste trabalho.

Muito obrigada!

Nós conhecemos mais sobre o movimento dos corpos celestes do que sobre o solo sob nossos pés...

Leonardo da Vinci, (cerca de 1500)

Índice de Figuras

Figura 1. Modelo de um agregado de solo contendo componentes orgânicos e inorgânicos, salientando a formação de microambientes onde os microrganismos se distribuem e proliferam (Fonte: ANDRIELLI, 2006, adaptado de MADIGAN et al., 2004)	24
Figura 2. Mapa do município São João do Cariri, Paraíba, Nordeste do Brasil. Fonte: IBGE	
(2004)	29
Figura 3. Árvore filogenética universal, apresentando os três domínios . (Fonte: WOOSE; KANDLER e WHEELIS, 1990)	32
Figura 4. Solo da pastagem nativa da Fazenda Boa Vista (Sítio A), São João do Cariri, PB, durante o período de estiagem	40
Figura 5. Solo da pastagem sob cultivo do capim marrequinha (<i>P. conjugatum</i> , Bergius) (Sítio B), as margens do açude Boa Vista, São João do Cariri, PB, durante o período de estiagem.	41
Figura 6. Vetor pGEM Teasy (Promega, Madison, WI) utilizado na ligação dos fragmentos 16S rRNA das amostras do solo do Cariri paraibano. Fonte: www.promega.com	44
Figura 7. Repasse dos clones (colônias brancas) para isolamento, estocagem e extração plasmidial	48
Figura 8. Gel de agarose (0,8%), contendo DNA total extraídos das amostras dos solos em duplicatas; 1 e 1' - DNA do solo da pastagem nativa (sítio A); 2 e 2' - DNA do solo da pastagem sob cultivo (sítio B); M - Marcador molecular λ/ <i>Hind</i> III	59
Figura 9. Produtos da amplificação do gene 16S rRNA das amostras do DNA dos solos, em duplicatas (domínio Bacteria); 1 e 1' – solo da pastagem nativa (sítio A); 2 e 2' – solo da pastagem sob cultivo (sítio B); 3 - <i>E. coli</i> (controle positivo); 4 - reação sem DNA (controle negativo). M - marcador de peso molecular λ/ <i>Hind</i> III	60
Figura 10. Produtos da amplificação do gene 16S rRNA das amostras do DNA dos solos, em duplicatas (domínio Archaea); 1 e 1' - solo do sítio A; 2 e 2' - solos do sítio B; M - marcador de peso molecular 1 kb ladder (BioLabs)	60
Figura 11. Clones recombinantes da biblioteca 16S rRNA. Colônias brancas (seta) foram utilizadas para realização da extração plasmidial e posterior sequenciamento	61

Figura 12. Presença do DNA plasmidial extraídos: 1 ao 3 - clones do solo da pastagem nativa (sítio A); 4 ao 6 - clones do solo da pastagem sob cultivo (sítio B), para o domínio Bacteria; 7 - DNA controle; M - marcador de peso molecular 100 pb ladder	
(BioLabs)	62
Figura 13. Presença do DNA plasmídial extraídos: 1 ao 3 - clones da pastagem nativa (sítio A); 4 ao 6 - clones da pastagem sob cultivo (sítio B), para o domínio Archaea; M - marcador de peso molecular 100 pb ladder (BioLabs)	62
Figura 14. Grupos bacterianos encontrados nas bibliotecas 16S rRNA das amostras do solo dos sítios A (pastagem nativa) e B (pastagem sob cultivo). Dados gerados pelo RPD com percentual ≥95% de similaridade	65
Figura 15. Árvore filogenética gerada a partir das sequências do gene 16S rRNA do solo da pastagem nativa (sítio A) para o domínio Bacteria, utilizando o método <i>Maximum Likelihood</i> baseado no modelo de Kimura 2. Análises <i>Bootstrap</i> com 1.000 repetições. Apenas valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 1,1029]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. <i>Methanothermobacter wolfeii</i> (Archaea) como <i>outgrup</i>	66
Figure 16. Árvore filogenética gerada a partir das sequências do gene 16S rRNA do solo da pastagem sob cultivo (sítio B) para o domínio Bacteria, utilizando o método <i>Maximum Likelihood</i> baseado no modelo de Kimura 2. Análises <i>Bootstrap</i> com 1.000 repetições. Apenas valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 2.0164]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. <i>Methanothermobacter wolfeii</i> (Archaea) como <i>outgrup</i>	67
Figura 17 . Distribuição dos filos e das OTUs do domínio Bacteria, obtidas a partir das sequências 16S rRNA das bibliotecas de clones, nas amostras do solo dos sítios A (A) e B (B)	71
Figura 18. Curva de rarefação das OTUs observadas em relação ao número de clones obtidos nas amostras de solo das pastagens nativa (sítio A) e sob cultivo (sítio B), do domínio Bacteria, nos três níveis de distância (80, 97 e 99%). Linhas pontilhadas representam erro com intervalo de confiança de 95%	75
Figura 19. Grupos bacterianos encontrados nas bibliotecas 16S rRNA das amostras do solo dos sítios A (pastagem nativa) e B (pastagem sob cultivo). Dados gerados pelo RPD com percentual >95% de similaridade	78

Figura 20. Árvores filogenéticas geradas a partir das sequências do gene 16S rRNA do DNA do solo da pastagem nativa (sítio A), utilizando o método <i>Maximum Likelihood</i> baseado no modelo de Kimura 2. Análises <i>Bootstrap</i> foram realizadas com 1.000 repetições, e somente valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 1,1029]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. <i>Escherichia coli</i> como <i>outgrup</i>	81
Figure 21. Árvores filogenéticas geradas a partir das sequências do gene 16S rRNA do DNA do solo da pastagem sob cultivo (sítio B), utilizando o método <i>Maximum Likelihood</i> baseado no modelo de Kimura 2. Análises <i>Bootstrap</i> foram realizadas com 1.000 repetições, e somente valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 2,0164]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. <i>Escherichia coli</i> como <i>outgrup</i>	82
Figura 22 . Distribuição dos filos e das OTUs do domínio Archaea, obtidas a partir das sequências 16S rRNA das bibliotecas de clones, nas amostras do solo das pastagems nativa (A) e sob cultivo (B)	84
Figura 23. Curva de rarefação das OTUs observadas em relação ao número de clones obtidos nas amostras de solo das pastagens nativa (sítio A) e sob cultivo (sítio B), do domínio Archaea, nos três níveis de distância (80, 97 e 99%). Linhas pontilhadas representam erro com intervalo de confiança de 95%	86
Figura 24. Comparação entre as bibliotecas do gene 16S rRNA do sítio A e B para o domínio Bacteria, pelo programa <i>Libshuff</i>	88
Figura 25. Comparação entre as bibliotecas do gene 16S rRNA do sítio A e B para o domínio Archaea, pelo programa <i>Libshuff</i>	88
Figura 26. Multidisciplinaridade da biotecnologia e sua inserção em diferentes setores produtivos. Fonte: PEREIRA JÚNIOR; BON; FERRARA, 2008 (modificado)	109
Figura 27 . Vetor pBC SK+ (Stratagene) utilizado na ligação dos fragmentos DNA metagenômico das amostras do solo do Cariri paraibano (sítio A). Fonte: www.Startagene.com	134
Figura 28. DNA metagenômico (2 μL) do solo da pastagem nativa do Cariri paraibano (sítio A) pré-enriquecido. M – marcador molecular 1 kb (Fermentas)	138
Figura 29. DNA metagenômico do solo da pastagem nativa do Cariri paraibano (sítio A), cortado com enzima de restrição <i>Eco</i> RI, para obtenção de bandas com 4 a 5kb e 9 a	

10 kb; M - marcador de peso molecular 1 kb (Fermentas)	138
Figura 30. Clones metagenômicos obtidos da clonagem dos fragmentos entre 4 a 5 kb (A) e 9 a 10 kb (B) em vetor pBC; Colônias brancas (setas) positivas para a presença do inserto em 95% das reações.	139
Figura 31. Atividade celulolítica evidenciada pelos halos ao redor dos clones metagenômicos, em meio Agar LB/CMC/Cl, corado com vermelho congo (0,1%)	140
Figura 32. Atividade xilanolítica evidenciada pelos halos ao redor dos clones metagenômicos, em meio Agar LB/xilano/Cl, corado com vermelho congo (0,1%)	140
Figura 33. Re-transformantes dos clones xilanolíticos.	142
Figura 34. Atividade xilanolítica dos re-transformantes em meio LB/xilano/Cl, corados com vermelho congo 0,1%	143
Figura 35. Atividade celulolítica em meio Agar LB/CMC (A) e xilanolítica em Agar Remazol <i>Brilliant Blue</i> R-D-Xylan (B); 1. Cel55-01; 2. Cel55-02; 3. Cel37-03 e Pb. <i>P. barcinonensis</i> (controle positivo)	146
Figura 36 . Atividade celulolítica em meio Agar LB/CMC (A) e xilanolítica em meio Agar LB/xilano Oat Spelt (B); 1. Cel37-28; 2. T2; 3. Cel55-01; 4. <i>P. barcinonensis</i> (controle positivo); <i>E. coli</i> (controle negativo)	146
Figura 37. DNA genômico das cepas: 1 - Cel55-01; 2 - Cel55-02; 3 - Cel37-03; 4 - Cel37-28; 5 - T2; M – marcador de peso molecular 1 kb (Fermentas)	147
Figura 38. Produtos das PCR 16S rRNA das cepas: 1 - Cel55-01; 2 - Cel55-02; 3 - Cel37-03; 4 - Cel37-28; 5 - T2; M – marcador de peso molecular 1 kb (Fermentas)	148
Figura 39. Temperatura ótima para atividade xilanase (xilano de <i>Birchwood</i>) da cepa Cel37-28, após cultivo em LB/palha de arroz	158
Figura 40. pH ótimo para atividade xilanase (xilano de <i>Birchwood</i>) da cepa Cel37-28, após cultivo em LB/palha de arroz	159
Figura 41. Temperatura ótima para atividade xilanase (xilano de <i>Birchwood</i>) da cepa T2, após cultivo em LB/palha de arroz	160
Figura 42. pH ótimo para atividade xilanase (xilano de <i>Birchwood</i>) da cepa T2, após cultivo em LB/palha de arroz	160
Figura 43. Temperatura ótima para atividade xilanase (xilano de <i>Beechwood</i>) da cepa	

Cel55-01, após cultivo em LB/bagaço de cana-de-açúcar	162
Figura 44 . pH ótimo para atividade xilanase (xilano de <i>Beechwood</i>) da cepa Cel55-01, após cultivo em LB/bagaço de cana-de-açúcar	162
Figura 45. Zimograma para visualizações das celulases em gel de poliacrilamida (SDS-PAGE - 10%), adicionado de CMC (2%); 1 e 6 - <i>P. barcinonensis</i> (LB/PA, 2X conc.); 2 - Cel55-01 (LB/CMC); 3, 7 e 8 - Cel55-01 (LB/PA); 4 e 9 - T2 - (LB/PA); 5 e 10 - Cel37-28 (LB/PA).	165
Figura 46. Zimograma para visualizações das xilanases (SDS-PAGE - 10%), adicionado de xilano de <i>Birchwood</i> (2%); 1 e 6 - Cel37-28 (LB/PA); 2 e 7 - T2 - (LB/PA); 3, 8 e 9 - Cel55-01 (LB/PA); 4. Cel55-01 (LB/CMC); 5 e 10 - <i>P. barcinonensis</i> (LB/PA, 2X conc.)	165
Figura 47. Gel de poliacrilamida (SDS-PAGE - 10%), adicionado de CMC (2%); (A) - visualização das proteínas totais; (B) - visualização das celulases	166
Figura 48. Gel de poliacrilamida (SDS-PAGE - 10%), adicionado de xilano de <i>Birchwood</i> (2%); (A) - visualização das proteínas totais; (B) – visualização das xilanases	166

Índice de Tabelas e Quadro

Tabela 1. Ferramentas de bioinformática, genômica comparativa e para análise de sequências utilizadas neste trabalho	51
Tabela 2. Parâmetros físicos e químicos do solo nos dois sítios de amostragem	56
Tabela 3. Diversidade do domínio Bacteria nos solos das pastagens nativa e sob cultivo	64
Tabela 4. Números de OTUs e as estimativas de diversidade, riqueza e equidade para o domínio Bacteria nas bibliotecas 16S rRNA dos sítios A e B	72
Tabela 5. Diversidade do domínio Archaea nos solos das pastagens nativa e sob cultivo	77
Tabela 6. Números de OTUs e as estimativas de diversidade, riqueza e equidade para o domínio Archaea nas bibliotecas 16S rRNA dos sítios A e B	83
Tabela 7. Teste estatístico pelo programa <i>LIBSHUFF</i> entre as bibliotecas do gene 16S rRNA do solo da pastagem nativa (sítio A) e sob cultivo (sítio B), para os domínios Bacteria e Archaea	88
Tabela 8. Reagentes da reação da PCR 16S rRNA dos isolados bacterianos	126
Tabela 9. Reagentes da reação de sequenciamento	128
Tabela 10. Tampões utilizados para avaliação do pH ótimo	130
Tabela 11. Reações de ligação dos fragmentos do DNA metagenômico ao vetor pBC	134
Tabela 12. Identificação molecular das cepas isoladas do solo do Cariri por amplificação do gene 16S rRNA	148
Tabela 13. Quantificações das atividades celulolíticas e xilanolíticas das cepas bacterianas, após 15 min de ação enzimática	151
Tabela 14. Quantificações da atividade xilanolítica das cepas Cel37-28 e T2, após cultivo em meios LB/palha de arroz e/ou LB/xilano (<i>Beechwood</i>)	155
Quadro 1. Celulases e xilanases produzidas por diferentes isolados microbianos e cepas recombinantes	119

Lista de Abreviaturas

16S rDNA – 16S ácido desoxiribonucléico ribossomal

Amp - Ampicilina

Cl - Cloranfenicol

CMC - Carboximetilcelulose

BSA - Albumina Bovina Sérica

DNA – Ácido desoxiribonucléico

DO - Densidade óptica

EDTA – Ácido etilenodiaminotetraacético

h - hora

IPTG - Isopropyl β-D-1-thiogalactopyranoside

kpb – mil pares de base

KoAc – Acetato de potássio

LB - Luria Bertani

Mpb – Mega pares de base

min - minutos

NE – Solo não-enriquecido

ON – Over-night

OTU - Operational Taxonomic Unit - unidade taxonômica operacional

PCR - Reação em Cadeia da Polimerase

PE – Solo pré-enriquecido

p-NPG - *p*-nitrophenol-β-D-glucopryranoside

RNA - Ácido ribonucléico

rpm – rotações por minuto

SDS - Dodecil sulfato de sódio

SDS-PAGE - Sodio Dodecil Sulfato - Poliacrilamida Gel de Eletroforese

seg - segundos

TBE - Tris-Borato-EDTA

X-gal - 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside

SUMÁRIO

Índice de Figuras

Índice de Tabelas e Quadro

Lista de Abreviaturas

CAPÍTULO 1

RESUMO

ABSTRACT

1	INTRODUÇÃO	24
2	REVISÃO BIBLIOGRÁFICA	27
2.1	Caatinga e a Região Semi-árida	27
2.2	Região do Cariri Paraibano	28
2.3	Diversidade Microbiana do Solo	31
2.4	Avaliação da Diversidade Microbiana	35
3	OBJETIVOS	39
3.1	Objetivo Geral	39
3.2	Objetivos Específicos	39
4	MATERIAIS E MÉTODOS	40
4.1	Coleta das Amostras dos Solos	40
4.2	Aspectos Físicos e Químicos das Amostras dos Solos	41
	4.2.1 Aspectos Físicos	41

4.2.2 Aspectos Químicos	42
4.3 Extração do DNA Metagenômico das Amostras dos Solos	42
4.4 Quantificação do DNA Metagenômico	42
4.5 Construção da Biblioteca de Clones Metagenômicos do gene 16S rRNA	42
4.5.1 Amplificação do gene 16S rRNA	43
4.5.2 Eletroforese e purificação dos fragmentos 16S rRNA	43
4.5.3 Reação de ligação dos fragmentos 16S rRNA ao vetor de clonagem	44
4.5.4 Precipitação das reações de ligação do gene 16S rRNA	45
4.5.5 Competência química em Escherichia coli DH10B	46
4.5.6 Transformação por choque térmico	47
4.6 Cultivo e Seleção dos Clones das Bibliotecas 16S rRNA	47
4.7 Extração Plasmidial dos Clones das Bibliotecas 16S rRNA	48
4.8 PCR para Sequenciamento	49
4.9 Análises das Sequências	50
4.10 Medidas de Diversidade, Riqueza, Equidade e Cobertura das Amostras	53
4.11 Números de Acesso das Sequências Nucleotídicas	55
5 RESULTADOS E DISCUSSÃO	56
5.1 Aspectos Físicos e Químicos dos Solos	56
5.2 Extração de DNA e Amplificação do Gene 16S rRNA	58

5.3	Bibliotecas de Clones Metagenômicos do Gene 16S rRNA	61
	5.3.1 Análise das sequências 16S rRNA	62
	5.3.2 Diversidade do domínio Bacteria	64
	5.3.3 Diversidade do domínio Archaea	76
	5.3.4 Análise estatístico pelo pragrama <i>LIBSHUFF</i>	87
6	CONCLUSÕES	90
7	REFERÊNCIAS BIBLIOGRÁFICAS	91

CAPÍTULO 2

RESUMO

ABSTRACT

1	INTRODUÇÃO	108
2	REVISÃO BIBLIOGRÁFICA	111
	2.1 Aspectos históricos da Biotecnologia	111
	2.2. Enzimas Microbianas	112
	2.2.1 Celulases	114
	2.2.2 Xilanases	116
	2.2.3 Resíduos industriais para produção enzimática	121
3	OBJETIVOS	123
3.1	l Objetivo Geral	123
3.2	2 Objetivos Específicos	123
4	MATERIAIS E MÉTODOS	124
4.1	Coleta e Processamento das Amostras do Solo	124
	4.1.1 Solo pré-enriquecido (PE)	124
	4.1.2 Solo não-enriquecido (NE)	125
4. 2	2 Isolamento das Cepas Bacterianas das Amostras de Solo Pré-Enriquecido	
(P)	E) e Não-Enriquecido (NE)	125

4.3 Caracterização Celular e Bioquímica das Cepas Bacterianas	125
4.4 Caracterização Molecular das Cepas Bacterianas	126
4.4.1 Extração e quantificação do DNA genômico	126
4.4.2 Amplificações do gene 16S rRNA	126
4.4.3 Visualização, purificação e quantificação dos produtos da PCR 16S	
rRNA	127
4.4.4 Reações de sequenciamento	127
4.4.5 Análise das sequências do gene 16S rRNA	128
4.5 Atividades Enzimáticas dos Isolados Bacterianos	128
4.5.1 Análise qualitativa das atividades celulolítica e/ou xilanolítica	128
4.5.2 Análise quantitativa da atividade celulolítica e/ou xilanolítica	129
4.5.3 Avaliação do pH ótimo e da temperatura ótima da atividade	
enzimática	130
4.5.4 Zimograma	131
4.6 Construção da Biblioteca Funcional de Clones Metagenômicos	132
4.6.1 Extração e quantificação do DNA metagenômico das amostras dos	
solos	132
4.6.2 Fragmentação do DNA metagenômico	132
4.6.3 Reação de ligação dos fragmentos do DNA metagenômico ao vetor	
pBC	133

4.6.4 Transformação por choque térmico	135
4.6.5 Cultivo e seleção dos clones metagenômicos	135
4.7 Atividades Enzimáticas dos Clones Metagenômicos	135
4.7.1 Análise qualitativa das atividades celulolítica e/ou xilanolítica	135
4.8 Extração Plasmidial e Re-transformação	136
4.8.1 Seleção dos clones re-transformantes e confirmação da atividade	
enzimática	136
5 RESULTADOS E DISCUSSÃO	137
5.1 Biblioteca de Clones Metagenômicos do Solo	137
5.2 Prospecção de Clones Metagenômicos com Atividades Enzimáticas	139
5.2.1 Re-transformantes	141
5.3 Seleção das Cepas Bacterianas e Análise das Atividades Celulolíticas e	
Xilanolíticas	144
5.3.1 Caracterização molecular das cepas celulolíticas e xilanolíticas	
selecionadas	147
5.4 Análise Quantitativa da Atividade Celulolítica e Xilanolítica dos Isolados	
Bacterianos	150
5.4.1 Avaliação da temperatura e do pH ótimos das cepas Cel37-28, T2 e	
Cel55-01	157
5.5 Análises das Proteínas pela Técnica Eletroforética Zimograma	164

6	CONCLUSÕES	169
PE	RSPECTIVAS	171
7	REFERÊNCIAS BIBLIOGRÁFICAS	172
AP	PENDICES	
AN	NEXOS	

Diversidade de Bacteria e Archaea no solo do Cariri paraibano pela
análise do gene 16S rRNA

"Só deixo o meu Cariri no último pau-de-arara"

(Luís Gonzaga)

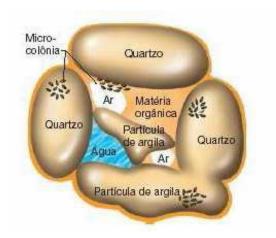
Capítulo 1

RESUMO

Amostras do solo da pastagem nativa (sítio A) e sob cultivo do capim marrequinho (Paspalum conjugatum, Bergius) (sítio B), coletadas na região semi-árida do bioma Caatinga, Paraíba, (07°23'27"S 36°31'58"O), foram utilizadas para construção de quatro bibliotecas de clones metagenômicos, para avaliação da diversidade microbiana pela amplificação do gene 16S rRNA dos domínios Bacteria e Archaea. Os DNA metagenômicos foram extraídos utilizando FastDNA® SPIN Kit for Soil (BIO 101), os quais foram amplificados por PCR utilizando primers universais, 27F / 1525R (Bacteria) e 20F / 958R (Archaea). Os fragmentos purificados foram ligados ao vetor pGEM Teasy e transformados por choque térmico em Escherichia coli DH10B quimicamente competente. Os transformantes foram cultivados em meio Agar LB/Ampicilina (100 μ /mL), IPTG (800 μ g/ μ L) e XGal (80 μ g/ μ L), a 37°C/18-20 h. Foram selecionados 250 clones de cada biblioteca os quais foram sequenciados e após descarte das sequências de baixa qualidade e quiméricas, foram obtidas 64 e 68, 89 e 141 sequências para Bacteria e Archaea, nos solos dos sítios A e B, respectivamente, as quais foram comparadas em banco de dados públicos RDB e NCBI (≥95% de similaridade). No sítio A o filo Acidobacteria (48,4%) foi o mais abundante, seguido dos filos Bacteroidetes (10,9%), Proteobacteria (10,9%), e Firmicutes (6,3%). No sítio B Proteobacteria (45,6%) foi o de maior destaque, seguido de Firmicutes (10,3%), Acidobacteria (8,8%), Bacterioidetes (7,3%); e ainda Cyanobacteria (1,5%) e Planctomycetes (1,5%), que não foram encontrados no sítio A. Entre as sequências geradas, 23,4% (sítio A) e 25,0% (sítio B) não foram classificadas (similaridade <95%). No domínio Archaea foram encontrados os filos Euryarchaeota (3,4 e 45,4%) e Crenarchaeota (2,2 e 3,5%), nos sítios A e B, respectivamente; destacando-se que 94,4% e 51,1% das sequências não foram classificadas (similaridade <95%), entre os sítios A e B, respectivamente. Uma maior diversidade (índice de Shannon), riqueza (índice Chao 1) e distribuição (índice de equidade) das comunidades foram observadas no nível de espécies, tanto para Bacteria como para Archaea, nos dois sítios. As bibliotecas de clones metagenômicos 16S rRNA de Bacteria e Archaea, quando comparadas, utilizando-se o programa LIBSHUFF, diferiram significativamente (p<0,0001). Os resultados desse estudo mostraram a ocorrência de uma grande diversidade de bactérias e arqueas, nesse tipo de ambiente pouco estudado e com características peculiares de temperatura elevada e limitações hídricas, com possibilidade de busca de novos genes e/ou isolados microbianos, com potencial biotecnológico.

Palavras chaves: solo, diversidade bacteriana, Archaea, 16S rRNA, metagenômica.

ABSTRACT


Soil samples of native pasture (site A) and of soil cultivated with grass Paspalum conjugatum, Bergius (site B) collected from Caatinga vegetation in the semi-arid region in Paraíba state (07°23'27"S 36°31'58"W) were utilized for constructing four metagenomic libraries, aiming the evaluation of microbial diversity through amplification of gene 16S rRNA of domains Bacteria and Archaea. The metagenomic DNAs were extracted by utilizing FastDNA® SPIN Kit for Soil (BIO 101), which were amplified by PCR, by using universal primers 27F / 1525R (Bacteria) and 20F / 958R (Archaea). The purified fragments were linked to vector pGEM Teasy and transformed by thermal shock in chemically competent Escherichia coli DH10B. Transformants were cultivated in LB/Ampicillin medium (100 μM/ml), IPTG (800 μg/mL) and XGal (80 μg/mL) at 37°C/18-20 h. A selection of 250 clones of each library was performed, sequenced and after discarding the low quality sequences and chimerics, 64 and 68 sequences were obtained (Bacteria) and 89 and 141 sequences (Archaea) from soils of sites A and B, respectively, which were compared to public bank of data RDB and NCBI (similarity >95%). In site A the phylum Acidobacteria (48.4%) was the most abundant, followed by phyla Bacteroidetes (10.9%), Proteobacteria (10.9%), and Firmicutes (6.3%). In site B Proteobacteria (45.6%) was the most abundant, followed by Firmicutes (10.3%), Acidobacteria (8.8%), Bacterioidetes (7.3%); and also Cyanobacteria (1.5%) and Planctomycetes (1.5%) which were not found in site A. Among the sequences obtained, 23.4% (site A) and 25.0% (site B) were not classified (similarity <95%). In the domain Archaea the phyla found were Euryarchaeota (3.4 and 45.4%) and Crenarchaeota (2.2 and 3.5%), in sites A and B, respectively; it should be observed that 94.4% and 51.1% of the sequences were not classified (similarity <95%), between sites A and B, respectively. Larger diversity (Shannon's índex), richness (Chao 1), and distribution (equity index) of communities were observed at species level, in the phyla Bacteria and Archaea, in both sites. The metagenomic libraries 16S rRNA of Bacteria and Archaea, when compared by using the LIBSHUFF program, differed significantly (p<0.0001). The results of the present study showed the occurrence of a great diversity of bacteria and archaea in that semi-arid environment, with peculiar features of elevated temperature and hydric limitations, emphasizing the possibility of investigations on search of new genes and/or microbial isolates with biotechnological potential.

Key words: soil, microbial diversity, Archaea, 16S rRNA, metagenomic.

1 INTRODUÇÃO

O solo é um recurso natural renovável essencial para a vida no planeta, pois representa uma fonte de nutrientes e minerais, tanto para micro como para macrobiota, devido à deposição de restos celulares de plantas, animais e microrganismos (DUBEY; TRIPATHI; UPADHYAY, 2006).

Sendo considerado o maior reservatório da diversidade genética microbiana e um ecossistema complexo, resultado da interação de múltiplos parâmetros, tais como, pH, conteúdo de água, estrutura do solo, variações climáticas e atividade biótica (LAKAY; BOTHA; PRIOR, 2007), o solo apresenta uma série de microhabitats que dependem da associação de partículas minerais (areia, silte e argila) e matéria orgânica, responsáveis pela formação de agregados de variados tamanhos e de diferentes estabilidades, produzindo um ambiente espacialmente heterogêneo influenciando diretamente no desenvolvimento de inúmeras microcomunidades (Figura 1) (TORSVIK; ØVREÅS, 2002; ROBE et al., 2003).

Figura 1. Modelo de um agregado de solo contendo componentes orgânicos e inorgânicos, salientando a formação de microambientes onde os microrganismos se distribuem e proliferam (Fonte: ANDRIELLI, 2006, adaptado de MADIGAN et al., 2004).

A diversidade biológica de muitos ecossistemas, como o solo, influenciada pelas diferentes interações ambientais, pode ser ameaçada por processos degradativos diversos, tanto naturais como antrópicos, apresentando como primeiros sintomas visíveis distúrbios nas comunidades naturais vegetais, frequentemente precedidos por perdas das propriedades físico-químicas e biológicas, principalmente as microbiológicas (MÄDER et al., 1996; REQUENA et al., 2001).

No Brasil, os diferentes biomas que apresentam características distintas, como a Caatinga da região semi-árida do Nordeste, considerada um ecossistema único e tipicamente brasileiro (BRASIL, 2003), poucos estudos foram realizados sobre a diversidade microbiana do solo (LEWINSOHN; PRADO, 2002; ZHOU et al., 2004; FAORO et al., 2010) e relativamente pouco tem sido feito para quantificar as relações entre diversidade microbiana, funcionamento e qualidade do solo e sustentabilidade do ecossistema (KENNEDY; SMITH, 1995; ANDRADE et al., 2005).

O semi-árido nordestino, que apresenta características diferenciadas como temperaturas elevadas, baixa pluviosidade, escassez hídrica, solos rasos e geralmente salinos, com pH variando entre moderadamente ácido ao alcalino (ALVES, 2009), vem sofrendo processos de desertificação, principalmente provocados por ações antrópicas (ANDRADE et al., 2005; OLIVEIRA et al., 2009), podendo causar danos a microbiota local mesmo antes de ser conhecida.

As comunidades microbianas de amostras ambientais têm sido caracterizadas tradicionalmente com base em técnicas de cultivo e de microscopia, que apesar serem úteis aos estudos taxonômicos, fisiológicos e genéticos, atualmente, em função da aplicação das técnicas moleculares, têm se mostrado inadequadas para avaliar a diversidade microbiana, uma vez que apenas uma pequena parcela dos microrganismos,

cerca de 0,1 a 1%, podem ser cultivados em laboratório (HUGENHOLTZ; GOEBEL; PACE, 1998; TORSVIK; ØVREÅS, 2002).

A evolução da biologia molecular nas últimas décadas propiciou avanços nos estudos da microbiologia ambiental e de estudos ecológicos do solo. A extração de DNA de amostras ambientais, com posterior amplificação e análise do material genético, tem sido uma alternativa ou complemento ao clássico método de cultivo e análises fisiológicas de microrganismos (ZILLI et al., 2003).

Técnicas moleculares baseadas em análise de sequências do gene 16S rRNA e construção de bibliotecas metagenômicas, com extração direta do DNA de amostras a partir de ambientes diversos, têm revelado a complexidade da microbiota, tanto para o domínio Bacteria como para Archaea (BORNEMAN; TRIPLETT, 1997; DUNBAR et al., 1999; SCHLOSS; HANDELSMAN, 2004; COSTELLO; SCHMIDT, 2006; ROESCH et al., 2007; ELSHAHED et al., 2008).

Estudos sobre a diversidade microbiana edáfica, relativa às propriedades do solo, em ambientes como o semi-árido no Nordeste do Brasil, tornam-se extremamente necessários, tanto para fins ecológicos, como para conhecimento de novos microrganismos de interesse biotecnológico, visto que se trata de ambiente árido, onde, possivelmente, organismos com características peculiares podem ser encontrados.

2 REVISÃO BIBLIOGRÁFICA

2.1 Caatinga e a Região Semi-Árida

A região Nordeste do Brasil abrange uma área de 1.553.917 km², correspondente a cerca de 18,25% do território nacional (IBGE, 2000). Dentro dessa região encontramos o principal bioma existente no Nordeste, a Caatinga (termo originário do tupi-guarani que significa mata branca), ocupando uma área de mais de 900.000 km² estendendo-se entre os Estados da Paraíba, Bahia, Ceará, Piauí, Pernambuco, Rio Grande do Norte, Sergipe, Alagoas, além do norte de Minas Gerais, no sudeste do Brasil (PAN-BRASIL, 2004).

Considerado um ecossistema único e exclusivamente brasileiro, a Caatinga está inserida na região semi-árida, equivalente a cerca de 56% da região Nordeste e de 11,5% do território nacional (BRASIL, 2003), a qual, apesar das adversidades naturais do ambiente, se torna muito importante do ponto de vista biológico por apresentar fauna e flora únicas, formada por uma vasta biodiversidade, rica em recursos genéticos (PAN-BRASIL, 2004).

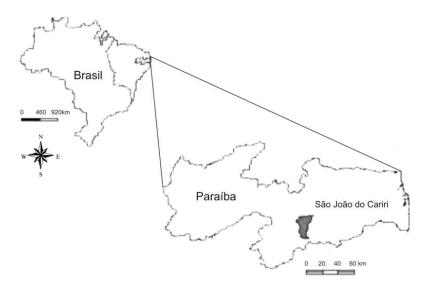
A vegetação tipo xerófila da Caatinga, decorrente do clima Bsh (quente com chuvas de verão), segundo classificação de Köppen, e um bioclima 2b, denominado de subdesértico, quente de tendência tropical, conforme a classificação de Gaussen, apresenta plantas de porte arbóreo, arbustivo e herbáceo, com ampla variação fitofisionômica e elevada diversidade de espécies, pertencentes principalmente às famílias Anacardiaceae, Apocynaceae, Caesalpiniaceae, Euphorbiaceae, Fabacea-Mimosoideae, Bromelaceae e Cactaceae (ANDRADE et al., 2005; LUNA; COUTINHO, 2007).

Estima-se que pelo menos 932 espécies vegetais já foram registradas para essa região, das quais 318 são endêmicas (BRASIL, 2003).

O clima constitui a característica mais importante do semi-árido brasileiro, principalmente devido à ocorrência das secas estacionais e periódicas. O regime pluviométrico do semi-árido delimita duas estações bem distintas: uma curta estação chuvosa, de 3 a 5 meses de duração, que ocorre nos meses de janeiro a maio, e uma estação seca, que ocorre nos meses de junho a dezembro. A precipitação média da Caatinga está em torno de 500 mm, com temperatura média anual variando entre 22°C e 32°C (BRASIL, 2003). Cerca de 50% dos solos do semi-árido são de origem cristalina, rocha dura que não favorece a acumulação de água, sendo os outros 50% representados por solos sedimentares, que apresentam melhor capacidade de armazenamento de águas subterrâneas (CAVALCANTI; COUTINHO; SELVA, 2007).

Dentre os biomas brasileiros, a Caatinga é o menos conhecido cientificamente sendo um dos mais ameaçados, devido ao uso inadequado e insustentável dos seus solos e recursos naturais, e por ter apenas cerca de 1% de remanescentes protegidos por unidades de conservação (PAN-BRASIL, 2004).

2.2 Região do Cariri Paraibano


O Estado da Paraíba é subdividido em três regiões climáticas: a fachada atlântica tropical úmida; a superfície do planalto da Borborema, onde se situam os Cariris, com seu clima semi-árido acentuado; e o Sertão, apresentando-se duas vezes mais chuvoso do que os Cariris, também, na faixa semi-árida (ALVES, 2009).

O Cariri paraibano encontra-se localizado no centro-sul do Estado, com área aproximada de 11.192,01 km², equivalente a cerca de 20% do Estado, se caracteriza por

apresentar baixos índices pluviométricos (em torno de 400 mm), temperaturas médias elevadas (cerca de 26°C), déficit hídrico acentuado, alta taxa de evapotranspiração, limitações edáficas (solos rasos e, em muitos casos, com altos teores de salinidade) (NASCIMENTO; ALVES, 2008).

Essa região apresenta-se divida em 29 municípios inseridos na mesorregião da Borborema, entre os quais podemos destacar o município de São João do Cariri (07°23'27"S 36°31'58"O), localizado na microrregião do Cariri Oriental, abrangendo uma área territorial de 702 km² (BRASIL, 2005) (Figura 2).

O município de São João do Cariri apresenta predominantemente o solo tipo Luvissolo Crômico vértico, podendo também ser encontrados os tipos Vertissolo e Neossolo Lítico (CHAVES; CHAVES; VASCONCELOS, 2000), e com um dos menores índices de aridez da região (IA - 0,22), onde as práticas de desmatamento para implantação de culturas ou pecuária extensiva acarretam alterações na biomassa microbiana, podendo contribuir para sua diminuição antes mesmo de ser conhecida (PAN-BRASIL, 2004).

Figura 2. Mapa do município São João do Cariri, Paraíba, Nordeste do Brasil. Fonte: IBGE (2004).

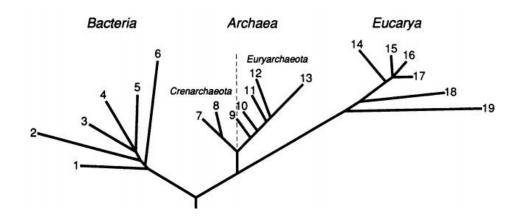
Um dos graves problemas que atinge as regiões áridas e semi-áridas é o processo de desertificação que ocorre em mais de 100 países no mundo, de acordo com dados do PAN-BRASIL (2004), sendo dessa forma considerado um problema global.

De acordo com Souza (2000) e Cavalcanti (2001), as possíveis causas do processo de desertificação seriam: (1) o desmatamento, deixando os solos descobertos e expostos à erosão, alterando suas propriedades e desencadeando assoreamento de cursos d'água e reservatórios; (2) o uso intensivo dos solos, sem descanso e sem técnicas de conservação; e (3) a irrigação mal conduzida, provocando salinização dos solos, inviabilizando algumas áreas e perímetros irrigados do semi-árido.

Todos esses aspectos acima citados trazem como consequências, a perda de solos e da sua diversidade; diminuição da disponibilidade de recursos hídricos e da capacidade produtiva dos solos resultado no abandono de terras (CAVALCANTI, 2001; SAMPAIO; SAMPAIO, 2002). Na Paraíba o processo de desertificação atinge cerca de 27.750 km² (49,2%), abrangendo 68 municípios (CAVALCANTI, 2001), com perda expressiva de sua biodiversidade.

Quanto aos recursos hídricos o município de São João do Cariri encontra-se inserido nos domínios da bacia hidrográfica do rio Paraíba, parte na sub-bacia do rio Taperoá e parte na região do alto Paraíba, com alguns rios tributários e vários riachos associados, corpos de acumulação, como lagoas temporárias e açudes, como Namorados (BRASIL, 2005), ao longo do qual estão localizados açudes em cascata (AESA, 2006), a exemplo do açude Boa Vista.

As margens dos corpos d'água frequentemente são utilizadas para cultivo de gramíneas, como capim marrequinha (*Paspalum conjugatum*, Bergius), para alimentação animal, ou culturas de subsistência, em sistema de vazante (Costa et al, 2008), muito comum na região semi-árida, que acarretam alterações à paisagem nativa.


2.3 Diversidade Microbiana do Solo

Os microrganismos representam a forma de vida mais abundante e diversificada no planeta (WHITMAN; COLEMAN; WIEBE, 1998), exercendo uma importância indiscutível na sustentabilidade da biosfera e um papel preponderante nos ciclos biogeoquímicos (DORAN; PARKIN, 1994).

A diversidade da microbiota do solo é considerada extremamente elevada variando dentro e entre os diferentes tipos e condições dos solos. Estima-se que o número de células procarióticas pode variar de 4 x 10⁶ a 2 x 10⁹ em um grama de solo (WHITMAN et al., 1998), podendo conter cerca de 10.000 genomas distintos (TORSVIK et al., 1998).

Historicamente, os procariotos foram classificados com base nas suas características fenotípicas observáveis, taxonomicamente dividididos de acordo com seus aspectos morfologicos e bioquímicos (KILLHAM; PROSSER, 2007).

Entretanto, a classificação dos seres vivos em cinco reinos (Monera, Protista, Fungi, Plantae e Animalia) (WHITTAKER, 1969), sofreu uma grande alteração com o advento da biologia molecular, quando Woese e Fox (1977) propuseram a divisão dos procariotos em Eubacteria e Arqueobacteria e agrupamento dos eucariotos em Eucarya, e os denominou como domínios, baseados na comparação de sequências dos genes 16S e 18S rRNA. Posteriormente, Woese; Kandler e Wheelis (1990) formalizaram a nova classificação para a grande diversidade de vida na Terra, denominando de fato os seres vivos em três domínios, Bacteria, Archaea e Eucarya (Figura 3).

Figura 3. Árvore filogenética universal, apresentando os três domínios. (Fonte: WOOSE; KANDLER e WHEELIS, 1990).

Inicialmente, o domínio Bacteria foi formado por 12 filos compostos principalmente por indivíduos cultivados e caracterizados (WOESE, 1987), sendo aumentado para 36, de acordo com Hungenholtz; Goebel e Pace (1998) e, posteriormente, para 52 filos (RAPPÉ; GIOVANNONI, 2003), baseados nas análises do gene 16S rRNA de organismos independente de cultivo.

Os microrganismos pertencentes ao domínio Bacteria constituem um grupo cosmopolita e estão presentes nos mais diferentes habitats, apresentando uma enorme diversidade de vias metabólicas, reunindo organismos especializados na utilização de compostos orgânicos (heterotróficos e organotróficos) ou inorgânicos como fonte de energia (quimiorganotróficos e litotróficos) e aqueles capazes de utilizar luz como fonte de energia no metabolismo (fototróficos) (CANHOS et al., 1997).

Os grupos bacterianos com maior representatividade no solo pertencem aos filos, Proteobacteria, Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Verrucomicrobia, que em geral foram detectados por técnicas moleculares, pois muitos não apresentam representantes cultiváveis pelas técnicas tradicionais de cultivo (BORNEMAN; TRIPLETT, 1997; DUNBAR et al., 1999; McCAIG; GLOVER; PROSSER, 1999; LILES et al., 2003; JANSSEN, 2006; FAORO et al., 2010; SILVA, 2010).

A predominância de representantes do filo *Acidobacteria*, entre 20 a 60% das sequências de 16S rRNA analisadas em solos nativos, foi evidenciada nos trabalhos de Dunbar et al. (1999), Liles et al. (2003) e Faoro (2010), enquanto que em solo sob cultivo com ou sem adição de adubo orgânico *Proteobacteria*, em geral, foi mais evidente de acordo com Borneman e Triplett (1997), McCaig; Glover; Prosser (1999). Esses dados contrastam com os de Silva (2010), que observaram uma maior incidência de *Proteobacteria* em solos nativos do litoral de São Paulo.

O filo *Acidobacteria* possui apenas quatro espécies cultiváveis até o presente momento, *Acidobacterium capsulatum*; *Holophaga foetida, Geotrix fermentans* e *Terriglobus roseus* (KOCH et al., 2008), enquanto que dentro da *Proteobacteria* a grande maioria dos seus representantes são cultiváveis (JANSSEN, 2006).

Entre os demais filos pode-se destacar *Firmicutes* com representantes bacterianos esporulados, como *Bacillus* e *Clostridium*, que podem persistir em solos com características críticas em relação à temperatura e a conteúdo de água (TZENEVA et al, 2004).

O domínio Archaea, que inclui os microrganismos de ambientes extremos, foi dividido primeiramente em apenas dois filos, *Crenarchaeota*, que contém representantes hipertermófilas, e *Euryarchaeota*, com espécies metanogênicas, halofílicas e alguns hipertermófilas (GARRITY et al., 2002). Posteriormente, mais dois filos foram incorporados as arqueas, *Korarchaeota* (HUBER et al., 2002) e *Nanoarchaeota* (WATERS et al., 2003).

As arqueas foram separadas das bactérias em 1977 (WOESE; FOX, 1977), porém continuando dentro dos procariotos, baseado nas análises das sequências do gene

16S rRNA, assim como por características distintas observadas neste grupo: membrana celular com lípidos compostos de uma associação de glicerol-éter, ao invés de glicerol-éster presente nas bactérias e eucariotas; parede celular diferenciada das bactérias por posuir pseudopeptídeoglicano, glicoproteínas e outros, e não conter mureína; processos de transcrição do DNA e da síntese protéica idênticos aos dos eucariotos; metabolismo diferenciado com espécies que produzem metano, utilizam a luz solar e sobrevivem em ambientes com temperaturas elevadas (> 95° C), alta salinidade (1 a 4 M de NaCl) e pH extremos (CARDOSO et al., 2003).

O filo *Euryarchaeota*, composto de halófilos extremos, redutores de enxofre e sulfato, heterótrofos termfílicos e metanogênicos, se apresenta mais diverso, estando descritas: oito classes; dez ordens, dezesseis famílias, incluindo vários gêneros e espécies, enquanto que o filo *Crenarchaeota*, com menos grupos, apresenta: uma classe; três ordens; cinco famílias; vinte e dois gêneros e cerca de quarenta e cinco espécies, com a maioria sem representantes cultiváveis (GARRITY et al., 2002).

No entanto, estudos moleculares filogenéticos têm indicado que o domínio Archaea pode ser mais diverso e amplo, ocorrendo em ambientes como solos de florestas e sob cultivo, bem como em ambientes aquáticos, com pH e temperaturas moderadas (JURGENS; LINDSTROM; SAANO, 1997; DeLONG, 1998; PESARO; WIDMER, 2002).

De acordo com Garrity; Boone e Castenholz (2005), cerca de 6.250 espécies válidas de bactérias e arqueas tinham sido descritas, tanto na *Approved List of Bacterial Names* ou em *Validation List*, mostrando o quanto ainda é pequeno o número de procariotos conhecidos, e quão se torna necessária a investigação e o reconhecimento de novos grupos taxonômicos, em função da grande quantidade de células procarióticas estimadas em 4 x 10³⁰ no mundo (ROSSELÓ-MORA; AMANN, 2001).

2.4 Avaliação da Diversidade Microbiana

A diversidade taxonômica e genômica de microrganismos sempre foram avaliadas principalmente através de características fenotípicas e/ou genotípicas dos organismos isolados em laboratório. No entanto, avaliações recentes, indicam que cerca de 99% dos microrganismos presentes em muitos ambientes naturais não são cultiváveis (STREIT; SCHMITZ, 2004; MARTINY et al., 2006; CHAUHAN et al., 2011).

Atualmente, várias metodologias moleculares têm sido desenvolvidas para contornar as limitações associadas com as técnicas de cultivo dos microrganismos em laboratório.

Alguns dos métodos para estudo das comunidades microbianas consistem na análise de restrição do rDNA amplificado (ARDRA), no polimorfismo do tamanho do fragmento de restrição terminal (T-RFLP), na amplificação aleatória de DNA polimórfico (RAPD), na análise do espaço ribossomal intergênico (RISA), na eletroforese em gel com gradiente desnaturante (DGGE), na eletroforese em gel de gradiente de temperatura (TGGE) e no polimorfismo conformacional de fita simples (SSCP), além da análise do gene 16S rRNA (TORSVIK; ØVREAS, 2002).

As análises de estruturas de comunidades de procariotos utilizando as informações das sequências dos genes que codificam a subunidade 16S do DNA ribossômico (16S rRNA) têm se tornado cada vez mais difundidas, graças aos estudos pioneiros de Pace et al. (1986). Esses genes possuem características fundamentais que possibilitam sua utilização em estudos ecológicos, tais como: presença de regiões com sequências de nucleotídeos hipervariáveis (regiões de V1 a V9), entre regiões conservadas; presença em todos os procariotos; aparente ausência de transferência

gênica lateral e tamanho considerado satisfatório, com cerca de 1500 nucleotídeos, para estudos filogenéticos (AMANN; LUDWIG, 2000).

Associada as análises do gene 16S rRNA, uma nova metodologia denominada Metagenômica, palavra derivada do termo estatístico "Meta-análise" e introduzida em 1998 por Handelsman et al (1998), surge nesse contexto, como uma perspectiva de análise genômica de comunidades microbianas que independe de cultivo (SCHLOSS; HANDELSMAN, 2004). Essa técnica envolve extração direta de DNA de amostras ambientais, clonagem em vetor adequado, construção de bibliotecas genômicas e análise das sequências obtidas, que poderão ser utilizadas para estudos filogenéticos, distribuição e redundância de funções na comunidade, ligação gênica, organização do genoma e transferência horizontal (HANDELMAN, 2004; COWAN et al., 2005).

Alguns trabalhos têm revelado que os solos e sedimentos de ecossistemas diversos representam grandes bancos genéticos, contendo uma enorme diversidade de microrganismos ainda não estudados (MARTINY et al., 2006), nos quais a caracterização genética e funcional será fundamental para melhor entendimento dos importantes processos biogeoquímicos desses ambientes, assim como para a descoberta de novos genes e/ou processos metabólicos com potencial biotecnológico.

A utilização de metodologias que independe de cultivo e isolamento microbiano levou a uma rápida mudança na estimativa da diversidade microbiana ambiental. Diversos grupos de microrganismos nunca antes cultivados puderam ser detectados no ambiente pela análise das sequências de 16S rRNA e, por meio da comparação com sequências depositadas em bases de dados públicos, observou-se que muitas delas pertenciam a organismos filogeneticamente não relacionados às divisões bacterianas já existentes (PACE, 1996; HUGENHOLTZ; GOEBEL; PACE, 1998).

Bancos de dados de genes ribossomais como *Ribosomal Database Project II* (RDP II) obtém as sequências de 16S rRNA mensalmente a partir do Banco de dados como *International Nucleotide Sequence Database*: GenBank (NIH Genetic Sequence Database- http://www.ncbi.nlm.nih.gov/genbank/); EMBL (European Molecular Biology Laboratory- http://www.ebi.ac.uk/embl/); DDBJ (DNA DataBank of Japan-http://www.ddbj.nig.ac.jp/searches-e.html). Essas sequências são alinhadas com sequências gerais do rRNA bacteriano, através de um modelo que incorpora informações sobre a estrutura secundária da molécula, aumentando a confiabilidade. Na última atualização do banco de dados RDP II (09 de agosto de 2011) estavam disponíveis 1.921,179 sequências do gene 16S rRNA.

Atualmente, vários trabalhos utilizando a avaliação do gene 16S rRNA apresentam dados relevantes sobre a diversidade de bactérias e arqueas em diferentes ecossistemas, sejam terrestres, marinhos e dulceaquícolas, com as mais diversas características ambientais (BINTRIM et al., 1997; DUNBAR et al., 1999; JANSSEN, 2006; COSTELLO; SCHMIDT, 2006; KEMNITZ; KOLB; CONRAD, 2007; REIGSTAD; JORGENSEN; SCHLEPER, 2010).

No Brasil estudos sobre a composição microbiana foram geralmente realizados nos ecossistemas da Mata Atlântica, Amazônia e Cerrado, utilizando métodos tradicionais de cultivo (GOMES et al., 2000; SILVA; SIQUEIRA; COSTA, 2004; MELZ; TIAGO, 2009) e posteriormente por técnicas moleculares (CENCIANI et al., 2009; FAORO et al., 2010).

Os poucos trabalhos que foram realizados em amostras de solos para estimar a microbiota em relação ao domínio Bacteria da região semiárida do Nordeste do Brasil basearam-se nas técnicas de cultivo de microrganismos (GORLACH-LIRA; COUTINHO, 2007; SOUTO et al., 2008), bem como, análise da biomassa e atividade

microbiana (LUNA; COUTINHO; GRISI, 2008; ARAÚJO et al., 2008). Nenhum trabalho, até o momento, foi realizado para avaliar a diversidade de Archaea no solo do Cariri paraibano.

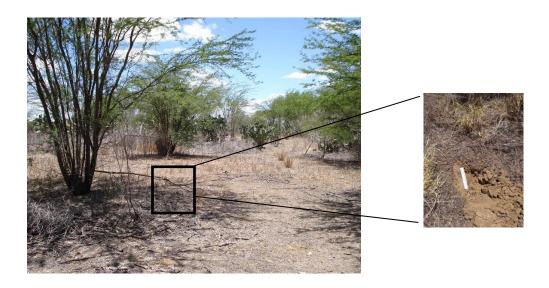
Desta forma, uma análise da diversidade microbiana do solo, neste tipo de ambiente, utilizando técnicas moleculares, com construção de bibliotecas metagenômicas, subsequente amplificação e análises do gene 16S rRNA, pode contribuir para um maior conhecimento da microbiota local, mostrando a diversidade e as possíveis diferenças dos domínios Bacteria e Archaea em solo nativo e sob cultivo.

3 OBJETIVOS

3.1 Objetivo Geral

Avaliar a diversidade microbiana para os domínios Bacteria e Archaea em solos da pastagem nativa (Caatinga) e sob cultivo do capim introduzido *Paspalum conjugatum*, Bergius, na região do Cariri paraibano.

3.2 Objetivos Específicos


- Utilizar o DNA total extraído das amostras dos solos para construção de bibliotecas de clones metagenômicos;
- Analisar a diversidade taxonômica dos clones metagenômicos de bactérias e arqueas na base das sequências do gene 16S rRNA;
- Comparar a diversidade microbiana do solo entre os dois tipos de ambientes estudados.

4 MATERIAIS E MÉTODOS

4.1 Coleta das Amostras dos Solos

As coletas foram realizadas na Fazenda Boa Vista (7°12'11,4"S e 35°07'19,8"O), no município de São João do Cariri, Paraíba, durante o período de estiagem, em dois pontos de amostragem denominados: Sítio A – solo da pastagem nativa (Figura 4) e Sítio B – solo da pastagem sob cultivo do capim marrequinha (*Paspalum conjugatum*, Bergius), às margens do açude Boa Vista (Figuras 5).

De cada ponto de amostragem foram retiradas 5 sub-amostras simples ao acaso, em zigue-zague, com profundidade de 0-20 cm, com aproximadamente 300 g cada, que foram reunidas e homogeneizadas formando uma amostra composta, em recipiente plástico, com base na metodologia da EMBRAPA, 2006 (modificado) e/ou Alef; Nannipieri (1995).

Figura 4. Solo da pastagem nativa da Fazenda Boa Vista (**Sítio A**), São João do Cariri, PB, durante o período de estiagem.

Figura 5. Solo da pastagem sob cultivo do capim marrequinha (*P. conjugatum*, Bergius) (**Sítio B**), as margens do açude Boa Vista, São João do Cariri, PB, durante o período de estiagem.

As amostras de solo devidamente identificadas e embaladas em sacos plásticos foram conduzidas em caixa isotérmica contendo gelo ao Laboratório de Biologia Molecular e Ecologia, do Departamento de Biologia Molecular, da Universidade Federal da Paraíba, as quais foram congeladas a -20°C, para posterior realização das análises.

4.2 Aspectos Físicos e Químicos das Amostras dos Solos

4.2.1 Aspectos físicos – **Temperatura** foi verificada no momento da coleta, entre 10 e 12 horas no período da manhã, utilizando termômetro de mercúrio, na profundidade de 10 cm no solo, por cerca de 10 min; e a **Umidade** foi determinada por secagem em estufa a 105°C por 24 h (EMBRAPA, 2006).

4.2.2 Aspectos químicos – **pH** do solo em água (1:2,5) foi determinado utilizando potenciômetro (Portátil - Q400HM - Callmex) (EMBRAPA, 2006); as demais determinações dos compostos químicos e matéria orgânica foram realizadas pelo Laboratório de Análise de Solos, do Departamento de Solos, da Universidade Federal de Viçosa-MG.

4.3 Extração do DNA Metagenômico das Amostras dos Solos

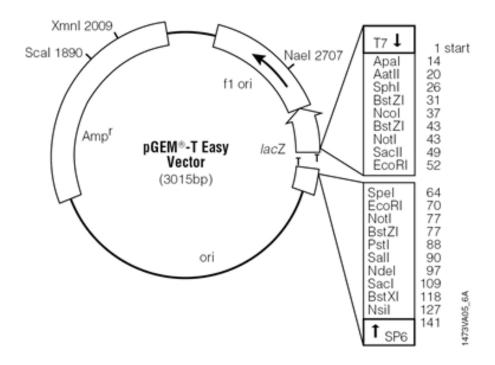
Para obtenção do DNA total (metagenômico) da microbiota do solo, as amostras foram primeiramente tamisadas em peneira de aço (2,0 mm) e em seguida realizadas as extrações utilizando o kit comercial (FastDNA® SPIN Kit for Soil – BIO 101), conforme instruções do fabricante.

4.4 Quantificação do DNA Metagenômico

As amostras de DNA metagenômico foram quantificadas utilizando aparelho NanoDrop *Spectrophotometer* ND-1000 UV/Vis (EUA), que determinou a concentração do DNA em ng/µL no comprimento de onda de 260 nm e estabeleceu o grau de pureza da amostra pela razão entre os valores dos comprimentos de onda 260 nm/280 nm.

4.5 Construção da Biblioteca de Clones Metagenômicos do gene 16S rRNA

4.5.1 Amplificação do gene 16S rRNA


Os genes 16S rRNA foram amplificados utilizando *primers* universais: 27F (5'AGA GTT TGA TCM TGG CTC AG3') e 1525R (5'AAG GAG GTG WTC CAR CC3'), para o domínio Bacteria (LANE, 1991); 20F (5'TTC CGG TTG ATC CYG CCR G3') e 958R (5' YCC GGC GTT GAM TCC AAT T3'), para o domínio Archaea (DeLONG, 1992). As reações da PCR foram realizadas para um volume final de 60 μL: 10 ng de DNA total extraído do solo; tampão de reação 1X; 3,0 mM de MgCl₂; 0,2 mM de dNTPs; 0,4 pmol de cada *primer*; 3 U de *Taq* DNA polimerase, BSA (0,4 mg/mL) e água ultra-pura para completar o volume. A amplificação ocorreu em termociclador (Perkin Elmer Gene Amp DNA system 2400, EUA), com as seguintes etapas: 94°C por 5 min, 35 ciclos (94°C por 1 min, 57°C por 2 min e 72°C por 2 min) para o domínio Bacteria e 30 ciclos (94°C por 1 min, 55°C por 2 min e 72°C por 2 min) para o domínio Archaea, com extensão final para ambos a 72°C por 10 min e manutenção a 4°C por no mínimo 15 min.

4.5.2 Eletroforese e purificação dos fragmentos 16S rRNA

A visualização dos produtos de PCR ocorreu por meio de gel de agarose 0,8%, em tampão TBE (Tris-Borato-EDTA) 1X, contendo brometo de etídeo (0,5 μg/mL). As bandas correspondentes a aproximadamente 1500 pb (domínio Bacteria) e 900 pb (domínio Archaea) foram contadas do gel, com auxílio de bisturi, e purificadas utilizando *PureLink*TM *HiPure Plasmid Miniprep Kit* (Invitrogen, EUA), de acordo as recomendações do fabricante.

4.5.3 Reação de ligação dos fragmentos 16S rRNA ao vetor de clonagem

Os produtos da PCR 16S rRNA dos fragmentos purificados foram ligados ao vetor de clonagem pGEM Teasy (Promega, Madison, WI) (Figura 6), conforme instruções do fabricante. Este vetor possui como marcador de seleção um gene de resistência à ampicilina e o gene que codifica a enzima β-Galactosidase como gene repórter, onde está localizado um sítio múltiplo de clonagem. Esse vetor é linear com extremidades coesivas constituídas por timidinas que facilitam a ligação do inserto pela T4 DNA ligase. Isso se dá pelo fato de que a maioria das DNA polimerases termina a polimerização pela adição de bases adenina nas terminações 3' do fragmento amplificado. Além disso, não há a necessidade de que o DNA seja digerido com enzimas de restrição.

Figura 6. Vetor pGEM Teasy (Promega, Madison, WI) utilizado na ligação dos fragmentos 16S rRNA das amostras do solo do Cariri paraibano. Fonte: www.promega.com.

As reações de ligação dos produtos das PCRs 16S rRNA ao vetor, encontram-se abaixo descritas:

- 1 μ L de T4 DNA ligase (3 U/μ L);
- 10 μL de tampão 2X;
- 1 μL do vetor pGEM Teasy (50 ng);
- 5 μL do produto da PCR;
- Água ultra-pura para completar o volume final de 20 μL.

O cálculo da quantidade do produto da PCR (inserto) utilizado na reação de ligação foi realizado pela seguinte fórmula:

A taxa molar do inserto:vetor utilizada foi de 3:1. As reações foram misturadas por pipetagem e incubadas a 15°C por 3 h.

Um controle positivo contendo DNA fornecido pelo fabricante (Promega, Madison, WI) e um controle negativo sem a presença de DNA foram também utilizados nas reações.

4.5.4 Precipitação das reações de ligação do gene 16S rRNA

As ligações (inserto:vetor) foram precipitadas para purificação das reações, nas quais adicionou-se:

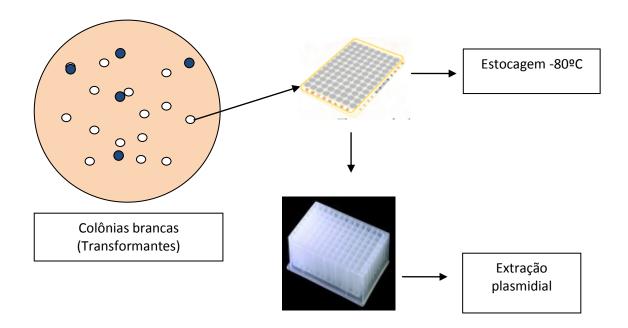
- 2 μL de glicogênio (20 mg/mL);
- 1,2 μL de acetato de sódio NaOAc (3 M);
- 26,4 μL de etanol absoluto

As reações foram deixadas *over-night* em freezer a -20°C. Em seguida, foi realizada centrifugação a 14.000 rpm, por 15 min; descarte do sobrenadante; lavagem dos *pellets* com 200 μL de etanol 70%; centrifugação a 14.000 rpm, por 5 min; descarte do sobrenadante; secagem dos *pellets* a temperatura ambiente, ressuspensão com 15 μL de água Milli-Q autoclavada e estocagem em freezer a -20°C, até o momento da transformação.

4.5.5 Competência química em Escherichia coli DH10B

Uma única colônia da cepa *E. coli* DH10B (cedida pelo Laboratório de Genômica e Biologia Molecular – UFRN) foi adicionada a um tubo contendo 2 mL de meio SOB (pré-cultivo), sendo mantida a 37°C por 2 h, a 150 rpm. O pré-cultivo (2 mL) foi adicionado a 50 mL de meio SOB (2% triptona; 0,5% extrato de levedura; 10 mM NaCl; 2,5 mM KCl; 10 mM MgCl₂ e 10 mM MgSO₄; pH 6,8), deixando nas mesmas condições de incubação anterior, até atingir DO₆₀₀ entre 0,5 – 0,6. Após esse período, adicionou-se 500 μL de MgCl₂ (1 M), mantendo o tubo no banho de gelo por 15 min. O tubo foi centrifugado a 3000 rpm por 17 min a 4°C. O sobrenadante foi desprezado e as células ressuspensas com 15 mL de solução RFI (30 mM acetato de potássio; 50 mM MnCl₂; 100 mM KCl; 10 mM ClCa₂ e 15% de glicerol), sendo mantidas no gelo por 10 min. Os tubos foram novamente centrifugados a 3000 rpm, por 17 min a 4°C, o sobrenadante desprezado e as células ressuspendidas em 2 mL de solução RPII (10 mM Na-MOPS pH 7,0; 75 mM ClCa₂; 10 mM KCl e 15% de glicerol), os quais foram divididos em alíquotas de 200 μL e estocadas em freezer a -80°C. Todo material utilizado foi previamente esterilizado por autoclavação a 121°C, 15 min, sob 1 atm,

assim como todos os procedimentos foram realizados assepticamente em cabine de fluxo laminar (Veco).


4.5.6 Transformação por choque térmico

Alíquotas de 1 a 3 μL de cada reação de ligação purificada foram adicionadas a 50 μL de células quimicamente competentes de *E. coli* DH10B e colocados em banho de gelo por 30 min. Em seguida, foi aplicado choque térmico (banho-maria) a 42°C por 90 seg e imediatamente os tubos foram retornados ao gelo por 2 min. Aos tubos foram adicionados 950 μL de meio SOC (meio SOB acrescido de 20 mM de glicose, esterilizada por filtração – 0,2 μm) e esses foram incubados a 37°C por cerca de 2 h, a 150 rpm.

4.6 Cultivo e Seleção dos Clones das Bibliotecas 16S rRNA

Para cada reação de transformação foram preparadas placas do meio LB (Luria-Bertani – 1% de triptona, 0,5% de extrato de levedura e 1% de NaCl, pH 7,0), contendo ampicilina (100 μg/mL), adicionadas de 40 μL de X-gal (20 mg/mL) e 4 μL de IPTG (200 mg/mL), espalhadas com auxílio de alça de Drigalski estéreis. Após incubação a 37°C por cerca de 18 a 20 h, foram selecionadas colônias brancas, indicando a inativação do gene da β - galactosidase (*LacZ*) pela inserção do fragmento amplificado, (colônias azuis não apresentam inserto no vetor), que foram repicadas com auxílio de palitos de madeira estéreis para placas de 96 poços (tipo Elisa), contendo meio LB/amp, seladas com adesivo estéril (AB Gene) e incubadas a 37°C por 18-20 h em estufa bacteriológica. Após este período, foram retiradas alíquotas de 5 μL e adicionadas a 1

mL de meio LB em placas tipo *Megatiter* (96 poços), até posterior extração do DNA plasmidial, e ao restante do crescimento bacteriano foram adicionados glicerol 50% (1:1) e estocados em freezer a -80°C (Figura 7).

Figura 7. Repasse dos clones (colônias brancas) para isolamento, estocagem e extração plasmidial.

4.7 Extração Plasmidial dos Clones das Bibliotecas 16S rRNA

Preliminarmente, foi realizada uma extração plasmidial, utilizando *ilustra plasmidPrep Mini Spin Kit* (GE Healthcare, UK), de acordo com instruções do fabricante, em 3 clones de cada amostra, sítios A e B, para os domínios Bacteria e Archaea, para verificar a presença dos plasmidios. As bandas foram visualizadas em gel de agarose 1%, em tampão TBE 1X, contendo brometo de etídio (0,5 μg/mL) e fotodocumentadas em aparelho *ImageMaster* VDS (Pharmacia Biotech).

Após confirmação dos plasmídios, procederam-se as extrações plasmidiais dos demais clones, de acordo com Sambrock; Fritsch; Maniatis (1989), realizada da seguinte forma: os clones foram cultivados em placas tipo *Megatiter* de 96 poços, contendo 1 mL de meio LB, acrescido de ampicilina (100 μg/mL) e incubados em estufa 37°C, por 22 h. Após incubação, as placas contendo os clones foram centrifugadas a 3000 rpm, por 30 min, a temperatura ambiente. Os sobrenadantes foram descartados e as placas foram invertidas em papel absorvente por 5 min, para eliminação do meio de cultivo. Em seguida, procedeu-se o protocolo de extração plasmidial (Anexo 1).

4.8 PCR para Sequenciamento

As reações da PCR de sequenciamento foram realizadas em microplacas de 96 poços, em duplicata para cada amostra, utilizando o kit *DNA Sequencing-BigDye Terminator Cycle Sequencing Ready ABI Prism*, versão 3, nas seguintes concentrações (por poço):

- 1 µL de BigDye Terminator (Applied Biosystems);
- 1 μL do primer M13F (5 pmoles) (5'TCA CAC AGG AAA CAG CTA TGA C3');
- 2 μL do tampão 5X (400 mM Tris-HCl, pH 9 e 10 mM MgCl₂);
- 5 μL do DNA plasmidial (200 ng);
- Completando-se a reação para um volume final de 10 μL, com água ultra pura (Milli-Q) estéril.

As amplificações foram conduzidas em termociclador com programa: 1 ciclo de 96°C por 2 min, 40 ciclos de 96°C por 10 seg, 52°C por 20 seg e 60°C por 4 min), ao final da reação, as amostras permaneceram a 4°C até o sequenciamento.

Após as reações de amplificações, as amostras foram precipitadas adicionandose 80 μL de isopropanol 75% ao produto amplificado, deixadas em repouso por 15 min, a temperatura ambiente, sendo posteriormente centrifugadas a 3000 rpm, por 60 min. Após centrifugação, os sobrenadantes foram descartados, as placas permaneceram invertidas por 5 min em papel absorvente. Acrescentou-se 150 μL de etanol 70%, novamente centrifugadas a 3000 rpm, por 30 min. Logo após, os sobrenadantes foram descartados e as placas colocadas em cabine de fluxo laminar por cerca de 1 hora, protegidas da luz.

Em seguida, as amostras foram ressuspensas com 10 μL de Hi-Di formamida (ABI Prism), desnaturadas a 95°C, por 5 min, em termociclador de placa (Applied Biosystems) e conduzidas ao sequenciador automático, ABI *PRISM® 3100 Genetic Analyzer* (Applied Biosystems).

4.9 Análises das Sequências

As plataformas *on-line* para pesquisas biológicas, os bancos de dados biológicos e as ferramentas para análise de sequências utilizadas neste trabalho estão listadas na Tabela 1.

Após o sequenciamento das amostras do gene 16S rRNA, os eletroferogramas foram submetidos à ferramenta de análise *BioMol* que utiliza o *software PHRED* (EWING; GREEN, 1998), para avaliar a qualidade das sequências, visualizar o resultado graficamente e gerar os arquivos no formato *FASTA*. Este *software* analisa os dados brutos das sequências geradas verificando a probabilidade de erros, base a base. As sequências que não apresentaram o valor de *PHRED* maior que 20 foram

descartadas. Em seguida, foi utilizada a ferramenta *EGassembler* (MASOUDI-NEJAD et al., 2006) para a remoção das sequências pertencentes ao vetor de clonagem.

Tabela 1. Ferramentas de bioinformática, genômica comparativa e para análise de sequências utilizadas neste trabalho.

Ferramenta	Endereço Web (URL)	Descrição			
BioMol (PHRED)	http://www.biomol.unb.br/phph/	Análise da qualidade atribuída a cada base dos cromatogramas			
EGassembler	http://egassembler.hgc.jp/	Identificação e retirada de sequências do vetor			
MALLARD	http://www.bioinformatics-	Identificação de sequências			
1.02	toolkit.org/Mallard/index.html	quiméricas			
BLASTn	www.ncbi.nlm.nih.gov/blast/	Comparação e alinhamento de sequências			
CLASSIFIER	http://rdp.cme.msu.edu/classifier/	Classificação taxonômica das			
(RDP)	classifier.jsp	sequências do gene 16S rRNA.			
ClustalW2	www.ebi.ac.uk/clustalw/	Alinhamento múltiplo das sequências			
MEGA 5.0	http://www.megasoftware.net/	Construção das árvores filogenéticas			
GenBank	www.ncbi.nlm.nih.gov	Banco de dados de sequência do NCBI			
RDP's Pipeline	http://pyro.cme.msu.edu/	Classificação em OTUs; Análises dos índices de diversidade e riqueza.			
Mothur	http://www.mothur.org/wiki/Main_Page	Análise da composição das bibliotecas			
LIBSHUFF	http://whitman.myweb.uga.edu/lib shuff.html	Análises das diferenças entre as bibliotecas avaliadas.			

As sequências utilizadas na análise foram também analisadas para a presença de quimeras utilizando o programa *MALLARD 1.02* (ASHELFORD et al., 2006). Uma sequência quimérica gerada por PCR normalmente é formada por sequências de dois

parentes filogeneticamente distintos e ocorre quando um produto de amplificação terminado prematuramente volta a se anelar a uma nova fita de DNA e é copiada até o término dos ciclos da PCR (WANG; WANG, 1997). A presença de quimeras pode levar a uma falsa análise da biodiversidade presente na amostra ambiental por sugerirem a presença de microrganismos não existentes (Von WINTZINGERODE et al., 1997). As sequências classificadas como quiméricas foram descartadas.

Em seguida, as sequências selecionadas foram comparadas ao banco de sequências não redundantes do *National Center for Biotechnlogy Information* (NCBI) usando-se *BLASTn* (*Basic Local Alignment Search Tool*) (ALTSCHUL et al., 1990). Foram analisadas as similaridades das sequências obtidas com aquelas presentes no banco de dados. As sequências que apresentaram identidade maior que 95% e *e-value* igual a zero foram consideradas e nomeadas.

As sequências também foram comparadas com as depositadas no *Ribosomal Database Project* II (RDP) por meio da ferramenta *CLASSIFIER* (COLE et al., 2009). O RDP possui um sistema de classificação taxonômica (RDP *Hierarchy*) que segue a proposta do Manual de Bergey's (GARRITY et al., 2002), no qual os principais níveis taxonômicos são: Domínio, Filo, Classe, Ordem, Família, Gênero e Espécie.

O alinhamento múltiplo das sequências e as construções das árvores filogenéticas foram realizados pelos programas *ClustalW2* (LARKIN et al., 2007) e MEGA, versão 5.0 (TAMURA et al., 2011), respectivamente. Os alinhamentos das sequências foram analisados no sentido de encontrar o modelo evolutivo mais apropriado para construção das árvores filogenéticas.

As sequências alinhadas foram agrupadas em Unidades Taxonômicas Operacionais (OTUs) utilizando as ferramentas disponíveis no RDP's *Pipeline* (COLE et al., 2009), que também serviram para realizar os cálculos dos índices de diversidade,

riqueza e equidade e construção das curvas de rarefação usando três níveis de distâncias (1%, 3% e 20%).

Para avaliar as possíveis diferenças na composição das bibliotecas de 16S rRNA das amostras dos sítios A e B, para os domínios Bacteria e Archaea, e se essas diferenças seriam estatisticamente significantes, foi utilizado o *software LIBSHUFF* (SCHLOSS; LARGET; HANDELSMAN, 2004) com 10.000 randomizações, incluído no pacote do programa *Mothur* (SCHLOSS et al., 2009).

4.10 Medidas de Diversidade, Riqueza, Equidade e Cobertura das Amostras

De acordo com Hughes et al (2001), a diversidade e a riqueza de espécies podem ser avaliadas por intermédio de índices matemáticos e/ou estatísticos, e não paramétricos, que levam em consideração informações taxonômicas na definição das unidades de medida (taxa).

Alguns índices como de diversidade de Shannon-Weaver, Simpson e Hill; de riqueza de Margalef e Menhinik, e o de equidade ou equitabilidade (*Evenness*) de Pielou, podem fornecer informações importantes a cerca do padrão de distribuição de espécies microbianas dentro de um ecossistema (KENNEDY, 1999).

Para calcular a diversidade bacteriana neste trabalho foi utilizado o índice de diversidade Shannon-Weaver (H') (SHANNON; WEAVER, 1949), para cada amostra de solo. Esse índice é definido pela equação, abaixo:

$$H' = -\sum_{i=1}^{S} p_i \ln p_i$$

O valor de "P_i" nessa equação é a proporção do número total de espécies "i", obtida dividindo-se o número total de indivíduos de uma determinada espécie encontrada numa comunidade, pelo número total de indivíduos encontrados na mesma comunidade. Essa razão fornece pesos individuais para cada espécie de acordo com sua abundância diminuindo a influência de espécies raras. Este índice varia de 0 a 5, onde quanto maior o valor encontrado significa uma maior diversidade e menor dominância de grupos em relação a outros no sítio de amostragem (BEGON; TOWNSEND; HARPER, 2006).

Alguns trabalhos citam valores de similaridade das sequências de 16S rRNA, entre 80% a 98%, dependendo do objetivo (LUDWIG et al., 1998; LA SCOLA et al., 2003; SNELL-CASTRO et al., 2005). Neste trabalho, sequências de 16S rRNA que apresentaram similaridade igual ou superior a 97% foram agrupadas em uma mesma espécie. A matriz de similaridade e o alinhamento das sequências para cálculo do índice de diversidade de Shannon foram realizados com o auxílio do programa RDP's *Pipeline* (COLE et al., 2009).

O índice de distribuição das espécies (E - equidade de Pielou - *Evenness*) foi calculado a partir do índice Shannon-Weaver (H') e do número de espécies diferentes (riqueza de espécies - S) pela equação:

O índice de equidade (E) é uma medida que serve para calcular o quão uniforme a distribuição das diferentes espécies estão, em uma mesma comunidade. Este índice varia de 0 a 1, com 1 representando uma situação em que todas as espécies são igualmente abundantes no grupo (MARTÍ; GARCÍA-ALVAREZ, 2002).

A riqueza das amostras foi analisada utilizado o índice não paramétrico Chao1 que estima a riqueza total de espécies, pela equação abaixo descrita, na qual S_{obs} é o número de espécies observadas, n_1 é o número de singletons (espécies capturadas uma vez), e n_2 é o número de doubletons (espécies capturadas duas vezes) (COLWELL; CODDINGTON, 1994).

$$\mathbf{s}_{\mathsf{chao}} = \mathsf{S}_{\mathsf{obs}} + \frac{\mathsf{n}^2}{2\mathsf{n}_2}$$

Para comparar de forma desigual a riqueza observada entre os locais amostrados, foram geradas curvas de rarefação, que resultaram das médias randômicas das OTUs observadas em relação ao número de sequências obtidas de cada amostra, para os níveis de filo e espécie. Esse parâmetro dá uma perspectiva da cobertura dos grupos analisados em relação ao tamanho da amostra (HUGES et al., 2001).

A estimativa da suficiência amostral (cobertura) também foi calculada utilizando a equação descrita abaixo, de acordo com Mullins et al. (1995), onde (C) indica a representatividade amostral, sendo n_1 o número de sequências que foram detectadas apenas uma vez (sequências únicas) e N o número total de sequências amostradas.

$$C = 1-(n_1/N)$$

4.11 Números de Acesso das Sequências Nucleotídicas

Os dados das sequências geradas nesse estudo foram depositadas e estão disponíveis no *GenBank*. Os números de acesso das sequências para o domínio Bacteria são: HQ912109 ao HQ912172 (Sítio A – solo da pastagem nativa) e HQ912173 ao HQ912240 (Sítio B - solo da pastagem sob cultivo); e para o domínio Archaea são: JF329850 ao JF329938 (Sítio A) e JF329709 ao JF329849 (Sítio B).

5 RESULTADOS E DISCUSSÃO

5.1 Aspectos Físicos e Químicos dos Solos

Segundo Voroney (2007), em solos áridos e semiáridos, os grupos microbianos existentes estão mais bem adaptados as adversidades encontradas nestes ambientes, nos quais a pouca disponibilidade de água, temperaturas elevadas, variações de pH e de compostos químicos, além do conteúdo de matéria orgânica podem influenciar diretamente na composição das comunidades microbianas do solo.

Neste trabalho, os resultados dos parâmetros físicos e químicos nas amostras de solos dos sítios A e B avaliados, durante o período de estiagem, estão apresentados na Tabela 2.

Tabela 2. Parâmetros físicos e químicos do solo nos dois sítios de amostragem.

Amostras do solo	рН	Umidade %				Mg ²⁺ nol _c /dm				Mn ²⁺		MO* dag/kg ^b
sítio A	6,46	0,89	9,2	214	5,01	3,46	0,00	1,91	64,9	35,2	1,33	1,30
sítio B	5,91	12,98	14,2	65	5,52	6,06	0,00	2,83	251,6	82,0	3,46	3,91

*MO - matéria orgânica; ^a – Centimol de carga por decímetro cúbico; ^b - Decagrama por kilograma; sítio A – solo da pastagem nativa; sítio B – solo da pastagem sob cultivo.

O solo da pastagem sob cultivo do capim marrequinha (*P. conjugatum*, Bergius) (sítio B), localizado as margens de um reservatório de água (açude Boa Vista) e constantemente alagado apresentou valor de umidade mais elevado em relação ao solo da pastagem nativa (sítio A) (Tabela 2), que geralmente sofre escassez hídrica.

O pH do solo do sítio B se apresentou mais baixo e com teor de matéria orgânica (MO) cerca de três vezes maior que sítio A (Tabela 2), embora os valores de MO

tenham sido considerados baixos (< 4,0 dag/kg), para os dois sítios de amostragem, de acordo com os índices de classificação de solos apresentado pela EMBRAPA (2006).

Em geral, solos com pH moderadamente ácidos ou pouco alcalinos são encontrados em ambientes com uma maior concentração de areia e teores reduzidos de argila e de matéria orgânica (VORONEY, 2007), como ocorre nos luvissolos que predominantemente são encontrados no Cariri paraibano. Esses solos de textura arenosa apresentam uma menor área de superfície e um número menor de sítios de troca catiônica do que nos solos argilosos e húmicos, que são mais encontrados em florestas úmidas com índice pluviométrico alto (> 900 mm) e pH ácido (MILLER; DONAHUE, 1990).

Os compostos químicos são importantes na manutenção e desenvolvimento das plantas e da microbiota no solo, e sua falta ou excesso podem diminuir a produtividade dos cultivos (EMBRAPA, 2006).

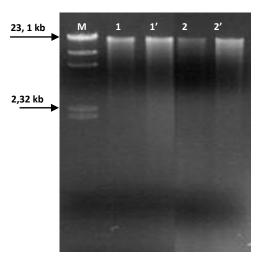
Nesse trabalho, os maiores valores encontrados entre os macro e microelementos analisados, foram para P, Mg, Zn, Mn e Cu, no solo do sítio B, além de um teor de Fe cerca de quatro vezes mais elevado e de K, cerca de quatro vezes menor, em comparação com valores obtidos no solo do sítio A (pastagem nativa).

Outro fator importante que pode influenciar os processos químicos, físicos e biológicos do solo é a temperatura (ATLAS; BARTHA, 1981; VORONEY, 2007), que pode condicionar mudanças na composição das comunidades microbianas num determinado ambiente.

Neste trabalho observamos que a presença da densa cobertura vegetal e da água do açude no solo do sítio B (pastagem sob cultivo), provavelmente influenciou para amenizar a temperatura do solo, que ficou em torno de 30°C, enquanto que no sítio A (pastagem nativa), mais exposto a radiação solar, a temperatura atingiu 43°C, ambas

verificadas no momento da coleta que ocorreram no período matinal, entre 10 e 12 h. Um aumento da temperatura pode aumentar as taxas de reações fisiológicas e acelerar a difusão de substratos solúveis no solo (VORONEY, 2007).

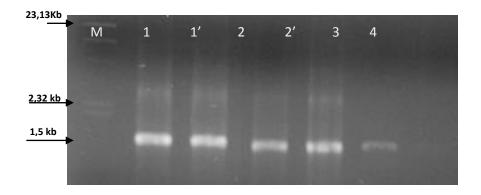
Trabalhos realizados por Silva; Siqueira e Costa (2004), Gorlach-Lira e Coutinho (2007), Souto et al. (2008) em pastagens nativas na Caatinga, também encontraram valores de pH, temperatura, umidade e compostos químicos, de acordo com os resultados obtidos nesse estudo. Entretanto, Silva et al. (2004), igualmente em solo da Caatinga, encontraram valores mais altos para K, P e Ca, quando comparados aos dos ambientes avaliados.

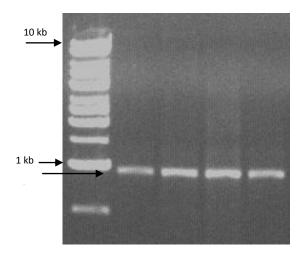

Estudos sobre diversidade microbiana podem representar um importante indicador da qualidade do solo, em virtude dos microrganismos estarem na base da cadeia trófica e intrinsecamente associados aos diversos processos ecológicos do solo (ZILLI et al., 2003). Os fatores físicos e químicos do solo também são determinantes para a composição da biota e esta interação permite estipular índices de qualidade do solo (TÓTOLA; CHAER, 2002), que podem ser úteis na avaliação de impactos ambientais, quando biomas são incorporados ao processo produtivo, seja de forma extensiva ou intensiva, além de um instrumento importante como controle, fiscalização e monitoramento de áreas destinadas à proteção ambiental (ARAÚJO; GOEDERT; LACERDA, 2007).

5.2 Extração de DNA e Amplificação do Gene 16S rRNA

O método de extração de DNA é uma etapa bastante importante no processo de construção de bibliotecas genômicas e/ou metagenômicas, para obtenção de amostras livres de contaminantes que podem atuar como interferentes nas etapas posteriores de amplificação e clonagem (SANTOS; DIREITO; TEIXEIRA, 2002).

As extrações do DNA total das amostras do solo do Cariri (sítios A e B) utilizando kit (FastDNA® SPIN Kit for Soil – BIO 101) estão apresentadas na Figura 8.

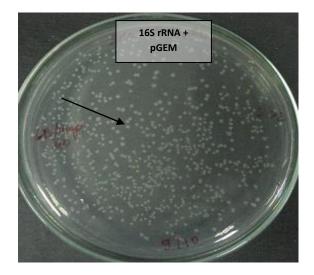

Os DNAs metagenômicos obtidos apresentaram uma massa molecular de aproximadamente 23 kb, com rendimento médio em torno 340 ng/µL de amostra e alto grau de pureza (OD_{260/280} entre 1,7 - 2,0), mostrando a eficiência do processo de extração, e esses foram utilizados nas amplificações dos genes 16S rRNA para os domínios Bacteria e Archaea.


Figura 8. Gel de agarose (0,8%), contendo DNA total extraídos das amostras dos solos em duplicatas; 1 e 1' - DNA do solo da pastagem nativa (sítio A); 2 e 2' - DNA do solo da pastagem sob cultivo (sítio B); M - Marcador molecular $\lambda/Hind$ III.

Martin-Laurent et al. (2001) também evidenciaram a eficiência da extração de DNA em amostras ambientais utilizando kit FastDNA® Spin, os quais obtiveram um bom rendimento do DNA, entre 0,76 e 1,01 μ g/g de solo, com um alto grau de pureza do material extraído.

Os produtos obtidos das amplificações por PCR dos genes 16S rRNA das amostras dos solos analisados, utilizando os *primers* 27F/1525R (domínio Bacteria) e 20F/958R (domínio Archaea), estão apresentados nas Figuras 9 e 10, respectivamente.

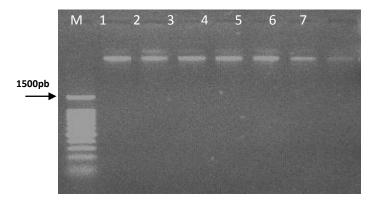
Figura 9. Produtos da amplificação do gene 16S rRNA das amostras do DNA dos solos, em duplicatas (domínio Bacteria); 1 e 1' – solo da pastagem nativa (sítio A); 2 e 2' – solo da pastagem sob cultivo (sítio B); 3 - *E. coli* (controle positivo); 4 - reação sem DNA (controle negativo). M - marcador de peso molecular λ/*Hind* III.

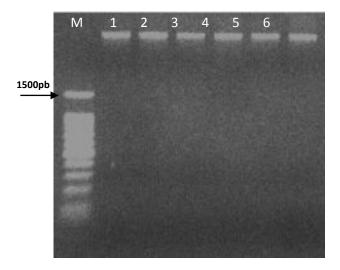

Figura 10. Produtos da amplificação do gene 16S rRNA das amostras do DNA dos solos, em duplicatas (domínio Archaea); 1 e 1' - solo do sítio A; 2 e 2' - solos do sítio B; M - marcador de peso molecular 1 kb ladder (BioLabs).

Os produtos das PCR 16S rRNA purificados e quantificados, obtendo um rendimento médio de 200 ng/µL e ótimo grau de pureza (1,7 a 1,9), foram utilizados nas reações de clonagem, para construção de quatro bibliotecas metagenômicas 16S rRNA, sendo duas para o domínio Bactéria e duas para o domínio Archaea, para os sítios A e B, respectivamente.

5.3 Bibliotecas de Clones Metagenômicos do Gene 16S rRNA

Neste trabalho, utilizando sequências parciais do gene 16S rRNA, foi avaliado o perfil das comunidades microbianas do domínio Bacteria e Archaea em solo de pastagem nativa e sob cultivo do capim marrequinha (*P. conjugatum*, Bergius) no Cariri paraibano, região semi-árida com déficit hídrico e sérios riscos de desertificação (OLIVEIRA et al., 2009).


As bibliotecas geraram cerca de 500 recombinantes para cada 100 μ L de crescimento bacteriano (Figura 11), dos quais foram retirados 250 clones para compor cada biblioteca dos sítios A e B e para cada domínio, totalizando 1000 clones.


Figura 11. Clones recombinantes da biblioteca 16S rRNA. Colônias brancas (seta) foram utilizadas para realização da extração plasmidial e posterior sequenciamento.

Entre os clones de cada biblioteca foram selecionadas de 3 colônias aleatoriamente, para extração plasmidial e avaliação prévia da presença dos plasmídios (Figuras 12 e 13).

Após confirmação da presença dos DNAs plamidiais, procedeu-se as demais extrações pelo método de lise alcalina (SAMBROOK; FRITSCH; MANIATIS, 1989), em placas de 96 poços para posterior sequenciamento.

Figura 12. Presença do DNA plasmidial extraídos: 1 ao 3 - clones do solo da pastagem nativa (sítio A); 4 ao 6 - clones do solo da pastagem sob cultivo (sítio B), para o domínio Bacteria; 7 - DNA controle; M - marcador de peso molecular 100 pb ladder (BioLabs).

Figura 13. Presença do DNA plasmídial extraídos: 1 ao 3 - clones da pastagem nativa (sítio A); 4 ao 6 - clones da pastagem sob cultivo (sítio B), para o domínio Archaea; M - marcador de peso molecular 100 pb ladder (BioLabs).

5.3.1 Análise das sequências 16S rRNA

As sequências geradas foram submetidas aos programas *PHERD*, *EGassembler* e *MALLARD 1.02*., para avaliação da qualidade, remoção do vetor e contaminantes e de sequências quiméricas, respectivamente. Após esta avaliação, foram descartadas mais de 60% das sequências geradas, pois muitas amostras apresentaram sequências quiméricas (35%) ou de baixa qualidade (25%).

Do total de 250 clones para cada biblioteca, resultaram 64 e 68 sequências do domínio Bacteria e 89 e 141 sequências do domínio Archaea, para cada amostra de solo das pastagens nativa (sítio A) e sob cultivo (sítio B), respectivamente.

De acordo com Ashelford et al. (2006) a formação de quimeras é o mais frequente artefato de bibliotecas 16S rRNA em repositórios públicos, apresentando uma alta incidência entre sequências geradas, as quais não sendo detectadas, podem ser responsáveis por falsas construções filogenéticas, imprecisas identificações taxonômicas e sobre estimar a diversidade microbiana.

A formação de quimeras tem o potencial de ocorrer quando mais de um molde de DNA está disponível na mistura de PCR, como por exemplo em amostras de DNA puro contaminado com material genético estranho, ou provindo de DNA extraído de amostras ambientais (KOPCZYNSKI; BATESON; WARD, 1994). Outra condição observada em estudos realizados por Wang e Wang (1997) foi a redução da formação de quimeras de 30% para 12% nas sequência geradas de uma mistura de DNA genômico, quando na reação da PCR foram diminuídos de 30 para 25 os números de ciclos.

Desta forma, a alta incidência de sequências quiméricas pode ter ocorrido devido às condições acima citadas, que reduziu, provavelmente, o número de sequências ao final do processo de análise da qualidade. Similarmente a este estudo, Ashelford et al. (2006) observaram que cerca de 64% das sequências analisadas provindas de bibliotecas 16S rRNA de amostras de solo apresentavam quimeras ou de baixa qualidade. Cunha (2010) também constatou em amostra de rúmen de caprinos que cerca de 50% das sequências geradas nas bibliotecas 16S rRNA continham quimeras ou sequências de baixa qualidade.

A maioria das sequências obtidas nesse trabalho, nos dois tipos de pastagens analisadas para o domínio Bacteria e Archaea, quando comparadas com as sequências

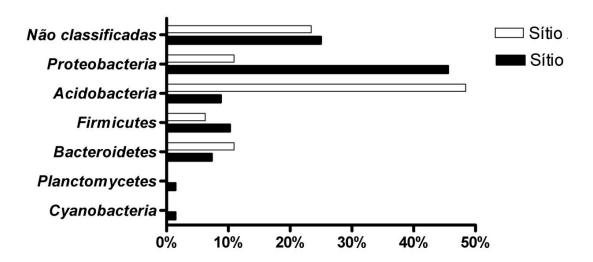
dos bancos de dados públicos corresponderam a grupos advindos do ambiente do solo (Apêndices 1, 2, 3 e 4). As análises das sequências parciais geradas cobriram preferencialmente as regiões V1 a V3 do gene 16S rRNA dos clones obtidos nas bibliotecas das duas pastagens analisadas para os dois domínios.

5.3.2 Diversidade do domínio Bacteria

Um total de 132 sequências parciais do gene 16S rRNA foi obtido das bibliotecas metagenômicas dos solos (64 para o sítio A - pastagem nativa e 68 para o sítio B - pastagem sob cultivo) analisados para o domínio Bacteria, com tamanho médio de 406 nucleotídeos, as quais apresentaram boa qualidade para análises subsequentes. Os resultados das sequências viáveis foram submetidas ao *GenBank* (Tabela 3).

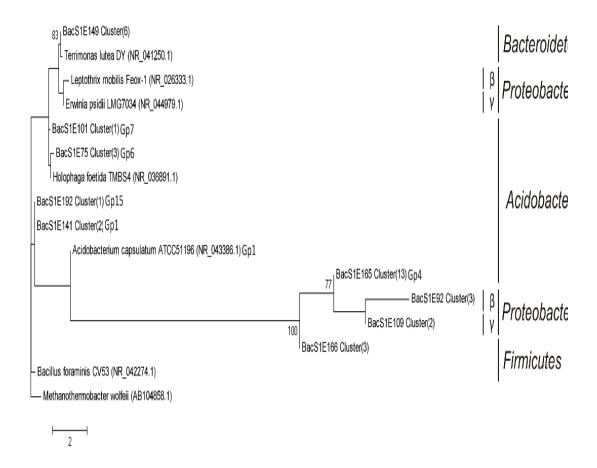
Tabela 3. Diversidade do domínio Bacteria nos solos das pastagens nativa e sob cultivo.

Solo da pastagem nativa (Sítio A)							
Grupos	Nº de Clones	OTUs / OTUs	Nº de acesso no GenBank				
		únicas	HQ912				
Acidobacteria	29	20 / 14	<u>110;</u> <u>112;</u> <u>113;</u> <u>114;</u> <u>116;</u> <u>117;</u> <u>118;</u> <u>120;</u> <u>121;</u> <u>125;</u> <u>126;</u>				
			<u>128; 129; 131; 134; 139; 149; 153; 156; 157; 159; 161;</u>				
			<u>163; 167; 168; 169; 170; 171; 172</u>				
Bacteroidetes	7	6 / 5	<u>115; 124; 133; 137; 140; 142; 143</u>				
Firmicutes	4	3 / 2	<u>111; 151; 154; 162</u>				
Betaproteobacteria	3	3/3	<u>147; 160; 164</u>				
Gamaproteobacteria	3	2 / 1	<u>144; 152; 166</u>				
NC*	18	11/9	<u>109; 119; 122; 123; 127; 130; 132; 135; 136; 138; 141;</u>				
			<u>145; 146; 148; 150; 155; 158; 165</u>				
Solo da pastagem sob cultivo (Sítio B)							


Solo da pastagem sob cultivo (Sítio B)							
Grupos	Nº de Clones	OTUs / OTUs	Nº de acesso no GenBank				
		únicas	HQ912				
Betaproteobacteria	21	14 / 9	179; 181; 182; 190; 193; 194; 201; 206; 207; 210; 212; 214; 216; 217; 218; 224; 225; 228; 236; 239; 240				
Gamaproteobacteria	5	4/3	<u>192; 221; 232; 235; 237</u>				
Deltaproteobacteria	4	3 / 2	<u>219; 226; 230; 238</u>				
Alfaproteobacteria	1	1 / 1	<u>173</u>				
Proteobacteria	1	1 / 1	223				
Acidobacteria	8	6 / 4	<u>174; 175; 178; 180; 183; 186; 202; 233</u>				
Bacteroidetes	5	5 / 5	<u>177; 188; 199; 211; 227</u>				
Firmicutes	6	5 / 4	<u>176; 196; 197; 200; 213; 220</u>				
Planctomycetes	1	1 / 1	<u>215</u>				
Cyanobacteria	2	1 / 0	<u>198; 222</u>				
NC*	14	11 / 8	184; 185; 187; 189; 191; 195; 203; 204; 205; 208; 209; 229; 231; 234				

^{*}NC - Não classificado

Utilizando o *Classifier* (RDP II) com grau de confiabilidade de ≥95%, foram identificados quatro filos para o solo do sítio A (pastagem nativa) e seis filos para o solo do sítio B (pastagem sob cultivo). Na Tabela 3 e na Figura 14 estão apresentados os diferentes grupos encontrados em cada amostra de solo.


No solo da pastagem nativa (sítio A), o grupo *Acidobacteria* (48,4%) foi o mais abundante, seguido do grupo *Bacteroidetes* (10,9%), *Proteobacteria* (10,9%), e *Firmicutes* (6,3%) (Figura 14); enquanto que no solo da pastagem sob cultivo (sítio B), *Proteobacteria* com 45,6% foi o grupo mais abundante, seguido de *Firmicutes* (10,3%), *Acidobacteria* (8,8%), *Bacterioidetes* (7,3%); no sitío B também ocorreram os grupos *Cyanobacteria* (1,5%) e *Planctomycetes* (1,5%) que não foram encontrados no sítio A (Figura 14).

Dentro de cada biblioteca metagenômica 23,4% (sítio A) e 25,0% (sítio B) das sequências geradas não apresentaram similaridade (≥95%) com sequências de grupos bacterianos no RDP II (Figura 14).

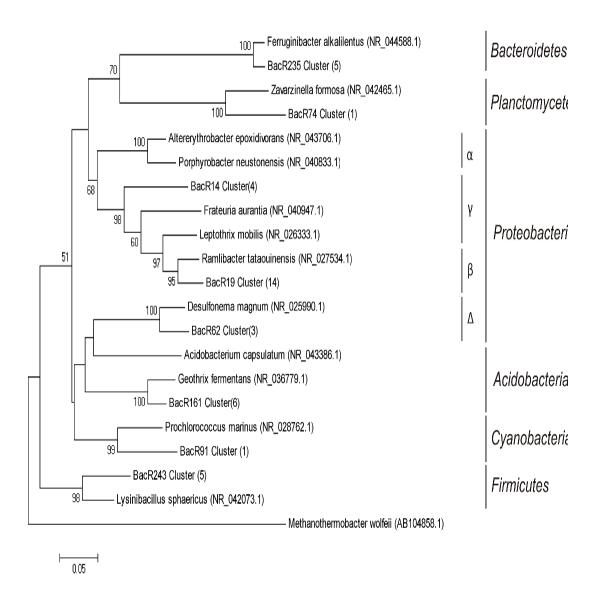


Figura 14. Grupos bacterianos encontrados nas bibliotecas 16S rRNA das amostras do solo dos sítios A (pastagem nativa) e B (pastagem sob cultivo). Dados gerados pelo RPD com percentual ≥95% de similaridade.

As árvores filogenéticas das Figuras 15 e 16 apresentam os clones metagenômicos dos solos das pastagens nativa e sob cultivo, os quais foram agrupados em *clusters*, alinhados com representante tipo por grupo.

Figura 15. Árvore filogenética gerada a partir das sequências do gene 16S rRNA do solo da pastagem nativa (sítio A) para o domínio Bacteria, utilizando o método *Maximum Likelihood* baseado no modelo de Kimura 2. Análises *Bootstrap* com 1.000 repetições. Apenas valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 1,1029]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. *Methanothermobacter wolfeii* (Archaea) como *outgrup*.

Figure 16. Árvore filogenética gerada a partir das sequências do gene 16S rRNA do solo da pastagem sob cultivo (sítio B) para o domínio Bacteria, utilizando o método *Maximum Likelihood* baseado no modelo de Kimura 2. Análises *Bootstrap* com 1.000 repetições. Apenas valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 2.0164]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. *Methanothermobacter wolfeii* (Archaea) como *outgrup*.

O filo *Acidobacteria* ocorre em solos e sedimentos com percentuais entre 10 a 50% e está dividido em 26 subgrupos, entre as quais, 1, 4 e 6 são as mais abundantes (BARNES et al. 1999; JANSSEN, 2006; KEILAK et al., 2009). Este filo foi mais frequente no sítio A (Figuras 14 e 15; Apêndice 5) em relação ao sítio B (Figuras 14 e 16; Apêndice 6), com predominância das subdivisões 4 e 6. No sítio B, os subgrupos 1, 7 e 18 foram encontrados, porém com pouca representatividade.

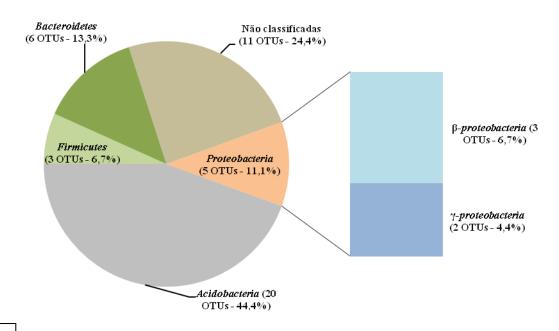
Outros estudos também revelaram a predominância do filo *Acidobacteria* em solos de pastagem nativas em relação ao solo de pastagem cultivada (DUNBAR et al., 1999; LILES et al., 2003; JANSSEN, 2006; EICHORST; BREZNAK; SCHMIDT, 2007; KIELAK et al., 2009; FAORO et al., 2010. Sua importância ecológica está na capacidade de sobrevivência em ambientes, como o solo, com diferentes características de pH, temperaturas em geral mais elevadas e de composição química (BARNS et al., 2007), como encontrados nos solos do semiárido da região estudada, e provavelmente isto contribuiu para seu maior percentual no solo da pastagem nativa (sítio A).

O filo *Proteobacteria*, considerado o maior grupo entre os procariotos, foi mais abundante no solo do sítio B (pastagem sob cultivo), em relação ao sítio A (pastagem nativa) (Figuras 16 e 17B). Dentro das *Proteobacteria* apenas a ordem Burkholderiales e a família Enterobacteriaceae foram encontradas no sítio A (Apêndice 1), enquanto que para o sítio B foram encontrados seis ordens (Sphingomonadales, Burkholderiales, Xanthomonadales, Pseudomonadales, Desulfobacterales e Syntrophobacterales); oito famílias (Enterobacteriacaea, Comamonadaceae, Burkholderiales_incertae_sedis, Xanthomonadaceae, Sinobacteraceae, Pseudomonadaceae, Desulfobacteraceae e Syntrophobacteraceae), além de seis gêneros (*Porphyrobacter, Ramlibacter, Curvibacter, Ideonella, Dyella e Pseudomonas*), mostrando uma maior diversidade desse grupo no solo de pastagem sob cultivo (Apêndice 2).

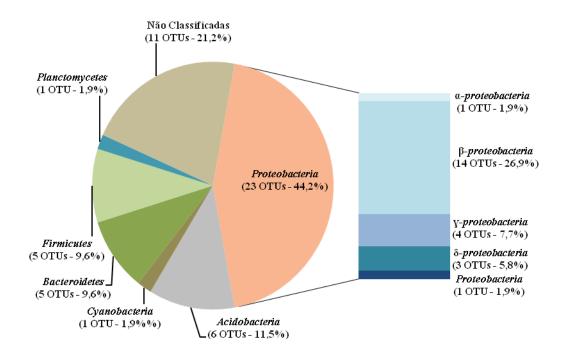
Entre as quatro subdivisões do filo *Proteobacteria* encontradas neste trabalho, apenas as subdivisões *Beta* e *Gamma* ocorreram no solo do sítio A (pastagem nativa), com percentuais próximos (6,7 e 4,4%, respectivamente), enquanto que no solo do sítio B (pastagem sob cultivo) ocorreram as quatro subdivisões (*Alfa, Beta, Gamma* e *Delta*), com dominância da subdivisão *Beta* (26,9%) (Figura 16 e 17B). Resultados similares também foram encontrados em solo sob cultivo de milho na Índia por Chauhan et al. (2011).

Dentre alguns dos papéis desempenhados pelos representantes do sub-grupo *Betaproteobacteria* está à participação ativa no ciclo do nitrogênio, sendo encontradas bactérias fixadoras de nitrogênio, que possuem uma interação ativa entre solo-planta (SMIT et al., 2001), o que provavelmente justifica a presença do grande número desse grupo no solo sob cultivo do capim marrequinha.

SMIT et al. (2001) também observaram que a razão entre o número de *Proteobacteria* em relação ao de *Acidobacteria* serve como indicativo nutricional do solo, onde menores teores de nutrientes disponíveis no solo ou alto teor de substâncias recalcitrantes haveria a predominância de representantes de *Acidobacteria* em detrimento aos de *Proteobacteria*, que ocorreriam mais abundantemente em solos agriculturáveis, com maior aporte de matéria orgânica, como no caso do sítio B em relação ao sítio A.


Os membros do filo *Bacteroidetes*, que podem estar presentes numa proporção de 5 a 18% entre as comunidades do solo (JANSSEN, 2006), desempenhando importantes funções na degradação da matéria orgânica (ABELL; BOWMAN, 2005), apresentou percentual muito próximo em ambas as pastagens analisadas neste trabalho (Figura 14, 15 e 16), porém com presença de gêneros diferenciados, dentro da família Chitinophagaceae; *Flavisolibacter* (pastagem nativa) (Apêndice 5), ainda pouco relatado na literatura, e *Ferruginibacter* (pastagem sob cultivo) (Apêndice 6), que já foi encontrado em sedimentos de água doce (LIM; BEAK; LEE, 2009).

O filo *Bacteroidetes*, que inclui bactérias aeróbias e anaeróbias, geralmente observado em baixo percentual no ambiente, já foi relatado em solos áridos dos Estados Unidos (KUSKE et. al., 1997), em solo sob cultivo e de floresta (BORNEMAN et al., 1996; BORNEMAN; TRIPLET, 1997; DUNBAR et al., 1999).


Em amostras de solo, em geral, o filo *Firmicutes* apresentam percentuais em torno de 2% (JANSSEN, 2006), entretanto no nosso trabalho foram encontrados percentuais mais elevados, 6,7% - pastagem nativa (sítio A) e 9,6% - pastagem sob cultivo (sítio B) (Figura 15,16 e 17; Apêndices 5 e 6). Os membros desse filo apresentam representantes cultiváveis, Gram positivos, considerados típicos do solo, como os gêneros *Clostridium* e *Bacillus* (TZENEVA et al, 2004), este último juntamente com membros do filo *Bacteroidetes* possuem a capacidade de sintetizar várias enzimas hidrolíticas, de grande interesse biotecnológico (ABELL; BOWMAN, 2005). Gorlach-Lira e Coutinho (2007) avaliaram a diversidade microbiana utilizando técnicas tradicionais de isolamento e cultivo no solo do Cariri paraibano, também isolaram várias bactérias do filo *Firmicutes* que exibiram capacidade celulolíticas, quitinolíticas, proteolíticas e amilolíticas.

Cyanobacteria (1,5%) e Planctomycetes (1,5%) foram os dois filos encontrados no sítio B (Apêndice 6) que não ocorreram no sítio A (Figura 16 e 17B). Provavelmente, a influência do reservatório de água no solo da pastagem sob cultivo do marrequinha contribuiu para a presença desses grupos, que estão associados a habitats dulceaquícolas, salobros e marinhos, além de solos húmicos (WANG et al., 2002). Estes filos também foram encontrados em baixos percentuais entre clones metagenômicos de amostras solo sob cultivo de milho na Índia (CHAUHAN et al., 2011) e sob cultivo de algodão na China (ZHANG et al., 2011).

В

Figura 17. Distribuição dos filos e das OTUs do domínio Bacteria, obtidas a partir das sequências 16S rRNA das bibliotecas de clones, nas amostras do solo das pastagens nativa - sítio A (A) e sob cultivo - sítio B (B).

Ao avaliar as duas comunidades microbianas com relação a sua diversidade, o RDP *tools* foi usado para classificar sistematicamente as sequências em OTUs (McCAIG; GLOVER; PROSSER, 1999), com uma distância evolutiva ≥ 97% de similaridade entre as sequências de cada biblioteca do gene 16S rRNA.

Os números de OTUs obtidos nas bibliotecas 16S rRNA dos sítios A e B para o domínio Bacteria estão apresentados na Tabela 3 e 4 e nas Figuras 17A e B.

Tabela 4. Números de OTUs e as estimativas de diversidade, riqueza e equidade de para o domínio Bacteria nas bibliotecas 16S rRNA dos sítios A e B.

Amostras do solo	Distância ¹	N ²	OTUs ³	H′ ⁴	Chao1 ⁵	E 6
	0,20	64	11	2,0	11 (11-ND)	0,84
Sítio A	0,03	64	45 (34)	3,63	107 (70-198)	0,95
C/4to D	0,20	68	27	2,97	36 (29-62)	0,90
Sítio B	0,03	68	52 (38)	3,87	106 (75-176)	0,98

Sítio A (pastagem nativa); Sítio B (pastagem sob cultivo); ¹ 80% de identidade estimada como a distância no nível de filo (D = 0,20) e 97% para o nível de espécie (D = 0,03); ² Número de sequências por amostra; ³ () Baseado na observação de OTUs únicas; ⁴ Índice de Shannon-Weaver; ⁵ Índice de riqueza de Chao 1 (95% intervalo de confiança); ⁶ Índice Equidade de Pielou (*Evenness*); ND – intervalo de confiança Não Determinado.

Entre as 45 OTUs obtidas do total de 64 sequências do gene 16S rRNA da biblioteca do sítio A (Tabela 3), a maioria (34 OTUs) foi representada por sequências únicas (Tabela 3 e 4; Figura 17A).

O Filo *Acidobacteria* com 20 OTUs foi o grupo mais abundante com 44,4% do total de OTUs no sítio A (Tabela 3; Figura 17A). Entre os demais grupos, o Filo *Bacteroidetes* e *Firmicutes* foram representados por 6 e 3 OTUs, respectivamente, enquanto que para o Filo *Proteobacteria* 5 OTUs foram detectadas e distribuídas em dois subgrupos: *Betaproteobacteria* (3 OTUs) e *Gammapreoteobacteria* (2 OTUs).

Entre todas as OTUs obtidas no sítio A, 11 não puderam ser classificadas (Tabela 3; Figura 17A).

A partir das 68 sequências do gene 16S rRNA da biblioteca do sítio B, foram obtidas 52 OTUs (Tabela 3 e 4), entre as quais a maioria (38 OTUs) foi representada por sequências únicas (Figura 17B).

Proteobacteria foi o filo mais abundante apresentando 23 OTUs (44,2%) do total de OTUs obtidas, separadas em 4 subgrupos: Betaproteobacteria (14); Gammaproteobacteria (4); Deltaproteobacteria (3); Alphaproteobacteria (1) e uma Proteobacteria não-classificada em nenhum sub-grupo (1). Outros Filos também foram encontrados: Acidobacteria (6); Bacteroidetes (5); Firmicutes (5); assim como Planctomycetes (1) e Cyanobacteria (1) que não ocorreram no sítio A. As demais OTUs (11), não puderam ser classificadas (Tabela 3 e 4; Figura 17B).

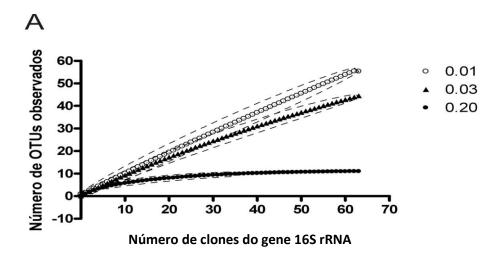
De acordo com Drescher; Blüthgen e Eldhaar (2007) a densidade e diversidade de populações edáficas demonstram as condições de um solo em um dado momento, seus níveis de equilíbrio, degradação ou recuperação. Nesse sentido, a diversidade de organismos existentes no solo, ou seja, a riqueza de espécies e sua uniformidade de distribuição no grupo demonstram indiretamente as condições ambientais da área, podendo servir como indicadores da qualidade do solo (JACOBS et al., 2004).

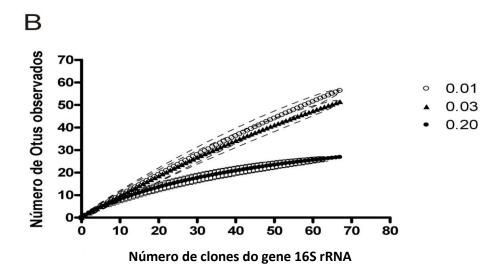
Neste trabalho, a partir das OTUs obtidas foi possível estimar os índices de diversidade de Shannon-Weaver (H´), de Equidade de Pielou (E) e de riqueza (Chao1) (Tabela 4), assim como a observação da cobertura das comunidades microbianas pelas curvas de rarefação.

As amostras dos sítios A (pastagem nativa) e B (pastagem sob cultivo) apresentaram índices de diversidade altos no nível de espécies (3,63 e 3,87, respectivamente) e mais baixo para o nível de filo (2,0 e 2,97, respectivamente), dentro

da escala do índice de Shannon-Weaver (BEGON; TOWNSEND; HARPER, 2006) (Tabela 4).

O índice de equidade apresentou valores mais próximos de 1, dentro da escala de 0 a 1 (MARTÍ; GARCÍA-ALVAREZ, 2002), para os níveis de espécie (0,95 e 0,98), sendo esses valores mais baixos nos níveis de filo (0,84 e 0,90) para as amostras dos sítios A e B, respectivamente (Tabela 4), mostrando uma maior uniformidade (distribuição) entre as estimativas de espécies nas amostras de solo, parecendo não haver uma dominância de determinado grupo bacteriano em detrimento de outros.


Em amostras do solo de pastagem nativa da mata Atlântica no Brasil, Faoro (2010) observou uma alta diversidade (3,57 a 4,08), entre as sequências analisadas da biblioteca 16S rRNA, assim como uma boa homogeneidade entre a distribuição dos grupos com índice de equidade igual a 0,9, próximo ao encontrado nesse trabalho, apesar do solo da mata apresentar teores de umidade e matéria orgânica bem mais altos do que o solo do Cariri paraibano, além de pH ácido.


Possíveis diferenças na riqueza e na abundância relativa de espécies nas comunidades microbianas podem ocorrer nos diversos tipos de solo (JANSSEN, 2006). A riqueza determinada em Chao1 (Tabela 4) alcançou a cobertura no nível de filo para o sítio A (n = 11), e cerca de 50% dos filotipos no sítio B (n = 62). Em relação ao nível de espécie, a cobertura dos tipos presentes nas amostras dos sítios A e B ficou em torno de 54% (n = 198) e 60% (n = 176), respectivamente, mostrando uma cobertura parcial da riqueza entre as sequências analisadas.

As curvas de rarefação podem colaborar com informações sobre o quão bem as comunidades foram amostradas, ou seja, qual fração de espécies na comunidade pode ser detectada e estimar as diferenças na riqueza entre as amostras. Quanto mais côncava

(descendente) a curva, melhor a amostragem da comunidade, confirmando os dados apresentados em Chao1.

Neste trabalho, as curvas de rarefação mostraram que as amostras no nível de filo apresentaram uma cobertura satisfatória, evidenciada pelo declive da curva (Figura 18), entre as OTUs observadas em relação ao número de sequências analiadas, enquanto que para as espécies a cobertura não foi alcançada, deixando a curva mais reta (Figura 18).

Figura 18. Curva de rarefação das OTUs observadas em relação ao número de clones obtidos nas amostras de solo das pastagens nativa — sítio A (A) e sob cultivo — sítio B (B), do domínio Bacteria, nos três níveis de distância (80, 97 e 99%). Linhas pontilhadas representam erro com intervalo de confiança de 95%.

A estimativa da suficiência amostral de acordo com Mullins et al. (1995) mostrou que para a pastagem nativa foi obtida uma cobertura de 47%, enquanto que para pastagem sob cultivo foi de 45%.

Segundo Janssen (2006) a idéia de que a diversidade microbiana não pode ser estimada vem do fato de que muitas curvas de acúmulo microbiano são lineares ou quase linear, devido à alta diversidade, tamanho amostral pequeno, ou ambos.

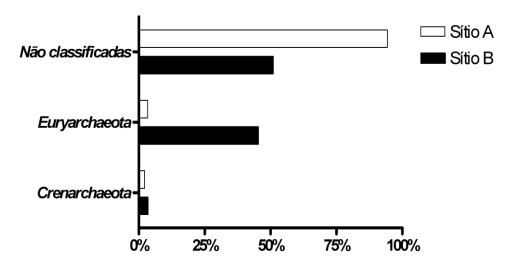
Uma maior diversidade e riqueza no nível de filo e família, em relação a espécies, em amostras de solo arenoso sob cultivo de milho na Índia, com umidade, pH e matéria orgânica similares ao do Cariri paraibano, foi apresentado por Chauhan et al (2011), corroborando com os dados desse trabalho.

4.3.3 Diversidade do domínio Archaea

Estudos ambientais indicam que as Archaeas são diversas e abundantes, não só em ambientes extremos, com alto ou baixo pH e/ou temperatura, alta salinidade ou pressão (ROTHSCHILD; MANCINELLI, 2001), mas também no solo, oceanos e água doce, onde podem desempenhar um papel fundamental nos ciclos biogeoquímicos nesses ecossitemas (GRIBALDO; BROCHIER-ARMANET, 2006).

O uso de técnicas moleculares, como a análise do gene 16S rRNA, tem contribuido muito para o entendimento sobre a diversidade de Archaea no ambiente (BINTRIM et al., 1997; CHIN; LUKOW; CONRAD, 1999; HUBER, et al., 2002), que revelaram a presença de linhagens com representantes cultiváveis, como também grande abundância de linhagens filogeneticamente diversas, com poucos ou nenhum representante cultivável.

Segundo Nicol; Glover e Prosser (2003), a contribuição das comunidades microbianas em relação as arqueas associada aos solos nativos e sob cultivo, permanece desconhecida.


Neste trabalho, um total de 230 sequências parciais do gene 16S rRNA foi obtido das bibliotecas metagenômicas dos solos analisados para o domínio Archaea, sendo 89 sequências para o sítio A (solo de pastagem nativa) e 141 para o sítio B (solo de pastagem sob cultivo), com cobertura média de aproximadamente 335 nucleotídeos, as quais apresentaram boa qualidade para análises subsequentes. Os resultados das sequências viáveis foram submetidas ao *GenBank* (Tabela 5).

Utilizando o *Classifier* (RDP II) com grau de confiabilidade de ≥95%, foram identificados os dois filos mais característicos do domínio Archaea (*Euryarchaeota* e *Crenarchaeota*), tanto para o solo do sítio A como para o sítio B (Tabela 5; Apêndices 7 e 8). Na Figura 19 estão apresentados os percentuais dos grupos encontrados e os dos não classificados em cada amostra de solo.

Tabela 5. Diversidade do domínio Archaea nos solos das pastagens nativa e sob cultivo.

Solo da pastagem nativa (Sítio A)						
Grupos	Nº de Clones	OTUs / OTUs	Nº de acesso no GenBank			
		únicas	JF329			
Crenarchaeota	4	2/0	<u>852; 878; 899; 938</u>			
Euryarchaeota	4	3 / 3	<u>862; 876; 916; 924</u>			
NC*	81	24 / 8	709 - 851; 853 - 861; 863 - 875; 877; 879 - 898; 900 - 915; 917 - 923; 925 - 937			
Solo da pastagem sob cultivo (Sítio B)						
Grupos	Nº de Clones	OTUs / OTUs	Nº de acesso no GenBank			
		únicas	JF912			
Crenarchaeota	5	1 / 0	710; 799; 810; 821; 833			
Euryarchaeota	61	24 / 10	709; 714 - 716; 719; 722; 724; 726; 728 - 732; 735; 738; 740; 743; 747; 749; 756; 761 - 764; 766; 767; 769; 770; 773; 775; 780; 782; 784; 786 - 788; 791 - 793; 798; 802; 803; 812; 813; 816; 819; 820; 822; 823; 826; 828; 831; 834 - 837; 840; 841; 844; 847; 849			
NC*	75	24 / 14	711 - 713; 716 - 718; 720; 721; 723; 725; 727; 733; 734; 736; 737; 739; 741; 742; 744 - 746; 748; 750 - 755; 757 - 760; 765; 768; 771; 772; 774; 776 - 779; 781; 783; 785; 789; 790; 794 - 797; 800; 801; 804 - 809; 811; 814; 815; 817; 818; 824; 825; 827; 829; 830; 832; 838; 839; 842; 843; 845; 846; 848			

^{*}NC - Não classificado

Figura 19. Grupos bacterianos encontrados nas bibliotecas 16S rRNA das amostras do solo dos sítios A (pastagem nativa) e B (pastagem sob cultivo). Dados gerados pelo RPD com percentual ≥95% de similaridade.

No solo do sítio A, os filos *Euryarchaeota* e *Crenarchaeota* ocorreram em percentuais baixos (3,4% e 2,2%), entre as sequências analisadas, respectivamente (Figura 19 e 20), enquanto que para o solo sob cultivo (sítio B), esses filos ocorreram em percentuais bem diferenciados, *Euryarchaeota* (45,4%) e *Crenarchaeota* (3,5%) (Figura 19 e 21).

Dentro de cada biblioteca metagenômica 94,4% (sítio A) e 51,1% (sítio B) das sequências geradas, não apresentaram similaridade (≥ 95%) com sequências de grupos de arqueas no RDP II (Figura 19, 20 e 21).

De acordo com Kemnitz; Kolb e Conrad (2007), em solos nativos sob condições não extremas, como Florestas tropicais e temperadas, as arqueas aparecem em percentuais mais reduzidos, ou na grande maioria, como organismos ainda não-classificados, como constatados nesse trabalho.

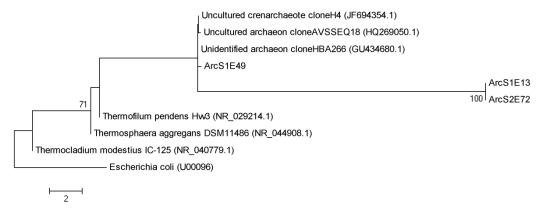
Representantes de Archaea, dentro do filo *Euryarchaeota*, que apresentam a capacidade de produzir metano a partir de H₂ ou CO₂ (metanogênese), são encontrados com maior frequência em ambientes de cultivo alagado, como de arroz (CHIN; LUKOW;

CONRAD, 1999), solos de várzea (GROßKOPF; JANSSEN; LIESACK, 1998) e sedimentos (SCHULZ; MATSUYAMA; CONRAD, 1997).

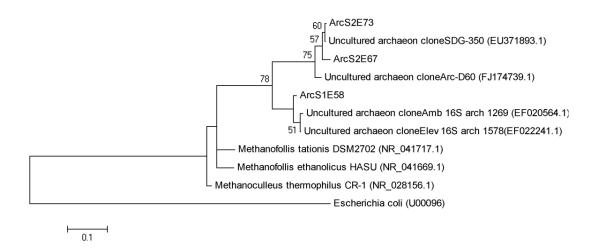
Os resultados nesse trabalho mostraram que o grande percentual de *Euryarchaeota* no solo sob cultivo do capim marrequinha (sítio B), as margens do açúde, local constatemente alagado, pode ter contribuido para uma maior presença desse filo, pela ocorrência de metanogênicas (Figuras 19 e 21).

No sítio A, entre as poucas sequências classificadas (RDP II - ≥95%), ocorreram apenas as presenças das classes, Methanomicrobia e Thermoprotei, dentro do filo *Euryarchaeota* e *Crenarchaeota*, respectivamente. O elevado número de sequências não-classificadas (94,4%), evidenciou a probabilidade de existirem novos grupos, visto que, muitas sequências obtiveram baixos percentuais, entre 40 e 80% para nível de filo, e menor que 40% para as demais categorias (Apêndice 7).

No Brasil, poucos trabalhos sobre a diversidade de Archaea em solos nativos e/ou sedimentos foram realizados, destacando: Mata Atlântica (FAORO, 2010); Espodossolos na região sudoeste (SILVA, 2010); Mata Amazônica (NAVARRETE, 2009); Cerrado (TAGLIAFERRO, 2005; LUCHETA, 2011); sedimento de mangue (CURY, 2006), que, em geral, encontraram a presença dos filos em baixos percentuais, sendo *Crenarchaeota* ocorrendo mais em solos e *Euryarchaeota* em sedimentos de mangue.

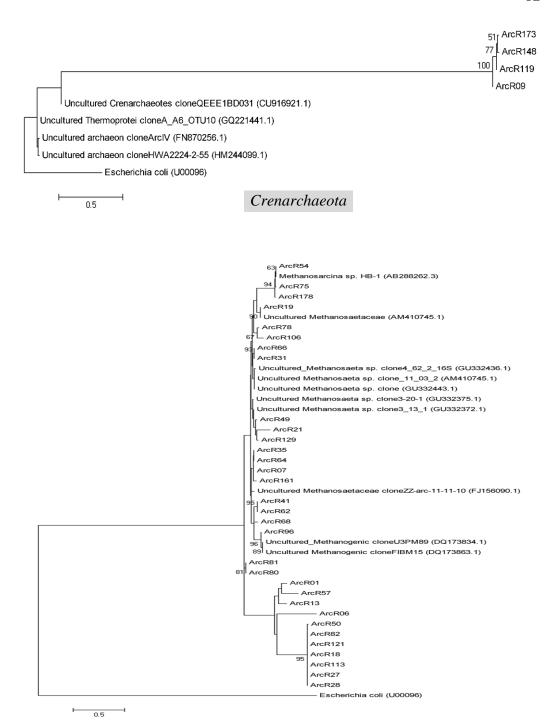

Das 61 sequências classificadas (RDP II - ≥95%) dentro do filo *Euryarchaeota* para o solo da pastagem sob cultivo (sítio B), 35 foram pertencentes a classe Methanomicrobia, contendo duas ordens (Methanosarcinales e Methanocellales), três famílias (Methanosaetaceae, Methanocellaceae e Methanosarcinaceae) e três gêneros (Mathanosaeta, Methanosarcina e Methanocella) (Apêndice 8), mostrando uma maior diversidade nesse tipo de solo, provavelmente pela influência da água sob o solo, que pode ter favorecido o maior desenvolvimento de metanogênicas.

Chin; Lukow e Conrad (1999) encontraram um maior percentual de sequências 16S rRNA dentro das famílias Methanosaetaceae e Methanosarcinaceae, do filo *Euryarchaeota* em solos encharcados do cultivo de arroz na China.


Em solos brasileiros, poucos trabalhos são relatados sobre a avaliação de Archaea em solos sob cultivo, nos quais foram encontrados a predominância de *Crenarchaeota* em solos da região amazônica (NAVARRETE, 2009) e *Euryarchaeota* em solos do Cerrado (LUCHETA, 2011), essas diferenças podem ocorrer em função do tipo de solo que apresentam características fisico-químicas distintas, favorecendo ou não a presença de determinados grupos (JANSSEN, 2006).

Linhagens não-termofílicas de *Crenarchaeota* também têm sido recuperadas a partir sequências de 16S rRNA em uma ampla variedade de solos nativos (JURGENS et al, 1997) e agrícolas (CHELIUS; TRIPLETT, 2001), ambientes não-extremos, reforçando as evidências de uma distribuição global (NICOL; GLOVER; PROSSER, 2003). Esses últimos autores também encontraram um maior percentual de *Crenarchaeota* em solos sob cultivo, divergindo dos resultados nesse estudo, provavelmente pelo tipo de solo investigado e condições ambientais diferenciadas.

Uma análise quantitativa em bibliotecas do gene 16S rRNA indicou que representantes dentro do domínio Archaea podem contribuir com cerca de 1% da atividade total do solo (BUCKLEY; GRABER; SCHMIDT, 1998), sugerindo que as árqueas poderiam ser significativamente importantes para realizações dos processos no solo mediados pelos microrganismos.



Crearchaeota

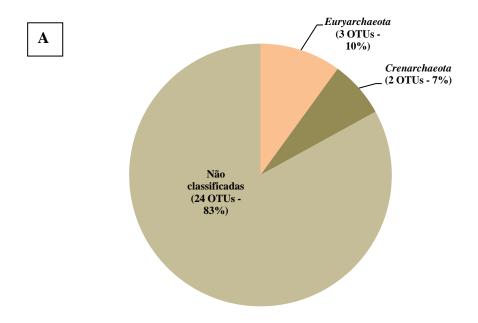
Euryarchaeota

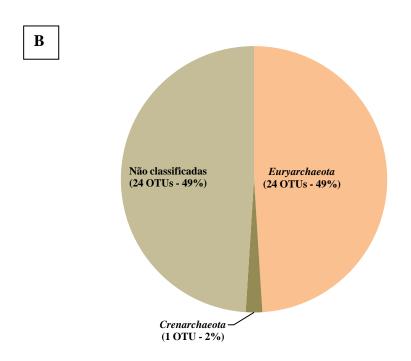
Figura 20. Árvores filogenéticas geradas a partir das sequências do gene 16S rRNA do DNA do solo da pastagem nativa (sítio A), utilizando o método *Maximum Likelihood* baseado no modelo de Kimura 2. Análises *Bootstrap* foram realizadas com 1.000 repetições, e somente valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 1,1029]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. *Escherichia coli* como *outgrup*.

Euryarchaeota

Figure 21. Árvores filogenéticas geradas a partir das sequências do gene 16S rRNA do DNA do solo da pastagem sob cultivo (sítio B), utilizando o método *Maximum Likelihood* baseado no modelo de Kimura 2. Análises *Bootstrap* foram realizadas com 1.000 repetições, e somente valores maiores que 50% são mostrados. A discreta distribuição Gama foi utilizado para modelar as diferenças na taxa evolutiva entre os sítios avaliados (duas categorias [+ G, parâmetro = 2,0164]). A árvore foi desenhada pela escala, com comprimentos de ramo medido pelo número de substituições por sítio. *Escherichia coli* como *outgrup*.

Os números de OTUs obtidos nas bibliotecas 16S rRNA dos sítios A e B para o domínio Archaea estão apresentados na Tabela 6 e Figura 22A e B.


Tabela 6. Números de OTUs e as estimativas de diversidade, riqueza e equidade para o domínio Archaea nas bibliotecas 16S rRNA dos sítios A e B.


Amostras do Solo	Distância ¹	N ²	OTUs ³	H′ 4	Chao1 ⁵	E 6
Sítio A	0,20	89	5	0,80	5 (5-ND)	0,54
	0,03	89	29 (11)	3,10	40 (31-73)	0,92
Sítio B	0,20	141	11	2,11	11 (11-ND)	0,88
	0,03	141	49 (24)	3,44	72 (57-111)	0,88

Sítio A (pastagem nativa); Sítio B (pastagem sob cultivo); ¹ 80% de identidade estimada como a distância no nível de filo (D = 0,20) e 97% para o nível de espécie (D = 0,03); ² Número de sequências por amostra; ³ () Baseado na observação de OTUs únicas; ⁴ Índice de Shannon-Weaver; ⁵ Índice de riqueza de Chao 1 (95% intervalo de confiança); ⁶ Índice Equidade de Pielou (*Evenness*); ND – intervalo de confiança Não Determinado.

Entre as 29 OTUs obtidas do total de 89 sequências do gene 16S rRNA da biblioteca do sítio A (Tabela 6; Figura 22A), 11 OTUs foram representadas por sequências únicas, mostrando uma diversidade relativa com cerca de 38% entre as sequências analisadas. Nesse sítio, os filos *Euryarchaeota* e *Crenarchaeota* contribuíram com apenas 3 (10%) e 2 (7%) OTUs, respectivamente, com a maioria das OTUs (24 - 82,7%) distribuídas entre sequências não-classificadas (Figura 22A).

No sítio B, entre as 49 OTUs encontradas (Tabela 6; Figura 22B), 24 (49%) foram representadas por sequências únicas, mostrando uma diversidade maior em relação ao sítio A, entre as sequências analisadas. Nesse sítio, o filo *Euryarchaeota* contribuiu com o maior número de OTUs (24), sendo o mais abundante, tanto no sítio B, como em relação ao sítio A, enquanto que *Crenarchaeota* apresentou apenas 1 OTU (Figura 22B).

Figura 22. Distribuição dos filos e das OTUs do domínio Archaea, obtidas a partir das sequências 16S rRNA das bibliotecas de clones, nas amostras do solo das pastagens nativa sítio A (A) e sob cultivo – sítio B (B).

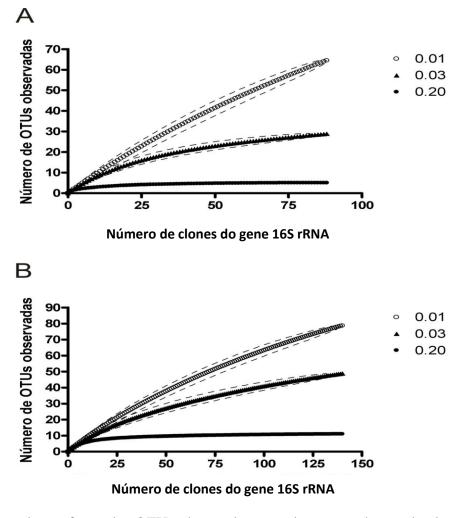
A partir das OTUs obtidas foi possível estimar os índices de diversidade de Shannon-Weaver (H'), de riqueza (Chao1) e de Equidade de Pielou (E) (Tabela 6).

As amostras dos sítios A e B apresentaram índices de diversidade relativamente altos, no nível de espécies (3,10 e 3,44, respectivamente), porém bem mais baixos no nível de filo, principalmente para o sítio A (0,80), dentro da escala do índice de Shannon (Tabela 6).

A riqueza determinada pelo índice de Chao1 estimou cerca de 54,8% (sítio A) e 64,9% (sítio B) das espécies presentes nas amostras, mostrando uma cobertura intermediária dos grupos analisados (Tabela 6).

O índice de equidade apresentou valor mais próximos de 1 apenas para o sítio A (0,92) no nível de espécie, tendo valor de distribuição dos filos muito baixo (0,54) para esse sítio, provavelmente pelo alto valor de sequências não-classificadas (Tabela 6).

Em relação ao sítio B, os valores de equidade foram relativamente baixos, tanto para os níveis de espécie como para filo (0,88), mostrando uma distribuição não uniforme entre as amostras, provavelmente por estar havendo uma dominância de um determinado grupo entre as arqueas em detrimento a outros, como mostrado pelo alto percentual de *Euryarchaeota* (45,4%) em relação ao de *Crenoarchaeota* (3,5%) (Figura 19).


Baixos valores nos índices de diversidade, riqueza e distribuição entre os grupos de Archaea em bibliotecas 16S rRNA, também foram encontrados por Navarrete (2009) em amostras de solo de pastagem nativa em relação a solos sob cultivo na Amazônia.

Neste trabalho, as curvas de rarefação para o domínio Archaea mostraram que a cobertura para o nível de filos entre os números de OTUs observadas em relação ao número de sequências amostradas, tanto para os sítios A e B, foi satisfatória, demonstrado pela inclinação da curva (Figura 23A e B), enquanto que para as espécies a cobertura não foi alcançada, deixando as curvas mais retas (Figura 23A e B).

Navarrete (2009) também demonstraram que as curvas de rarefação para o nível de filo alcançaram o número de cobertura satisfatória, porém em relação à espécie, igualmente a esse trabalho, o platô não foi alcançado.

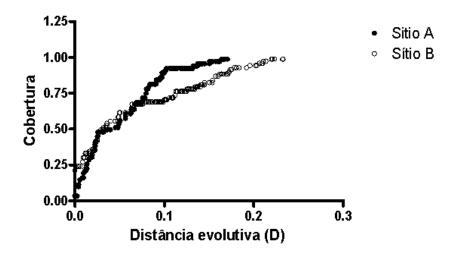
A estimativa da suficiência amostral de acordo com Mullins et al. (1995) mostrou que para a pastagem nativa foi obtida uma cobertura de 47%, enquanto que para pastagem sob cultivo foi de 45%.

De acordo com Schloss; Larget e Handelsman (2004), quase sempre esses resultados de cobertura não satisfatória podem ocorrer, devido a grande diversidade de procariotos em amostras ambientais.

Figura 23. Curva de rarefação das OTUs observadas em relação ao número de clones obtidos nas amostras de solo das pastagens nativa — sítio A (A) e sob cultivo - sítio B (B), do domínio Archaea, nos três níveis de distância (80, 97 e 99%). Linhas pontilhadas representam erro com intervalo de confiança de 95%.

5.3.4 Análise estatístico pelo programa *LIBSHUFF*

As bibliotecas de genes 16S rRNA fornecem informações sobre a composição das comunidades microbianas. Os métodos estatísticos ajudam a determinar se as diferenças na composição de bibliotecas são artefatos de amostragem, ou se ocorreram devido a diferenças de base nas comunidades de onde elas provêm (SCHLOSS; LARGET; HANDELSMAN, 2004).


Os testes de hipóteses que podem estimar a diversidade microbiana podem ser considerados alternativos aos métodos baseados em OTUs. O programa *LIBSHUFF* (SINGLETON et al., 2001), atualmente bastante utilizado na comparação da diversidade entre biblioteca metagenômicas (CUNHA, 2010), basea-se no teste Monte Carlo (amostragens aleatórias) para estimar as diferenças entre cada comunidade, inferindo assim, a significância estatística. Em cada comparação, um valor de *p* (*p-value*) é gerado e, caso esteja abaixo do *p* crítico, a hipótese é rejeitada (SINGLETON et al., 2001). O índice foi calculado a partir da matriz de distância entre pares de amostras. Cada análise gerou dois valores-*p*, os quais foram considerados significativos se abaixo de 0,05 dividido pelo número de amostras comparadas (correção de Bonferroni).

Os resultados da comparação entre as bibliotecas metagenômica 16S rRNA para estimar possíveis diferenças entre as comunidades de Bacteria e Archaea obtidos nesse estudo, utilizando o *software LIBSHUFF*, estão apresentados na Tabela 7, assim como as curvas da distância evolutiva em relação à cobertura das amostras (Figuras 24 e 25).

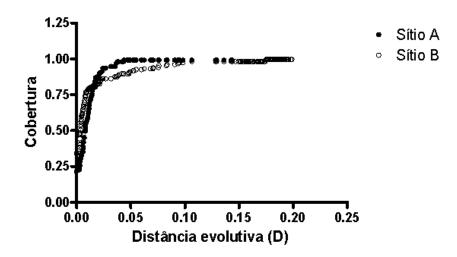

O valor de *p* encontrado foi de 0,025 (0,05 dividido por 2 testes), sendo menor do que o de *p* corrigido, mostrando que as comunidades de uma das amostras é significativamente diferente. A comparação do par reverso indica qual comunidade é sub-amostra da outra.

Tabela 7. Teste estatístico pelo programa *LIBSHUFF* entre as bibliotecas do gene 16S rRNA do solo da pastagem nativa (sítio A) e sob cultivo (sítio B), para os domínios Bacteria e Archaea.

Domínio	Amostras comparadas	dCXYScore	p-Value	Resultado
Bacteria	Sítio A-Sítio B	0.03020259	< 0.0001	Significativo
	Sítio B-Sítio A	0.02859508	< 0.0001	Significativo
Archaea	Sítio A-Sítio B	0.11856661	< 0.0001	Significativo
	Sítio B-Sítio A	0.11236793	< 0.0001	Significativo

Figura 24. Comparação entre as bibliotecas do gene 16S rRNA do sítio A e B para o domínio Bacteria, pelo programa *Libshuff*.

Figura 25. Comparação entre as bibliotecas do gene 16S rRNA do sítio A e B para o domínio Archaea, pelo programa *Libshuff*.

Schloss (2008) avaliou o uso de métodos estatísticos em simulações de computador e concluiu que os testes baseados em hipóteses só conseguem detectar diferenças estatisticamente significativas, não necessariamente sendo uma diferença ecologicamente significativa. Desta forma, com as análises das diferenças entre as comunidades microbianas utilizando o *LIBSHUFF*, podemos apenas ter uma idéia de como as influências antrópicas, seja por cultivo dos solos, poluição, desmatamento, ou ainda características naturais mais diferenciadas, como no solo do Cariri paraibano, podem interferir na presença ou ausência e na predominância ou não de determinados grupos microbianos em detrimentos a outros.

6. CONCLUSÕES

Neste trabalho, os dados obtidos sobre a diversidade de Bacteria e Archaea em dois tipos de solos do Cariri paraibano, nos levaram as seguintes conclusões:

- 1. Os solos da pastagem nativa e sob cultivo do capim introduzido no Cariri paraibano se apresentaram com características distintas quanto à umidade, temperatura e quantidade de matéria orgânica;
- 2. As comunidades microbianas representadas pelas bibliotecas de Bacteria e Archaea foram significativamente diferentes nos dois tipos de solos analisados;
- 3. O filo Acidobacteria foi o mais abundante no solo da pastagem nativa;
- 4. O filo *Proteobacteria* foi dominante no solo sob cultivo, tendo os filos *Cyanobacteria* e *Planctomycetes* ocorrido apenas nesse tipo de pastagem;
- 5. No domínio Archaea foram encontrados os filos *Euryarchaeota* e *Crenarchaeota* nos solos das duas pastagens analisadas;
- 6. Entre as amostras analisadas, foram constatados altos percentuais de sequências não classificadas para os dois domínios, evidenciando a existência de microrganismos ainda não conhecidos;
- 7. Os índices de diversidade, riqueza e equidade se apresentaram com valores maiores no nível de espécie, em relação ao nível de filo, para os dois domínios.

5 REFERÊNCIAS BIBLIOGRÁFICAS

ABELL, G.C.J.; BOWMAN, J.P. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. **FEMS Microbiol. Ecol.**, v. 51, p. 265-277, 2005.

AESA, Agência Executiva de Gestão das Águas do Estado da Paraíba. Levantamento batimétrico automatizado dos açudes Namorados, L. Heleno, Bola I e Bola II – Bacia Escola de São João do Cariri – Paraíba, Brasil. Relatório Final. 2006.

ALEF, K.; NANNIPIERI, P. **Methods in applied soil microbiology and biochemistry**. London: Academic, 1995.

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.W.; LIPMAN, D.J. Basic local alignment search tool. **J. Mol. Biol.**, v. 215, p. 403-410, 1990.

ALVES, J.J.A. Caatinga do Cariri paraibano. Geonomos, v. 17, n. 1, p. 19-25, 2009.

AMANN, R.; LUDWIG, W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. **FEMS Microbiol. Rev.**, v. 24, n.5, p. 555–565, 2000.

ANDIELLI, F. Diversidade de Bactérias e amplificações por PCR de genes de sintases de policetônicos (PKS) Tipo II em solo de Mata Atlântica. 2006. 108 f. Dissertação (Mestrado em Biotecnologia) - Instituto Butantã/IPT, Universidade de São Paulo, São Paulo, 2006.

ANDRADE, L.A.; PEREIRA, I.M.; LEITE, U.T.; BARBOSA, M.R.V. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, Estado da Paraíba. **Cerne**, v. 11, p. 253-262, 2005.

ARAÚJO, K.D.; ANDRADE, A.P.; ROSA, P.R.O.; BRUNO, R.L.A.; FRAGA, V.S. Avaliação da atividade microbiana baseada na produção de C-CO₂ em uma área de Caatinga no Cariri paraibano. **Caatinga**, v. 21, p. 221-230, 2008.

ARAÚJO, R.; GOEDERT, W.J.; LACERDA, M.P.C. Qualidade de um solo sob diferentes usos e sob Cerrado nativo. **R. Bras. Ci. Solo**, v. 31, p. 1099-1108, 2007.

ASHELFORD, K.E.; CHUZHANOVA, N.A.; FRY, J.C.; JONES, A.J.; WEIGHTMAN, A.J. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. **Appl. Environ. Microbiol.**, v. 72, n. 9, p. 5734-5741, 2006.

ATLAS, R.M.; BARTHA, R. **Microbial Ecology**: Fundamentals and Applications. Boston: Addison-Wesley Publishing Company, Inc., 1981.

BARNES, K.C.; FREIDHOFF, L.R.; CHIU, Y.-F.; JUO, S.-H.; DUFFY, D.L.; HIZAWA, H.; NAIDU, R.P.; NICKEL, R.; EHRLICH, E.; SCHOU, C.; BEATY, T.H.; MARSH, D.G. Dense mapping of chromosome 12q14.3-q24.1 and linkage to asthma and atopy. **J. Allergy Clin. Immunol.**, v. 104, p. 485-491, 1999.

BARNS, S.M.; CAIN, E.C.; SOMMERVILLE, L.; KUSKE, C.R. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. **Appl. Environ. Microbiol.**, v. 73, n. 9, p. 3113-3116, 2007.

BEGON, M.; TOWNSEND, C.R.; HARPER, J.L. **Ecology**: From Individuals to Ecosystems. 4a ed. Malden: Blackwell Pub., 2006.

BINTRIM, S.B.; DONOHUE, T.J.; HANDELSMAN, J.; ROBERTS, G.P.; GOODMAN, R.M. Molecular phylogeny of Archaea from soil. **Proc. Natl. Acad. Sci.**, v. 94, p. 277-282, 1997.

BORNEMAN, J.; SKROCH, P.W.; O'SULLIVAN, K.M.; PALUS, J.A.; RUMJANEK, N.G.; JANSEN, J.L.; NIENHUIS, J.; TRIPLETT, E.W. Molecular Microbial diversity of an Agricultural Soil in Wisconsin. **Appl. Environ. Microbiol.**, v. 62, n. 6, p 1933-1943, 1996.

BORNEMAN, J.; TRIPLET, E.W. Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. **Appl. Environ. Microbiol.**, v. 63, n. 7, p. 2647-2653, 1997.

BRASIL. Ministério do Meio Ambiente. Biodiversidade da CAATINGA: áreas e ações prioritárias para a conservação. (SILVA, J.M.C.; TABARELLI, M.; FONSECA, M.T.; LINS, L.V., Ed.) – Brasília, DF: Ministério do Meio Ambiente: Universidade Federal de Pernambuco, 2003. 44 p.

BRASIL. Ministério de Minas e Energia. Secretaria de Geologia, Mineração e Transformação mineral. Projeto Cadastro de Fontes de Abastecimento por Água Subterrânea: Diagnóstico do município de São João do Cariri, Paraíba, 2005. 19 p.

BUCKLEY, D.H.; GRABER, J.R.; SCHMIDT, T.M. Phylogenetic analysis of nonthermophilic members of the kingdom *Crenarchaeota* and their diversity and abundance in soils. **Appl. Environ. Microbiol.**, v. 64, p. 4333-4339, 1998.

CANHOS, V.P.; MANFIO, G.P; VAZOLLER, R.F.; PELLIZARI, V.H. Diversidade no domínio bactéria. In: CANHOS, V.P.; VAZOLLER, R. F. Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX. São Paulo, FAPESP, 1997, p.1-13.

- CARDOSO, A.M.; CLEMENTINO, M.B.M.; MARTINS, O.B.; VIEEIRA, R.P.; ALMEIDA, R.V.; ALQUERES, S.M.C.; ALMEIDA, W.I. Archaea: Potencial Biotecnológico. **Rev. Biotecnol. Ci. Desenv.**, n. 30, 2003.
- CAVALCANTI, E. Para compreender a desertificação: uma abordagem didática e integrada. Instituto Desert: Teresina, 2001. Disponível em: http://ambientes.ambientebrasil.com.br/agropecuario/artigo_agropecuario/desertificaca o.html>. Acesso em: 17 maio 2011.
- CAVALCANTI, E.R.; COUTINHO, S.F.S.; SELVA, K.S.F. Desertificação e desastres naturais na região do semi-árido brasileiro. **Rev. Cadernos de Estudos Sociais**, v. 22, n. 1, p. 19-31, 2007.
- CENCIANI, K.; LAMBAIS, M.R.; CERRI, C.C., AZEVEDO, L.C.B.; FEIGL, B.J. Bacteria diversity biomass in forest, pasture and fallow soil in the southwestern Amazon Basin. **R. Bras. Ci. Solo,** v. 33, p. 907-916, 2009.
- CHAUHAN, P.S.; CHAUDHRY, V.; MISHRA, S.; NAUTIYAL, C.S. Uncultured bacterial diversity in tropical maize (*Zea mays* L.) rhizosphere. **J. Basic Microbiol.**, v. 51, p. 15-32, 2011.
- CHAVES, L.H.G.; CHAVES, I.B.; VASCONCELOS, A.C.F. Salinidade das águas superficiais e suas relações com a natureza dos solos na Bacia Escola do açude Namorados. Campina Grande: BNB/UFPB, 54 p., 2000. (Boletim Técnico).
- CHELIUS, M.K.; TRIPLETT, E.W. The Diversity of Archaea and Bacteria in Association with the Roots of *Zea mays* L. **Microb Ecol.**, v. 41, p. 252-263, 2001.
- CHIN, K-J.; LUKOW, T.; CONRAD, R. Effect of Temperature on Structure and Function of the Methanogenic Archaeal Community in an Anoxic Rice Field Soil. **Appl. Environ. Microbiol.,** v. 65, n. 6, p. 2341-2349, 1999.
- COLE, J.R.; WANG, Q.; CARDENAS, E.; FISH, J.; CHAI, B. FARRIS, R.J.; KULAM-SYED-MOHIDEEN, A.S.; McGARRELL, D.M.; MARSH, T.; GARRITY, G.M.; TIEDJE, J.M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. **Nucl. Acids Res.**, v. 37, p. 141-145, 2009.
- COLWELL, R.K.; CODDINGTON, J.A. Estimating terrestrial biodiversity through extrapolation. **Phil. Trans. R. Soc. B.**, v. 345, p. 101-118, 1994.
- COSTA, R.G.; ALMEIDA, C.C.; PIMENTA FILHO, E.C.; HOLANDA JUNIOR, E.V.; SANTOS, N.M. Caracterização do sistema de produção caprino e ovino na região semi-árida do Estado da Paraíba, Brasil. **Arch. Zootec.**, v. 57, n. 218, p. 195-205, 2008.

- COSTELLO, E.K.; SCHMIDT, S.K. Microbial Diversity in Alpine Tundra Wet Meadow Soil: Novel Chloroflexi from a Cold, Water-Saturated Environment. **Environ. Microbiol.**, v. 8, p. 1471-1486, 2006.
- COWAN, D.; MEYER, Q.; STAFFORD, W.; MUYANGA, S.; CAMERON, R.; WITTWER, P.; Metagenomic gene discovery: past, present and future. **Trends Biotechnol.**, v. 23, p. 321-329, 2005.
- CUNHA, I.S. Caracterização e análise funcional da comunidade bacteriana ruminal de caprinos da caatinga brasileira utilizando DNA metagenômica. 2010. 156 f. Dissertação (Mestrado em Ciências Genômicas e Biotecnologia) Universidade Católica de Brasília, Brasília, 2010.
- CURY, J.C. Diversidade de Bacteria e Archaea em solos de mangue e marisma. 2006. 147 f. Tese (Doutorado em Microbiologia Agrícola) Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2006.
- DeLONG, E.F. Archaea in coastal marine environments. **Proc. Natl. Acad. Sci. USA**, v. 89, n. 12, p. 5685-5689, 1992.
- DeLONG, E.F. Everything in moderation: archaea as 'nonextremophiles'. **Curr. Opin. Gen. Develop.**, v.8, n. 6, p. 649-654, 1998.
- DORAN, J.W.; PARKIN, T.B. **Defining and assessing soil quality**. In: Defing soil quality for a sustainable environment. J. W. Doran et al. (org.). Madison: SSSA, ASA, 1994.
- DRESCHER, J.; BLÜTHGEN, N.; ELDHAAR, H. Population structure and intraspecific aggression in the invasive ant species Anoplolepis gracilipes in Malaysian Borneo. **Mol. Ecol.**, v. 16, p. 1453-1465, 2007.
- DUBEY, S.K.T; TRIPATHI, A.K.; UPADHYAY, S.N. Exploration of soil bacterial communities for their potencial as bioresource. **Bioresour. Technol.**, v. 97, p. 2217-2224, 2006.
- DUNBAR, J.; TAKALA, S.; BARNS, S.M.; DAVIS, J.A.; KUSKE, C.R. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. **Appl. Environ. Microbiol.**, v. 65, n. 4, p. 1662- 1669,1999.
- EICHORST, S.A.; BREZNAK, J.A.; SCHMIDT, T.M. Isolation and characterization of soil bacteria that define *Terriglobus* gen. nov., in the phylum Acidobacteria. **Appl. Environ. Microbiol.**, v. 73, n. 8, p. 2708-2717, 2007.

ELSHAHED, M.S.; YOUSSEF, N.H.; SPAIN, A.M.; SHEIK, C.; NAJAR, F.Z.; SUKHARNIKOV, L.O.; ROE, B.A.; DAVIS, J.P.; SCHLOSS, P.D.; BAILEY, V.L.; KRUMHOLZ, L.R. Novelty and uniqueness patterns of rare members of the soil biosphere. **Appl. Environ. Microbiol.**, v. 74, p. 5422-5428, 2008.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2006) Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Brasília: Serviço de Produção da Informação, Rio de Janeiro, Embrapa Solos, 306p.

EWING, B.; GREEN, P. Base-calling of automated sequences traces using PHRED II error probabilities. **Genome Research.**, v. 8, p. 186-194, 1998.

FAORO, H.; ALVES, A.C.; SOUZA, E.M.; RIGO, L.U.; CRUZ, L.M.; Al-JANABI, S.M.; MONTEIRO, R.A.; BAURA, V.A.; PEDROSA, F.O. Influence of Soil Characteristics on the Diversity of Bacteria in the Southern Brazilian Atlantic Forest. **Appl. Environ. Microbiol.**, v. 76, p. 4744-4749, 2010.

GARRITY, G.M; WINTERS, M.; KUO, A.W.; SEARLES, D.B. Taxonomic outline of prokaryotic genera Bergey's ManualR of systematic bacteriology. 2ed. New York: Springer- Verlag New York, Inc, 2002. Disponível em: http://dx.doi.org/10.1007/bergeysoutline200210. Acesso em: 09 abr. 2011.

GARRITY, G.M.; BOONE, D.R.; CASTENHOLZ, R.W. Bergey's manual of systematic bacteriology. v.1. 2. ed. New York: Springer-Verlag, 2005.

GOMES, R.C.; SEMEDO, L.T.A.S.; SOARES, R.M.A.; ALVIANO, C.S.; LINHARES, L.F.; COELHO, R.R.R. Chitinolytic activity of actinomycetes from a Cerrado soil and their potencial in biocontrol. **Appl. Microbiol.**, v. 30, p. 146-450, 2000.

GORLACH-LIRA, K.; COUTINHO, H.D.M. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. **Braz. J. Microbiol.**, v. 38, p. 135-141, 2007.

GRIBALDO, S.; BROCHIER-ARMANET, C. The origin and evolution of Archaea: a state of the art. **Phil. Trans. R. Soc. B.**, v. 361, p. 1007-1022, 2006.

GROßKOPF, R.; JANSSEN, P.H.; LIESACK, W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. **Appl. Environ. Microbiol.**, v. 64, p. 960-969, 1998.

HANDELSMAN, J. Metagenomics: Application of Genomics to uncultured microorganisms. **Microbiol. Mol. Biol. Rev.**, v. 68, p. 669-685, 2004.

HANDELSMAN, J.; RONDON, M.R.; BRADY, S.F.; CLARDY, J.; GOODMAN, R.M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. **Chem. Biol.**, v. 5, p. 245-249, 1998.

HUBER, H.; HOHN, M.; RACHEL, R.; FUCHS, T.; WIMMER, V.; STETTER, K. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. **Nature**, v. 417, n. 6884, p. 63-67, 2002.

HUGENHOLTZ, P.; GOEBEL, B.M.; PACE, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. **J. Bacteriol.**, v. 180, p. 4765-74, 1998.

HUGHES, J.B.; HELLMANN, J.J; RICKETTS, T.H.; BOHANNAN, B.J.M. Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity. **Appl. Environ. Microbiol.**, v. 67, n. 10, p. 4399-4406, 2001.

IBGE - Instituto Brasileiro de Geografia e Estatística. **Brasil em Números**. v. 9. Rio de Janeiro, 2000.

IBGE - Instituto Brasileiro de Geografia e Estatística (2004). Disponível em: http://www.ibge.gov.br/cidadesat/default.php. Acesso: 5 abr 2011.

JACOBS, J.M., MOHANTY, B.P.; HSU, E.; MILLER, D. SMEX: Field scale variability, time stability and similarity of soil moisture, **Remote Sens. Environ.**, v. 92, n. 4, p. 436-446, 2004.

JANSSEN, P.H.. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes. **Appl. Environ. Microbiol.**, v. 72, n. 3, p. 1719-1728, 2006.

JURGENS, G.; LINDSTROM, K.; SAANO, A. Novel group within the kingdom Crenarchaeota from boreal forest soil. **Appl. Environ. Microbiol.**, v. 63, n. 2, p. 803-805, 1997.

KEMNITZ, D.; KOLB, S.; CONRAD, R. High abundance of *Crenarchaeota* in a temperate acidic forest soil. **FEMS Microbiol. Ecol.**, v. 60, p. 442-448, 2007.

KENNEDY, A.C.; SMITH, K.L. Soil microbial diversity and the sustainability of agricultural soils. **Plan. Soil**, v. 170, p. 75-86, 1995.

KENNEDY, A.C. **Microbial diversity in agroecosystem quality**. In Biodiversity in Agroecosystems. W.W. Collins, C.O. Qualset (org.). Florida: CRC Press. Boca Raton, 1999.

- KIELAK, A.; PIJL, A.S.; VAN VEEN, J.A.; KOWALCHUK, G.A. Phylogenetic diversity of Acidobacteria in a former agricultural soil. **The ISME J.**, v. 3, p. 378-382, 2009.
- KILLHAM, K.; PROSSER, J.I. **The prokaryotes**. In: Soil Microbiology and Biochemistry. Ed. E.A Paul (org.). Oxford: Academic Press, 2007.
- KOCH, I.H.; GICH, F.; DUNFIELD, P.F.; OVERMANN, J. *Edaphobacter modestus* gen. nov., sp. nov., and *Edaphobacter aggregans* sp. nov., acidobacteria isolated from alpine and forest soils. **Int. J. Sys.t Evol. Microbiol.**, v. 58, p. 1114-1122, 2008.
- KOPCZYNSKI, E.D.; BATESON, M.M.; WARD, D.M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. **Appl. Environ. Microbiol.**, v. 60, p. 746-748, 1994.
- KUSKE, C.R.; BARNS, S.M.; BUSCH, J. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. **Appl. Environ. Microbiol.**, v. 63, n. 9, p. 3614-3621, 1997.
- LAKAY, F.M.; BOTHA, A.; PRIOR, B.A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. **J. Appl. Microbiol.**, v. 102, p. 265–273, 2007.
- LARKIN, M.A.; BLACKSHIELDS, G.; BROWN, N.P.; CHENNA, R.; McGETTIGAN, P.A.; McWILLIAM, H.; VALENTIN, F.; WALLACE, I.M.; WILM, A.; LOPEZ, R.; THOMPSON, J.D.; GIBSON, T.J.; HIGGINS, D.G.; Clustal W and Clustal X version 2.0. **Bioinformatics**, v. 23, n. 21, p. 2947-2948, 2007.
- LA SCOLA, B.; ZEAITER, Z.; KHAMIS, A.; RAOULT, D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. **Trends Microbiol.**, v. 11, n. 7, p. 318-321, 2003.
- LANE, D.J. **16S/23S rRNA sequencing**. In: Nucleic Acid Techniques in Bacterial Systematics. E. Stackebrandt, M. Goodfellow (org.). New York: Wiley, 1991.
- LEWINSOHN, T.M.; PRADO, P.I. **Estimativas de biodiversidade brasileira**. In: Biodiversidade brasileira: síntese do estado atual do conhecimento. T.M., Lewinsohn, P.I., Prado (org.). São Paulo: Contexto, 2002.
- LILES, M.R.; MANSKE, B.F.; BINTRIM, S.B.; HANDELSMAN, J.; GOODMAN, R.M. A Census of rRNA Genes and Linked Genomic Sequences within a soil metagenomic library. **Appl. Environ. Microbiol.**, v. 69, n. 5, p. 2684-2691, 2003.

LIM, J.H.; BAEK, S.H.; LEE, S.T. Ferruginibacter alkalilentus gen. nov., sp. nov. and *Ferruginibacter lapsinanis* sp. nov., novel members of the family 'Chitinophagaceae' in the phylum Bacteroidetes, isolated from freshwater sediment. **Int. J. Syst. Evol. Microbiol.**, v. 59, p. 2394-2399, 2009.

LUCHETA, A.R. Oxidação microbiológica do enxofre elementar do solo. 2011. 177 f. Tese (Doutorado em Microbiologia Agrícola) – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2011.

LUDWIG, W.; STRUNK, O.; KLUGBAUER, S.; KLUGBAUER, N.; WEIZENEGGER, M.; NEUMAIER, J.; BACHLEITNER, M.; SCHLEIFER, K.H. Bacterial phylogeny based on comparative sequence analysis. **Electrophoresis**, v. 19, n. 4, p. 554-568, 1998.

LUNA, R.G.; COUTINHO, H.D.M. Efeitos do pastejo descontralado sobre a fitocenose de duas áreas do cariri oriental. **Rev. Caatinga**, v. 20, p. 8-15, 2007.

LUNA, R.G.; COUTINHO, H.D.M; GRISI, B.M. Evaluation of pasture soil productivity in the semi-arid zone of Brazil by microbial analyses. **Braz. J. Microbiol.**, v. 39, p. 409-413, 2008.

MÄDER, P.; PFIFFNER L.; FLIEßBACH A.; von LÜTZOW, M.; MUNCH, J.C. **Soil ecology**: The impact of organic and conventional agriculture on soil biota and its significance for soil fertility. In: IFOAM, 11. ed. Copenhagen: Tholey-Theley-IFOAM, 1996.

MADIGAN, M.T.; MARTINKO, J.M.; PARKER, J. **Microbiologia de Brock**. 10. ed. São Paulo: Prentice Hall, 2004.

MARTÍ, J.J.I.; GARCÍA-ÁLVAREZ, A. Diversidade: biodiversidade edáfica e geodiversidade. **Edafología**, v. 9, n. 3, p. 329-385, 2002.

MARTIN-LAURENT, F.; PHILIPPOT, L.; HALLET, S.; CHAUSSOD, R.; GERMON, J.C.; SOULAS, G.; CATROUX, G. DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods. **Appl. Environ. Microbiol.**, v. 67, n. 5, 2001.

MARTINY, J.B.H.; BOHANNAN, B.J.M.; BROWN, J.H.; COLWELL, R.K.; FUHRMAN, J.A.; GREEN, J.L.; HORNER-DEVINE, M.C.; KANE, M.; KRUMINS, J.A.; KUSKE, C.R.; MORIN, P.J.; NAEEM, S.; ØVREÅS, L.; REYSENBACH, A.L.; SMITH, V.H.; STALEY, J.T. Microbial biogeography: putting microorganisms on the map. **Nature Rev. Microbiol.**, v. 4, p. 102-112, 2006.

MASOUDI-NEJAD, A.; TONOMURA, K.; KAWASHIMA, S.; MORIYA, Y.; SUZUKI, M.; ITOH, M.; KANEHISA, M.; ENDO, T.; GOTO, S. EGassembler: online

bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. **Nucl. Acids Res.**, v. 34, p. 459-462, 2006.

McCAIG, A.E.; GLOVER, L.A.; PROSSER, J.I. Molecular analysis of bacterial community structure and diversity in unimproved upland grass pasture. **Appl. Environ. Microbiol.**, v. 65, n. 4, p. 1721-1730, 1999.

MELZ, E.M.; TIAGO, P.V. Propriedades físico-químicas e microbiológicas do solo de um Parque em Tangará da Serra, MT, uma área de transição entre Amazônia e Cerrado. **ATCA Amazonica**, v. 39, p. 829 - 834, 2009.

MILLER, R.W.; DONAHUE, R.L. **Soils**: an introduction to soils and plant growth. Englewood Cliffs: Printice Hall, 1990.

MULLINS, T.D.; BRITSCHGI, T.B.; KREST, R.L.; GIOVANNONI, S.J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. **Limnol. Ocean.**, v. 40, p. 148-158, 1995.

NASCIMENTO, S.S.; ALVES, J.J.A. Um Alerta Ambiental do Grau da Desertificação no Estado da Paraíba. Encontro Internacional de Geografia: Tradições e Perspectivas. Universidade de São Paulo-USP, 1 a 5 de dezembro de 2008.

NAVARRETE, A.C. Estrutura e diversidade de comunidades microbianas em solos sob diferentes sistemas de uso de terra. 2009. 114 f. Dissertação (Mestrado em Ecologia Aplicada) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba. 2009.

NICOL, G.W.; GLOVER, L.A.; PROSSER, J.I. The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. **Environ. Microbiol.**, v. 5, n. 3, p. 152-162, 2003.

OLIVEIRA, E.M.; SANTOS, M.J.; ARAÚJO, L.E.; SILVA, D.F.; Desertificação e seus impactos na região semi-árida do Estado da Paraíba. **Ambiência**, v. 5, n. 1, 67-79, 2009.

PACE, N.R. New perspective on the natural microbial world: molecular microbial ecology. **ASM News**, v. 62, p. 463-470, 1996.

PACE, N.R.; STAHL, D.A.; LANE, D.J.; OLSEN, G.J. The analysis of natural microbial populations by ribosomal RNA sequence. **Adv. Microb. Ecol.**, v. 9, p. 1-55, 1986.

PAN-BRASIL - PROGRAMA DE AÇÃO NACIONAL DE COMBATE À DESERTIFICAÇÃO E MITIGAÇÃO DOS EFEITOS DA SECA. Brasília, DF: Ministério do Meio Ambiente, 2004. Disponível em:

http://www.iicadesertification.org.br/imagem/noticia/File/Paises_do_Programa/Brasil/Reunioes_do_Plano_de_Acao_Nacional_PAN/PAN_BRASIL.pdf. Acesso em: 16 maio 2011.

PESARO, M.; WIDMER, F. Identification of novel Crenarchaeota and Euryarchaeota clusters associated with different depth layers of a forest soil. **FEMS Microbiol. Ecol.**, v. 42, p. 89-98, 2002.

PLANTE, A.F. **Soil Biogeochemical cycling of inorganic nutrients and metals**. In: Soil Microbiology, Ecology and Biochemistry. E.A., Paul (org.). Amsterdam: Elsevier Inc., 2007.

RAPPÉ, M.S.; GIOVANNONI, S.J. The uncultured microbial majority. **Annu. Rev. Microbiol.**, v. 57, p. 369-394, 2003.

REIGSTAD, L.J.; JORGENSEN, S.L.; SCHLEPER, C. Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. **The ISME J.**, v. 4, 346-356, 2010.

REQUENA, N.; PEREZ-SOLIS; AZCÓN-AGUILAR, C.; JEFFRIES, P.; BAREA, J,M. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. **Appl. Environ. Microbiol.**, v. 67, p. 495-98, 2001.

ROBE, P.; NALIN, R.; CAPELLANO, C.; VOGEL, T.M.; SIMONET, P. Extraction of DNA from soil. Europ. **J. Soil Biol.**, v. 39, p. 183-190, 2003.

ROESCH, L.F.; FULTHORPE, R.R.; RIVA, A.; CASELLA, G.; HADWIN, A.K.; KENT, A.D.; DAROUB, S.H.; CAMARGO, F.A.O.; FARMERIE, W.G.; TRIPLETT, E.W. Pyrosequencing enumerates and contrasts soil microbial diversity. **The ISME J.**, v. 1, p. 283-290, 2007.

ROSSELLÓ-MORA, R.; AMANN, R. The species concept for prokaryotes. **FEMS Microbiol. Rev.,** v. 25, p. 39-67, 2001.

ROTHSCHILD, L.J.; MANCINELLI, R.L. Life in extreme environments. Nature, v. 409, n. 6823, p. 1092-1101, 2001.

SAMBROOK, J.; FRITSCH, E.F; MANIATIS, T. Molecular cloning: a laboratory manual. 2. ed. New York: Cold Spring Harbor, 1989.

SAMPAIO, E.V.S.B.; SAMPAIO, Y. **Desertificação: Conceitos, Causas, Conseqüências e Mensuração**. Recife: Universitária UFPE, 2002.

SANTOS, S.T.; DIREITO, I.C.N.; TEIXEIRA, K.R.S. Isolamento e amplificação de DNA de amostras de solo como ferramenta para avaliar a diversidade das populações de bactérias em solos agrícolas. Seropédica: EMBRAPA Agrobiologia, 2002. 36 p. (EMBRAPA Agrobiologia. Documentos, 148). Disponível em: http://www.cnpab.embrapa.br/publicacoes/download/doc148.pdf. Acesso em 25 maio 2011.

SCHLOSS; P.D.; HANDELSMAN, J. Status of the microbial census. **Microbiol. Mol. Biol. Rev.**, v. 68, p. 686-691, 2004.

SCHLOSS, P.D.; LARGET, B.R.; HANDELSMAN, J. Integration of microbial ecology and statistics: a test to compare gene libraries. **Appl. Environ. Microbiol.**, v. 70, n. 9, p. 5485-5492, 2004.

SCHLOSS, P.D. Evaluating different approaches that test whether microbial communities have the same structure. **The ISME J.**, v. 2, p. 265-275, 2008.

SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, VAN HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. **Appl. Environ. Microbiol.**, v. 75, n. 23, p. 7537-7541, 2009.

SCHULZ, S.; MATSUYAMA, H.; CONRAD, R. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). **FEMS Microbiol. Ecol.**, v. 22, p. 207-213, 1997.

SILVA, K.J. Diversidade de Bacteria e Archaea em espodossolos do litoral do Estado de São Paulo. 2010. 72 f. Dissertação (Mestrado em Microbiologia Agrícola) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. Piracicaba. 2010.

SILVA, M.; SIQUEIRA, E.R.; COSTA, J.L.S. Hidrólise de diacetato de fluoresceína como bioindicador da atividade microbiológica de um solo submetido a reflorestamento. **Ciên. Rural**, v. 34, p. 1493-1496, 2004.

SILVA, G.M.C.; MARTINS, P.L.; SILVA, H.; FREITAS, K.K.C. Estudo autoecológico de Bumélia sertorium (Quixabeira) - Espécie ameaçada de extinção no ecossistema Caatinga. **Rev. Biol. Ciên. Terra**, v. 4, n. 1, p. 1-11, 2004.

SINGLETON, D.R.; FURLONG, M.A.; RATHBUN, S.L.; WHITMAN, W.B. Quantitative comparisons of 16S RNAr genes sequence libraries from environmental samples. **Appl. Environ. Microbiol.**, v. 67, p. 4374-4376, 2001.

SHANNON, C.E.; WEAVER, W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949.

SMIT, E.; LEEFLANG, P.; GOMMANS, S.; VAN DEN BROEK, J.; VAN MIL, S.; WERNARS, K. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. **Appl. Environ. Microbiol.**, v. 67, p. 2284-2291, 2001.

SNELL-CASTRO, R.; GODON, J-J.; DELGENÈS, J-P.; DABERT, P. Characterization of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. **FEMS Microbiol. Ecol.**, v. 52, n. 2, p. 229-242, 2005.

SOUTO, P.C.; SOUTO, J.S.; MIRANDA, J.R.P.; SANTOS, R.V.; ALVES, A.R. Comunidade microbiana e mesofauna edáficas em solo sob Caatinga no semi-árido da Paraíba. **R. Bras. Ci. Solo**, v. 32, p. 151-160, 2008.

SOUZA, M.R. A desertificação e suas implicações no desenvolvimento sustentável. 2000. Disponível em: http://www.seagri.ba.gov.br/RevBaAgr/rev_112000/desertifica.htm>. Acesso em: 17 maio 2011.

STREIT, W.R.; SCHMITZ, R.A. Metagenomics-the key to the uncultured microbes. **Curr. Opin. Microbiol.**, v. 7, n. 5, p. 492-498, 2004.

TAGLIAFERRO, A.C. Análise molecular da diversidade bacteriana de solos do Cerrado utilizando bibliotecas de rDNA 16S - Uma perspectiva biotecnológica. 2005. 121 f. Dissertação (Mestrado em Ciências Genômicas e Biotecnologia) - Universidade de Brasília, Brasília, 2005.

TAMURA, K.; PETERSON, D.; PETERSON, N.; STECHER, G.; NEI, M.; KUMAR, S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. **Mol. Biol. Evol.** (In Press), 2011.

TORSVIK, V.; DAAE, F.L.; SANDAA, R.-A.; ØVREÅS, L. Review article: novel techniques for analysing microbial diversity in natural and perturbed environments. **J. Biotechnol.**, v. 64, p. 53-62, 1998.

TORSVIK, V.; ØVREÅS, L. Microbial diversity and function in soil: from genes to ecosystems. **Curr. Opin. Microbiol.**, v. 5, n. 3, p. 240-245, 2002.

TÓTOLA, M.R.; CHAER, G.M. **Microorganismos e processos microbiológicos como indicadores de qualidade dos solos**. ln: Tópicos em Ciência do Solo. R.F., Novais (org.). Viçosa: Sociedade Brasileira de Ciência do Solo, 2002.

TZENEVA, V.A.; LI, Y.; FELSKE, A.D.; de VOS, W.M.; AKKERMANS, A.D.L.; VAUGHAN, E.E.; SMIDT, H. Development and application of a selective PCR-denaturing gradient gel electrophoresis approach to detect a recently cultivated *Bacillus* group predominant in soil. **Appl. Environ. Microbiol.**, v. 70, n. 10, p. 5801-5809, 2004.

VON WINTZINGERODE, F., GOBEL, U. B., STACKEBRANDT, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. **FEMS Microbiol. Rev.**, v. 21, p. 213-29, 1997.

VORONEY, R.P. **Soil Habitat**. In: Soil Microbiology, Ecology and Biochemistry. E.A., Paul (org.). Amsterdam: Elsevier Inc., 2007.

WANG, G.C.-Y.; WANG, Y. Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. **Appl. Environ. Microbiol.**, v. 63, p. 4645-4650, 1997.

WANG, J.; JENKINS, C.; WEBB, R.I.; FUERST, J.A. Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. **Appl. Environ. Microbiol.**, v. 68, p. 417-422, 2002.

WATERS, E.; HOHN, M.J.; AHEL, I.; GRAHAM, D.E.; ADAMS, M.D.; BARNSTEAD, M.; BEESON, K.Y.; BIBBS, L.; BOLANOS, R.; KELLER, M.; KRETZ, K.; LIN, X.; MATHUR, E.; NI, J.; PODAR, M.; RICHARDSON, T.; SUTTON, G.G.; SIMON, M.; SO, D.; STETTER, K.O.; SHORT, J.M.; NOORDEWIER, M. The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. **PNAS**, v. 100, n. 22, p. 12984-12988, 2003.

WHITMAN, W.B.; COLEMAN, D.C.; WIEBE, W. Prokaryotes: the unseen majority. **Proc. Natl. Acad. Sci. USA**, v. 95, n. 12, p. 6578-6583, 1998.

WHITTAKER, R.H. New concepts of kinddoms. Science, v. 163, p. 150-163, 1969.

WOESE, C.R.; FOX, G.E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. **Proc. Natl. Acad. Sci.**, v. 74, n. 11, p. 5088-5090, 1977.

WOESE, C.R. Bacterial Evolution. Microbiol. Rev., v. 51, n. 2, p. 221-271, 1987.

WOESE, C.R.; KANDLER, O.; WHEELIS, M.L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. **Proc. Natl. Acad. Sci. USA**, v. 87, p. 4576-4579, 1990.

ZHANG, Y.; DU, B-H.; JIN, Z-G.; LI, Z-H.; HONG-NING SONG, HH-N.; DING, Y-Q. Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton

(Gossypium sp.) at different plant growth stages. **Plant and Soil**, v. 339, n. 1-2, p. 447-455, 2011.

ZHOU, J.; XIA, B.; HUANG, H.; PALUMBO, A.V.; TIEDJE, J.M. Microbial diversity and heterogeneity in sandy subsurface soils. **Appl. Environ. Microbiol.**, v. 70, n. 3, p. 1723-1734, 2004.

ZILLI, J.E.; RUMJANEK, N.G.; XAVIER G.R., COUTINHO H.L.C; NEVES M.C.P. Diversidade microbiana como indicador da qualidade do solo. **Cadernos Ci. Tecnol.**, v. 20, n. 3, p. 391-411, 2003.

Prospecção de xilanases e celulases em clones metagenômicos e isolados	5
bacterianos do solo do Cariri paraibano	

"O desafio é criar sempre, continuar criando sem nunca ter por acabada a versão desejável" (Carlos Drumond de Andrade)

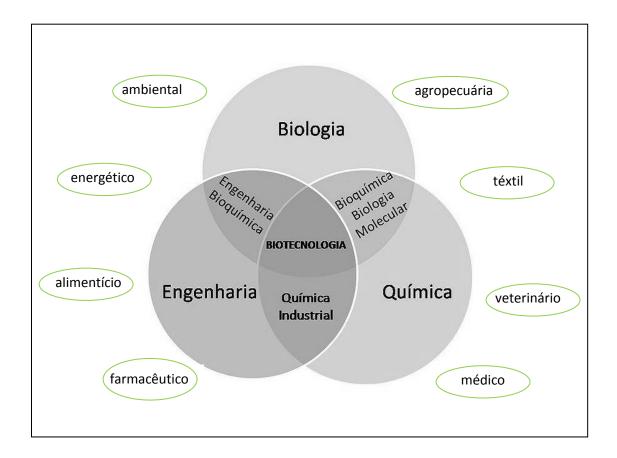
RESUMO

O solo é um grande reservatório genético microbiano, no qual podem ser encontrados inúmeros organismos com capacidade de produção de bioprodutos, como enzimas. Neste trabalho foi investigado o potencial de produção de celulases e xilanases de clones metagenômicos e de cepas bacterianas de uma amostra do solo nativo da Caatinga, do Cariri paraibano. Foram utilizados dois procedimentos: solo préenriquecido (PE) (25 g do solo em 225 mL em meio contendo 1% de CMC), a 37°C/18-20h, a 200 rpm, utilizado tanto para extração do DNA metagenômico do solo (Kit MOBIO), como para isolamento de cepas bacterianas a 37°C e a 50°C; e solo nãoenriquecido (NE) (25 g do solo em 225 mL de solução salina 0,9%), do qual foram igualmente isoladas bactérias a 37°C e a 50°C. O DNA metagenômico do solo (PE) foi quantificado e fragmentado com *Eco*RI, obtendo-se bandas, entre 4 a 5 kb e 9 a 10 kb, que após purificação foram ligadas em vetor pBC SK, transformados em E. coli DH10B, por choque térmico, as quais foram cultivadas em Agar LB/Amplicilina (100 µ/mL), IPTG e XGal, a 37°C (18-20 h). Das colônias brancas obtidas foram selecionados 3.840 clones, que foram repassados para placas 96 poços e estocados a -80°C, dos quais 1.920 clones foram utilizados para avaliação das produções enzimáticas. Entre os clones testados foram obtidos 60 para produção de celulase e 10 para produção de xilanase; sendo então selecionados quatro clones xilanolíticos para extração plasmidial e re-transformação em E. coli, os quais confirmaram atividade para xilanase. Dos solos PE e NE foram isoladas 42 cepas, entre as quais, três isoladas do solo PE (Cel55-01; Cel55-02 e Cel37-03), identificadas pela amplificação do gene 16S rRNA como Bacillus subtilis e duas do solo NE (Cel37-28 e T2), denominadas Paenibacillus illinoisensis e P. favisporos, respectivamente. As cepas Cel55-01, Cel55-02 e Cel37-03 obtiveram baixo rendimento para celulase (0,050 a 0,061 U/mL) e xilanase (0,011 a 0,036 U/mL), avaliados pelo método de Somogyi-Nelson, quando cultivadas em LB/palha de arroz. No entanto, a cepa Cel55-01, quando cultivada em LB/bagaço de cana-de-açúcar, teve seu rendimento aumentado em cerca de dez vezes em relação à xilanase (0,30 U/mL), com temperatura e pH ótimos a 50°C e. 6,0, respectivamente. As cepas Cel37-28 e T2 apresentaram atividade de 1,30 U/mL e 1,0 U/mL, após 2 min de reação, e 0,92 U/mL e 0,90 U/mL, após 15 min, respectivamente, quando cultivas em LB/palha de arroz. Para as cepas Cel37-28 e T2, as temperaturas e pH ótimos foram, 55°C e 60°C e 7,5, respectivamente. As celulases visualizadas em gel SDS-PAGE (Zimograma) para a cepa Cel55-1 se apresentaram na faixa de 130 a 210 kDa, enquanto que as xilanases da cepa Cel37-28 ficaram em torno de 70 a 180 kDa; e da cepa T2, entre 50 e 130 kDa, evidenciando a produção de mais de uma enzima pelas cepas. Esses dados mostram que no solo do Cariri paraibano, região com características peculiares, como temperaturas altas e escassez hídrica, é possível a obtenção, tanto de clones metagenômicos funcionais, como isolados bacterianos, que produzem celulases e xilanases, a partir de resíduos industriais, a temperaturas acima de 50°C e pH tendendo ao alcalino, de grande interesse nas indústrias têxteis e de celulose e papel.

Palavras chaves: celulases, xilanases, bactérias do solo, clones metagenômicos, resíduos industriais.

ABSTRACT

Soil is a large microbial genetic reservoir where innumerable microorganisms able to produce bioproducts like enzymes, are found. In the present work it was investigated the potential production of cellulases and xylanases of metagenomic clones, and of bacterial strains of soil sample from a native soil (of Caatinga) of the Paraiban Cariri. Two experimental procedures were performed: pre-enriched soil (PE) (25 g of soil in 225 mL of medium containing 1% of carboxymethylcellulose – CMC), at 37°C/18-20h, at 200 rpm, being utilized for extraction of metagenomic DNA of soil (Kit MOBIO) and also for the isolation of bacterial strains at 37°C and 50°C; and non-enriched soil (NE) (25 g of soil in 225 mL of 0.9% saline solution) from which bacteria were also isolated at 37°C and 50°C. The metagenomic DNA of soil (PE) was quantified and fragmented with EcoRI and the bands obtained were from 4 to 5 kb and from 9 to 10 kb, which, after purification were linked to vector pBC SK, being then transformed on chemically competent E. coli DH10B by thermal shock, which were cultivated on Agar LB/Ampicillin (100 μ/mL), IPTG and XGal, at 37°C (18-20h). Of the white colonies obtained, 3840 clones were selected, transferred to plates with 96 wells and stored at -80°C, of which 1920 clones were utilized for evaluation of enzymatic production. Among all tested clones, the only ones obtained as positive were 60 clones as cellulase producers and 10 as xylanase producers; being then selected four xylanolytic clones for plasmidial extraction and re-transformation on E. coli, which confirmed their activity for xylanase. Forty-two strains were isolated from soils PE and NE, of which three were cellulase producers (soil PE - Cel55-01; Cel55-02, and Cel37-03), which were identified by amplification of gene 16S rDNA as Bacillus subtilis and two strains of xylanase (soil NE - Cel37-28 and T2) Paenibacillus illinoisensis and P. favisporos, respectively. The cellulolytic strains Cel55-01, Cel55-02, and Cel37-03, showed low yield of cellulase (from 0.050 to 0.061 U/mL) and xylanase (from 0.011 to 0.036 U/mL), as evaluated by Somogyi-Nelson's method, when cultivated in LB/rice straw. However, strain Cel55-01 when cultivated in LB/sugarcane bagass, had a yield increase ten times higher as compared to xylanase (0.30 U/mL), with an optimum 6.0 pH and an optimum 50°C temperature. The xylanolytic strains Cel37-28 and T2 generated activity of 1.30 U/mL and 1.0 U/mL after 2 min reaction, and 0.92 U/mL and 0.90 U/mL after 15 min, respectively, when cultivated in LB/rice straw. For strains Cel37-28 and T2, the optimum pH was 7.5, respectively; and the optimum temperature was 55°C and 60°C, respectively. The cellulases as visualized in SDS-PAGE gel (Zymogram) for the Cel55-1 strain ranged from 130 to 210 kDa, while the xylanases of the Cel37-28 strain ranged from 70 to 180 kDa; and for T2 strain ranged from 50 to 130 kDa, showing clearly that more than one enzyme is being produced by the strains. These results showed that from the soil of the Paraiban Cariri, a region that is characterized by high temperatures, over 50°C and hydric limitations, and pH tending towards alkaline it is possible to obtain functional metagenomic clones as well as bacterial isolates, which produce cellulases and xylanases from wastes of textile industry and of cellulose and paper industries.


Key words: cellulases, xylanases, soil bacteria, metagenomic clones, industrial wastes.

1 INTRODUÇÃO

Desde a antiguidade até os tempos atuais, diversos microrganismos têm sido utilizados em vários processos para obtenção de produtos de panificação, lácteos, fármacos, biocombustíveis, bioplásticos, por produzirem naturalmente diferentes metabólitos primários e/ou secundários em resposta às condições de crescimento (LORENZ; ECK, 2005).

A biotecnologia, definida como "Integração de ciências naturais e de ciências da engenharia visando à aplicação de organismos, células, derivados celulares e análogos moleculares para produtos e serviços", de acordo com Smith-Doerr et al. (1998), é considerada uma ciência de caráter multidisciplinar que interliga a pesquisa ao setor industrial sempre crescente (Figura 26), incentivando a busca constante de novas moléculas produzidas por organismos que possam obter um maior rendimento de produtos, diminuição dos custos nos processos e dos resíduos gerados (PEREIRA JÚNIOR; BON; FERRARA, 2008; OLIVEIRA; MANTOVANI, 2009).

Desde a sua descoberta como agentes nos processos fermentativos, os microrganismos têm sido isolados utilizando-se métodos tradicionais de cultivo em laboratório, que, apesar de limitações, têm garantido a obtenção de diferentes compostos, tais como enzimas (LIANG et al., 2009; PARK; CHO, 2010), antimicrobianos (CEYLAN; OKMEN; UGUR, 2008), polímeros (OLIVEIRA; FREIRE; CASTILHO, 2004), pigmentos (KIM; KIM; HONG, 1999) e outros, de interesse biotecnológico.

Figura 26. Multidisciplinaridade da biotecnologia e sua inserção em diferentes setores produtivos. Fonte: PEREIRA JÚNIOR; BON; FERRARA, 2008 (modificado).

Os microrganismos responsáveis em grande parte pelos processos biotecnológicos têm sido isolados dos mais diversos ambientes (VAN BEILEN, 2002), sendo o solo fonte de prospecção de diferentes biomoléculas, em função da sua elevada diversidade (TORSVIK; ØVREÅS, 2002).

Estima-se que em um grama de solo possa conter cerca de 10 bilhões de células microbianas quando analisadas por microscopia de fluorescência (AMMAN; LUDWIG, 2000). Porém, uma pequena parcela desta microbiota, torna-se acessível ao isolamento, devido as limitações de temperatura, pH e nutrientes por ela utilizados (HUGENHOLTZ; GOEBEL; PACE, 1998).

Avanços científicos e tecnológicos alcançados nos últimos anos vêm revolucionando as abordagens tradicionais de exploração de recursos biológicos. O processo de busca e descoberta biotecnológica em si vem sofrendo profundas alterações em função das mudanças de modelos desencadeadas pelos avanços em biologia molecular, genômica e bioinformática (HERRERA, 2004).

No cenário atual, a biotecnologia vem empregando novos métodos, como a construção de bibliotecas genômicas e, mais recentemente, metagenômicas (PANG et al., 2009; WANG et al., 2009), que permite a bioprospecção de novos genes e moléculas com ampla aplicação industrial (HENNE et al., 2000; KIM et al., 2005).

Apesar da abordagem metagenômica está em pleno avanço, com grandes perspectivas futuras (STEELE; STREIT, 2005), algumas limitações como, número reduzido de produtores positivos ao final da construção de uma biblioteca funcional, que comporta um grande número de clones, entre cinco mil (COURTOIS et al., 2003), a mais de cem mil clones (HENNE et al., 2000), faz com que o isolamento e cultivo microbiano continuem sendo empregados dentro do contexto biotecnológico, em função de ser uma metodologia mais simples e facilmente empregada.

Enzimas como celulases e xilanases, muito utilizadas em indústrias de papel e celulose, têm sido obtidas de diferentes microrganismos de diversos ambientes, incluindo o solo (HECK; HERTZ; AYUB, 2002; ZHANG et al., 2009); assim como recombinantes que super-expressam essas enzimas (VAN SOLINGER et al., 2011; YIN et al., 2010; VALENZUELA; DÌAZ; PASTOR, 2010) gerando um maior rendimento e pureza do produto. No entanto, poucos trabalhos, utilizando a técnica metagenômica, têm revelado clones positivos para as atividades celulolíticas e xilanolíticas, que podem ter seu potencial explorado em ambientes com características peculiares como o solo do Cariri paraibano.

2 REVISÃO BIBLIOGRÁFICA

2.1 Aspectos históricos da Biotecnologia

Historicamente, o uso da Biotecnologia teve seu início com os processos fermentativos, e sua utilização transcende o início da era Cristã, confundindo-se com a própria história da humanidade. Registros mostram que os sumérios e babilônios utilizavam a fermentação de grãos na produção de bebidas alcoólicas por volta do ano 6000 a.C., assim como, cerca do ano 2000 a.C., os egípcios utilizavam o fermento na fabricação de cerveja e pão (VILLEN, 2002). No entanto, os microrganismos, agentes causadores desses processos, só vieram a ser conhecidos há cerca de 200 anos com os experimentos de Pasteur (1876), que também provou que cada tipo de fermentação era realizado por um microrganismo específico.

A partir da primeira guerra mundial, intensificou-se o interesse na utilização de microrganismos para obtenção de grandes quantidades de glicerol pelos alemães e acetona pelos ingleses para a fabricação de explosivos e munições, tendo essas iniciativas contribuído para o desenvolvimento de fermentadores industriais (NEWELL-MCGLOUGHLIN; RE, 2006).

Todavia, o grande marco na fermentação industrial foi a descoberta da penicilina pelo escocês Alexander Fleming em 1928, produzida pelo fungo *Penicillium notatum*, que incentivou a pesquisa e promoveu a busca de novos fármacos e o consequente avanço da produção biotecnológica (PEACOOK, 2010).

As pesquisas avançaram e na década de 50, com a revelação da estrutura do DNA e o posterior desenvolvimento das técnicas de manipulação do DNA, ocorreu uma nova etapa para os processos biotecnológicos com o surgimento de cepas recombinantes, as quais potencializaram a produção de compostos pela introdução de genes heterólogos em cepas bacterianas, como a *Escherichia coli* e em eucariotos, como *Saccharomyces cerevisiae* (OLSSON; HAHN-HÄGERDAL, 1996).

Atualmente, uma grande gama de bioprodutos resultados de cepas e/ou recombinantes têm sido utilizados nas indústrias farmacêuticas, téxteis, papeleira, agroindustriais (CASTRO; PEREIRA JÚNIOR, 2010).

2.2. Enzimas Microbianas

O uso industrial de enzimas tem ganhado bastante espaço em virtude da crescente preocupação com os problemas ambientais causados pelas indústrias, tais como: o acúmulo de rejeitos, descarte de produtos tóxicos gerados em etapas de produção e uso de compostos tóxicos no combate de pragas (SCHOEMAKER; MINK; WUBBOLTS, 2003). Essas biomoléculas também têm despertado grande interesse devido à facilidade de obtenção via processos biotecnológicos, bem como, por ser uma alternativa ao uso de catalisadores químicos, uma vez que elas apresentam maior especificidade, menor consumo energético e maior velocidade de reação, gerando produtos com melhor qualidade e redução de custos (PEACOOK, 2010).

Os microrganismos produzem uma grande variedade de enzimas intracelulares, porém em pequenas quantidades, que são utilizadas na catálise das suas reações metabólicas (PEREIRA JÚNIOR; BON; FERRARA, 2008). Entretanto, muitas enzimas

microbianas extracelulares são produzidas em maiores quantidades do que as intracelulares e têm a função principal de degradar macromoléculas presentes no meio ambiente, como celulose, amido, lignina e proteínas, para que seus componentes possam ser absorvidos como nutrientes pelos microrganismos.

As enzimas são utilizadas em muitos segmentos industriais, como de alimentos e bebidas, de detergentes, têxtil, couro, celulose e papel, química fina, cosméticos e ainda, em metodologias analíticas e em biologia molecular. Amilases, celulases, xilanases, pectinases, invertases, lipases, proteases e peroxidases são os biocatalisadores mais utilizados (ATLAS, 1997). Enzimas são também empregadas como medicamento, como por exemplo, a asparaginase utilizada no tratamento de leucemia (ATLAS, 1997).

Para ter aplicação industrial, produtos bioativos, principalmente enzimas, precisam funcionar suficientemente bem, apresentando alta atividade, eficiência, estabilidade e especificidade, que irão depender de parâmetros físicos-químicos, como: pH, temperatura, aeração e nutrientes (LORENZ; ECK, 2005). Desta forma, a descoberta de uma enzima com uma pequena superioridade funcional pode significar uma grande economia em processos industriais.

O setor de produção de enzimas apresenta muitas iniciativas de pesquisa e desenvolvimento, resultando na produção de diversos novos produtos, melhoramento dos processos e do desempenho dos produtos já existentes no mercado (BCC RESEARCH, 2008). No entanto, o custo de produção de uma enzima é um dos principais fatores que determinam a economia de um processo. Reduzir os custos de produção, otimização do processo e possibilidade de uso de resíduos industriais se tornaram os objetivos da pesquisa básica para aplicações industriais de bioprodutos (PARK et al., 2002).

O mercado mundial de biocatalisadores foi estimado em U\$ 2,3 bilhões em 2007 e tem previsões de crescimento continuado em resposta às demandas por processos industriais, podendo alcançar em 2012 cerca de U\$ 2,7 bilhões (BCC RESEARCH, 2008).

2.2.1 Celulases

As celulases constituem um complexo enzimático hidrolítico, sendo classificadas pela *Enzyme Comission* (EC), com a codificação EC 3.2.1.x, onde o "x" varia com a celulase avaliada, são responsáveis pela catalise das ligações $\beta(1\rightarrow 4)$ -D-glicosídicas da celulose, principal polímero encontrado nas plantas e o maior reservatório de carbono orgânico do planeta (CASTRO; PEREIRA JÚNIOR, 2010; ZHANG et al., 2009).

As enzimas celulolíticas são bastante utilizadas nas indústrias de alimentos, fármacos, cosméticos, detergentes, tecidos e, mais recentemente, utilizadas na conversão da biomassa lignocelulósica para produção de bioetanol (GALBE; ZACCHI, 2005; CALADO; DILLON; SALGUEIRO; 2007).

De acordo com o local de atuação no substrato celulolítico, as celulases se dividem em três grupos: endoglucanases (EnG) e exoglucanases (ExG), que clivam ligações internas e externas da fibra celulósica, respectivamente e as β–glicosidases (BG), que hidrolisam oligossacarídeos solúveis em glicose (LYND et al., 2002).

As endoglucanases (EC 3.2.1.4), também denominadas 1,4-β-D-glucana-4-glucano-hidrolase, são as primeiras enzimas do complexo celulolítico que hidrolisam a biomassa lignocelulósica, atuando mais internamente na cadeia, liberando oligossacarídeos de diversos graus de polimerização. As exoglucanases são constituídas

das glucano-hidrolases (1,4- β -D-glucana-glucano-hidrolase) (EC 3.2.1.74) e das celobio-hidrolases (1,4- β -D-glucana-celobio-hidrolase) (EC 3.2.1.91), que agem nas regiões redutoras e não redutoras da fibra celulósica liberando glicose ou celobiose, podendo ainda acarretar um desgaste da estrutura microcristalina da celulose. Enquanto que as β -glicosidases (β -glicosídeo gluco-hidraloses) (EC 3.2.1.21) possuem a propriedade de hidrolisar celobiose e oligossacarídeos solúveis, com grau de polimerização < 7, em glicose (LYND, et al., 2002; ZANG; HIMMEL; MIELENZ, 2006; CASTRO; PEREIRA JÚNIOR., 2010).

Várias espécies bacterianas se destacam como produtoras de celulases: *Baciillus* sp., *Erwinia chrysanthemi*, *Pseudomonas fluorescens*, *Acetobacter xylinum*, *Cellulomonas* sp., *Streptomyces* (LYND et al., 2002), além de grupos termofílicos, *Clostridium thermocellum*, *Thermonospora fusca* e *Microbispora bispora*, que produzem celulases termoestáveis de grande interesse industrial (SIQUEIRA, 2006).

As celulases ocupam o terceiro lugar entre as enzimas produzidas industrialmente, isso se deve às suas amplas aplicações (SILVA; GOUVEIA, 2008). Entretanto, poderá vir ocupar o primeiro lugar com o crescente investimento da bioconversão da bimassa lignocelulósica na produção de etanol de segunda geração (PEREIRA JÚNIOR; BON; FERRARA, 2008).

2.2.2 Xilanases

O xilano é principal componente hemicelulósico das paredes das plantas e o segundo mais abundante polissacarídeo renovável do planeta (COUGHLAN, M.P.; HAZELWOOD, 1993). A hidrólise completa do xilano requer a ação de várias enzimas, como endo-xilanases, β-xylosidases, α-arabinosidases, e acetil esterases, entre as quais, endo-1,4- β-D-xilanases (EC 3.2.1.8) são essenciais ao processo inicial da degradação do xilano em xilo-oligosacarídeos curtos e em D-xilose (BIELY, 1985).

As endoxilanases são enzimas hidrolíticas envolvidas na despolimerização do xilano e são produzidas por bactérias (NINAWE; KAPOOR; KUHAD, 2007; KIDDINAMOORTHY et al., 2008; SANGHI et al., 2010), fungos e leveduras (NAIR; SINDHU; SHASHIDHAR, 2008; LIU et al., 1998).

Recentemente, o interesse na obtenção de xilanases aumentou acentuadamente, devido a sua vasta aplicações biotecnológicas, como: pré-branqueamento de celulose, melhoria da digestibilidade de rações para animais, bioconversão de material lignocelulósico e agro-resíduos para produção do bioetanol, entre outros (VIRUPAKSHI; KYU; TANTICHAROEN, 2005).

As xilanases, igualmente as celulases, são classificadas pela *Enzyme Comission* (EC), com a codificação EC 3.2.1.x, onde o "x" varia com a xilanase avaliada, com base em comparações da estrutura primária dos domínios catalíticos e dos grupos de enzimas em famílias de sequências relacionadas (HENRISSAT; COUTINHO, 2001). De acordo com Collins; Gerday e Feller (2005), as enzimas com atividades xilanolíticas estão incluídas nas famílias 10 e 11, bem como 5, 7, 8 e 43.

As endo-1,4-β-D-xilanases ou endoxilanases formam o maior grupo de enzimas hidrolíticas envolvidas na degradação do xilano, entretanto, apenas 20 a 25% do xilano conseguem ser hidrolisado por xilanases, devido à distribuição heterogênea da hemicelulose, que pode limitar a acessibilidade da enzima ao polímero, bem como, pela instabilidade térmica enzimática ou por sua inibição pelo produto final (ONYSKO, 1993).

As endoxilanases bacterianas podem apresentar peso molecular acima de 15 kDa, geralmente são mais ativas em meios neutros ou levemente alcalinos e em temperaturas mais elevadas (50-90°C) (ZHENG, 2000).

Os tipos de xilanases excretadas pelos microrganismos podem ser: constitutivas, quando são sintetizadas pelos microrganismos, independente da necessidade e em velocidade constante; e/ou indutivas, que são inicialmente produzidas em pequenas quantidades e aumentam sua concentração na presença de um determinado substrato. Desta forma, as xilanases podem diferir em ocorrência e concentração dependendo das condições metabólicas da célula e, em geral, as enzimas indutivas, podem ter sua síntese associada a mudanças nutricionais e favorecidas pelas condições de cultivo, pH e temperatura (ANGELO, 1995).

Na indústria, como de alimentos, xilanases em conjunto com celulases e pectinases podem ser utilizadas na obtenção de extratos de frutas e vegetais, ou na extração e no clareamento de sucos tornando estes processos mais vantajosos sob os aspectos de rendimento, operacionalidade e qualidade do produto final (BHAT, 2000). Na indústria de vinhos, as hemicelulases em conjunto com pectinases e β-glucanases promovem a obtenção da cor e da estabilidade, e são ainda usadas no clareamento e na filtração (BHAT, 2000). Também participam da extração e da produção de café solúvel (COLLINS et al., 2005) e da preparação de cerveja (KULKARNI et al., 1999). Outro

grande valor agregado ao uso das xilanases está na indústria de papel e celulose, as quais podem ser utilizadas para o branqueamento da polpa kraft, como alternativa ao uso de produtos químicos clorados, diminuindo o descarte de resíduos tóxicos nos efluentes (AZERI; TAMER; OSKAY, 2010).

As xilanases produzidas por bactérias são mais estáveis, atuando em diferentes pH e em geral estão livres de celulases, aspectos vantajosos nos processos industriais (KULKARNI et al., 1999).

Entre os principais gêneros bacterianos produtores de xilanases, podemos destacar: *Paenibacillus*, *Bacillus*, *Aeromonas*, *Cellulomonas*, *Streptomyces*, *Ruminococcus*, algumas exibindo temperatura ótima elevada de produção enzimática, entre 70°C e 80°C (TAKAHASHI; NAKAI; NAKAMURA, 2000; LAMA et al., 2004).

No quadro 1 estão descritos alguns tipos de celulases e xilanases obtidos de microrganismos isolados de diferentes fontes, bem como recombinantes, que possuem potencial para utilização industrial.

Quadro 1. Celulases e xilanases produzidas por diferentes isolados microbianos e cepas recombinantes.

Microrganismo	Origem	Enzima	T °C	pН	PM	Referência
	Celulases e Xilanases de cepas isoladas					
Bacillus pumilus EB3	resíduo industrial	β-1,4- endoglucanase	37	7,0	-	ARIFFIN et al., 2008
Brevibacillus sp. strain JXL	dejetos suínos	β-1,4- endoglucanase	50	6,0-8,0	-	LIANG et al., 2009
Bacillus subtilis YJ1	alimentos fermentados	β-1,4- endoglucanase	50-60	6,0	32,5 kDa	YIN et al., 2010
Bacillus sp.	-	xilanase	70	6,0-7,0	-	TAKAHASHI et al., 2000
Paenibacillus sp. KIJ1	água marinha	xilanase	50	6,0	-	PARK; CHO, 2010
Bacillus sp. JB 99	melaço da cana- de-açúcar	xilanase	70	8,0	20 kDa	SHRINIVAS et al., 2010
Bacillus sp.	lago alcalino	xilanase	60	9,0	-	AZERI; TAMER; OSKAY, 2010
	Celulas	ses e Xilanases de	recombina	antes		
Bacillus pumilus CL16	solo	β-1,4- endoglucanase	50–60	5–8	74,98 kDa	LIMA et al., 2005
Bacillus subtilis MA139	solo	β-1,3-1,4- glucanase	40	5.4	24,44 kDa	QIAO et al., 2009
Geobacillus sp. 70PC53	compostagem com palha de arroz	β-1,4- endoglucanase	65	5.0	368 aa	NG et al., 2009
Bacillus subtilis I15	compostagem	β-1,4- endoglucanase	60	6.0	52 kDa	YANG et al., 2010
Streptomyces sp.	-	xilanase	60	6,0	-	GEORIS et al., 2000
Bacillus sp.	-	xilanase	80	5,6	-	LAMA etal., 2004
Paenibacillus sp.	solo	xilanase	37	7,0	50 kDa	HARADA et al., 2005
Bacillus sp.	-	xilanase	50	6,5- 10,5	-	SAPRE et al., 2005
Bacillus licheniformis	sedimento de fonte termal	xilanase	40-50	6,0	23 kDa	LEE et al., 2008
Paenibacillus curdlanolyticus B-6	-	xilanase	60	7,0	142,7 Da	WAEONUKU, et al., 2009

Pesquisas utilizando a metagenômica têm sido realizadas com intuito de obter novos genes de organismos pouco conhecidos, que expressem diferentes moléculas de interesse biotecnológico (LORENZ; SCHLEPER, 2002; FENG et al., 2007).

A triagem de bibliotecas metagenômicas de amostras ambientais baseia-se sobre a atividade enzimática das cepas recombinantes ou na similaridade de sequências, tendo

o potencial para detectar genes totalmente desconhecidos, que codificam para novos tipos e classes de enzimas ou para identificar a síntese de compostos bioativos de organismos não-cultivavéis (DANIEL, 2004).

Entretanto, poucos trabalhos são relatados sobre clones metagenômicos funcionais que expressam genes para produção de celulases e xilanases.

PANG et al. (2009) obtiveram dois clones positivos para produção de celulase de amostras do solo, assim como KEMP (2010) obteve dois clones celulolíticos de uma biblioteca metagenômica do rúmen bovino.

WANG et al. (2009) construíram bibliotecas metagenômicas de várias amostras ambientais, os quais isolaram quatro clones que produziram endo e exocelulases.

A atividade xilanolítica de um clone advindo de uma biblioteca metagenômica do solo foi evidenciada HU et al. (2008), assim como MU et al. (2010) obtiveram um clone xilanolítico de uma biblioteca metagenômica do solo enriquecido com palha de arroz.

Wang et al. (2010) em amostras do DNA metagenômico do solo utilizaram *primers* degenerados na amplificação de genes da xilanase, sendo os produtos da PCR clonados em vetor de expressão, resultando em um clone positivo para xilanase.

Novos genes advindos de bibliotecas metagenômicas podem vir a ser uma perspectiva futura de utilização industrial, visto que, vários microrganismos poderão expressar genes que codificam para bioprodutos, com características diferenciadas, pelo acesso de organismos não-cultiváveis (HANDELSMAN, 2004).

2.2.3 Resíduos industriais para produção enzimática

As três principais frações que compõem a biomassa lignocelulósica são: celulose, hemicelulose e lignina, que estão unidas entre si por ligações covalentes (CASTRO; PEREIRA JÚNIOR, 2010), sendo a celulose é o componente principal e mais abundante da parede das plantas, possuindo uma estrutura básica formada por um polímero linear com 8.000 - 12.000 unidades de glicose, unidas entre si por ligações 1,4-betaglicosídica.

Nos vegetais, a molécula de celulose é arranjada em fibrilas consistindo de várias moléculas de celulose paralelas, unidas por pontes de hidrogênio, entre as quais estão ligadas a lignina e a hemicelulose (MATULOVA et al., 2005). Como resultado da associação dos diferentes tipos de polímeros que compõem a matéria vegetal, obtém-se um material de estrutura rígida e resistente ao ataque enzimático, dessa forma a degradação da celulose na natureza ocorre lentamente (CASTRO; PEREIRA JÚNIOR, 2010).

Enormes quantidades de resíduos de celulose, medidas em bilhões de toneladas, anualmente são produzidas em todo o mundo, como resultado das atividades do processamento industrial (CASTRO; PEREIRA JÚNIOR, 2010).

Os materiais lignocelulósicos são grandes fontes renováveis de matéria orgânica compreendidos, principalmente, pelos materiais das agroindustriais, pelos resíduos urbanos e pelas madeiras extraídas das matas, para os mais variados fins. Como exemplos de materiais residuais, podemos citar: bagaço da cana-de-açúcar; palhas de arroz, de soja e de milho; cascas de arroz; serragem, entre outros (CASTRO; PEREIRA JÚNIOR, 2010).

O Brasil se destaca como o maior produtor mundial de cana-de-açúcar (*Saccharum officinarum*) (ÚNICA, 2006), enquanto que em relação ao arroz (*Oryza sativa*), se encontra entre os dez principais produtores (EMBRAPA, 2005). Em consequência disso, a produção de bagaço de cana-de-açúcar e palha de arroz alcançaram no ano de 2007, cerca de 147 e 60 toneladas, respectivamente, dos quais, aproximadamente 60 - 80% desses resíduos foram utilizados como fonte energética nas industriais (FAPESP, 1998; CASTRO; PEREIRA JÚNIOR, 2010).

Portanto, a riqueza em celulose desses dois resíduos, bem como sua disponibilidade a um baixo custo, representam um importante recurso natural, com potencial de produção de bioprodutos, como enzimas celulolíticas e xilanolíticas, bem como a utilização dessas enzimas para obtenção de subprodutos, como etanol, xilitol, ou melhoramento de materiais nas indústrias alimentícias, de papel e agrícola (BOCCHINI et al., 2005).

3 OBJETIVOS

3.1 Objetivo Geral

Bioprospecção de enzimas hidrolíticas em clones metagenômicos e em isolados bacterianos do solo do Cariri paraibano.

3.2 Objetivos Específicos

- Construir bibliotecas metagenômicas funcionais e isolar cepas bacterianas de amostras do solo da pastagem nativa do Cariri paraibano;
- Testar os clones metagenômicos obtidos e as cepas bacterianas isoladas, quanto à produção de celulases e xilanases;
- Identificar as cepas bacterianas celulolíticas e/ou xilanolíticas, na base do sequenciamento do gene 16S rRNA;
- Analisar quantitativamente as atividades celulolíticas e xilanolíticas das cepas bacterianas em diferentes condições de cultivo.

4 MATERIAIS E MÉTODOS

4.1 Coleta e Processamento das Amostras do Solo

As amostras de solo da pastagem nativa da Caatinga do Cariri paraibano, coletadas como descrito no Capítulo 1 (Material e Métodos, item 4.1) (sítio A), foram utilizadas em dois tipos de processamentos: (1) pré-cultivo do solo (Solo pré-enriquecido) e (2) sem pré-cultivo (Solo não-enriquecido), para isolamento e obtenção de possíveis bactérias celulolíticas e/ou xilanolíticas.

4.1.1 Solo pré-enriquecido (PE)

Duas amostras de 25 g do solo (em duplicata), de acordo com Grant et al. (2004) modificado, foram adicionadas separadamente a frascos cônicos (500 mL) contendo 225 mL do meio CMC (TEATHER; WOOD, 1982) (g/L) - NaNO₃ (1,0 g); K₂HPO₄ (0,5 g); MgSO₄.7H₂O (1,0 g); FeSO₄.7H₂O (0,01 g); extrato de levedura (1,0 g); água destilada (225 mL), adicionado de 0,1% de CMC (carboximetilcelulose) (Difco *Laboratories* Inc., EUA), sendo incubados a 37°C, por 18-20 h, em *shaker* a 200 rpm. De cada précultivo, equivalente à diluição 10⁻¹, foram realizadas diluições em série até 10⁻⁵, retirando 1 mL de cada diluição anterior, adicionando a 9 mL da solução de salina (0,9%), agitando em aparelho tipo *vortex* (Genie 2, Scientific Industries, Inc., EUA), por 30 seg.

4.1.2 Solo não-enriquecido (NE)

Cerca de 25 g do solo foram adicionados a frascos cônicos (500 mL), contendo 225 mL de solução salina (0,9%), misturado por 2 minutos em *blender* metálico esterilizado a alta rotação. A partir dessa mistura equivalente à diluição 10^{-1} , foram realizadas diluições em série até 10^{-5} , como citado anteriormente.

4.2 Isolamento das Cepas Bacterianas das Amostras de Solo Pré-Enriquecido (PE) e Não-Enriquecido (NE)

De cada diluição do processamento do solo PE e NE foram retiradas alíquotas de 100 μL e adicionadas a placas de Petri (90 x 15 mm), contendo meio de cultivo, de acordo com Teather e Wood (1982), como citado acima, acrescido de Agar (1,5%), que foram espalhadas com auxílio de alça de Drigalski esterilizada. As placas foram incubadas a 37°C e 50°C, em duplicata para cada diluição, em estufa bacteriológica, e após 24 a 48 h, as colônias bacterianas foram observadas e repassadas individualmente para novas placas contendo o mesmo meio de isolamento, para purificação e anotações de suas características coloniais. Todo material utilizado, frascos, meios, soluções, foram previamente esterilizados em autoclave a 121°C, por 15 min, sob 1 atm.

4.3 Caracterização Celular e Bioquímica das Cepas Bacterianas

A caracterização celular e bioquímica ocorreu utilizando o método de coloração de Gram, e de produção de catalase e oxidase, respectivamente, de acordo com Smibert

e Krieg (1994). Pela coloração de Gram foi possível verificar a morfologia celular e a presença ou ausência de endosporos.

4.4 Caracterização Molecular das Cepas Bacterianas

4.4.1 Extração e quantificação do DNA genômico

As extrações do DNA genômico das cepas bacterianas isoladas do solo do Cariri e positivas para as atividades celulolíticas e/ou xilanolíticas, foram realizadas utilizando illustraTM bacteria genomic PrepMiniSpin kit (GE Healthcare, UK), conforme instruções do fabricante. As quantificações das amostras do DNA genômico foram realizadas igualmente como citadas em Materiais e Métodos no Capítulo 1, item 4.4.

4.4.2 Amplificações do gene 16S rRNA

Os genes 16S rRNA das cepas bacterianas foram amplificados por PCR (Reação em Cadeia da Polimerase) (Tabela 8), utilizado o par de *primers* universais **27F** e **1525R**, como descrito em Materiais e Métodos, no Capítulo 1, item 4.5.1.

Tabela 8. Reagentes da reação da PCR 16S rRNA dos isolados bacterianos.

Reagentes	[] Estoque	[] Final	μL dos reagentes
Tampão (MgCl ₂)	10X	1X	10,0 μL
dNTPs mix	2,5 mM	0,2 mM	8,0 μL
Primer 1525F	10 pmol	0,4 pmol	$4,0~\mu L$
Primer 27R	10 pmol	0,4 pmol	$4,0~\mu L$
Taq polimerase	$5U/\mu L$	(3 U)	1,2 μL
DNA	100 ng	10 ng	2,0 μL
Água	-	-	70,8 μL
Volume Final	-	-	100,0 μL

^{[] -} concentração

4.4.3 Visualização, purificação e quantificação dos produtos da PCR 16S rRNA

Cerca de 5 μL dos produtos da PCR de cada cepa bacteriana, assim com do marcador de peso molecular 1 kb (Fermentas, Thermo Fisher Scientific Inc., EUA), foram adicionados ao gel de agarose 0,8 %, em tampão TBE 1X. A corrida eletroforética ocorreu a 100 V, 95 mA, por aproximadamente 40 min. Em seguida, o gel foi corado em uma solução de brometo de etídio (0,5 μg/mL), por 30 min e posteriormente transferido o aparelho *ImageMaster*® (Pharmacia Biotech), para visualização das bandas com cerca de 1500 pb. Em seguida, cerca de 100 μL do produto da PCR de cada cepa bacteriana foram purificados diretamente utilizando kit o *illustra*TM *GFX*TM *PCR DNA and Gel Band Purification* (Roche Diagnostics, EUA), de acordo com as instruções do fabricante. As quantificações dos produtos das PCRs 16S rRNA purificados ocorreram igualmente como citadas em Materiais e Métodos no Capítulo 1, item 4.4.

4.4.4 Reações de sequenciamento

As amplificações purificadas do gene 16S rRNA dos isolados bacterianos foram utilizadas nas reações de sequenciamento, descritas na Tabela 9, nas quais foram utilizados *primers* 27F e/ou 1525R, separadamente em cada reação, para obter uma maior confiabilidade das sequências geradas, utilizando termociclador (Perkin Elmer Gene Amp DNA system 2400, EUA), com as seguintes etapas: 96°C por 3 min, 25 ciclos (94°C por 30 seg, 55°C por 20 seg e 60°C por 1 min). Após as amplificações, as amostras foram encaminhadas para sequenciamento no setor de Serviços Científicos Técnicos da Universidad de Barcelona (http://www.sct.ub.es/w3/wcat/s14/s14_2000.htm#i02).

Tabela 9. Reagentes da reação de sequenciamento.

Reagentes	[] Estoque	[] Final	μL dos reagentes
Tampão Save Money	5X	1X	2 μL
Big Dye	-	-	1 μL
Primer 27F ou 1525F	10 pmol	0,4 pmol	2 μL
DNA	100 ng	10 ng	2 μL
Água	-	-	13 μL
Volume Final			20 μL

^{[] -} concentração

4.4.5 Análise das sequências do gene 16S rRNA

As sequências foram primeiramente analisadas quanto a sua qualidade e remontadas no programa *Bioedit* e em seguida, as sequências no formato FASTA, foram comparadas às sequências do banco de dados do NCBI, utilizando a ferramenta *Blastn*.

4.5 Atividades Enzimáticas dos Isolados Bacterianos

4.5.1 Análise qualitativa das atividades celulolítica e/ou xilanolítica

A atividade celulolítica e/ xilanolíticas foram avaliadas repassando a cepa bacteriana de um cultivo puro fresco, com auxílio de palitos esterilizados, para placas de Petri (90x15mm) contendo os meios: Agar/CMC (TEATHER; WOOD, 1982) e/ou Agar/LB (Luria Bertani) (triptona - 10 g; extrato de levedura - 5 g; NaCl - 10 g; Agar - 15g; água destilada - 1000 mL), acrescidos de 0,1% e 0,5% de CMC (Difco *Laboratories* Inc., EUA), respectivamente, para atividade celulolítica; Agar/LB, acrescido de 0,4% de xilano de *Beechwood* e/ou *Oat Spelt* (Sigma - Aldrich, St. Louis,

EUA (LB/xilano), ou Agar *Brilliant Blue* R-D-*Xylan* (Sigma – Aldrich, St. Louis, EUA), para atividade xilanolítica. Após 72 h de incubação a 37°C, foi adicionado aos meios uma solução aquosa de vermelho congo (0,1%) (Difco *Laboratories* Inc., EUA), por 15 min. Após esse período, o corante foi descartado e foi adicionado NaCl 1 M, por 15 min. Os halos de degradação amarelados formados ao redor das colônias indicaram atividade celulolítica e/ou xilanolítica positiva, assim como a ausência do halo indicou atividade negativa. Para o Agar *Brilliant Blue* R-D-*Xylan*, meio que já contém fonte de xilano e corante, as cepas positivas exibiram um halo branco translúcido ao redor das colônias, enquanto as negativas não apresentavam halo, após crescimento bacteriano.

As cepas *Paenibacillus barcinonensis* e *Escherichia coli* DH5α foram utilizadas como controle positivo e negativo de produção enzimática em placa, respectivamente, sempre que necessário.

4.5.2 Análise quantitativa da atividade celulolítica e/ou xilanolítica

O Método de Somogyi-Nelson (SPIRO, 1966) permite avaliar açúcares redutores (extremos redutores), assim como a atividade de enzimas hidrolíticas que atuam sobre polissacarídeos (que rompem sua estrutura gerando novos extremos redutores), no qual uma unidade de atividade foi definida como a quantidade de enzima capaz de liberar 1 µmol de grupos redutores equivalentes a xilose (atividade xilanolítica) ou glicose (atividade celulolítica), por mililitro, por minuto, (U/min.mL⁻¹) ou (U/mL), nas condições de ensaio, utilizando curvas padrões de xilose e glicose. Os ensaios enzimáticos foram realizados em duplicata.

Este método foi utilizado para quantificar as atividades celulolíticas e/ou xilanolíticas nos sobrenadantes livres de células, centrifugados a 8000 rpm por 20 min

(Sorvall RC *Plus*, Thermo Fisher *Scientific* Inc., EUA e/ou Beckman, J2-21 centrifuge, GMI, Inc. EUA), após cultivos bacterianos em meios: LB/bagaço de cana-de-açúcar¹ (0,5 %); LB/palha de arroz² (0,5%); LB/CMC (0,5%) e /ou LB/xilano *Beechwood* (0,4%), incubados a 37°C, por 72 h, em *shaker* a 200 rpm. O protocolo dos procedimentos e reagentes utilizados está descrito em anexo (ANEXO 2).

4.5.3 Avaliação do pH ótimo e da temperatura ótima da atividade enzimática

O pH ótimo das atividades celulolíticas e/ou xilanolíticas foi avaliado pelo método Somogyi-Nelson, utilizando uma alíquota de 33 uL dos tampões: citrato de sódio, fosfato de sódio, Tris-HCl e/ou glicina, para os diferentes pHs (Tabela 10), adicionado de 33 µL do substrato a ser testado (CMC ou xilano) (2%) e 33 µL da amostra do sobrenadante livre de células, após cultivo bacteriano, como citado acima.

Tabela 10. Tampões utilizados para avaliação do pH ótimo.

Tampão	pН	mM	
Citrato de sódio	4,0-5,5	150	
Fosfato de sódio	6,0-6,5	150	
Tris-HCl	7,0 - 8,0	150	
Glicina	9,0-10,0	150	

A temperatura ótima das atividades celulolíticas e/ou xilanolíticas foi avaliada igualmente pelo método Somogyi-Nelson, para as diferentes temperaturas (40, 45, 50, 60, 65, 70, e 80°C), utilizando uma alíquota de 33 uL do tampão fosfato de sódio pH 6,5; adicionado de 33 uL do substrato a ser testado (CMC ou xilano) (2%) e 33 uL da amostra do sobrenadante livre de células, após cultivo bacteriano, como citado acima.

.

¹ Coletado na Usina Japunju S/A, Santa Rita, Paraíba. ² Coletada em Sueca (Valência, Espanha).

4.5.4 Zimograma

Zimograma é uma técnica eletroforética que permite observar a atividade de enzimas intra e extracelulares, utilizando um gel de poliacrilamida em condições desnaturantes (Sodium Dodecyl Sulfate-Polyacrylamide Gel - SDS-PAGE) (LAEMMLI, 1970), ao qual foi adicionado um substrato específico de acordo com a atividade da enzima (HEUSSEN; DOWDLE, 1980).

O conteúdo protéico (proteínas totais) e as atividades celulolíticas e ou xilanolíticas das amostras foram avaliadas dos sobrenadantes livres de células, em gel de poliacrilamida (10%), com 0,75 mm de espessura, adicionado do substrato CMC e/ou xilano *Birchwood* (2%), conforme protocolo em anexo (ANEXO 3). Após corrida eletroforética em sistema de mini-gel, Mini-Protean II (Bio-Rad, EUA), a 200 V e 400 mA, por cerca de 50 min, foi utilizado o corante azul brilhante de *Coomassie Brilliant Blue* por 30 min para coloração das proteínas totais, enquanto que para atividade enzimática, primeiramente se utilizou uma solução de triton 100X (2,5%) por 30 min, para renaturação protéica; duas incubações em tampão fosfato de sódio 50 mM (pH 6,5), por 15 min cada, sendo uma a temperatura ambiente e outra a 55°C, seguida de coloração com vermelho congo (0,1%) por 15 min e descoloração com NaCl (1M) por mais 15 min. Os pesos moleculares das proteínas foram estimados por comparação com um padrão de proteína (Broad Range Molecular Weight Bio-Rad, EUA), no gel corado com Coomassie.

4.6 Construção da Biblioteca Funcional de Clones Metagenômicos

4.6.1 Extração e quantificação do DNA metagenômico das amostras dos solos

A extração do DNA total (metagenômico) da microbiota da amostra do solo da pastagem nativa do Cariri paraibano (sítio A), foi realizada utilizando o solo do préenriquecido (PE), como citado acima (item 4.4.1), e após a retirada das alíquotas para as diluições no processo de isolamento bacterianos, o pré-cultivo foi centrifugado a 8.000 rpm, por 20 min a 8°C. Em seguida o sobrenadante foi descartado e o DNA total do solo foi extraído utilizando *PowerMax*® *Soil DNA Isolation Kit* (MO BIO Laboratories, Inc., EUA), conforme instruções do fabricante. Em seguida, as amostras de DNA metagenômico foram quantificadas igualmente como descritas em Materiais e Métodos, Capítulo 1, item 4.4.

4.6.2 Fragmentação do DNA metagenômico

Cerca de 10,5 μg do DNA metagenômico do solo (sítio A) pré-enriquecido foi parcialmente fragmentado com a enzima de restrição *Eco*RI (10 U) (Fermentas, Thermo Fisher Scientific Inc., EUA), adicionado de tampão da enzima (1X), para um volume final de 50 μL, completado com água Milli-Q esterilizada. A reação foi colocada em banho-maria a 37°C, por 4 h, e em seguida, foi retirada uma alíquota de 5 μL para verificação da fragmentação em gel de agarose (0,8%), corrida 50 V, 45 mV, por cerca de 2 h. Após confirmação da fragmentação, todo o conteúdo da reação foi adicionada a outro gel, nas mesmas condições anteriores, para corte das bandas referentes aos

tamanhos entre 4 a 5 kb e 9 a 10 kb. As bandas foram purificadas utilizando *DNA Extraction Kit* (Fermentas, Thermo Fisher Scientific, Inc., EUA).

4.6.3 Reação de ligação dos fragmentos do DNA metagenômico ao vetor pBC

Os fragmentos purificados do DNA metagenômico foram quantificados e utilizados para ligação em vetor pBC SK+ (Stratagene) (Figura 27), o qual pode ser utilizado para clonagem e expressão gênica com inserção de fragmentos no máximo até 10 kb, foi derivado do vetor pBlueScript II, tendo o gene de resistência a ampicilina substituído pelo de cloranfenicol; também possui uma extensa região *polylinker* (Múltiplo Sítio de Clonagem - MSC), contendo várias regiões de enzimas de restrição, flanqueadas pelos promotores T7 e T3; uma região promotora do gene *LacZ*, que permite a diferenciação das colônias com inserto (brancas), pela inserção do fragmento no meio do gene interrompendo sua transcrição, das sem inserto (azuis), quando se adiciona ao meio X-gal, e sequências dos genes fágicos M13 R e F, conforme manual de utilização STRATAGENE (2010).

Na Tabela 11 estão dispostas as reações de ligações para cada fragmento do DNA metagenômico em vetor pBC. A taxa molar do inserto:vetor utilizada para clonagem foi 3:1, conforme cálculo descrito em Materias e Métodos, Capítulo 1, item 4.5.3. As reações foram misturadas por pipetagem (leve) e incubadas a 16°C, por cerca de 18 h.

Figura 27. Vetor pBC SK+ (Stratagene) utilizado na ligação dos fragmentos DNA metagenômico das amostras do solo do Cariri paraibano (sítio A). Fonte: www.Startagene.com.

Tabela 11. Reações de ligação dos fragmentos do DNA metagenomico ao vetor pBC.

	DNA metagenômico			
Reagentes	Banda (4 - 5 kb)	Banda (9 - 10 kb)		
	$(33,3 \text{ ng/}\mu\text{L})$	$(52,3 \text{ ng/}\mu\text{L})$		
Tampão 10X	1,0 μL	1,0 μL		
Água Milli-Q	2,8 μL	0,3 μL		
Vetor pBC (34,9 ng μL)	1,0 μL	1,0 μL		
T4 DNA ligase	1,0 μL	1,0 μL		
DNA metagenômico	4,2 μL	6,7 µL		
Volume total	10,0 μL	10,0 μL		

4.6.4 Transformação por choque térmico

A reação de transformação, após clonagem do DNA metagenômico, ocorreu igualmente como descrita em Materiais e Métodos, Capítulo 1, item 4.5.6, utilizando *E. coli* DH10B quimicamente competente.

4.6.5 Cultivo e seleção dos clones metagenômicos

Placas de Petri (90 x 15 mm), contendo o meio Agar/LB adicionado de cloranfenicol (30 μg/mL) (Agar/LB/Cl), foram preparadas e cerca de 40 μL de X-gal (20 mg/mL) e 4 μL de IPTG (200 mg/mL) foram espalhados sobre o meio, com auxílio de alça de Drigalski esterilizada . Em seguida, cerca de 100 μL da reação de transformação foram igualmente espalhados na superfície do meio. Após incubação a 37°C por aproximadamente 18 a 20 h, foram selecionadas colônias brancas e repassadas para placas de 96 poços (tipo Elisa), contendo meio LB/Cl, com auxílio de palitos de madeira esterilizados, sendo posteriormente seladas com adesivo esterilizado (AB Gene) e incubadas a 37°C por 18 a 20 h em estufa bacteriológica. Esse cultivo dos clones foi utilizado para realização dos testes enzimáticos, assim como para estocagem a em freezer -80°C, após adição de glicerol 50% (1:1).

4.7 Atividades Enzimáticas dos Clones Metagenômicos

4.7.1 Análise qualitativa das atividades celulolítica e/ou xilanolítica

As atividades enzimáticas foram avaliadas inoculando os clones pré-cultivados, como descrito anteriormente, com auxílio de um replicador metálico (96 pontos), flambado a álcool, em placas de Petri (140 x 20 mm), contendo meios: Agar/CMC (TEATHER; WOOD, 1982) e/ou Agar/LB/CMC; e Agar/LB/xilano de *Beechwood* (Sigma - Aldrich, St. Louis, EUA), adicionados de cloranfenicol (30 μg/mL), para as atividades celulolíticas e xilanolíticas, respectivamente. Após 72 h de incubação, a 37°C, as colônias foram coradas como descrito no item 4.5.1, acima citado. O halo amarelo de degradação formado ao redor das colônias ou sua ausência indicou, respectivamente, atividade celulolítica e/ou xilanolítica positiva ou negativa.

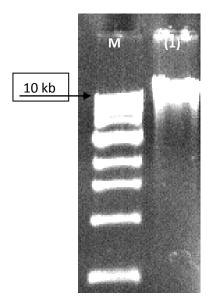
4.8 Extração Plasmidial e Re-transformação

A extração do DNA plasmidial, de acordo com Sambrock, Fritsch e Maniatis (1989), dos clones positivos para as atividades enzimáticas, foi realizada como descrito em Materiais e Métodos, Capítulo 1, item 4.7.

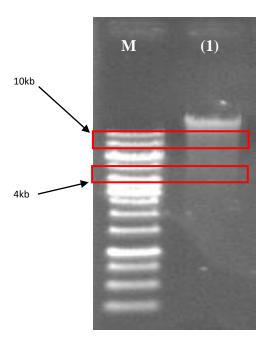
O DNA plasmidial obtido dos clones foi utilizado em uma nova transformação (re-transformação), em *E. coli* DH10B quimicamente competente, como descrito em Materiais e Métodos, Capítulo 1, item 4.5.6.

4.8.1 Seleção dos clones re-transformantes e confirmação da atividade enzimática

Igualmente como descrito no item 4.6.4 desse Capítulo, clones re-transformantes foram selecionados e testados para confirmação da atividade enzimática, utilizando a metodologia para análise qualitativa das atividades celulolíticas e/ou xilanolíticas, apresentadas nos itens 4.5.1, acima citado.


5 RESULTADOS E DISCUSSÃO

A prospecção de compostos e/ou a investigação de genes microbianos que possam gerar produtos com atividade, advindos de novos isolados, recombinantes ou de clones de bibliotecas metagenômicas de ambientes diversos têm despertado interesse cada vez mais crescente nos projetos de biotecnologia, com intuito de obter produtos com características diferenciadas, que possam ser produzidos em larga escala, com maior rendimento e a baixo custo (VOGET et al., 2003; STEELE; STREIT, 2005).


Neste trabalho, utilizando técnicas tradicionais de cultivo e isolamento, assim como moleculares, procurou-se obter, tanto clones metagenômicos, como cepas microbianas, de amostras do solo do Cariri paraibano, região dentro do bioma Caatinga, que apresenta características peculiares de clima, temperatura, pluviosidade e condições hídricas, como citado no capítulo 1 desse trabalho, que fossem capazes de produzir celulases e xilanases.

5.1 Biblioteca de Clones Metagenômicos do Solo

O DNA metagenômino da amostra do solo nativo do Cariri (sítio A) préenriquecido obteve um bom rendimento médio com cerca de 750 ng/μL e grau de pureza de 1,79 (OD260/280), após extração (Figura 28). Esse DNA total foi fragmentado com enzima de restrição e duas bandas foram cortadas do gel de agarose (Figura 29), com aproximadamente entre 4 a 5 kb e 9 a 10 kb, para posterior reação de clonagem. Os fragmentos purificados foram ligados separadamente em vetor pBC SK+ (Stratagene).

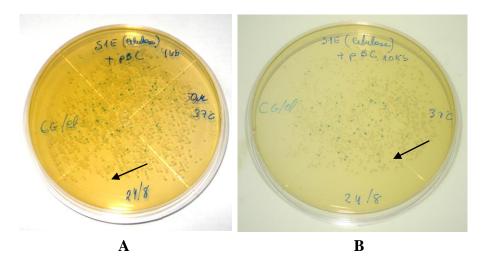

Figura 28. DNA metagenômico (2 μL) do solo da pastagem nativa do Cariri paraibano (sítio A) pré-enriquecido. M – marcador molecular 1 kb (Fermentas).

Figura 29. DNA metagenômico do solo da pastagem nativa do Cariri paraibano (sítio A), cortado com enzima de restrição *Eco*RI, para obtenção de bandas com 4 a 5kb e 9 a 10 kb; M - marcador de peso molecular 1 kb (Fermentas).

5.2 Prospecção de Clones Metagenômicos com Atividades Enzimáticas

Um total de 3.840 clones foram selecionados e distribuídos em 40 placas de 96 poços, sendo 20 placas para cada fragmento clonado (Figura 30). Entre os clones obtidos, foram selecionadas 10 placas (480 clones) para cada fragmento clonado, totalizando 20 placas (1.920 clones), que foram utilizados nos testes de produção de celulases e xilanases.

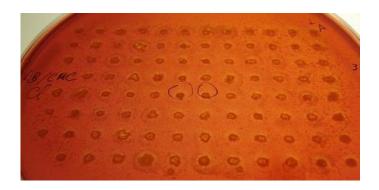
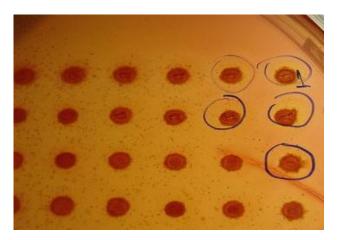


Figura 30. Clones metagenômicos obtidos da clonagem dos fragmentos entre 4 a 5 kb (A) e 9 a 10 kb (B) em vetor pBC; Colônias brancas (setas) positivas para a presença do inserto em 95% das reações.


Os testes qualitativos das atividades enzimáticas resultaram em 60 clones positivos para celulase (Figura 31) e 10 clones positivos para xilanase (Figura 32), todos provenientes da clonagem com fragmentos com cerca de 9 a 10 kb.

Em bibliotecas metagenômicas o número de clones positivos para uma determinada função, geralmente é bastante reduzido (HENNE et al., 2000; RONDON et al., 2000; COURTOIS et al., 2003; FENG et al., 2007). Grant et al. (2004) encontraram quatro clones positivos para atividade celulolítica entre 35.000 avaliados, enquanto que

Zhao et al. (2010) encontraram 18 clones com atividade xilanolítica em uma biblioteca de 15.360 clones.

Figura 31. Atividade celulolítica evidenciada pelos halos ao redor dos clones metagenômicos, em meio Agar LB/CMC/Cl, corado com vermelho congo (0,1%).

Figura 32. Atividade xilanolítica evidenciada pelos halos ao redor dos clones metagenômicos, em meio Agar LB/xilano/Cl, corado com vermelho congo (0,1%).

Em princípio, isolar diretamente o DNA metagenômico do ambiente implica numa representação genômica imparcial, no entanto, viéis são introduzidas durante o seu isolamento, por exemplo, resultantes de diferenças na lise celular. Em busca de genes relativamente sub-representados, o método de enriquecimento da amostra ambiental pode aumentar a probabilidade da clonagem, e acelerar o processo de descoberta de novos genes (LI et al., 2009).

Nesse trabalho, o número elevado de clones positivos na triagem inicial para celulases e xilanases provavelmente ocorreu devido ao procedimento de enriquecimento do solo com substrato específico (CMC). De acordo com Li et al (2009), a exposição das comunidades microbianas a uma pressão seletiva, possivelmente acarretará o enriquecimento de microrganismos que poderão exibir os fenótipos desejados. Rees et al. (2003) verificaram que a incidência de genes de esterases e celulases recuperados de bibliotecas a partir do DNA isolado de culturas de pré-enriquecidas, foi cerca de três a quatro vezes maior, em comparação com bibliotecas originadas diretamente a partir do DNA ambiental não-enriquecidos.

5.2.1 Re-transformantes

Dos clones positivos para as atividades enzimáticas, foram selecionados quatro clones xilanolíticos (J-2B; J-3D; J-8C e J-9B), para realização da extração plasmidial e re-transformação em *E. coli* DH10B, com o intuito de verificar a estabilidade do caráter fenotípico. Os demais clones, tanto celulolíticos como xilanolíticos, serão, posteriormente, avaliados.

Cerca de 500 clones por placa foram obtidos para cada re-transformante xilanolítico (Figura 33), entre os quais, foram repassados 96 re-transformantes de cada clone original, para placas de 96 poços, sendo estocados em freezer a -80°C, após adição de glicerol 50% (1:1). Dos re-transformantes estocados, foram selecionados quatro, os quais foram testados quanto à atividade xilanolítica.

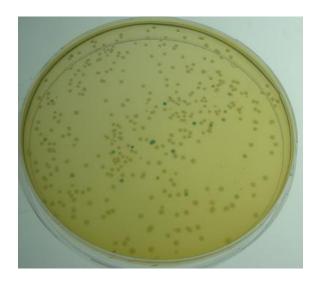
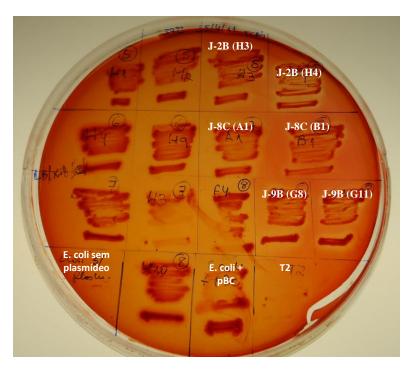



Figura 33. Re-transformantes dos clones xilanolíticos.

Entre os re-transformantes testados, denominados: **J-2B** (H1, H2, H3 e H4); **J-3D** (E1, F5, H4 e H9); **J-8C** (A1, B1, E5 e H3) e **J-9B** (F4, G8, G11 e H10), foram positivos para a atividade xilanolítica os clones: **J-2B** (H3 e H4); **J-8C** (A1 e B1) e **J-9B** (G8 e G11), conforme apresentado na Figura 34. *E. coli* DH10B sem plasmídio e a cepa T2 (isolada do solo nesse trabalho) foram utilizados como controles negativos de crescimento, assim como *E. coli* DH10B com plasmídio pBC inteiro foi utilizado como controle negativo para atividade xilanase.

Há um grande interesse na descoberta de enzimas xilanolícas para várias aplicações industriais, por sua atuação na hidrolise da biomassa lignocelulósica em açúcares simples, que pode então ser fermentado para produtos, como combustível líquido (bioetanol) e insumos químicos (LEE et a., 2006).

Figura 34. Atividade xilanolítica dos re-transformantes em meio LB/xilano/Cl, corados com vermelho congo 0,1%.

A metagenômica vem sendo utilizada como uma alternativa de prospecção de novos produtos bioativos advindo de amostras de ambientais, entretanto, poucos trabalhos tem sido descritos em relação a enzimas xilanolíticas (LÄMMLE et al., 2007; STEELE et al., 2009).

Hu et al. (2008) construíram uma biblioteca metagenômica, com 24.000 clones, de amostras do solo, entre os quais um apresentou atividade xilanolítica, expressando a enzima XynH, como alta similaridade com xilanases da família 11. Assim como, Mu et al. (2010) obtiveram um clone xilanolítico de uma biblioteca metagenômica do solo enriquecido com palha de arroz, o qual apresentava um gene com 73% de similaridade com gene de xilanase da cepa *Thermobifida fusca*.

Para obter enzimas para uso em campos específicos, xilanases tem sido purificadas e caracterizadas, e genes de xilanases já foram clonados a partir de várias fontes (COLLINS et al., 2005), que, geralmente, pode apresentar mais de um gene para

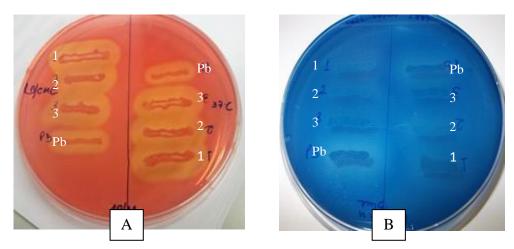
atividade de diferentes xilanases, no mesmo organismo, envolvidas na degradação do xilano.

Em amostra de um lago térmico, Helianti (2007) obteve um clone com atividade xilanolítica, que apresentou 93% de similaridade com genes para xilanase de *Bacillus subtilis*, o qual super-expressou a enzima em *E. coli*, obtendo, após processo de purificação, um rendimento expressivo da mesma (17 U/mL a 50°C).

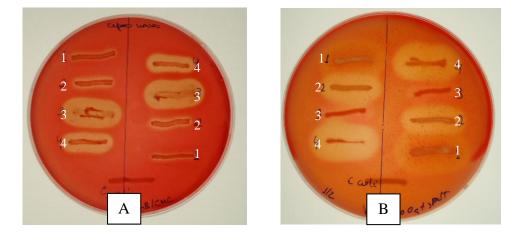
Wang et al (2010) utilizando primers para genes de xilanases amplificaram DNA metagenômico do solo. O produto da PCR foi clonado em *E. coli* e um clone positivo para xilanase teve a enzima purificada e quantificada quanto a sua produção.

Clones metagenomicos com caráter xilanolíticos, advindos de amostras do solo com temperaturas elevadas, poderão exibir genes com características de interesse industrial. Neste trabalho, a prospecção inicial de clones metagenômicos para celulase e xilanase e a obtenção de clones re-transformados positivos para atividade xilanase, apresenta um indício da presença de genes relevantes com potencial biotecnológico. Esses clones terão o fragmento sequenciado e uma posterior super-expressão da enzima poderá ser obtida para purificação e quantificação.

5.3 Seleção das Cepas Bacterianas e Análise das Atividades Celulolíticas e Xilanolíticas


Da amostra do solo da pastagem nativa do Cariri paraibano (sítio A) foram isoladas 42 cepas bacterianas, sendo sete cepas do solo pré-enriquecido (PE) e 35 cepas do solo não-enriquecido (NE), em meio Agar/CMC. Do total de cepas, sete foram isoladas a 50°C (duas do solo PE e cinco do solo NE), e 35 cepas isoladas a 37°C (cinco do solo PE e 30 do solo NE).

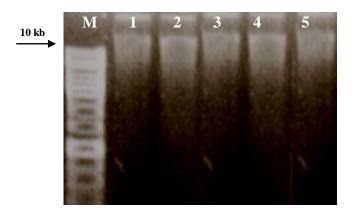
As cepas foram testadas quanto às atividades celulolíticas e xilanolíticas, entre as quais, 11 foram positivas para atividade da celulase (sete do solo PE e quatro do solo NE) e cinco para atividade da xilanase (todas do solo NE).


Entre as cepas positivas para as atividades celulolíticas e xilanolíticas, cinco foram selecionadas, sendo três do solo PE (Cel55-01; Cel55-02 e Cel37-03) e duas do solo NE (Cel37-28 e T2), devido apresentarem produção enzimática, observada pelo tamanho do halo de degradação, na triagem preliminar em placa (Figura 35 e 36). Essas cepas foram caracterizadas como bacilos Gram positivos, com endosporos, catalase positiva e oxidase negativa.

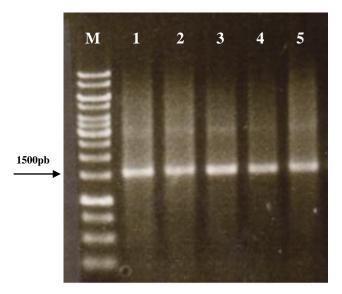
Cepas bacterianas também têm sido isoladas de diversos ambientes apresentando atividades enzimáticas, inclusive do solo do Cariri paraibano, no qual Gorlach-Lira e Coutinho (2007) isolaram cepas mesofílicas e termofílicas, com atividades celulolítica, amilolítica, proteolítica e quitinolítica. Em amostras de solo e da água na região amazônica, Heck; Hertz e Ayub (2002) isolaram 87 cepas, dentre as quais, cinco foram caracterizadas como bacilos contendo endosporos e possuíram atividades para celulase e xilanase. Em um solo sob cultivo de arroz na Espanha foi isolado uma cepa pertencente ao gênero *Paenibacillus* com alta capacidade produtora de xilanase (SÁNCHEZ et al, 2005). Uma cepa de *Bacillus subtilis* com atividade celulolítica também foi isolada da fermentação com farelo de arroz na China (YIN; LIN; XIAO, 2010), mostrando a diversidade de ambientes nos quais podem ser encontradas cepas que produzem enzimas, porém, cada uma, poderá expressar características enzimáticas distintas, pela possível influência dos diferentes aspectos ambientais as quais estão submetidas, bem como pelas condições experimentais (VAN BEILEN, 2002).

Os resultados mostraram que a atividade celulolítica foi maior nas cepas Cel55-01, Cel55-02 e Cel37-03 (Figura 35), assim como a atividade xilanolítica foi mais evidente para as cepas Cel37-28 e T2 (Figura 36), demonstrado pela presença do halo de degradação do CMC e/ou xilano nos respectivos meios.

Figura 35. Atividade celulolítica em meio Agar LB/CMC (A) e xilanolítica em Agar Remazol *Brilliant Blue* R-D-Xylan (B); 1. Cel55-01; 2. Cel55-02; 3. Cel37-03 e Pb. *P. barcinonensis* (controle positivo).


Figura 36. Atividade celulolítica em meio Agar LB/CMC (A) e xilanolítica em meio Agar LB/xilano Oat Spelt (B); 1. Cel37-28; 2. T2; 3. Cel55-01; 4. *P. barcinonensis* (controle positivo); *E. coli* (controle negativo).

O isolamento de bactérias celulolíticas em amostras de solo e/ou dejetos de animais também foi evidenciado por Oliveira et al. (2006), Gorlach-Lira e Coutinho (2007) e Wang et al. (2009), pela triagem em meio Agar-CMC, assim como cepas xilanolíticas, em meio contendo xilano (HECK; HERTZ; AYUB, 2002; KINEGAM;


TANASUPAWAT; AKARACHARANYA, 2007; AZERI; TAMER; OSKAY, 2010), comprovado pelos halos de degradação.

5.3.1 Caracterização molecular das cepas celulolíticas e xilanolíticas selecionadas

A caracterização molecular das cepas ocorreu após extração dos DNAs genômicos (Figura 37), os quais foram utilizadas nas amplificações dos genes 16S rRNA. As bandas correspondentes ao gene 16S rRNA, com aproximadamente 1500 pb (Figura 38), como esperado, foram cortadas do gel e purificadas. Os produtos da PCR 16S purificados foram utilizados na reação de sequenciamento para identificação das cepas.

Figura 37. DNA genômico das cepas: 1 - Cel55-01; 2 - Cel55-02; 3 - Cel37-03; 4 - Cel37-28; 5 - T2; M – marcador de peso molecular 1 kb (Fermentas).

Figura 38. Produtos das PCR 16S rRNA das cepas: 1 - Cel55-01; 2 - Cel55-02; 3 - Cel37-03; 4 - Cel37-28; 5 - T2; M – marcador de peso molecular 1 kb (Fermentas).

As reações de sequenciamento para identificação das cepas isoladas do solo da pastagem nativa foram realizadas utilizando os *primers* 27F e/ou 1525R, separadamente em cada reação. Os resultados da caracterização molecular dos isolados bacterianos obtidos estão descritos na Tabela 12.

Tabela 12. Identificação molecular das cepas isoladas do solo do Cariri por amplificação do gene 16S rRNA.

Сера	Primers	Max.	E-value	Blast	
		Ident.			
Cel55-01	27F	94%	2e-166	Bacillus subtilis D2	
Cel55-02	27F	99%	0,0	B. subtilis	
Cel37-03	27F	95%	0,0	B. subtilis CICC10076	
Cel37-28	27F ou 1525R	99%	0,0	P. illinoisensis IB1087	
T2	27F ou 1525R	99%	0,0	P. favisporus GMP03	

As cepas bacterianas isoladas do solo do Cariri paraibano foram identificadas como *Bacillus subtilis* (cepas Cel55-01, Cel55-02 e Cel37-03); *Paenibacillus illinoisensis*

(Cel37-28) e *P. favisporus* (T2), essas duas últimas tiveram suas sequências 16S rRNA depositadas no GeneBank sob o código de acesso JN867752 e JN867753, respectivamente.

As espécies isoladas e caracterizadas pertencem ao filo *Firmicutes* e representantes desse filo já foram encontrados em outros trabalhos, como os realizados por Gorlach-Lira e Coutinho (2007), no mesmo ambiente desse estudo, bem como em solos da Amazônica (HECK; HERTZ; AYUB, 2002); de uma região na Índia (SANGHI ET AL, 2010); em campos de arrozais na Espanha (BLANCO; PASTOR, 1993). O filo *Firmicutes* também foi um dos encontrados nos solos dos sítios A e B do Cariri paraibano, quando se analisou a diversidade bacteriana pela análise da biblioteca metagenômica do gene 16S rRNA, apresentado no Capítulo 1 desse trabalho.

Representantes do gênero *Bacillus* são comumente saprófitas encontrados na microbiota do solo (CLAUS; BERKELEY, 1986) e algumas espécies são conhecidas como produtoras de enzimas extracelulares com importância industrial (OUTTRUP; JØRGENSEN, 2002), como *Bacillus subtillis* que tem sido isolada como produtora de celulases e xilanases em diversos ambientes (QIAO et al., 2009; YIN, LIM; XIAO, 2010; SANGHI et al., 2010).

As bactérias do gênero *Paenibacillus*, que compreendem bacilos Gram positivas, anaeróbias facultativas e formadores de endoporos, originalmente incluídas dentro do gênero *Bacillus*, foram reclassificadas por sequenciamento do gene 16S rRNA por Ash; Priest e Collins (1993). Esse grupo apresenta representantes isolados do solo (BERGE et al, 2002), água, rizosfera, larva de insertos, entre outros (DAANE et al., 2002), que também apresenta espécies produtoras de enzimas extracelulares como *P. barcinonensis* (SÁNCHEZ et al., 2005) e *P. curdlanolyticus* B-6 (RATTIYA et al., 2009).

5.4 Análise Quantitativa da Atividade Celulolítica e Xilanolítica dos Isolados Bacterianos

A escolha de um substrato apropriado, geralmente, constitui o primeiro passo na otimização de um processo e é de grande importância para obtenção de elevada produção enzimática. O substrato, além de ser fonte de carbono, fornece para o microrganismo diversos compostos indutores, que agem por um prolongado período, propiciando uma extensão da fase de produção que pode resultar num aumento da produtividade do processo (HALTRICH et al., 1996; KULKARNI et al., 1999).

As cepas Cel55-01, Cel55-02, Cel37-03, Cel37-28 e T2 foram testadas quanto às atividades e celulolíticas e xilanolíticas extracelulares, nos sobrenadantes livres de células, após cultivos em meios específicos, por 15 min de ação enzimática (Tabela 13).

Apesar das cepas Cel55-01, Cel55-02, Cel37-03 apresentarem uma boa atividade celulolítica pela visualização dos halos em placa (Figura 31), a quantificação, não mostrou um rendimento satisfatório para celulase, quando essas cepas foram cultivada em palha de arroz, ficando em torno de 0,030 U/mL (Cel55-01) e 0,040 U/mL (Cel37-03), não sendo detectado atividade celulolítica em Cel55-02 (Tabela 13). Para as atividades xilanolíticas, apenas a cepa Cel37-03 obteve rendimento em torno de 0,040 U/mL.

Em função disso, as cepas foram testadas em tempos de ações enzimáticas maiores, porém, apesar de ser observado rendimento para as atividades celulolíticas, Cel55-01 (0,050 - 0,030 U/mL); Cel55-02 (0,060 - 0,033 U/mL) e Cel37-03 (0,061 - 0,042 U/mL) e xilanolíticas, Cel55-01 (0,011 - 0,019 U/mL); Cel55-02 (0,013 - 0,032 U/mL) e Cel37-03 (0,012 - 0,014 U/mL), em 30 e 60 min, respectivamente, esses valores foram considerados baixos, quando comparados com resultados de outros trabalhos envolvendo *Bacillus*.

Tabela 13. Quantificações das atividades celulolíticas e xilanolíticas das cepas bacterianas, após 15 min de ação enzimática.

Cepa	Meio de Cultivo	Substrato	Atividade	U/mL
Cel55-01	PA	CMC ¹	Cel	0,03
		Xilano ²	Xil	ND
	BC	CMC	Cel	ND
		Xilano ²	Xil	0,30
		CMC	Cel	ND
Cel55-02	PA			
		Xilano ²	Xil	ND
		CMC	Cel	0,04
Cel37-03	PA			
		Xilano ²	Xil	0,04
	PA	CMC	Cel	ND
		Xilano ²	Xil	0,92
Cel37-28		•		•
	Xilano ²	Xilano ²	Xil	0,59
		Xilano ³	Xil	0,50
				_
		CMC	Cel	ND
T2	PA			
		Xilano ²	Xil	0,90
	Xilano ²	V: 10 :: - 2	V :1	0.70
		Xilano ²	Xil	0,70

 \overline{PA} – palha de arroz; BC – bagaço de cana-de-açúcar; Cel - atividade celulolítica; Xil – atividade xilanolítica; ND – não detectado; 1 – carboximetilcelulose; 2 - xilano de Birchwood; 3 - xilano de Beechwood.

As cepas Cel37-28 e T2 também foram avaliadas, quanto às atividades celulolíticas e xilanolíticas, nos sobrenadantes livres de células, a 15 min de reação enzimática, após cultivo em LB/palha de arroz, assim como em meio contendo xilano de *Beechwood*, utilizando os xilanos de *Birchwood* e *Beechwood*, como substratos no método quantitativo, para avaliar possíveis diferenças no rendimento da produção enzimática induzidas pelos dois tipos de xilano.

As cepas Cel37-28 e T2 não apresentaram atividades para celulase (Tabela 13), quando cultivadas em meio contendo palha de arroz, porém foi evidenciado um melhor rendimento em relação à xilanase, ficando em torno de 0,90 U/mL, para ambas as linhagens (Tabela 13). Em cultivo contendo xilano de *Beechwood*, as cepas Cel37-28 e T2 obtiveram uma menor produção de xilanase, com médias de 0,54 e 0,70 U/mL, respectivamente, não havendo diferenças de atividade para cepa Cel37-28, entre os tipos de xilanos utilizados.

Certos microrganismos podem também apresentar a capacidade bi-funcional ou até multifuncional, isto é, conseguem produzir mais de um tipo de enzima, por apresentarem ações induzíveis dependendo do substrato, a exemplo de celulases e xilanase (SHI et al, 2010).

Nesse trabalho, cepa Cel55-01 foi escolhida, entre as produtoras de celulase, mas que não obtiveram bom rendimento enzimático, quando cultivadas em palha de arroz, e as cepas Cel37-28 e T2, as duas produtoras de xilanases, que obtiveram bons resultados quando cultivadas em palha de arroz, para serem testadas quanto às atividades celulolíticas e xilanolíticas, utilizando o meio LB adicionado de bagaço de cana-de-açúcar (0,5 a 1 %) pré-tratado por autoclavação (duas vezes, a 121°C, por 15 min).

A cepa Cel55-01 apresentou um comportamento diferente quando cultivada no meio LB/bagaço de cana-de-açúcar, que apesar de não ter obtido nenhum rendimento

para celulase, apresentou atividade para xilanase (0,30 U/mL), cerca de 10 vezes maior ao obtido pelo cultivo em meio contendo palha de arroz (Tabela 13). Este fato mostra que Cel55-01 exibe potencial de produção de xilanase, dependendo do substrato e se o mesmo estiver pré-hidrolisado.

As cepas Cel37-28 e T2 apresentaram um ótimo resultado de produção de xilanases quando cultivadas em meio contendo bagaço de cana de açúcar, porém os dados de produção, quantificação, estabilidade em diferentes pH e temperaturas, além do efeito de compostos químicos sobre as atividades enzimáticas não puderam no momento ser divulgados por estarem sob sigilo de processo de depósito de patente nº 000241, 11 de novembro de 2011 (Coordenação de Inovação Tecnológica – UFPB).

Resultados próximos aos obtidos no nosso trabalho quanto a produção de celulase foram encontrados na literatura, porém com tempo de ação enzimática de 15 min. Ariffin et al. (2008) obtiveram rendimento de celulase (0,050 U/mL), quando cultivaram a cepa *B. pumilus* em meio contendo resíduos de palma, bem como 0,076 U/mL em meio CMC. Liang et al (2009), igualmente, verificaram um baixo rendimento de celulase (0,02 U/mL) da cepa *Brevibacillus* sp., isolada de dejetos suínos, em meio de cultivo CMC e celulose cristalina.

Yin; Lin e Xiao (2010) isolaram uma cepa de *B. subtilis* que apresentou atividade celulolítica tendo CMC como substrato, após cultivo em farelo de arroz, porém quando utilizaram xilano, avicel, fibra de algodão, papel de filtro e *p*-NPG, como substratos, essa cepa não apresentou atividade para celulase.

Diferentemente do que obtivemos, Yang et al (2010) verificaram um maior rendimento de celulase (2,82 U/mL) de uma cepa do gênero *Bacillus*, porém quando cultivado em meio contendo CMC, assim como Azeri; Tamer e Oskay (2010)

verificaram uma maior atividade xilanolítica em meio contendo xilano (3,7 U/mL), enquanto que em farelo de trigo os valores foram mais baixos (1,1 a 2,1 U/mL).

Esses dados mostram a especificidade das enzimas celulolíticas e xilanolíticas bacterianas, frente aos substratos utilizados para avaliação das atividades enzimáticas.

De acordo com Zhang et al., 2006, a ação das endoglucanases (CMCases) é mais eficiente em meio contendo CMC, devido a esse substrato ser solúvel e ter 100% de acessibilidade a fração das cadeias β-glucosídicas, em relação a substratos como, avicel, papel de filtro, algodão, *p*-NPG, nos quais apenas cerca de 0,2 a 1,8% das ligações β-glucosídicas estão acessíveis, a semelhança dos resíduos industriais. Provavelmente, as cepas Cel55-01, Cel55-02 e Cel37-03 podem estar produzindo apenas celulases do tipo endoglucanases (CMCases), visto que, em meio Agar LB/CMC foi evidenciado halos de degradação bem característicos, enquanto que no meio com palha de arroz, sem um tratamento prévio das fibras celulósicas para remoção da lignina e exposição da celulose, essas se mostraram pouco eficientes.

Muitas vezes, os resíduos industriais necessitam da atuação de um consórcio enzimático, por ação sinérgica, para obtenção do sub-produto desejado (KHANDEPARKER, R.; NUMAN, 2008). Desta forma, as cepas Cel55-01, Cel55-02 e Cel37-03 poderão ser testadas posteriormente, quanto à capacidade de degradação de diferentes resíduos lignocelulósicos, assim como, potencializarem suas ações hidrolíticas pela associação com outras bactérias produtoras.

Os resultados obtidos nesse trabalho, quanto à produção enzimática utilizando bagaço de cana-de-açúcar, apresentam uma perspectiva futura de sua utilização como fonte de carbono de baixo custo, que poderá contribuir para redução dos gastos nos processos industriais. Entretanto, mais testes deverão ser realizados para se achar a melhor formulação para o processo de produção, que poderão contribuir para uma

posterior utilização desse resíduo agroindustrial, o qual o Brasil é grande produtor (cerca de 147 milhões de toneladas em 2007) (CASTRO; PEREIRA JÚNIOR, 2010).

As cepas Cel37-28 e T2 foram também testadas em tempos de ações enzimáticas menores (2, 5 e 10 min), para verificar se havia variações nas produções de xilanase, após cultivo em LB/palha de arroz. A cepa Cel37-28 também foi testada, quanto à atividade xilanolítica em meio de cultivo contendo xilano de *Beechwood*, nos tempos de 2, 5 e 10 min de reação, utilizando os dois tipos de xilano (*Birchwood* e *Beechwood*) (Tabela 14).

Tabela 14. Quantificações da atividade xilanolítica das cepas Cel37-28 e T2, após cultivo em meios LB/palha de arroz e/ou LB/xilano (*Beechwood*).

Cepa	Tempo	Meio de Cultivo	Substrato	Atividade	U/mL
Cel37-28	2		(1)		1,30
	2		(2)		0,94
	5	PA	(1)	Xil	0,80
	5		(2)		0,73
	10	_	(1)		0,70
	10		(2)		0,70
Cel37-28	2		(1)		0,76
	2		(2)	Xil	0,70
	5	Xilano (2)	(1)		0,51
	5		(2)		0,32
	10	_	(1)		0,41
	10		(2)		0,40
T2 -	2		(1)		1,00
	5	PA	(1)	Xil	0,82
	10	_	(1)		0,90

PA – palha de arroz; (1) Xilano de *Birchwood*; (2) Xilano de *Beechwood*. Xil – atividade xilanolítica.

A cepa Cel37-28, do cultivo em meio contendo palha de arroz, obteve um melhor rendimento de xilanase (1,30 U/mL), após 2 min de ação enzimática, utilizando xilano de *Birchwood* como substrato (Tabela 14), sendo o valor do rendimento um pouco menor em xilano de *Beechwood* (0,94 U/mL). Os valores para xilanase foram ligeiramente mais baixos, nos tempos de 5 min (0,80 U/mL e 0,73 U/mL) e 10 min (0,70 U/ml e 0,68 U/mL), porém próximos entre si em relação aos dois tipos de xilano (*Birchwood* e *Beechwood*), respectivamente (Tabela 14).

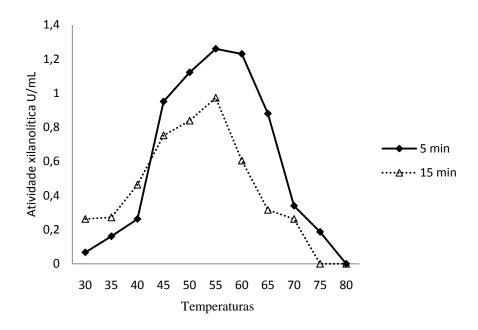
Em cultivo contendo xilano de *Beechwood*, a cepa Cel37-28 obteve o maior rendimento para xilanase em 2 min de ação enzimática (0,76 U/mL e 0,70 U/mL), para os dois tipos de xilano (*Birchwood* e *Beechwood*), respectivamente, porém nos demais tempos (5, 10 e 15 min), os valores foram bem mais baixos, quando comparados ao cultivo em meio contendo palha de arroz (Tabela 13 e 14).

Igualmente a cepa Cel37-28, o isolado T2 obteve um melhor rendimento para xilanase após 2 min de ação enzimática (1,0 U/mL) (Tabela 14), mas com valores de rendimentos muito próximos nos diferentes tempos de ação enzimática, 0,82 U/mL (5 min) a 0,90 U/mL (10 min).

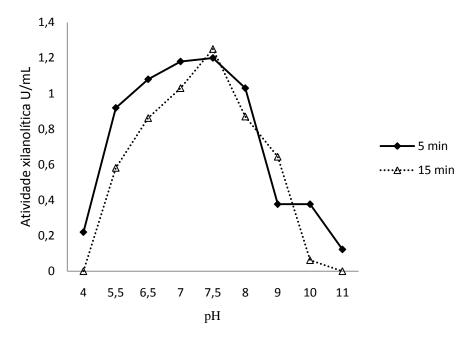
Os xilanos de *Beechwood* e de *Birchwood* são provenientes de diferentes espécies de árvores, dos gêneros *Fagus* (faia) e *Betula*, respectivamente, apresentando características distintas quanto à natureza do xilano, que pode influenciar no processo de degradação pelas enzimas bacterianas. Dependendo da origem da espécie da madeira, o grau de polimeração irá variar entre 70 a 130 (xilano "softwood") e 150 a 200 (xilano "hardwood") (VIIKARI et al, 1994).

Em geral, o xilano de *Birchwood* é mais utilizado nos meios de cultivo líquidos para os testes de atividade enzimática, assim como substrato na determinação da atividade pelos métodos de açúcares redutores. Azeri; Tamer e Oskay (2010) utilizaram o xilano de

Birchwood na avaliação da atividade xilanolítica e obtiveram um maior rendimento entre 2,5 e 3,3 U/mL, em relação aos observados no nosso trabalho. Igualmente, Heck; Hertz e Ayus (2002), Lee e Lim (2004), Park e Cho (2010) e Sanghi et al. (2010) utilizaram o xilano de *Birchwood* para avaliação da atividade xilanolítica, com rendimentos variáveis.


Park e Cho (2010) avaliaram a atividade xilanolítica no sobrenadante de *Paenibacillus*.sp. KIJ1, cepa isolada do solo antártico, após cultivo em CMC, os quais obtiveram rendimento enzimático próximos aos encontrados no nosso trabalho, quando utilizaram xilano de *Birchwood* (0,8 U/mL), CMC (1,4 U/mL) e avicel (0,8 U/mL) como substratos, porém diferentemente do que encontramos, não observaram rendimento em xilano de *Beechwood*. Da mesma forma, Shi et al (2010), entre as bactérias isoladas da silagem de milho, encontraram uma cepa do gênero *Paenibacillus* que apresentou atividade xilanolítica (1,5 U/mL), quando utilizou xilano de *Birchwood*, assim como, Lee e Lim (2004) também isolaram uma cepa de *Paenibacillus* com atividade xilanolítica em xilano de *Birchwood*.

Diversas fontes naturais complexas, como resíduos agrícolas e agroindustriais, têm sido utilizadas na indução de atividades enzimáticas microbianas, mesmo que esses materiais induzam uma menor produção da atividade, eles possuem a vantagem de serem encontrados em abundantemente e a baixo custo (OLIVEIRA et al., 2005).


5.4.1 Avaliação da temperatura e do pH ótimos das cepas Cel37-28, T2 e Cel55-01

As determinações das temperaturas e pH ótimos para as atividades xilanases das cepas Cel37-28 e T2, após cultivo em LB/palha de arroz, estão representadas nas Figuras 39, 40, 41 e 42, respectivamente.

A temperatura ótima observada para produção de xilanase da cepa Cel37-28 foi de 55°C, tanto a 5 como a 15 min de ação enzimática (Figuras 39), com 1,1 U/mL e 0,97 U/ml de produção enzimática, respectivamente, enquanto que o pH ótimo observado foi de 7,5, com produção de xilanase de 1,2 U/mL, para ambos os tempos (Figuras 40).

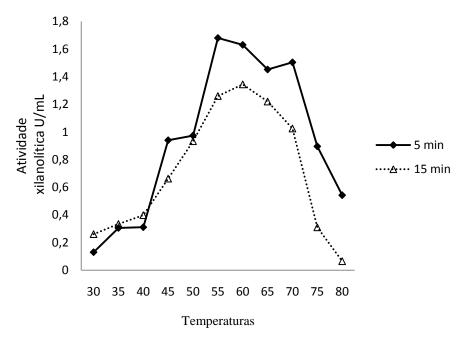


Figura 39. Temperatura ótima para atividade xilanase (xilano de *Birchwood*) da cepa Cel37-28, após cultivo em LB/palha de arroz.

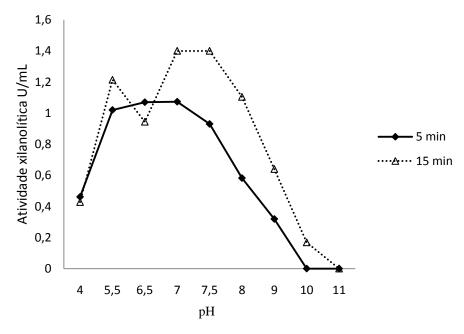


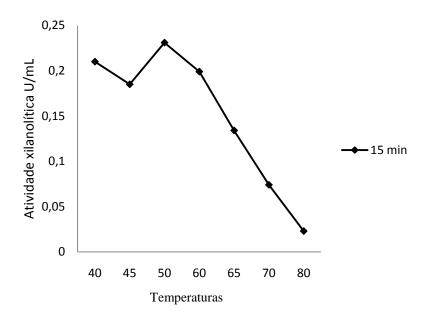
Figura 40. pH ótimo para atividade xilanase (xilano de *Birchwood*) da cepa Cel37-28, após cultivo em LB/palha de arroz.

Para a cepa T2, a temperatura ótima observada foi de 60°C, com produção de 1,6 U/mL (5 min) e 1,3 U/mL a 15 min de ação enzimática (Figuras 41 e 42), retendo a atividade xilanolítica em 91% e 76% nas temperaturas de 65 e 70°C, respectivamente. Em relação ao pH ótimo, foi encontrado o valor 7,0 (no tempo de 5 min), porém com valores de produções de xilanases equivalentes, entre os pH 5,5 (1,02 U/mL), pH 6,5 (1,070 U/mL) e pH 7,0 (1,073 U/mL), podendo inferir que a faixa de ação enzimática ficou em torno de 5,5 a 7,0 com 5 min de ação enzimática. No tempo de reação de 15 min, o pH ótimo observado foi de 7,5, embora também foi observado uma faixa de ação enzimática, entre 5,5 e 7,5, com rendimento de xilanase próximos: pH 5,5 (1,21 U/mL), pH 6,5 (0,94 U/mL), pH 7,0 (1,40 U/mL) e pH 7,5 (1,43 U/mL) (Figuras 42), porém com retenção de 78% da atividade xilanolítica em pH 8,0; Provavelmente, as variações observadas, podem ter ocorrido devido as amostras terem tido mais tempo de ação da xilanase, quando incubada por 15 min, ou por existir mais de um tipo de xilanase no sobrenadante.

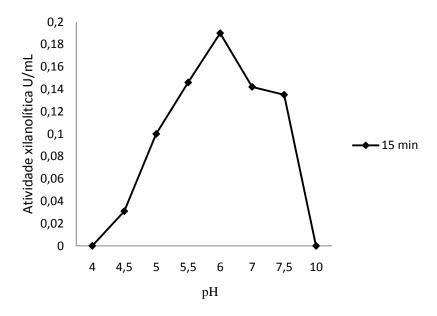
Figura 41. Temperatura ótima para atividade xilanase (xilano de *Birchwood*) da cepa T2, após cultivo em LB/palha de arroz.

Figura 42. pH ótimo para atividade xilanase (xilano de *Birchwood*) da cepa T2, após cultivo em LB/palha de arroz.

Park e Cho (2010) obtiveram valores um pouco mais baixo aos observado nesse trabalho para temperatura (50°C) e pH (6,0) ótimos, para uma xilanase produzida por *Paenibacillus*, assim como Sapre et al (2005) obtiveram uma xilanase de *Bacillus* com temperatura ótima de 50° C e pH 6,5.


Outros trabalhos também citam a atividade de xilanases de *Bacillus* entre pH ótimos de 6,0 e 7,0, porém com temperaturas ótimas bem mais elevadas (70 a 80°C) (TAKAHASHI et al., 2000; BATAILLON et al., 2000; LAMA et al., 2004).

O requerimento de enzimas xilanolíticas que atuem em pH mais alcalino (7,5 a 9,0) e temperaturas mais altas, entre 60 e 70°C, são bastante importante para utilização dessas enzimas nas industrias têxteis e papeleira, para manterem sua estabilidade o maior tempo possível durante os processos (AZERI; TAMER; OSKAY, 2010; CASTRO; PEREIRA JÚNIOR, 2010).


A avaliação da temperatura e pH ótimos para a cepa Cel55-01, após cultivo em LB/Bagaço de cana-de-açúcar, estão apresentados nas Figuras 43 e 44.

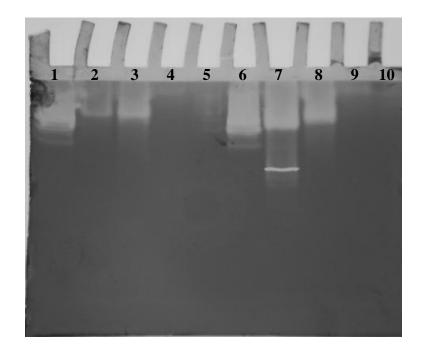
A cepa Cel55-01 apresentou uma temperatura ótima de 50°C e pH ótimo de 6,0 para atividade xilanase, quando se cultivou em meio LB/Bagaço de cana-de-açúcar (Figuras 43 e 44).

Trabalhos envolvendo a produção de celulases e xilanases utilizando bagaço de cana-de-açúcar têm sido mais relatados utilizando cepas de fungos do que bactérias, como os realizados por Melo (2010), utilizando cultivo do fungo (*Humicola grisea*) em meio contendo bagaço de cana-de-açúcar (1%), que obtiveram alto rendimento de xilanase (7,0 U/mL), e Terrasan (2007) que utilizou *Penicillium janczewskii* obtendo um rendimento de 2,7 U/mL, com pH ótimo a 6,5, porém com temperatura relativamente baixa de 30°C.

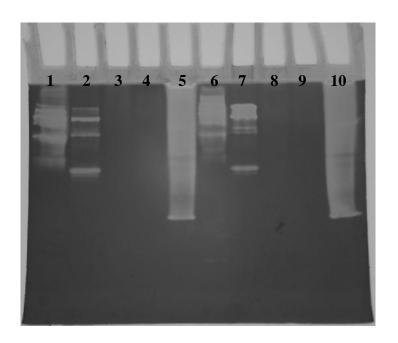
Figura 43. Temperatura ótima para atividade xilanase (xilano de *Beechwood*) da cepa Cel55-01, após cultivo em LB/bagaço de cana-de-açúcar.

Figura 44. pH ótimo para atividade xilanase (xilano de *Beechwood*) da cepa Cel55-01, após cultivo em LB/bagaço de cana-de-açúcar.

Estudos recentes realizados no Instituto Ciências Biológicas da Universidade de Brasília revelaram que duas bactérias denominadas *Morella thermoacetica* e *Clostridium thermocellum*, isoladas do rúmen de caprinos, foram capazes de hidrolizar a lignocelulose do bagaço de cana-de-açúcar pela ação de celulolíticas e xilanolíticas termoestáveis, para produção de bietanol de segunda geração, estudo ainda não divulgado completamente (UnB CIÊNCIA, 2011).


A utilização de bagaço de cana-de açúcar é uma alternativa bastante viável para obtenção do bietanol, devido à grande quantidade gerada pelos setores da agroindústria, e seu fornecimento a baixo custo. Entretanto, o uso de enzimas lignocelulolíticas advindas de cepas bacterianas é um tema de pesquisa relativamente novo e que mais pesquisas serão necessárias para serem obtidos melhores resultados.

5.5 Análises das Proteínas pela Técnica Eletroforética Zimograma


As enzimas celulolíticas (Figuras 45 e 47) e xilanolíticas (Figuras 46 e 48) produzidas pelas cepas bacterianas do solo do Cariri foram visualizadas em géis de poliacrilamida (10%), em condições desnaturantes (SDS-PAGE), corados com azul de Coomassie, para proteínas totais e vermelho Congo, para enzimas, conforme protocolo (ANEXO 3).

Na Figura 46 são visualizadas apenas as celulases das cepas Cel55-01 e *P. barcinonensis* (controle positivo), dos sobrenadantes recém processados e sem concentração das amostras (poços de 1 a 5) e dos sobrenadantes congelados por 1 mês em freezer -20°C das amostras: concentradas 2X (poço 6), 5X (poço 7) e não concentradas (poços 8, 9 e 10), procedentes de cultivos em LB/CMC e/ou LB/Palha de Arroz. As cepas Cel37-28 e T2 não apresentaram bandas significativas, visto que, provavelmente, não produzem ou produzem muito fracamente celulases.

As xilanases produzidas pelas cepas Cel37-28, T2 (Figura 46) se apresentaram com bandas bem distintas e com tamanhos diferentes para cada cepa, possivelmente por existirem vários tipos de xilanases sendo produzidas.

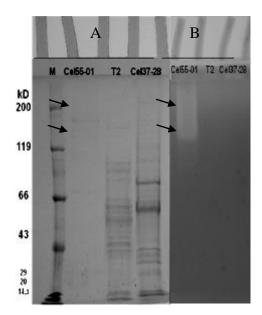


Figura 45. Zimograma para visualizações das celulases em gel de poliacrilamida (SDS-PAGE - 10%), adicionado de CMC (2%); 1 e 6 - *P. barcinonensis* (LB/PA, 2X conc.); 2 - Cel55-01 (LB/CMC); 3, 7 e 8 - Cel55-01 (LB/PA); 4 e 9 - T2 - (LB/PA); 5 e 10 - Cel37-28 (LB/PA).

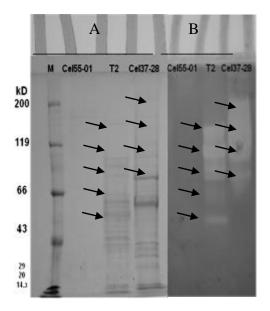


Figura 46. Zimograma para visualizações das xilanases (SDS-PAGE - 10%), adicionado de xilano de *Birchwood* (2%); 1 e 6 - Cel37-28 (LB/PA); 2 e 7 - T2 - (LB/PA); 3, 8 e 9 - Cel55-01 (LB/PA); 4. Cel55-01 (LB/CMC); 5 e 10 - *P. barcinonensis* (LB/PA, 2X conc.).

Nas Figuras 47 e 48 estão mostradas as bandas das proteínas totais contidas no sobrenadante das cepas Cel55-01(cerca de 10X concentradas), as quais se apresentaram muito fracas; e das cepas T2 e Cel37-28, que estavam 7X concentradas, e que se apresentaram mais evidente.

Figura 47. Gel de poliacrilamida (SDS-PAGE - 10%), adicionado de CMC (2%); (A) - visualização das proteínas totais; (B) - visualização das celulases.

Figura 48. Gel de poliacrilamida (SDS-PAGE - 10%), adicionado de xilano de *Birchwood* (2%); (A) - visualização das proteínas totais; (B) — visualização das xilanases.

Os pesos moleculares aparentemente para as celulases produzidas pela cepa Cel55-01 se encontraram entre 130 e 210 kDa (Figura 47); e para as xilanases produzidas pelas cepas T2 e Cel37-28, provavelmente ficaram entre 50, 66, 70, 90, e 130 kDa e 70, 90, 130 e 180 kDa (Figura 48), respectivamente.

A utilização dos sobrenadantes após cultivo da bactéria produtora da enzima de interesse, como a clonagem dos genes que expressam as enzimas advindas desses microrganismos, são geralmente as formas utilizadas para obtenção da enzima purificada. Desta forma, é possível se caracterizar de fato a enzima estimando seu peso molecular e a temperatura e pH ótimos, bem como sua estabilidade (PARK; CHO, 2010).

Yang et al. (2010) obtiveram a produção de uma nova celulase de *Bacillus*, após clonagem do gene *celI*15 em *E. coli*, que apresentou um tamanho de 52 kDa, mais baixo do que observamos na cepa Cel55-01 (Figuras 45 e 47), porém com temperatura ótima a 60°C e pH 6,0, compatíveis com os nossos dados. Esses autores também evidenciaram um aumentou do rendimento da enzima, em cerca de duas vezes e meia, em relação à cepa original, mostrando que cepas recombinantes têm a capacidade de potencializar a atividade enzimática. Da mesma forma, Qiao et al. (2005) também produziram uma celulase a partir dos genes de *Bacillus subtilis* que expressava uma proteína com 24,4 kDa, com temperatura ótima de 40°C e pH ótimo de 6,4, valores também mais baixos do que encontramos para Cel55-01.

Em relação as cepas Cel37-28 e T2, essas produziram xilanases, aparentemente livres de celulases, evidenciado tanto pelos testes quantitativos, como pelo visualização em gel de poliacrilamida. Este fato tem grande importância, devido esses tipos de xilanases, terem sua maior aplicabilidade na industrial de papel e celulose, por facilitar a liberação da lignina da polpa, e no processo de clareamento, reduzindo os níveis de

utilização de compostos organoclorados tóxicos, geralmente liberados em ambientes aquáticos (ZHAO et al., 2006). Outra aplicação em que celulases são indesejáveis é no processamento de fibras têxteis, no qual xilanases e pectinases atuam removendo material vegetal ligado às fibras (BIELY, 1985).

Os resultados obtidos neste trabalho apresentam uma perspectiva futura de utilização industrial, de enzimas produtoras de celulases e xilanases advindas, tanto de clones metagenômicos, como de isolados bacterianos de amostras do solo.

6. CONCLUSÕES

Neste trabalho, os dados obtidos quanto à prospecção de celulases e xilanases, nos levaram as seguintes conclusões:

- 1. As bibliotecas de clones metagenômicos funcionais geraram 3.840 clones, sendo 60 clones celulolíticos e 10 clones xilanolíticos;
- 2. A re-transformação plasmidial em quarto clones xilanolíticos garantiu o caráter fenotípico para a atividade xilanolítica;
- 3. As cepas isoladas com atividade celulolítica e xilanolítica foram identificadas como *Bacillus subtilis, Paenibacillus illinoisensis* e *P. favisporos*;
- 4. As cepas de *Bacillus subtilis* apresentaram uma baixa quantificação da produção de celulase e xilanase, quando cultivadas em meio contendo palha de arroz;
- 5. A cepa de *Bacillus subtilis* (Cel55-01) apresentou maior atividade xilanolítica em meio contendo bagaço de cana-de-açúcar;
- 6. As cepas de *Paenibacillus illinoisensis* (Cel37-28) e *P. favisporos* (T2) apresentaram maior produção de xilanases em meio contendo palha de arroz;
- 7. As cepas *P. illinoisensis*, *P. favisporos* e *B. subtilis* (Cel55-01) apresentaram caráter termofílico e alcalino de atividade xilanilítica;

- 8. As celulases produzidas por *Bacillus subtilis* (Cel55-01) e as xilanases produzidas por *Paenibacillus illinoisensis* e *P. favisporos* apresentaram diferentes pesos moleculares evidenciando a presença de complexos enzimáticos.
- 9. O solo do Cariri paraibano se mostrou um ambiente propício à prospecção de produtos bioativos, como celulases e xilanases, evidenciando seu potencial biotecnológico, tanto pela utilização da metagenômica, como pelo isolamento de cepas bacterianas.

PERSPECTIVAS

- Os clones metagenômicos celulolíticos e xilanolíticos, obtidos pela prospecção metagenômica, terão seus insertos analisados por sequenciamento e as sequências geradas serão comparadas em bancos de dados públicos, para inferência de suas funcionalidades;
- 2. Sub-bibliotecas serão construídas dos clones que exibirem maior atividade enzimática, após fragmentação dos insertos, e clonagem em vetor de expressão;
- 3. Os isolados bacterianos terão suas enzimas avaliadas frente a outros resíduos industriais. As enzimas também serão purificadas diretamente do sobrenadante, para quantificação e novas caracterizações.

5 REFERÊNCIAS BIBLIOGRÁFICAS

- AMMAN, R.; LUDWIG, W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. **FEMS Microbiol. Ecol.**, v. 24, p. 555–565, 2000.
- ANGELO, R.S. Xilanases de *Aspergillus* sp. 2M1: produção, caracterização e aplicação no branqueamento de polpas kraft. 1995. Dissertação (Mestrado em Química) UNICAMP, CAMPINAS, 1995.
- ARIFFIN, H.; HASSAN, M.A.; SHAH, U.K.; ABDULLAH, N.; GHAZALI, F.M.; SHIRAI, Y. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by *Bacillus pumilus* EB3. **J. Biosci. Bioeng.**, v. 106, n. 3, p. 231-236, 2008.
- ASH, C.; FARROW, J.A.E.; WALLBANKS, S.; COLLINS, M.D. Phylogenetic heterogeneity of the genus *Bacillus* revealed by comparative analysis of small subunit ribosomal RNA sequences. **Lett. Appl. Microbiol.**, n. 13, p. 202-206, 1991.
- ASH, C.; PRIEST, F.G.; COLLINS, M.D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe. Proposal for the creation of a new genus *Paenibacillus*. **Antonie van Leeuwenhoek.**, n. 64, p. 253-260, 1993.
- ATLAS, R.M. **Principles of Microbiology**. 2. ed. Iowa: Wm. C. Brown Publishers, 1997.
- AZERI, C.; TAMER, A.U.; OSKAY, M. Thermoactive cellulase-free xylanase production from alkaliphilic *Bacillus* strains using various agro-residues and their potential in biobleaching of kraft pulp. **African J. Biotechnol.**, v. 9, n. 1, p. 63-72, 2010.
- BCC Research, 2005. Enzymes for Industrial Applications. Disponível em: http://www.bccresearch.com/report/enzymes-industrial-applications-bio030e.html. Acessado em: 23 jun 2011.
- BERGE, O.; GUINEBRETIÉRE, M.H.; ACHOUAK, W.; NORMAND, P.; HEULIN, T. *Paenibacillus graminis* sp nov. and *Paenibacillus odorifer* sp nov., isolated from plant roots, soil and food. **Int. J. Syst. Evol. Microbiol.**, v. 52, p. 607 612, 2002.
- BHAT, M.K. Cellulases and related enzymes in biotechnology. **Biotechnol. Adv.**, v. 18, n. 5, p.:355-383, 2000.

BIELY, P. Microbial xylanolytic systems. **Trends Biotechnol.**, v. 3, p. 286-290, 1985.

BLANCO, A.; PASTOR, F.I.J. Characterization of cellulase-free xylanases from the newly isolated *Bacillus* sp. strain BP-23. **Can. J. Microbiol.**, n. 39, p. 1162-1166, 1993.

BON, E.P.S.; PEREIRA JÚNIOR, N. **Tecnologia Enzimática**. E.P.S., Bon (org.). Rio de Janeiro: [s.n.], 1999.

BOCCHINI, D.A., OLIVEIRA, O.M.M.F.; GOMES, E.; SILVA, R.D. Use of sugarcane bagasse and grass hydrolysates as carbon sources for xylanase production by *Bacillus circulans* D1 in submerged fermentation. **Proc. Biochem.**, v. 40, n. 12, p. 3653-3659, 2005.

CALADO, V.M.M.; DILLON, A.J.P.; SALGUEIRO, A.A. Produção de celulases por linhagens de *Humicola grisea* sob cultivo submerso. **R. Ciênc. Tecnol.**, v. 1, p. 1-6, 2007.

CASTRO, A.M.; PEREIRA JÚNIOR, N. Produção, propriedades e aplicações de celulases na hidrólise de resíduos agroindustriais. **Quim. Nova**, v. 33, n. 1, p. 181-188, 2010.

CEYLAN, O.; OKMEN, G.; UGUR, A. Isolation of soil *Streptomyces* as source antibiotics active against antibiotic-resistant bacteria. **EurAsia. J. BioSci.**, 2, 73-82, 2008.

CLAUS, D.; BERKELEY, R.C.W. **Genus** *Bacillus* **Cohn 1872, 174AL**. In: Bergey's Manual of Systematic Bacteriology. v. 2. P.H.A., Sneath et al. (org.) Baltimore: Williams & Wilkins, 1986.

COLLINS, T.; GERDAY, C.; FELLER, G. Xylanases, xylanase families and extremophilic xylanases. **FEMS Microbiol. Rev.**, v. 29, p. 3-23, 2005.

COUGHLAN, M.P.; HAZELWOOD, G.P. β-1,4-D-Xylandegrading enzyme systems: Biochemistry, molecular biology and applications. **Biotechnol. Appl. Biochem.**, v. 17, p. 259-289, 1993.

DAANE, L.L.; HARJONO, I.; BARNS, S.M.; LAUNEN, L.A.; PALLERONI, N.J.; HÄGGBLOM, M.M. PAH-degradation by *Paenibacillus* spp. And description of *Paenibacillus naphthalenovorans* sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. **Int. J. Syst. Evol. Microbiol.**, v. 52, p. 131-139, 2002.

DANIEL, R. The soil metagenome – a rich resource for the discovery of novel natural products. **Curr. Opin. Biotech**, v. 15, p. 199-204, 2004.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Ministério de Agricultura, Pecuária e Abastecimento. Importância Econômica, Agrícola e Alimentar do Arroz, 2005. Disponível em: < http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoBrasil/c

FAPESP. Propriedades do bagaço da cana-de-acúcar. **Rev. FAPESP**, p. 12, 1998.

ap01.htm>. Acessado em: 23 jun 2011.

FERRER, M.; GOLYSHINA, O.; BELOQUI, A. Mining enzymes from extreme environments. **Curr. Opin. Microbiol.**, v. 10, p. 207-214, 2007.

FU X, LIU P, LIN L, HONG Y, HUANG X, MENG X, LIU Z. A novel endoglucanase (Cel9P) from a marine bacterium *Paenibacillus* sp. BME-14. **Appl. Biochem. Biotechnol.**, v. 160, n. 6, p. 1627-1636, 2010.

GALBE, M.; LIDÉN, G.; ZACCHI, G. Production of ethanol from biomass - Research in Sweden. **J. Sci. Ind. Research**, v. 64, n. 11, p. 905-919, 2005.

GRANT, S.; SOROKIN, D.Y.; GRANT, W.D.; JONES, B.E.; HEAPHY, S.A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. **Extremophiles**, v. 8, n. 5, p. 421-429, 2004.

GORLACH-LIRA, K.; COUTINHO, H.D.M. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of Northeastern Brazil. **Braz. J. Microbiol.**, v. 38, p. 135-141, 2007.

HANDELSMAN, J. Metagenomics: Application of Genomics to uncultured microorganisms. **Microbiol. Mol. Biol. Rev.**, v. 68, p. 669-685, 2004.

HENRISSAT, B.; COUTINHO, P.M. Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles, **Methods Enzymol**., v. 330, p. 183-201, 2001.

HECK, J.X.; HERTZ, P.F.; AYUB, M.A.Z. Cellulase and xylanase productions by isolated amazon *Bacillus* strains using soybean industrial residue based solid-state cultivation. **Braz. J. Microbiol.**, v. 33, n. 3, 2002.

HENNE, A.; SCHMITZ, R.A.; BOMEKE, M.; GOTTSCHALK, G.; DANIEL, R.. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity of *Escherichia coli*. **Appl. Environ. Microbiol.**, v. 66, p. 3113-3116, 2000.

HERRERA, S. Industrial biotechnology - a chance at redemption. **Nature Biotechnol.**, v. 22, p. 671-675, 2004.

- HUGENHOLTZ, P.; GOEBEL, B.M.; PACE, N.R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. **J. Bacteriol.**, v. 180, p. 4765-74, 1998.
- HEUSSEN, C.; DOWDLE, E.B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. **Anal. Biochem.**, v. 102, n. 196-202, 1980.
- KIDDINAMOORTHY, J.; ANCENO, J.A.; HAKI, D.G. RAKSHIT, S.K. Production, purification and characterization of *Bacillus* sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. **World J. Microbiol. Biotechnol.**, v. 24, p. 605-612, 2008.
- KIM, S.J.; LEE, C.M.; HAN, B.R;. Characterization of a gene encoding cellulase from uncultured soil bacteria. **FEMS Microbiol. Lett.**, v. 282, p. 44-51, 2008.
- KIM, C.; KIM, S.; HONG, S. An integrated fermentation–separation process for the production of red pigment by *Serratia* sp. KH-95. **Proc. Biochem.**, v. 35, p. 485–490, 1999.
- KIM, J.-N.; SEO, M.J.; CHO, E.A.; LEE, S.J.; KIM, S.-B.; CHEIGH, C.-I.; PYUN, Y.-R. Screening and characterization of an esterase from a metagenomic library. **J. Microbiol. Biotechnol.**, v. 15, p. 1067-1072, 2005.
- KULKARNI, N.; SHENDYE, A.; RAO, M. Molecular and biotechnological aspects of xylanases. **FEMS Microbiol. Rev.**, v. 23, p. 411-456, 1999.
- LAEMMLI, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. **Nature**, v. 227, n. 259, p. 680-685, 1970.
- LAMA, L.; CALANDRELLI, V.; GAMBACORTA, A.; NICOLAUS, B. Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium *Bacillus thermantarc*. **Research Microbiol.**, v. 155, p. 283-289, 2004.
- LÄMMLE, K.; ZIPPER, H.; BREUER, M.; HAUER, B.; BUTA, C.; BRUNNER, H.; RUPP, S. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. **J. Biotech.**, v. 127, p. 575-592, 2007.
- LANE, D. **16S/23S rRNA sequencing**. In: Nucleic acid techniques in bacterial systematic. E. Stackebrandt, M. Goodfellow (org). New York: John Wiley & Sons, 1991.

- LEE, C.C.; KIBBLEWHITE-ACCINELLI RE, SMITH MR, WAGSCHAL K, ORTS WJ, WONG DWS. Cloning of *Bacillus licheniformis* xylanase gene and characterization of recombinant enzyme. **Curr. Microbiol.**, v. 57, p. 301-305, 2008.
- LIANG, Y.; YESUF, J.; SCHMITT, S.; BENDER, K.; BOZZOLA, J. Study of cellulases from a newly isolated thermophilic and cellulolytic *Brevibacillus* sp. strain JXL. **J. Ind. Microbiol. Biotechnol.**, v. 36, n. 7, p. 961-970, 2009.
- LIMA, A.O.; QUECINE, M.C.; FUNGARO, M.H.; ANDREOTE, F.D.; MACCHERONI, W.JR.; ARAÚJO, W.L.; SILVA-FILHO, M.C.; PIZZIRANI-KLEINER, A.A.; AZEVEDO, J.L. Molecular characterization of a beta-1,4-endoglucanase from an endophytic *Bacillus pumilus* strain. **Appl. Microbiol. Biotechnol.**, v. 68, n. 1, p. 57-65, 2005.
- LIU, W.; ZHU, W.; LU, Y.; KONG, J.; MA, G. (1998). Production, partial purification and characterization of xylanase from *Trichosporon cutaneum* SL409. **Process Biochem.**, v. 33, p. 331-336, 1998.
- LORENZ, P.; ECK, J. Metagenomics and industrial applications. **Nature Rev. Microbiol.**, v. 3, p. 510-516, 2005.
- LORENZ, P.; SCHLEPER, C. Metagenome a challenging source of enzyme discovery. **J. Mol. Catal. B-Enzym.**, v. 19, n. 20, p. 13-19, 2002.
- LYND, L.R.; WEIMER, P.J.; VAN ZYL, W.H.; PRETORIUS, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. **Microbiol. Mol. Biol. Rev.**, v. 66, n. 3, p. 506-577, 2002.
- MATULOVA, M.; NOUAILLE, R.; CAPEK, P.; PÉAN, M.; FORANO, E.; DELORT, A.M. Degradation of wheat straw by *Fibrobacter succinogenes* S85: a liquid- and solid-state nuclear magnetic resonance study. **Appl. Environ. Microbiol.**, v. 71, n. 3, p.1247-1253, 2005.
- MCHARDY, A.C.; RIGOUTSOS, I. What's in the mix: phylogenetic classification of metagenome sequence samples. **Curr. Opin. Microbiol.**, v. 10, p. 499-503, 2007.
- MIETTINEN-OINONEN, A.; SUOMINEN, P. Enhanced production of *Trichoderma reesei* endoglucanases and use of the new cellulose preparations in producing the stonewashed effect on denim fabric. **Appl. Environ. Microbiol.**, v. 68, p.3956-3964, 2002.
- NAIR, S.G.; SINDHU, R.; SHASHIDHAR, S. Purification and biochemical characterization of two xylanases from *Aspergillus sydowii* SBS 45. **Appl. Biochem. Biotechnol.**, v. 149, p. 229-243, 2008.

- NEWELL-MCGLOUGHLIN, M.; RE, E.B. **The Evolution of Biotechnology** From Natufians to Nanotechnology. New York: Springer, 2006.
- NINAWE, S.; KAPOOR, M.; KUHAD, R.C. Purification and characterization of extracellular xylanase from *Streptomyces cyaneus* SN32. **Bioresour. Technol.**, v. 99, p. 1252-1258, 2007.
- NG, I.S.; LI, C.W.; YEH, Y.F.; CHEN, P.T.; CHIR, J.L.; MA, C.H.; YU, S.M.; HO, T.H.; TONG, C.G. A novel endo-glucanase from the thermophilic bacterium *Geobacillus* sp. 70PC53 with high activity and stability over a broad range of temperatures. **Extremophiles**, v. 13, n. 3, p. 425-435, 2009.
- OLIVEIRA, F.C.; FREIRE, D.M.G.; CASTILHO, L.R., Production of poly (3-hydroxybutyrate) by solid-state fermentation with *Ralstonia eutropha*. **Biores. Technol.**, v. 25, p. 65-70, 2004.
- OLIVEIRA, L.G.; MANTOVANI, S.M. Transformações biológicas: contribuições e perspectivas. **Quim. Nova**, v. 32, n. 3, 742-756, 2009.
- OLSSON, L.; HAHN-HÄGERDAL, B. Fermentation of lignocellulosic hydrolysates for ethanol production. **Enz. Microb. Technol.**, v. 18, n. 5, p. 312-331, 1996.
- ONYSKO, K.A. Biological bleaching of chemical pulps: a review. **Biotechnol. Adv.**, v. 11, n. 2, p. 179-98, 1993.
- OUTTRUP, H.; JØRGENSEN, S.T. The importance of *Bacillus* species in the production of industrial enzymes. In: Applications and Systematics of *Bacillus* and Relatives. R. Berkeley et al. (org.). Oxford: Blackwell, 2002.
- PANG, H.; ZHANG, P.; DUAN, C.-J.; MO, X.-C.; TANG, J.-L.; FENG, J.-X. Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. **Curr. Microbiol.**, v. 58, p. 404-408, 2009.
- PARK, Y., KANG, S., LEE, J., HONG, S., KIM, S. Xylanase production in solid state fermentation by *Aspergillus niger* mutant using statistical experimental designs. **Appl. Microbiol. Biotechnol.**, v. 58, n. 6, p. 761-766, 2002.
- PARK, I.; CHO, J. Partial characterization of extracellular xylanolytic activity derived from *Paenibacillus* sp. KIJ1. **Afr. J. Microbiol. Res.**, v. 4, n. 12, p. 1257-1264, 2010. PEACOCK, K.W. **Biotechnology and Genetic Engineering**. Facts on File, Inc. Infobase Publishing, 2010.

- PEREIRA JÚNIOR, N.; BON, E.P.S.; FERRARA, M.A. **Tecnologia de bioprocessos** (Séries em Biotecnologia). v. 1, Escola de Química/UFRJ. Rio de Janeiro: UFRJ Ed., 2008.
- QIAO, J.; DONG, B.; LI, Y.; ZHANG, B.; CAO, Y. Cloning of a beta-1,3-1,4-glucanase gene from *Bacillus subtilis* MA139 and its functional expression in *Escherichia coli*. **Appl. Biochem. Biotechnol**., v. 152, n. 2, p. 334-342, 2009.
- RAJARAM, S.; VARMA, A. Production and characterization of xylanase from *Bacillus thermoalkalophilus* grown on agricultural wastes. **Appl. Microbiol. Biotechnol.**, v. 34, p. 141-144, 1990.
- RIESENFELD, C.S.; GOODMAN, R.M.; HANDELSMAN, J. Uncultured soil bacteria are a reservoir of new antibiotic. **Environ. Microbiol.**, v. 6, n. 9, p. 981–989, 2004.
- WAEONUKUL, R.; PASON, P.; KYU, K.L.; SAKKA, K.; KOSUGI, A.; MORI, Y.; RATANAKHANOKCHAI, K. Cloning, sequencing, and expression of the gene encoding a multidomain endo-1,4-xylanase from *Paenibacillus curdlanolyticus* B-6, and characterization of the recombinant enzyme. **J. Microbiol. Biotechnol.**, v. 19, p. 277-285, 2009.
- SAMBROOK, J.; FRITSCH, E.F; MANIATIS, T. Molecular cloning: a laboratory manual. 2. ed. New York: Cold Spring Harbor, 1989.
- SÁNCHEZ, M.M.; FRITZE, D.; BLANCO, A.; SPRÖER, C.; TINDALL, B.J.; SCHUMANN, P.; KROPPENSTEDT, R.M.; DÍAZ, P.; PASTOR, F.I.J. *Paenibacillus barcinonensis* sp. nov., a xylanaseproducing bacterium isolated from a rice field in the Ebro River delta. **Int. J. Syst. Evol. Microbiol.**, v. 55, p. 935–939, 2005.
- SANGHI, A.; GARG, N.; GUPTA, V.K.; MITTAL, A.; KUHAD, R.C. One-step purification and characterization of cellulase-free xylanase produced by alkalophilic *Bacillus subtilis* ash. **Braz. J. Microbiol.**, v. 41, p. 467-476, 2010.
- SCHOEMAKER, H.E.; MINK, D.; WUBBOLTS, M.G. Dispelling the Myths Biocatalysis in Industrial Syntesis. **Science**, v. 299, p. 1694-1698, 2003.
- SILVA, J.C.; GOUVIA, E.R. Algumas propriedades de endoglucanases produzidas por *Streptomyces* spp. Em meio a base de bagaço de cana-de-açúcar. **Rev. Bras. Tecnol. Agroind.**, v. 02, n. 02, p. 60-70, 2008.
- SIQUEIRA, S. J. L. Expressão dos genes de endoglicanase 2 e 4 de *Humicola grisea* var thermoidea em *Sacccharomyces cerevisiae*. 2006. 110 f. Dissertação (Mestrado em Biologia Molecular) Universidade de Brasília, Brasília, 2006.

SHIMONAKA, A.; KOGA, J.; BABA, Y.; NISHIMURA, T.; MURASHIMA, K.; KUBOTA, H.; KONO, T. Specific characteristics of family 45 endoglucanases from *Mucorales* in the use of textiles and laundry. **Biosci. Biotechnol. Biochem.**, v. 70, p. 1013-1016, 2006.

SHRINIVAS D, SAVITHA G, RAVIRANJAN K, NAIK GR. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic *Bacillus* sp. JB 99 suitable for paper and pulp industry: purification and characterization. **Appl. Biochem. Biotechnol.**, v. 162, n. 7, p. 2049-2057, 2010.

SMIBERT, R.; KRIEG, N.R. **Phenotypic characterization**. In: Methods for general and molecular bacteriology. P. Gerhardt et al. (org.). Washington: ASM Press, 1994.

SMITH-DOERR, L.; OWEN-SMITH, J.; KENNETH, W.K.; POWELL, W.W. **Networks and Knowledge Production: Collaboration and Patenting in Biotechnology.** R.T.A.J. Leenders, S. Gabbay (org.). Boston: Addison Wesley, 1998.

SPIRO, R.G. The Nelson-Somogyi copper reduction method. Analysis of sugar found in glycoproteins. **Meth. Enzymol.**, 8:3-26. 1966.

STEELE, H.L.; JAEGER, K.E.; DANIEL, R.; STREIT, W.R. Advances in Recovery of Novel Biocatalysts from Metagenomes. **J. Mol. Microbiol. Biotechnol.**, v. 16, p. 25–37, 2009.

STEELE, H.L.; STREIT, W.R. Metagenomics: Advances in ecology and biotechnology. **FEMS Microbiol. Lett.**, v. 247, p. 105-111, 2005.

STRATAGENE (2010) Disponível em:

<(http://www.genomics.agilent.com/files/Manual/212215.pdf> Acesso em: 20 maio 2011.

TAKAHASHI, H.; NAKAI, R.; NAKAMURA, S. Purification and partial characterization of a basic xylanase produced by thermoalkaliphilic *Bacillus* sp. strain TAR-1. **Biosci. Biotechnol. Biochem.**, 64, 887-890, 2000.

TEATHER, R.M.; WOOD, P. J. Use of Congo red – polysaccharide interactions enumeration of cellulolytic bacteria from the bovine rumen. **Appl. Environ. Microbiol., v.** 43, n. 4, p. 777-780, 1982.

TORSVIK, V.; ØVREÅS, L. Microbial diversity and function in soil: from genes to ecosystems. **Curr. Opin. Microbiol.**, v. 5, n. 3, p. 240-245, 2002.

ÚNICA. União da Agroindústria Canavieira de São Paulo. Disponível em:http://www.unica.com.br/pages/agroindustria_alta.asp>. Acessado em: 23/06/2011.

VALENZUELA, S.V.; DÍAZ, P.; PASTOR, F.I.J. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. **J. Agric. Food Chem.**, v. 58, n. 8, p. 4814-4818, 2010.

VALLS, C.; ViDal, T.; GALLARDO, O.; DIAZ, P.; PASTOR, F.I.J.; RONCERO, M.B. Obtaining low-HexA-content cellulose from eucalypt fibres: Which glycosil hydrolase family is more efficient? **Carbohydr. Pol.,** v. 80, p. 154-160, 2010.

VAN BEILEN, J.B.; LI, Z. Enzyme technology: an overview. **Curr. Opin. Biotechnol.**, v. 14, n. 4, p. 338-344, 2002.

VAN SOLINGEN, P.; MEIJER, D.; VAN DER KLEIJ, W.; BARNETT, C.; BOLLE, R.; POWER, S.D.; JONES, B.E. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. **Extremophiles**, v. 5, n. 5, p. 333-341, 2001.

VILLEN, R.A. Biotecnologia – Histórico e Tendências. Rev. Grad. Eng. Quim., 2002. Disponível em: < http://www.hottopos.com/regeq10/rafael.htm >. Acesso em: 30 jun 2011.

VIRUPAKSHI, K.; KYU, K.L.; TANTICHAROEN, M. Purification and properties of a xylan-binding endoxylanase from alkalophilic *Bacillus* sp. strain K-1. **Appl. Environ. Microbiol.**, v. 65, p. 694-697, 2005.

YANG, D.; WENG, H.; WANG, M.; XU, W.; LI, Y.; YANG, H. Cloning and expression of a novel thermostable cellulase from newly isolated *Bacillus subtilis* strain I15. **Mol. Biol. Rep.**, v. 37, n. 4, p. 1923-1929, 2010.

YIN, T.; MIAO, L.L.; GUAN, F.F.; WANG, G.L.; PENG, Q.; LI, B.X.; GUAN, G.H.; LI, Y. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in *Kluyveromyces lactis*. **J. Microbiol. Biotechnol.**, v. 20, n. 11, p. 1471-1480, 2010.

YIN, L.J.; LIN, H.-H.; XIAO, Z.-R.. Purification and characterization of a cellulase from *Bacillus subtilis* YJ1. **J. Mar. Sci. Technol.**, v. 18, n. 3, p. 466-471, 2010.

ZHANG, Y.-H.P.; HIMMEL, M.E.; MIELENZ, J.R. Outlook for cellulase improvement: Screening and selection strategies. **Biotechnol. Adv.**, v. 24, p. 452-481, 2006.

ZHANG, Y.M.; LU, X.B.; DAN, H.B., SUN, Y.K. Screening and Enzymatic Study of a composite microbial system FH3. **Braz. Arch. Biol. Technol.**, v. 52, n. 1, p.35-43, 2009.

ZHENG, Z.; SHETTY, K. Solid state production of polygalacturonase by *Lentinus edoddes* using fruit processing wastes. **Proc. Biochem.**, v. 35, p. 825-830, 2000.

APÊNDICES

Apêndice 1

Resultados das comparações das sequências parciais do gene 16S rRNA da biblioteca do solo da pastagem nativa (sítio A), para o domínio Bacteria, com as sequências depositadas no GenBank, utilizando o programa BLASTn.

	Tamanho da		Extensão do		Máxima	
Clone	sequência	Alinhamento mais significativo (GenBank ID)	alinhamento	Valor E	identidade	Ambiente
	(pb)		(%)		(%)	
BacS1E99	477	Uncultured Acidobacterium sp. clone JAB SASS clone 21 (<u>DQ084262.1</u>)	100	0.0	100	Solo Brasil
BacS1E140	499	Uncultured bacterium partial 16S rRNA gene, clone HH2_h4 (FN401235.1)	100	0.0	97	Biofilme Alemanha
BacS1E148	478	Uncultured Firmicutes bacterium clone HAHS13.96 (HQ397048.1)	100	0.0	98	Solo Índia
BacS1E92	557	Uncultured freshwater bacterium clone 54PP (<u>JF277768.1</u>)	100	0.0	91	Biofilme Singapura
BacS1E100	494	Uncultured bacterium clone p25g16ok (FJ479442.1)	99	0.0	97	Solo EUA
BacS1E141	515	Uncultured bacterium clone IFD_41 gene (<u>DQ984553.1</u>)	tured bacterium clone IFD_41 gene (<u>DQ984553.1</u>) 98 0.0		95	Solo China
BacS1E149	455	Uncultured bacterium clone J005-E09 (HM988776.1)	99	0.0	95	Solo EUA
BacS1E101	503	Uncultured bacterium clone BacC-u_002 (EU335376.1)	99	0.0	96	Solo EUA
BacS1E150	432	Uncultured bacterium clone 661254 (DQ404800.1)	100	0.0	95	Sedimento EUA
BacS1E143	491	Uncultured bacterium clone BacA_043 (EU335242.1)	100	0.0	95	Solo EUA
BacS1E95	288	Uncultured bacterium clone G98 (JF429019.1)	100	6e-133	96	-
BacS1E103	344	Uncultured Acidobacteriales bacterium isolate DGGE gel band Plot212C11 (EU192964.1)	99	3e-171	98	Solo México
BacS1E144	325	Uncultured Acidobacteriales bacterium isolate DGGE gel band Plot212C11 (EU192964.1)	100	3e-160	98	Solo México
BacS1E145	443	Uncultured bacterium clone KGB200711-074 (EU881271.1)	100	0.0	97	-
BacS1E97	389	Uncultured Acidobacteria bacterium clone BG26-2 (HM439304.1)	100	0.0	97	Solo Índia
BacS1E146	452	Uncultured Bacteroidetes bacterium clone AKYG450 (AY922017.1)	96	0.0	93	Solo EUA
BacS1E98	342	Uncultured bacterium isolate ALT2 (AY703473.1)	100	2e-172	98	Caverna Espanha
BacS1E106	340	Uncultured bacterium clone JAB SL 51 (EF495019.1)	99	9e-171	99	Solo Brasil
BacS1E184	552	Uncultured bacterium clone AGK-098 (HQ834226.1)	100	0.0	93	-
BacS1E195	428	Uncultured bacterium clone TP-SL-B-251 (<u>HQ864194.1</u>)	100	0.0	99	Solo China
BacS1E203	562	Uncultured bacterium clone UH_1_h11 (GU906508.1)	98	0.0	98	Solo México
BacS1E211	429	Uncultured bacterium clone F1Q32TO04EIQBN (GU758645.1)	91	4e-174	95	-
BacS1E185	405	Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone393 (DQ828650.1)	100	0.0	98	Solo Suíça
BacS1E196	263	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	93	2e-113	97	-
BacS1E204	371	Uncultured bacterium clone KO_c26f (HQ434566.1)	99	4e-174	97	C.E*. Guiana Fr
BacS1E212	384	Uncultured bacterium clone BACd-S27 (GQ127813.1)	100	8e-166	94	Solo China
BacS1E162	263	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	93	1e-113	97	-
BacS1E197	263	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	93	3e-115	97	-
BacS1E213	393	Uncultured bacterium clone UH_3_c10 (GU906552.1)	100	1e-179	95	Solo México
BacS1E163	263	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	95	1e-114	96	-

BacS E100 428 Uncultured bacterium clone KNC6-9 (DQS32357.2) 99 0.0 99 CE. EUA		1	,			•	
BacS1E124 263 Uncultured bacterium clone Bas-7-64 (GQ495421.1) 99 3e-170 95 Solo EUA			\				
BacS1E122 389 Uncultured bacterium clone p823-64 (GP479279_L) 99 3e-170 95 Solo EUA BacS1E156 374 Uncultured bacterium clone CZ105 (GU27229_L) 100 3e-179 97 Filosefera Chian BacS1E164 394 Enterobacter cancerogens strain H103 (HQ407278_L) 100 0.0 100 Intestino mosca India BacS1E191 384 Uncultured Acidobacteria bacterium clone LF086 (EF41775_L) 100 1e-176 96 Solo China BacS1E157 263 Uncultured Bacterium clone LF086 (EF41775_L) 100 0.0 96 Siordera arroad Itália BacS1E157 499 Uncultured Ralstonia sp., clone Hrh885 (AM159300_L) 100 0.0 96 Rizosfera arroad Itália BacS1E165 527 Uncultured Acidobacteria bacterium clone Bar-7-64 (GQ49542_L) 99 0.0 96 Siod Máxico BacS1E165 527 Uncultured bacterium clone Bar-7-64 (GQ49542_L) 95 5e-113 96 -	BacS1E206						C.E. Guina Fr
BacSIE156 374 Uncultured hacterium clone (Z/105 (GU27229).1) 100 3e-179 97 Filosefera China BacSIE164 394 Enterobacter cancerogenus strain H103 (El-4775.1) 100 0.0 100 1e-176 96 Solo China BacSIE191 384 Uncultured Acidobacteria bacterium clone LF086 (EF417775.1) 100 1e-176 96 Solo China 384 Uncultured Acidobacteria bacterium clone LF086 (EF417775.1) 100 1e-176 96 Solo China 384 Uncultured Ralstonia ps., clone HfiB858 (2M159300.1) 100 0.0 96 Rizosfera arozal Itália BacSIE165 527 Uncultured Ralstonia ps., clone HfiB858 (2M159300.1) 100 0.0 96 Solo Máxico BacSIE192 494 Uncultured bacterium clone (BFN8701001B75BD (HM685897.1) 86 0.0 97 Solo Illias Malvinas BacSIE158 264 Uncultured bacterium clone (BFN87010B75BD (HM685897.1) 95 5e-113 96 -	BacS1E214						-
BacS1E191 384 Enterobacter cancerogenus strain H103 (HQ407278.I) 100	BacS1E222		Uncultured bacterium clone p8i23ok (<u>FJ479279.1</u>)	99	3e-170		Solo EUA
BacS1E191 384 Uncultured Acidobacteria bacterium clone LP036 (EF417775.1) 100 1e-176 96 Solo China	BacS1E156	374	Uncultured bacterium clone CZ105 (<u>GU272290.1</u>)	100	3e-179		
BacS E15	BacS1E164	394	Enterobacter cancerogenus strain H103 (<u>HQ407278.1</u>)	100	0.0	100	Intestino mosca Índia
BacS1E157 499 Uncultured Ralstonia sp., clone HrhB85 (AM159300.1) 100 0.0 96 Rizosfera arrozal Itália BacS1E165 527 Uncultured Acidobacteria bacterium isolate DGE gel band Plot/21C/11 (EU192964.1) 99 0.0 96 Solo Máxico BacS1E192 494 Uncultured bacterium clone GB7N87001B75BD (HM685897.1) 95 56-113 96 0.0 BacS1E158 264 Uncultured bacterium clone Bas-7-64 (GQ495421.1) 95 56-113 96 0.0 BacS1E166 505 Bacillus foraminis, type strain CV53T (AJ717382.1) 99 0.0 98 Agua subt. Portugal BacS1E193 430 Enterobacter cancerogenus strain M119 (HQ407292.1) 100 0.0 99 Intestino mosca India BacS1E209 413 Uncultured bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 C.E. EUA BacS1E218 388 Uncultured Bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 Sedimento Grécia BacS1E218 263 Uncultured bacterium clone HCM37600.2 B.FL (EU374021.1) 99 0.0 97 Sedimento Grécia BacS1E75 548 Uncultured bacterium clone LF03 (EF417692.1) 98 0.0 100 Rizosfera repolho Corea do Sul BacS1E83 471 Uncultured Acidobacteria bacterium clone KBS_T1_R2_149270_g2 (HM062146.1) 95 2e-162 97 - BacS1E84 498 Uncultured Acidobacteria bacterium clone BOK_NOFERT_clone385 (Do829333.1) 100 0.0 98 Solo Suíça BacS1E75 541 Uncultured Acidobacteria bacterium clone BOK_NOFERT_clone385 (DQ829333.1) 100 0.0 98 Solo Suíça BacS1E79 300 Uncultured Bacidobacteria bacterium clone BOK_NOFERT_clone385 (DQ829333.1) 100 1e-149 99 Solo Suíça BacS1E87 404 Uncultured Bacidobacteria bacterium clone ASYG1746 (AY92194.1) 99 0.0 91 Solo EUA BacS1E88 330 Uncultured Bacidobacteria bacterium clone BOK_NOFERT_clone385 (DQ829385.1) 100 1e-149 99 Solo Suíça BacS1E88 330 Uncultured Bacidobacteria bacterium clone BOK_NOFERT_clone385 (DQ829385.1) 100 1e-149 99 Solo Suíça BacS1E19 348 Uncultured Bacidobacteria bacterium clone BOK_CONFYM_clone575 (DQ82809.1) 100 0.0 95	BacS1E191	384	Uncultured Acidobacteria bacterium clone LF086 (EF417775.1)	100	1e-176		Solo China
BacS1E165 527 Uncultured Acidobacteriales bacterium isolate DGGE gel band Plot212C11 (EUJ9264.1) 99 0.0 96 Solo Máxico BacS1E192 494 Uncultured bacterium clone GB7N87001B75BD (HM685897.1) 86 0.0 97 Solo Ilhas Malvinas BacS1E158 264 Uncultured bacterium clone GB7N87001B75BD (HM685897.1) 95 5c-113 96 - BacS1E166 505 Bacillus foraminis, type strain CV53T (AJ71/382.1) 99 0.0 98 Água subt. Portugal BacS1E193 430 Enterobacter cancerogenus strain M119 (H0407292.1) 100 0.0 99 Intestino mosca India BacS1E194 343 Uncultured bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 C.E. EUA BacS1E194 388 Uncultured bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 Sedimento Grécia BacS1E218 263 Uncultured sudge bacterium H44 (AF234734.1) 94 4e-114 97 - BacS1E218 263 Uncultured bacterium H44 (AF234734.1) 100 0.0 100 Rizosfera repolho Corea do Sul BacS1E75 548 Uncultured Acidobacteria bacterium clone LF003 (EF417692.1) 98 0.0 97 Solo China BacS1E76 541 Uncultured Acidobacteria bacterium clone KBS. T1 R2 149270, g2 (HM062146.1) 95 2e-162 97 - BacS1E84 498 Uncultured Acidobacteria bacterium clone DOK. NOFERT_clone385 (DQ829333.1) 100 0.0 91 Solo EUA BacS1E79 515 Uncultured Acidobacteria bacterium clone DOK NOFERT_clone385 (DQ829333.1) 100 0.0 98 Solo Suíça BacS1E79 300 Uncultured Bacillaceae bacterium clone DOK BIODYN clone529 (DQ828185.1) 100 1e-149 99 Solo EUA BacS1E80 414 Uncultured bacterium clone DOK BIODYN clone529 (DQ828185.1) 100 1e-149 99 Solo EUA BacS1E819 348 Uncultured bacterium clone DOK NOFERT_clone375 (DQ82809.1) 100 1e-180 95 Intestino minhoca BUA BacS1E109 543 Enterobacter sp. KZ_AalM_Mn7 (GU726182.1) 99 1e-144 95 Solo EUA BacS1E110 348 Uncultured Acidobacteria bacterium clone DOK NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteria bacteriu	BacS1E215	263	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	93	1e-113	97	-
BacS1E192 494 Uncultured bacterium clone GB7N87001B75BD (HM685897.1) 86 0.0 97 Solo Ilhas Malvinas	BacS1E157	499	Uncultured Ralstonia sp., clone HrhB85 (AM159300.1)	100	0.0	96	Rizosfera arrozal Itália
BacS1E158 264 Uncultured bacterium clone Bas-7-64 (GQ495421_1) 95 5e-113 96	BacS1E165	527	Uncultured Acidobacteriales bacterium isolate DGGE gel band Plot212C11 (EU192964.1)	99	0.0	96	Solo Máxico
BacS1E166 505 Bacillus foraminis, type strain CV53T (A71/7382.1) 99 0.0 98 Água subt. Portugal BacS1E193 430 Enterobacter cancerogenus strain M119 (HQ.407292.1) 100 0.0 99 Intestino mosca Índia BacS1E209 413 Uncultured bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 C.E. EUA BacS1E194 388 Uncultured Firmicutes bacterium clone HCM3MC90_2B_FL (EU374021.1) 99 0.0 97 Sedimento Grécia BacS1E218 263 Uncultured sludge bacterium H44 (AF234743.1) 94 4e-114 97 -	BacS1E192	494	Uncultured bacterium clone GB7N87001B75BD (HM685897.1)	86	0.0	97	Solo Ilhas Malvinas
BacS1E193 430 Enterobacter cancerogenus strain M119 (HQ407292.1) 100 0.0 99 Intestino mosca India BacS1E209 413 Uncultured bacterium clone KSC6-9 (DQ532357.2) 99 0.0 97 C.E. EUA BacS1E194 388 Uncultured Firmicutes bacterium clone HCM3MC90_2B_FL (EU374021.1) 99 0.0 97 Sedimento Grécia BacS1E18 263 Uncultured Firmicutes bacterium H44 (AF234743.1) 94 4e-114 97	BacS1E158	264	Uncultured bacterium clone Bas-7-64 (GQ495421.1)	95	5e-113	96	-
BacS1E199	BacS1E166	505	Bacillus foraminis, type strain CV53T (AJ717382.1)	99	0.0	98	Água subt. Portugal
BacS1E194 388	BacS1E193	430	Enterobacter cancerogenus strain M119 (HQ407292.1)	100	0.0	99	Intestino mosca Índia
BacS1E218 263 Uncultured sludge bacterium H44 (AF234743.1) 94 4e-114 97 97 98 0.0 100 Rizosfera repolho Corea do Sul	BacS1E209	413	Uncultured bacterium clone KSC6-9 (DQ532357.2)	99	0.0	97	C.E. EUA
BacS1E218 263 Uncultured sludge bacterium H44 (<u>AF234743.1</u>) 94 4e-114 97	BacS1E194	388	Uncultured Firmicutes bacterium clone HCM3MC90_2B_FL (EU374021.1)	99	0.0	97	Sedimento Grécia
BacS1E83	BacS1E218	263		94	4e-114	97	-
BacS1E76 541 Uncultured Acidobacteria bacterium clone KBS_TI_R2_149270_g2 (HM062146.1) 95 2e-162 97	BacS1E75	548	Uncultured bacterium clone 2N1-75 (EU159973.1)	100	0.0	100	
BacS1E84 498 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone385 (DQ829333.1) 100 0.0 98 Solo Suíça BacS1E77 515 Uncultured beta proteobacterium clone AKYG1746 (AY921981.1) 99 0.0 91 Solo EUA BacS1E79 300 Uncultured Acidobacteria bacterium clone DOK_BIODYN_clone529 (DQ828185.1) 100 1e-149 99 Solo Suíça BacS1E87 404 Uncultured Bacillaceae bacterium clone B05-08A (FJ543002.1) 100 1e-180 95 Intestino minhoca EUA BacS1E80 414 Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1) 100 0.0 98 Efluente China BacS1E88 330 Uncultured bacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone 3_009 16S (HQ213393.1) 92 5e-40 96 - BacS1E119 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100	BacS1E83	471	Uncultured Acidobacteria bacterium clone LF003 (EF417692.1)	98	0.0	97	Solo China
BacS1E77 515 Uncultured beta proteobacterium clone AKYG1746 (AY921981.1) 99 0.0 91 Solo EUA BacS1E79 300 Uncultured Acidobacteria bacterium clone DOK_BIODYN_clone529 (DQ828185.1) 100 1e-149 99 Solo Suíça BacS1E87 404 Uncultured Bacillaceae bacterium clone B05-08A (FJ543002.1) 100 1e-180 95 Intestino minhoca EUA BacS1E80 414 Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1) 100 0.0 98 Effluente China BacS1E88 330 Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone Joene	BacS1E76	541	Uncultured Acidobacteria bacterium clone KBS_T1_R2_149270_g2 (HM062146.1)	95	2e-162	97	-
BacS1E79 300 Uncultured Acidobacteria bacterium clone DOK_BIODYN_clone529 (DQ828185.1) 100 1e-149 99 Solo Suíça BacS1E87 404 Uncultured Bacillaceae bacterium clone B05-08A (FJ543002.1) 100 1e-180 95 Intestino minhoca EUA BacS1E80 414 Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1) 100 0.0 98 Efluente China BacS1E88 330 Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone 3_009 16S (HQ213393.1) 92 5e-40 96 - BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E112 414 Uncultured Acidobacteriaceae bacterium clone Plot18-B11 (FJ889228.1)	BacS1E84	498	Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone385 (DQ829333.1)	100	0.0	98	Solo Suíça
BacS1E87 404 Uncultured Bacillaceae bacterium clone B05-08A (FJ543002.1) 100 1e-180 95 Intestino minhoca EUA BacS1E80 414 Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1) 100 0.0 98 Efluente China BacS1E88 330 Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone 3_009 16S (HQ213393.1) 92 5e-40 96 - BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1)	BacS1E77	515	Uncultured beta proteobacterium clone AKYG1746 (AY921981.1)	99	0.0	91	Solo EUA
BacS1E80 414 Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1) 100 0.0 98 Efluente China BacS1E88 330 Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone 3_O09 16S (HQ213393.1) 92 5e-40 96 - BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 </td <td>BacS1E79</td> <td>300</td> <td>Uncultured Acidobacteria bacterium clone DOK_BIODYN_clone529 (DQ828185.1)</td> <td>100</td> <td>1e-149</td> <td>99</td> <td>Solo Suíça</td>	BacS1E79	300	Uncultured Acidobacteria bacterium clone DOK_BIODYN_clone529 (DQ828185.1)	100	1e-149	99	Solo Suíça
BacS1E88 330 Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1) 99 1e-144 95 Solo EUA BacS1E15 114 Uncultured bacterium clone 3_009 16S (HQ213393.1) 92 5e-40 96 - BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E87	404	Uncultured Bacillaceae bacterium clone B05-08A (FJ543002.1)	100	1e-180	95	Intestino minhoca EUA
BacS1E15 114 Uncultured bacterium clone 3_009 16S (<u>HQ213393.1</u>) 92 5e-40 96 - BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (<u>GU726182.1</u>) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (<u>DQ828809.1</u>) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (<u>DQ829269.1</u>) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (<u>FM175811.1</u>) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (<u>FJ889228.1</u>) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (<u>HQ912129.1</u>) 97 5e-164 97 Solo Brasil	BacS1E80	414	Uncultured bacterium clone F1Q32TO06HB31Y (GU512775.1)	100	0.0	98	Efluente China
BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E88	330	Uncultured beta proteobacterium clone GASP-KB2W3_F09 (EU298487.1)	99	1e-144	95	Solo EUA
BacS1E109 543 Enterobacter sp. KZ_AalM_Mm7 (GU726182.1) 93 0.0 97 Inseto África BacS1E117 442 Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1) 100 0.0 95 Solo Suíça BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E15	114	Uncultured bacterium clone 3_009 16S (HQ213393.1)	92	5e-40	96	-
BacS1E118 397 Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1) 100 0.0 98 Solo Suíça BacS1E119 348 Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1) 100 2e-162 96 Água Alemanha BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E109	543		93	0.0	97	Inseto África
BacS1E119348Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1)1002e-16296Água AlemanhaBacS1E112414Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1)1000.097-BacS1E120337Uncultured bacterium clone BacS1E203 (HQ912129.1)975e-16497Solo Brasil	BacS1E117	442	Uncultured Acidobacteria bacterium clone DOK_CONFYM_clone575 (DQ828809.1)	100	0.0	95	Solo Suíça
BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E118	397	Uncultured Acidobacteria bacterium clone DOK_NOFERT_clone313 (DQ829269.1)	100	0.0	98	Solo Suíça
BacS1E112 414 Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1) 100 0.0 97 - BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E119	348	Uncultured Acidobacteriaceae bacterium, clone CL3.D77 (FM175811.1)	100	2e-162	96	Água Alemanha
BacS1E120 337 Uncultured bacterium clone BacS1E203 (HQ912129.1) 97 5e-164 97 Solo Brasil	BacS1E112	414	Uncultured Acidobacteriales bacterium clone Plot18-B11 (FJ889228.1)	100	0.0	97	-
		337		97	5e-164	97	Solo Brasil
			\	100			Solo Suíça

^{*}C.E. – Centro Espacial

Apêndice 2

Resultados das comparações das sequências parciais do gene 16S rRNA da biblioteca do solo da pastagem sob cultivo (sítio B), para o domínio Bacteria, com as sequências depositadas no GenBank, utilizando o programa BLASTn.

Clone	Tamanho da sequência (pb)	Alinhamento mais significativo (GenBank ID)	Extensão do alinhamen to (%)	Valor E	Máxima identidade (%)	Ambiente	
BacR121	394	Uncultured Porphyrobacter sp. clone SW3-81 (AY568499.1)	99	0.0	98	C.E.* EUA	
BacR161	425	Uncultured Acidobacteria bacterium clone 20E14 (GQ342373.1)	100	0.0	95	Solo Alemanha	
BacR154	351	Uncultured Acidobacteria bacterium clone BG25-1 (HM439297.1)	99	8e-166	97	Solo Índia	
BacR162	384	Uncultured Clostridia bacterium clone X9Ba9 (AY607223.1)	99	0.0	97	Solo arrozal Alemanha	
BacR170	380	Uncultured bacterium clone waihai-41 (HQ338667.1)	100	0.0	98	Lago China	
BacR115	413	Uncultured Acidobacteria bacterium clone MSB-5ax8 (DQ811921.1)	99	0.0	95	Sedimento China	
BacR139	416	Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1)	99	0.0	99	Solo arrozal Itália	
BacR155	329	Uncultured bacterium partial 16S rRNA gene, clone HM42 (AM909900.1)	100	1e-157	97	Solo arrozal China	
BacR187	377	Uncultured bacterium clone DR323 (JF429326.1)	100	0.0	99	Água potável China	
BacR124	312	Uncultured bacterium clone S8-41 (EU669644.1)	99	7e-156	99	Solo China	
BacR132	349	Uncultured bacterium clone Amb_16S_1189 (EF018733.1)	99	2e-171	98	Rizosfera álamo EUA	
BacR148	367	Uncultured Chloroflexi bacterium clone 251 (AY935654.1)	98	3e-160	95	-	
BacR156	358	Uncultured Acidobacteria bacterium, isolate OTU14/APA (AM902640.1)	89	2e-156	98	-	
BacR172	393	Uncultured bacterium clone 2N1-64 (EU160016.1)	98	2e-172	95	-	
BacR101	289	Uncultured bacterium clone JH-WHS49 (EF492938.1)	99	5e-128	95	-	
BacR125	282	Uncultured Bacteroidetes bacterium, clone BuhC-1 (FM866271.1)	98	6e-132	97	Rejeitos urânio Bulgária	
BacR110	309	Uncultured bacterium clone FGL12_B96 (FJ437903.1)	99	2e-146	97	-	
BacR118	467	Uncultured bacterium, clone Y3L-22 (FM956626.1)	100	0.0	98	Rizosfera arrozal China	
BacR174	287	Uncultured Chloroflexi bacterium clone 251 (AY935654.1)	98	2e-122	95	-	
BacR127	291	Uncultured gamma proteobacterium clone HF009 (EF417600.1)	100	1e-149	100	Solo China	
BacR135	355	Uncultured bacterium, clone 13IF-H9 (FN995689.1)	99	1e-173	98	Solo cultivável China	
BacR112	349	Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1)	100	6e-177	99	Solo arrozal Itália	
BacR192	286	Uncultured bacterium clone 656064 (DQ404619.1)	97	4e-99	90	-	
BacR201	337	Paenibacillus edaphicus strain EA4-10 (<u>JF496422.1</u>)	100	1e-168	98	Solo China	
BacR209	446	Bacillus massiliensis strain 210 (<u>DQ350816.1</u>)	100	0.0	98	Cepa solo China	
BacR195	420	Paenibacillus sp. HM1 (AY283261.1)	99	0.0	98	Cepa solo China	
BacR235	423	Uncultured Bacteroidetes bacterium clone SepB-2 (EF032662.1)	100	0.0	95	Biofilme água Irlanda	
BacR243	423	Bacillus sp. DB-2 (<u>JF734331.1</u>)	100	0.0	99	Solo Rússia	
BacR212	356	Uncultured beta proteobacterium clone Al3hClone45 (<u>JF346065.1</u>)	100	0.0	99	Biofilme Singapura	

BacR236	BacR220	131	Uncultured bacterium clone 11-43 (GU562506.1)	97	5e-59	100	_
BacR197							_
BacR221 298							-
Burk 237 299 Uncultured bacterium (clone 99928 (Ay484733,1) 98 2e-147 98 Lodo ativado EUA BacR 238 340 Uncultured bacterium (clone E. 1.5 (1(0008596,1) 100 6e-167 98 Agus doce Argentina BacR 246 381 Uncultured bacterium (clone 656064 (Del04619,1) 96 4e-99 90 BacR 247 327 Uncultured bacterium (AB475020,1) 100 1e-163 98 Agus doce Argentina BacR 248 345 Uncultured bacterium (AB475020,1) 100 1e-163 98 Agus Suíça BacR 247 327 Uncultured bacterium (AB475020,1) 100 1e-159 96 Caverna EUA BacR 248 345 Uncultured bacterium (clone 58. LKC 2. UB203 (AM490709,1) 100 1e-159 96 Caverna EUA BacR 248 345 Uncultured bacterium (clone 14.4 (VIS ()) (293519,71) 100 0.0 95 Solo China BacR 188 603 Paenibacillus favisporus strain (GMP01 (NR_029071,1) 100 0.0 94 Estrume bovino Expanha BacR 248 540 Uncultured Planctomycetaceae bacterium (clone 08.3-74 (H0674919,1) 100 0.0 94 Minério China BacR 199 Uncultured Planctomycetaceae bacterium (clone 08.3-74 (H0674919,1) 100 0.0 94 Minério China BacR 191 570 Uncultured bacterium (Clone 15.7-74 (H0674919,1) 100 0.0 99 Minério China BacR 27 559 Uncultured bacterium (Clone 15.7-74 (H0674919,1) 100 0.0 99 Minério China BacR 34 205 Uncultured bacterium (Clone 10.7-74,1) 100 4e-85 95 Solimento do lago EUA BacR 550 540 Bacillus foraminis, type strain CV537 (AD717382,1) 99 0.0 98 Agus aubter. Portugal BacR 567 540 Bacillus foraminis, type strain CV537 (AD717382,1) 99 0.0 98 Agus aubter. Portugal BacR 568 540 Uncultured bacterium (Clone 17.1-10,1) (EM34434,1) 91 0.0 99 Foutes termas Bulgiria BacR 57 540 Uncultured bacterium (Clone 17.1-10,1) (EM34434,1) 99 0.0 99 Foutes termas Bulgiria BacR 58 540 Uncultured bacterium (Clone Clone 18.4 (H79504,1) 100 0.0 99 Foutes termas Bulgiria BacR 58 540 Uncultured bacterium (Clone Clone 18.4 (H7950							-
BacR238 340 Uncultured Rhodoferax sp. clone FL_51 (HO08596.]) 100 6e-167 98 Agua doce Argentina BacR246 381 Uncultured bacterium clone CCD21 (AY221035.1) 100 5e-153 92							Lodo ativado EUA
Back216							
Back207 289 Uncultured bacterium clone 655064 (DQ494619.1) 96 4e-99 90							
Back247 327 Uncultured beta proteobacterium (AB475020.1) 100 1e-163 98 Agua Suíça Back248 345 Uncultured bacterium, clone SS_LKC2_UB203 (AM490709.1) 100 1e-159 96 Cavera EUA Back73 561 Uncultured bacterium clone JH-GY05 (DQ351927.1) 100 0.0 95 Solo China Back78 603 Paenibacillus favisporus strain GMP01 (NR_020071.1) 100 0.0 94 Estrume bovino Españha Back78 540 Uncultured bacterium clone PN_B37 (JE32606.1.1) 100 0.0 93 Agua do moinho de arrox Alemanha Back74 550 Uncultured Planctomycetaceae bacterium clone S3-74 (HQ674919.1) 100 0.0 99 Agua do moinho de arrox Alemanha Back74 550 Uncultured bacterium (Index S3-74 (HQ674919.1) 100 0.0 99 Intestino de inseto Alemanha Back77 559 Uncultured bacterium clone DIG_F10 (QQ376582.1) 99 0.0 100 Solo faveira EUA Back73 205 Uncultured bacterium clone S1.B720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA Back81 205 Uncultured bacterium clone S1.B720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA Back859 540 Bacillus foraminis, type strain CV53T (AJ71.7382.1) 99 0.0 98 Agua subter. Portugal Back67 580 Uncultured bacterium, clone: MIZ12 (AB179503.1) 100 0.0 98 Agua subter. Portugal Back67 580 Uncultured gamma proteobacterium clone PT-119 (JP344243.1) 94 0.0 97 Sedimento marinho Españha Back84 556 Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 99 Fonts termis Budisfia Back44 556 Uncultured Aduamonas sp., clone V-W-86 (EM994919.1) 100 0.0 99 Agua moinho arrox Alemanha Back43 1415 Uncultured Rhodanobacter sp. clone LWM1-59 (H0674837.1) 100 0.0 99 Agua moinho arrox Alemanha Back43 1415 Uncultured Bacterium clone CG-834 (F3521628.1) 100 0.0 99 Agua moinho arrox Alemanha Back43 1415 Uncultured Comamonadaceae bacterium clone KBS.T. T.R.\$ (149504.2) 100 0.0 99 Agua moinho arrox Alemanha Back86 356 Uncultured Acidobacteria bacterium clone							-
Back248 345 Uncultured bacterium, clone SS, LKC22 (JB203 (AM490709.1) 100 1e-159 96 Caverna EUA BacR73 561 Uncultured bacterium clone JH-GVOS (DQ351927.1) 100 0.0 95 Solo China BacR78 603 Paenbacillus favisporus strain GMP01 (NR 029071.1) 100 0.0 94 Estrume bovino Espanha BacR74 590 Uncultured Planctomycetacea bacterium clone S3-74 (H0674919.1) 100 0.0 93 Agua do moinho de arroz Alemanha BacR19 570 Uncultured abcterium (AFS09578.1) 100 0.0 99 Intestino de inseto Alemanha BacR47 550 Uncultured bacterium clone D1G F10 (GQ376582.1) 99 0.0 100 Solo faviria EUA BacR43 205 Uncultured bacterium clone B1B720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA BacR59 540 Bacillus foraminis, type strain CV537 (AZI717382.1) 91 0.0 98 Agua doce Japão BacR67 580 Uncultured bacterium, clone: MIZ12 (AB179503.1) 90 0.0 98 Roc							-
BacR73 561 Uncultured bacterium clone JH-GY05 (D035)927,1) 100 0.0 95 Solo China BacR18 603 Paenibacillus favisporus strain GMP01 (NR 029071.1) 100 0.0 94 Estrume bovino Espanha BacR74 50 Uncultured Dalentomycetaceae bacterium clone S3-74 (HQ674919.1) 100 0.0 94 Mandio do dino do morbo de arrox Alemanha BacR19 570 Uncultured alpha proteobacterium (AF909578.1) 100 0.0 94 Minério China BacR41 590 Uncultured alpha proteobacterium (AF909578.1) 100 0.0 94 Minério China BacR41 550 Uncultured alpha proteobacterium clone SLB709 (D0787730.1) 100 0.0 99 Intestina do dissect Alemanha BacR51 570 Alpha proteobacterium TEGAFOI6 (AB470451.1) 91 0.0 98 Agua doce Japão BacR51 570 Alpha proteobacterium TEGAFOI6 (AB470451.1) 91 0.0 98 Agua subrer, Portugal BacR67 580 Bacillus foraminis, type strain CV537 (AJ717382.1) 99 0.0 98 <			· — ·				
Back18 603 Paenibacillus favisporus strain GMP01 (NR 029071.1) 100 0.0 94 Estrume bovino Espanha BacR58 540 Uncultured Danctomycetaceae bacterium clone NP-B37 (F326061.1) 100 0.0 93 Água do moinho de arroz Alemanha BacR19 570 Uncultured Planctomycetaceae bacterium (clone S3-74 (HQ674919.1) 100 0.0 99 Intestino de inseto Alemanha BacR47 559 Uncultured bacterium clone D1G [10 (G0376582.1) 99 0.0 100 Sol orderia EUA BacR43 205 Uncultured bacterium clone SLB720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA BacR51 570 Alpha proteobacterium TEGAP016 (AB470451.1) 91 0.0 98 Agua docc Japão BacR59 540 Bacillus foraminis, type strain CVS37 (AJ717382.1) 99 0.0 98 Agua docc Japão BacR67 580 Uncultured vaje patria ricido particido par							
Back58 540 Uncultured bacterium clone NP-B37 (JF326061.1) 100 0.0 93 Água do moinho de arroz Alemanha Back74 590 Uncultured Planctomycetaceae bacterium (clone S3-74 (HQ674919.1) 100 0.0 99 Minério China Back19 570 Uncultured bacterium (AF509578.1) 100 0.0 99 Intestino de inseto Alemanha Back27 559 Uncultured bacterium clone DIG_F10 (G0376582.1) 99 0.0 100 Solo faveira EUA Back51 570 Alpha proteobacterium Clone SLB720 (Q0787730.1) 100 4e-85 95 Sedimento do lago EUA Back51 570 Alpha proteobacterium TEGAF016 (AB470451.1) 91 0.0 98 Agua doce Japão Back59 540 Bacillus foraminis, type strain CV53T (AJ717382.1) 99 0.0 98 Agua subter. Portugal Back67 580 Uncultured cyanobacterium clone CPt-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha Back291 556 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 93 <td< td=""><td></td><td></td><td>\<u></u></td><td></td><td></td><td></td><td></td></td<>			\ <u></u>				
Back 590 Uncultured Planctomycetaceae bacterium clone S3-74 (HO674919.1) 100 0.0 94 Minério China							
BacR19 570 Uncultured alpha profeobacterium (AF509578.1) 100 0.0 99 Intestino de inseto Alemanha BacR27 559 Uncultured bacterium clone D1G_F10 (GQ376582.1) 99 0.0 100 Solo faveira EUA BacR43 205 Uncultured bacterium clone SLB720 (DQ978730.1) 1100 4e-85 95 Sedimento do lage EUA BacR51 570 Alpha proteobacterium TEGAF016 (AB470451.1) 91 0.0 98 Água doce Japão BacR67 580 Bacillus foraminis, type strain CV537 (AJ717382.1) 99 0.0 98 Agua subter. Portugal BacR67 580 Uncultured activinum, clone: MIZ12 (AB179503.1) 100 0.0 98 Rocha Japão BacR91 556 Uncultured activinum, clone PET-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha BacR44 556 Uncultured Aquamna proteobacterium clone CYstalBog571C8 (AY792283.1) 100 0.0 93 Lago húmico EUA BacR29 500 Uncultured Activitured Mizer CystalBog571C8 (AY792283.1) 100 0.0 99			<u> </u>				9
BacR27 559 Uncultured bacterium clone DIG_F10 (GQ376582.1) 99 0.0 100 Solo faveira EUA BacR43 205 Uncultured bacterium clone SLB720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA BacR51 570 Alpha proteobacterium TG6AF016 (AB47051.1) 91 0.0 98 Agua doce Japão BacR59 540 Bacillus foraminis, type strain CV53T (AJ717382.1) 99 0.0 98 Agua doce Japão BacR67 580 Uncultured bacterium, clone: MIZ12 (AB179503.1) 100 0.0 98 Rocha Japão BacR691 556 Uncultured vanobacterium clone PET-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha BacR44 556 Uncultured Aquamonas sp., clone VW-86 (EM994919.1) 100 0.0 93 Lago húmico EUA BacR37 304 Uncultured Apuamonas sp., clone VW-86 (EM994919.1) 100 0.0 99 Fontes termais Bulgária BacR45 415 Uncultured Apuamonas sp., clone VW-86 (EM994919.1) 100 0.0 99 Água moinho arrox Alemanha </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BacR43 205 Uncultured bacterium clone SLB720 (DQ787730.1) 100 4e-85 95 Sedimento do lago EUA BacR51 570 Alpha proteobacterium TEGAF016 (AB470451.1) 91 0.0 98 Agua doce Japão BacR59 540 Bacillus foraminis, type strain CV537 (AJ71382.1) 99 0.0 98 Agua subter. Portugal BacR67 580 Uncultured vanobacterium clone PET-119 (JF344243.1) 94 0.0 98 Rocha Japão BacR61 556 Uncultured cyanobacterium clone PET-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha BacR44 556 Uncultured eyanobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 93 Lago Múnico EUA BacR43 556 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR43 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HO674837.1) 100 2e-138 96 Minério China BacR43 415 Uncultured Aquamonas age clone LWM1-59 (HO674837.1) 100 0.0 99	BacR19	570	Uncultured alpha proteobacterium (AF509578.1)	100	0.0	99	Intestino de inseto Alemanha
BacR51 570 Alpha proteobacterium TEGAF016 (AB470451.1) 91 0.0 98 Agua doce Japão	BacR27	559	Uncultured bacterium clone D1G_F10 (GQ376582.1)	99	0.0	100	Solo faveira EUA
BacR59 540 Bacillus foraminis, type strain CV53T (AJ717382.1) 99 0.0 98 Água subter. Portugal BacR67 580 Uncultured bacterium, clone: MIZ12 (AB179503.1) 100 0.0 98 Roscha Japão BacR91 556 Uncultured cyanobacterium clone PET-119 (JF344243.1) 94 0.0 97 Sedimento mariño le Spanha BacR44 556 Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 93 Lago húmico EUA BacR39 500 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HQ674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR53 292 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR77 448 Uncultured Acidobacteria bacterium clone KBS, T1_RS, 149261_c10 (HM062262.1) 100<	BacR43	205	Uncultured bacterium clone SLB720 (<u>DQ787730.1</u>)	100	4e-85	95	Sedimento do lago EUA
BacR67 580 Uncultured bacterium, clone: MIZ12 (AB179503.) 100 0.0 98 Rocha Japão BacR91 556 Uncultured cyanobacterium clone PET-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha BacR44 556 Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 93 Lago húmico EUA BacR29 500 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HQ674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured Bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR77 448 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR60 476 Uncultured Acidobacteria bacterium clone KBS. T1 R5 [49261_c10 (HM062262.1) 100 0.0 98 Água moinho arroz Alemanha BacR83 356 Uncultured cyanobacterium clone SC3-19 (DQ28927.1) 92	BacR51	570	Alpha proteobacterium TEGAF016 (AB470451.1)	91	0.0	98	Água doce Japão
BacR91 556 Uncultured cyanobacterium clone PET-119 (JF344243.1) 94 0.0 97 Sedimento marinho Espanha BacR44 556 Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 93 Lago húmico EUA BacR29 500 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HQ674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR53 292 Uncultured Comamonadaceae bacterium clone MIDBa01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR77 448 Uncultured Comamonadaceae bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 4 Solo arrozal Itália BacR62 476 Uncultured bacterium clone CC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR86 356 Uncultured Vanthomonadaceae bacterium clone	BacR59	540	Bacillus foraminis, type strain CV53T (AJ717382.1)	99	0.0	98	Água subter. Portugal
BacR44 556 Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1) 100 0.0 93 Lago húmico EUA BacR29 500 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (Hg674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR53 292 Uncultured bacterium, clone A30 (FR687530.1) 100 4e-140 97 Solo arrozal Itália BacR77 448 Uncultured Acidobacteria bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR80 443 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 4 Agua moinho arroz Alemanha BacR86 356 Uncultured Acidobacterium clone SC3-19 (DQ289927.1) 92 3e-130 92 - BacR87 462 Uncultured Acidobacterium clone D13.0068 (EF457342.1)	BacR67	580	Uncultured bacterium, clone: MIZ12 (AB179503.1)	100	0.0	98	Rocha Japão
BacR29 500 Uncultured Aquamonas sp., clone VW-86 (FM994919.1) 100 0.0 99 Fontes termais Bulgária BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HO674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinha arroz Alemanha BacR53 292 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 100 4e-140 97 Solo arrozal Itália BacR77 448 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR30 443 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 - BacR62 476 Uncultured Cyanobacterium clone SC3-19 (DO289927.1) 92 3e-130 92 - BacR86 356 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo Mécico BacR87 462 Uncultured Acidobacteria bacterium clone E13.0068 (EF457342.1) 100 <td< td=""><td>BacR91</td><td>556</td><td>Uncultured cyanobacterium clone PET-119 (JF344243.1)</td><td>94</td><td>0.0</td><td>97</td><td>Sedimento marinho Espanha</td></td<>	BacR91	556	Uncultured cyanobacterium clone PET-119 (JF344243.1)	94	0.0	97	Sedimento marinho Espanha
BacR37 304 Uncultured Rhodanobacter sp. clone LWM1-59 (HQ674837.1) 100 2e-138 96 Minério China BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR53 292 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 100 4e-140 97 Solo arrozal Itália BacR77 448 Uncultured Comamonadaceae bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 94 Solo arrozal Itália BacR62 476 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 - BacR86 356 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR87 462 Uncultured cyanobacterium clone BCS-19 (DQ289927.1) 92 3e-130 92 - BacR87 462 Uncultured Acidobacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100	BacR44	556	Uncultured gamma proteobacterium clone CrystalBog571C8 (AY792283.1)	100	0.0	93	Lago húmico EUA
BacR45	BacR29	500	Uncultured Aquamonas sp., clone VW-86 (FM994919.1)	100	0.0	99	Fontes termais Bulgária
BacR45 415 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 99 Água moinho arroz Alemanha BacR53 292 Uncultured bacterium, clone A30 (FR687530.1) 100 4e-140 97 Solo arrozal Itália BacR77 448 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR30 443 Uncultured Acidobacteria bacterium clone KBS_T1_R\$_149261_c10 (HM062262.1) 100 0.0 92 - BacR62 476 Uncultured cyanobacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR63 356 Uncultured obacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR64 356 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR65 356 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR74 462 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0	BacR37	304	Uncultured Rhodanobacter sp. clone LWM1-59 (HQ674837.1)	100	2e-138	96	Minério China
BacR53 292 Uncultured bacterium, clone A30 (FR687530.1) 100 4e-140 97 Solo arrozal Itália BacR77 448 Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1) 98 0.0 94 Solo arrozal Itália BacR30 443 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 - BacR62 476 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR86 356 Uncultured cyanobacterium clone SC3-19 (DQ289927.1) 92 3e-130 92 - BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone t013.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR04 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99	BacR45	415		100	0.0	99	Água moinho arroz Alemanha
BacR30 443 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 - BacR62 476 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR86 356 Uncultured cyanobacterium clone SC3-19 (DQ289927.1) 92 3e-130 92 - BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR40 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99 Cepa solo Corea do Sul BacR14 388 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (FM956947.1) 99 2e-127 96	BacR53	292	Uncultured bacterium, clone A30 (FR687530.1)	100	4e-140	97	Solo arrozal Itália
BacR30 443 Uncultured Acidobacteria bacterium clone KBS_T1_R5_149261_c10 (HM062262.1) 100 0.0 92 - BacR62 476 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR86 356 Uncultured cyanobacterium clone SC3-19 (DQ289927.1) 92 3e-130 92 - BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR40 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99 Cepa solo Corea do Sul BacR14 388 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium clone D41S30C71 (FM956947.1) 99 2e-127 96	BacR77	448	Uncultured Comamonadaceae bacterium clone M10Ba01 (AY360593.1)	98	0.0	94	Solo arrozal Itália
BacR62 476 Uncultured bacterium clone OC-B34 (JF326128.1) 100 0.0 98 Água moinho arroz Alemanha BacR86 356 Uncultured cyanobacterium clone SC3-19 (DQ289927.1) 92 3e-130 92 - BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR40 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (HM184941.1) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (FM956947.1) 99 2e-127 96 <td< td=""><td>BacR30</td><td>443</td><td></td><td>100</td><td>0.0</td><td>92</td><td>-</td></td<>	BacR30	443		100	0.0	92	-
BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR40 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (HM184941.1) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (FM956947.1) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (HQ318605.1) 98 2e-132 94 -	BacR62	476		100	0.0	98	Água moinho arroz Alemanha
BacR23 458 Uncultured Xanthomonadaceae bacterium clone t021f8 (HM438443.1) 95 0.0 97 Solo México BacR87 462 Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1) 100 0.0 96 Sedimento contaminado EUA BacR40 324 Uncultured bacterium clone HWB2224-3-1 (HM243847.1) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (HM184941.1) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (EF672049.1) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (FM956947.1) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (HQ318605.1) 98 2e-132 94 -	BacR86	356	Uncultured cyanobacterium clone SC3-19 (DQ289927.1)	92	3e-130	92	-
BacR40 324 Uncultured bacterium clone HWB2224-3-1 (<u>HM243847.1</u>) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (<u>HM184941.1</u>) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (<u>FM956947.1</u>) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -	BacR23						Solo México
BacR40 324 Uncultured bacterium clone HWB2224-3-1 (<u>HM243847.1</u>) 95 7e-127 93 - BacR05 284 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (<u>HM184941.1</u>) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (<u>FM956947.1</u>) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -	BacR87	462	Uncultured Acidobacteria bacterium clone D13.0068 (EF457342.1)	100	0.0	96	Sedimento contaminado EUA
BacR05 284 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 2e-142 99 Cepa solo Corea do Sul BacR06 356 Uncultured bacterium clone bac18 (<u>HM184941.1</u>) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (<u>FM956947.1</u>) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -	BacR40				7e-127		-
BacR06 356 Uncultured bacterium clone bac18 (<u>HM184941.1</u>) 100 4e-169 97 Fontes termais China BacR14 388 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (<u>FM956947.1</u>) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -			<u> </u>				Cepa solo Corea do Sul
BacR14 388 Pseudomonas fluorescens strain Mc07 (<u>EF672049.1</u>) 100 0.0 99 Cepa solo Corea do Sul BacR07 280 Uncultured bacterium, clone D41S30C71 (<u>FM956947.1</u>) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -			\(\frac{1}{2}\)				Fontes termais China
BacR07 280 Uncultured bacterium, clone D41S30C71 (FM956947.1) 99 2e-127 96 Solo arrozal China BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (HQ318605.1) 98 2e-132 94 -			\ <u></u>				Cepa solo Corea do Sul
BacR120 312 Uncultured soil bacterium clone DLQAHT9C2 (<u>HQ318605.1</u>) 98 2e-132 94 -		_				96	
							-
	BacR39	263	Uncultured Comamonadaceae bacterium clone BacR112 (HQ912194.1)	100	2e-117	96	Solo Brasil

Apêndice 3

Resultados das comparações das sequências parciais do gene 16S rRNA da biblioteca do solo da pastagem nativa (sítio A), para o domínio Archaea, com as sequências depositadas no GenBank, utilizando o programa BLASTn.

Clone	Tamanho da sequência	Alinhamento mais significativo (GenBank ID)	Extensão do alinhamento	Valor E	Máxima identidade	Ambiente
	(pb)		(%)		(%)	
ArcS1E09	416	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	98	-
ArcS1E33	383	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	98	-
ArcS1E49	305	Uncultured archaeon clone ARCdr-379 (GQ127245.1)	100	8e-151	98	Solo China
ArcS1E73	364	Uncultured archaeon clone HBA22 (FJ455765.1)	100	1e-173	97	-
ArcS1E81	366	Uncultured archaeon clone CR11 (AY603059.1)	100	0.0	98	-
ArcS1E89	318	Uncultured archaeon, clone WBarchA3 (FN257650.1)	99	1e-158	99	-
ArcS1E02	407	Uncultured archaeon clone AVSSEQ22 (HQ269052.1)	99	0.0	99	-
ArcS1E10	327	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	3e-165	99	-
ArcS1E18	380	Uncultured archaeon clone CR11 (AY603059.1)	100	0.0	98	
ArcS1E26	295	Uncultured archaeon clone LR-305 (<u>DQ302464.1</u>)	100	7e-147	98	-
ArcS1E42	320	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	1e-153	98	-
ArcS1E50	316	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	8e-151	97	-
ArcS1E58	347	Uncultured archaeon clone Elev_16S_arch_1578 (EF022241.1)	99	6e-162	96	Rizosfera faia EUA
ArcS1E66	418	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	99	-
ArcS1E82	411	Uncultured archaeon clone CR11 (AY603059.1)	100	0.0	98	-
ArcS1E90	313	Uncultured archaeon clone S26 (EF029711.1)	100	4e-154	98	-
ArcS1E19	297	Uncultured archaeon clone HBA90 (GU434685.1)	100	2e-141	97	-
ArcS1E43	260	Uncultured archaeon clone HSZ-Q37 (HQ267259.1)	100	2e-127	98	-
ArcS1E51	299	Uncultured archaeon clone HBA342 (FJ490672.1)	100	2e-142	97	-
ArcS1E75	294	Uncultured crenarchaeon, clone FJQBAA20 (AM039533.1)	100	1e-144	98	-
ArcS1E91	219	Uncultured archaeon clone 660mArA8 (AY367312.1)	100	2e-106	99	-
ArcS1E36	375	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	100	0.0	98	-
ArcS1E60	298	Uncultured archaeon clone M2-6Ar07 (<u>HM998417.1</u>)	100	7e-127	94	-
ArcS1E68	363	Uncultured archaeon clone CR11 (AY603059.1)	100	1e-174	97	-
ArcS1E76	299	Uncultured ammonia-oxidizing archaeon FQ-LF-Archaea-OTU1-S5-R19 (HQ678245.1)	100	2e-151	99	-
ArcS1E84	322	Uncultured archaeon clone CR38 (AY603060.1)	100	3e-155	97	-
ArcS1E92	285	Uncultured archaeon clone CR11 (AY603059.1)	100	5e-138	98	Solo árido EUA
ArcS1E05	329	Uncultured archaeon clone AVSSEQ18 (<u>HQ269050.1</u>)	100	2e-167	99	
ArcS1E13	361	Uncultured crenarchaeote clone H4 (<u>JF694354.1</u>)	100	0.0	99	Solo bacia sedimentar Brasil
ArcS1E37	422	Uncultured archaeon clone HBA22 (FJ455765.1)	100	0.0	98	
ArcS1E85	423	Uncultured archaeon clone SevArch-01 (AF443589.1)	100	0.0	99	-

		T	T	T		1
ArcS1E06	397	Uncultured archaeon clone CR11 (<u>AY603059.1</u>)	100	0.0	98	-
ArcS1E30	423	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	99	-
ArcS1E38	377	Uncultured archaeon clone HBA342 (<u>FJ490672.1</u>)	100	0.0	97	-
ArcS1E94	443	Uncultured archaeon clone 660mArA8 (<u>AY367312.1</u>)	100	0.0	97	-
ArcS1E15	452	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	99	-
ArcS1E55	389	Uncultured archaeon clone HBA342 (<u>FJ490672.1</u>)	100	0.0	98	-
ArcS1E71	365	Uncultured archaeon clone Hswa-22 (GU113016.1)	99	1e-159	95	-
ArcS1E87	344	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	5e-168	98	-
ArcS1E95	405	Uncultured crenarchaeote clone TX4CA_67 (EF690622.1)	100	0.0	97	-
ArcS1E08	396	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	99	-
ArcS1E16	513	Uncultured archaeon clone 660mArA10 (AY367310.1)	100	0.0	97	-
ArcS1E72	389	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	98	-
ArcS1E88	416	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	0.0	99	-
ArcS1E96	413	Uncultured archaeon clone Hswa-22 (GU113016.1)	99	0.0	96	-
ArcS2E153	367	Uncultured crenarchaeote clone ArcC-s_cB10 (EU307039.1)	100	0.0	99	-
ArcS2E161	302	Uncultured Candidatus Nitrososphaera sp. clone G11 (<u>JF694380.1</u>)	100	4e-154	99	-
ArcS2E185	319	Uncultured archaeon clone HBA342 (<u>FJ490672.1</u>)	100	3e-155	98	-
ArcS2E146	534	Uncultured soil archaeon clone SLG-321 (EU365283.1)	98	2e-167	96	-
ArcS2E178	132	Uncultured crenarchaeote clone B1 (<u>JF694332.1</u>)	100	3e-61	100	Solo sedimentar Brasil
ArcS2E186	272	Uncultured archaeon clone CR38 (<u>AY603060.1</u>)	100	2e-132	98	-
ArcS2E179	308	Uncultured archaeon, clone WBarchA3 (FN257650.1)	99	5e-143	97	-
ArcS2E187	248	Uncultured archaeon clone CR11 (AY603059.1)	100	5e-123	99	-
ArcS2E156	318	Uncultured archaeon clone TP-SL-A-7 (HQ738974.1)	99	5e-153	97	-
ArcS2E172	243	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	97	2e-117	99	-
ArcS2E180	343	Uncultured archaeon clone 660mArA8 (AY367312.1)	100	6e-167	97	-
ArcS2E165	391	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	98	-
ArcS2E173	387	Uncultured archaeon clone LR-305 (<u>DQ302464.1</u>)	100	0.0	98	-
ArcS2E158	377	Uncultured archaeon clone sw-a32 (GQ302595.1)	100	0.0	99	-
ArcS2E174	364	Uncultured crenarchaeote clone ArcC-s_cB10 (EU307039.1)	100	0.0	100	-
ArcS2E190	364	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	0.0	99	-
ArcS2E175	383	Uncultured archaeon clone HBA342 (FJ490672.1)	100	0.0	97	-
ArcS2E184	350	Uncultured archaeon clone AVSSEQ22 (HQ269052.1)	100	2e-177	99	-
ArcS2E192	417	Uncultured archaeon clone ARCu-283 (GQ127303.1)	100	0.0	99	-
ArcS2E41	390	Uncultured archaeon clone Hswa-22 (GU113016.1)	99	3e-175	95	-
ArcS2E65	451	Uncultured archaeon clone SevArch-01 (AF443589.1)	100	0.0	98	-
ArcS2E73	401	Uncultured archaeon clone SDG-350 (EU371893.1)	99	0.0	98	Solo China
ArcS2E81	441	Uncultured archaeon clone SevArch-01 (AF443589.1)	100	0.0	98	-
ArcS2E18	403	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	0.0	98	-

ArcS2E58	345	Uncultured crenarchaeote clone TX4CA_67 (<u>EF690622.1</u>)	100	1e-174	99	-
ArcS2E66	418	Uncultured archaeon clone LR-305 (<u>DQ302464.1</u>)	100	0.0	98	-
ArcS2E27	337	Uncultured archaeon clone SevArch-01 (AF443589.1)	94	3e-160	99	-
ArcS2E43	239	Uncultured archaeon clone LIM-A50 (JF737823.1)	100	8e-116	98	-
ArcS2E67	407	Uncultured archaeon clone SDG-350 (EU371893.1)	96	0.0	97	Solo China
ArcS2E75	260	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	5e-123	98	-
ArcS2E28	327	Uncultured archaeon clone HBA22 (<u>FJ455765.1</u>)	100	2e-156	97	-
ArcS2E44	348	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	1e-173	98	-
ArcS2E68	315	Uncultured archaeon clone HBA342 (FJ490672.1)	100	1e-154	98	-
ArcS2E78	347	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	1e-169	98	-
ArcS2E31	347	Uncultured archaeon clone TX1E08 (FJ784246.1)	100	3e-170	98	-
ArcS2E95	298	Uncultured archaeon clone C1Ar1G03 (FJ874789.1)	98	4e-144	98	-
ArcS2E40	349	Candidatus Nitrososphaera gargensis (GU797786.1)	95	6e-152	96	-
ArcS2E17	353	Uncultured archaeon, clone WBarchA3 (FN257650.1)	100	2e-167	97	-
ArcS2E36	328	Uncultured archaeon clone TX1E08 (FJ784246.1)	99	2e-162	98	-
ArcS2E37	336	Unidentified archaeon clone DD1E03.x01 (EF430773.1)	100	6e-162	97	-
ArcS2E53	390	Uncultured archaeon, clone WBarchA3 (FN257650.1)	99	0.0	97	-
ArcS2E79	351	Uncultured archaeon clone ARCu-417 (GQ127446.1)	100	1e-179	99	-
ArcS2E72	379	Uncultured crenarchaeote clone H4 (<u>JF694354.1</u>)	100	0.0	98	Solo bacia sedimentar Brasil

Apêndice 4

Resultados das comparações das sequências parciais do gene 16S rRNA da biblioteca do solo da pastagem sob cultivo (sítio B), para o domínio Archaea, com as sequências depositadas no GenBank, utilizando o programa BLASTn.

Clone	Tamanho da sequência	Alinhamento mais significativo (GenBank ID)	Extensão do alinhamento	Valor E	Máxima identida	Ambiente
	(pb)		(%)		de (%)	
ArcR01	419	Uncultured euryarchaeote, clone:KuA16 (AB077226.1)	99	0.0	96	Água contaminada óleo Japão
ArcR09	326	Uncultured Crenarchaeotes archaeon clone QEEE1BD031 (CU916921.1)	100	4e-169	100	Digestor anaeróbio França
ArcR17	430	Uncultured archaeon clone TG_FD_0.7_May_09_A026 (HQ532956.1)	94	0.0	97	-
ArcR25	338	Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	100	4e-169	98	-
ArcR33	291	Uncultured archaeon clone NO-32 (GQ906632.1)	100	9e-136	96	-
ArcR41	329	Uncultured archaeon clone Aug05-F4-pVIII-A11 (HQ592619.1)	99	5e-143	95	Lodo ativado EUA
ArcR49	328	Uncultured Methanosaeta sp. clone 3_13_1 (GU332372.1)	99	1e-164	99	Sedimento estuarino R. Unido
ArcR57	327	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	3e-160	98	Sedimento de lago Egito
ArcR65	328	Uncultured archaeon clone C1AS5CA03 (GU127566.1)	100	6e-167	99	-
ArcR73	322	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	100	5e-163	99	-
ArcR81	340	Uncultured archaeon clone 9(8) (<u>JF304112.1</u>)	99	1e-144	94	Sedimento de emissário China
ArcR89	268	Uncultured archaeon clone TDA45 (FJ793144.1)	99	9e-121	96	-
ArcR02	355	Uncultured archaeon clone ArSMyy06 (HQ269196.1)	100	6e-177	98	-
ArcR18	350	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	1e-178	99	Sedimento de lago China
ArcR42	267	Uncultured archaeon clone ARCu-269 (GQ127609.1)	100	5e-133	99	-
ArcR50	311	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	1e-153	99	Sedimento de lago China
ArcR58	263	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	100	2e-132	99	-
ArcR66	355	Uncultured archaeon clone sl3191 (EU244216.1)	97	4e-179	99	Sedimento de rio Alemanha
ArcR74	320	Uncultured archaeon clone ARCu-269 (GQ127609.1)	100	4e-159	98	-
ArcR82	301	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	2e-151	99	Sedimento de lago China
ArcR11	244	Uncultured Methanosarcinales archaeon clone YHN-4 (<u>JF495101.1</u>)	100	1e-123	100	Lodo de águas residuais China
ArcR19	250	Uncultured archaeon clone HWA1012-1-38 (HM244083.1)	98	7e-122	99	Sedimento de lago China
ArcR27	250	Uncultured archaeon clone 5(2) (<u>JF304146.1</u>)	99	2e-126	100	Sedimento de emissário China
ArcR35	299	Uncultured Methanosaeta sp. clone 3_20_1 (GU332375.1)	99	7e-132	95	Sedimento estuarino R.Unido
ArcR43	238	Uncultured archaeon clone Arc-RB45 (FJ584359.1)	99	2e-111	97	-
ArcR67	255	Uncultured archaeon clone CHDF F13 (GU366918.1)	100	2e-126	99	-
ArcR75	252	Uncultured archaeon clone HTA-C1 (AF418929.1)	100	5e-123	98	Água doce EUA
ArcR83	274	Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	100	1e-138	99	-
ArcR04	393	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	99	0.0	98	-
ArcR12	231	Uncultured Methanosarcinales archaeon clone LTS-16 (HQ636670.1)	100	1e-114	99	Água geyser Chile
ArcR20	295	Uncultured archaeon clone SSA0101-8 (HM159364.1)	99	4e-149	99	-
ArcR28	254	Uncultured archaeon clone 5(2) (JF304146.1)	99	1e-128	100	Sedimento de emissário China
ArcR36	274	Uncultured archaeon clone LTS-33 (HQ636691.1)	100	7e-137	99	-
ArcR52	302	Uncultured archaeon clone NR9_09_051 (HQ654880.1)	100	2e-142	97	-

ArcR68	322	Uncultured archaeon clone rDu1100-A7 (FJ822553.1)	99	2e-147	96	Rizoplano de planta pântano EUA
ArcR76	246	Uncultured archaeon clone SSA0101-8 (HM159364.1)	100	5e-123	99	-
ArcR84	356	Uncultured archaeon clone EV818EB5CPSAJJ137 (DQ337056.1)	100	2e-177	98	-
ArcR13	392	Uncultured archaeon, clone: HC-E2 (AB288248.1)	95	1e-168	95	-
ArcR21	328	Uncultured archaeon clone NBLA28H (GU388927.1)	100	7e-127	92	Digestor anaeróbio EUA
ArcR29	350	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	100	0.0	99	-
ArcR37	359	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	7e-176	98	Sedimento de lago Egito
ArcR45	317	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	99	2e-160	99	-
ArcR53	321	Uncultured archaeon clone CHDF F13 (GU366918.1)	100	4e-163	99	-
ArcR61	365	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	99	5e-177	97	-
ArcR69	407	Uncultured archaeon, clone:ASC21 (AB161326.1)	99	0.0	99	-
ArcR77	337	Uncultured archaeon, clone:ASN4 (AB161344.1)	100	1e-162	97	-
ArcR85	346	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	100	1e-178	99	-
ArcR06	348	Uncultured archaeon 39-2 (AF424769.1)	99	3e-179	99	Lodo ativado EUA
ArcR14	354	Uncultured archaeon clone NO-01 (GQ906618.1)	100	1e-173	98	-
ArcR22	364	Uncultured archaeon clone EV818DRLWSAQ (DQ336965.1)	99	0.0	99	-
ArcR30	357	Uncultured crenarchaeote clone LTS-8 (HQ636662.1)	100	0.0	99	-
ArcR38	303	Uncultured archaeon clone JOT245-15A(R5) (JF509149.1)	100	1e-124	93	-
ArcR46	328	Uncultured archaeon, clone: Hados.Water.Arch.9_(AB355104.1)	100	5e-167	99	Água de lago Egito
ArcR54	362	Methanosarcina sp. HB-1 (AB288262.3)	99	0.0	98	Água subter. Japão
ArcR62	319	Uncultured archaeon clone Aug05-F4-pVIII-A11 (HQ592619.1)	99	7e-141	95	Lodo ativado EUA
ArcR78	321	Uncultured archaeon clone TDA07 (FJ793133.1)	99	1e-143	95	Águas termais Tailândia
ArcR86	327	Uncultured archaeon clone 3(25) (JF304137.1)	99	7e-156	97	-
ArcR94	269	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	100	1e-133	99	Sedimento de lago China
ArcR07	345	Uncultured Methanosaetaceae archaeon clone ZZ-arc-11-11-10 (FJ156090.1)	100	4e-173	98	Aquifero contaminado Alemanha
ArcR15	351	Uncultured archaeon clone NO-21 (GQ906626.1)	100	9e-165	96	-
ArcR23	334	Uncultured archaeon clone MH1492_B1A (EU155963.1)	99	9e-160	97	Minério EUA
ArcR31	336	Uncultured archaeon clone sl3191 (EU244216.1)	97	0.0	99	Sedimento de rio Alemanha
ArcR39	301	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	3e-150	99	-
ArcR55	300	Uncultured archaeon clone LCDARCH114 (EU247283.1)	99	2e-127	94	-
ArcR63	312	Uncultured archaeon clone R6aC5Day609 (HQ315900.1)	100	9e-155	98	Efluente Irlanda
ArcR71	368	Uncultured crenarchaeote clone ArcC-s_cB10 (EU307039.1)	100	0.0	98	-
ArcR79	356	Uncultured archaeon clone A125E11 (FJ455940.1)	100	2e-162	96	Sedimento marinho EUA
ArcR95	260	Uncultured archaeon clone NO-32 (GQ906632.1)	100	9e-114	95	-
ArcR24	318	Uncultured archaeon, clone: TR0-L01 (AB538512.1)	100	7e-140	95	-
ArcR40	349	Uncultured euryarchaeote clone EC081.4 (JF789822.1)	100	0.0	100	-
ArcR48	352	Uncultured archaeon, clone:ASC21 (AB161326.1)	100	0.0	99	-
ArcR64	364	Uncultured Methanosaetaceae archaeon clone ZZ-arc-11-11-10 (FJ156090.1)	100	2e-170	96	Aquifero contaminado Alemanha
ArcR72	330	Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	99	3e-163	98	-
ArcR80	366	Uncultured archaeon clone MWC118AR_7 (HM583602.1)	100	3e-158	94	Lago Indonésia
ArcR88	350	Uncultured archaeon clone C1AS5CA03 (GU127566.1)	100	0.0	99	-
ArcR96	404	Uncultured archaeon clone ARC-U3SP-11 (AY456739.1)	94	0.0	99	Solo EUA
ArcR105	318	Uncultured crenarchaeote VAL151 (AJ131316.1)	100	4e-132	93	-

ArcR113	319	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	2e-161	99	Sedimento de lago China
ArcR121	345	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	3e-174	99	Sedimento de lago China
ArcR129	288	Uncultured archaeon clone ACWCSP1C3 (FJ705109.1)	99	1e-147	100	Sedimento Índia
ArcR145	354	Uncultured archaeon clone C1AS5CA03 (GU127566.1)	100	0.0	99	-
ArcR153	292	Uncultured archaeon clone NO-01 (GQ906618.1)	100	6e-141	97	-
ArcR161	328	Uncultured archaeon clone TDA07 (FJ793133.1)	99	5e-147	95	Águas termais Tailândia
ArcR177	293	Uncultured archaeon clone R6aC5Day609 (HQ315900.1)	99	4e-148	99	Efluente Irlanda
ArcR106	283	Uncultured archaeon, clone: TR0-AC1 (AB538528.1)	98	1e-138	98	Água de estuário Japão
ArcR114	301	Uncultured archaeon, clone:ASC21 (AB161326.1)	98	4e-143	97	-
ArcR130	330	Uncultured archaeon clone EV818EB5CPSAJJ137 (DQ337056.1)	100	4e-168	99	-
ArcR138	226	Uncultured archaeon, clone:ASC21 (AB161326.1)	100	1e-113	100	-
ArcR162	274	Uncultured archaeon clone HTA-C1 (AF418929.1)	98	9e-125	98	-
ArcR178	258	Uncultured archaeon clone HTA-C1 (AF418929.1)	98	9e-125	98	Água doce EUA
ArcR99	239	Uncultured archaeon, clone ArcIV_cloneF06 (FN870267.1)	100	3e-119	99	Água de mina de carvão Alemanha
ArcR115	244	Uncultured archaeon clone TDA45 (FJ793144.1)	99	2e-120	99	-
ArcR123	233	Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	100	7e-116	99	-
ArcR131	225	Uncultured Methanosarcinales archaeon clone LTS-25 (HQ636683.1)	100	4e-113	100	Água geyser Chile
ArcR155	242	Uncultured archaeon clone 5(2) (JF304146.1)	99	5e-122	100	Sedimento de emissário China
ArcR163	249	Uncultured archaeon, clone:ASC21 (AB161326.1)	100	4e-118	97	-
ArcR179	248	Uncultured archaeon clone 3(25) (JF304137.1)	99	4e-112	96	-
ArcR108	231	Uncultured archaeon, clone: ASC21 (AB161326.1)	100	1e-116	100	-
ArcR116	300	Uncultured archaeon, clone:ASC21 (AB161326.1	98	2e-134	96	-
ArcR132	292	Uncultured archaeon clone LCDARCH17 (EU247264.1)	99	8e-129	95	-
ArcR140	290	Uncultured archaeon clone EV818EB5CPSAJJ137 (DQ337056.1)	100	1e-142	98	-
ArcR148	304	Uncultured archaeon, clone ArcIV_cloneC05 (FN870256.1)	99	2e-154	99	Água de mina de carvão Alemanha
ArcR164	334	Uncultured archaeon clone 3(25) (<u>JF304137.1</u>)	99	1e-151	96	-
ArcR180	274	Uncultured archaeon clone LTA44 (HQ330678.1)	98	4e-137	99	Sedimento Austrália
ArcR101	261	Uncultured archaeon clone 5(2) (JF304146.1)	99	1e-132	100	Sedimento de emissário China
ArcR109	357	Uncultured crenarchaeote clone LTS-24 (HQ636682.1)	100	0.0	99	-
ArcR117	322	Uncultured archaeon clone HWA1012-2-89 (HM244360.1)	100	6e-165	99	-
ArcR125	329	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	4e-167	99	Sedimento de lago China
ArcR133	372	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	0.0	98	-
ArcR141	303	Uncultured archaeon clone SSA0101-8 (HM159364.1)	99	5e-151	99	-
ArcR157	328	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	5e-161	98	Sedimento de lago Egito
ArcR165	246	Uncultured Methanosaetaceae archaeon isolate DGGE gel band O30 (GU734643.1)	100	3e-118	98	Sedimento de rio Alemanha
ArcR173	346	Uncultured archaeon, clone ArcIV_cloneC05 (FN870256.1)	99	1e-176	99	Água de mina de carvão Alemanha
ArcR181	323	Uncultured Methanosarcinales archaeon clone LTS-23 (HQ636681.1)	100	4e-162	99	Água geyser Chile
ArcR102	300	Uncultured methanogenic archaeon, clone FenC2-16S (AJ548942.1)	99	2e-144	98	Brejo oligotrófico Finlâdia
ArcR110	299	Uncultured archaeon clone A05Ch130 (HQ269178.1)	100	2e-154	100	-
ArcR118	326	Uncultured archaeon clone HWA1012-2-89 (HM244360.1)	100	1e-167	99	-
ArcR126	328	Uncultured archaeon, clone: ASC34 (AB161335.1)	99	1e-162	98	Solo contaminado oleo Japão
		Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	100	3e-148	98	*
ArcR134	303	Uncultured archaeon, clone: Hados. water. Arch. 9 (AB 353 104.1)	100	36-146	90	-

ArcR166	355	Uncultured archaeon, clone K1_3_A6 (AM910729.1)	100	4e-157	95	-
ArcR182	369	Uncultured archaeon clone C1AS5CA03 (GU127566.1)	100	0.0	98	-
ArcR103	327	Uncultured archaeon clone HTA-C7 (AF418931.1)	100	1e-146	95	Água doce EUA
ArcR111	279	Uncultured archaeon, clone:ASC21 (AB161326.1)	98	1e-132	98	-
ArcR119	330	Uncultured archaeon clone HWA2224-2-55 (HM244099.1)	100	6e-170	99	Sedimento de lago China
ArcR127	319	Uncultured archaeon, clone A50 (FR845761.1)	100	8e-164	99	Sediment R. Unido
ArcR135	325	Uncultured euryarchaeote clone H13 (EU910628.1)	99	5e-151	96	Sediment EUA
ArcR143	301	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	1e-151	99	Sedimento de lago China
ArcR151	351	Uncultured archaeon clone TDA83 (FJ793149.1)	99	2e-164	96	Águas termais Tailândia
ArcR159	322	Uncultured archaeon, clone: Baqar.Sedi.Arch.10 (AB355115.1)	100	4e-162	99	-
ArcR167	298	Uncultured archaeon, clone: Hados.Water.Arch.9 (AB355104.1)	100	1e-146	98	-
ArcR175	232	Uncultured archaeon clone 7(13) (JF304113.1)	100	2e-115	99	Sedimento de emissário China
ArcR183	284	Uncultured archaeon clone BR4-23 (HQ440108.1)	100	2e-134	97	Águas residuais China
ArcR104	360	Uncultured crenarchaeote clone LTS-8 (<u>HQ636662.1</u>)	100	0.0	100	-
ArcR112	357	Uncultured archaeon clone EV818DRLWSAQ148 (<u>DQ336965.1</u>)	100	0.0	99	=
ArcR120	346	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	1e-176	99	Sedimento de lago China
ArcR128	363	Uncultured archaeon clone HWA1012-2-24 (HM244074.1)	98	3e-178	98	=
ArcR136	328	Uncultured archaeon clone CHDF F13 (GU366918.1)	100	2e-165	99	-
ArcR152	346	Uncultured archaeon clone HWA2224-1-9 (HM244328.1)	98	6e-175	99	Sedimento de lago China
ArcR160	389	Uncultured archaeon clone C1AS5CA03 (GU127566.1)	100	0.0	100	Águas residuais
ArcR176	363	Uncultured archaeon clone SSA0101-8 (HM159364.1)	99	0.0	98	Água do rio EUA

Apêndice 5

Resultado da comparação das sequencias parciais do gene 16S rRNA da biblioteca do solo da pastagem nativa (sítio A), do domínio Bacteria, com o banco de dados do RDP II, pelo programa RDP Naive Bayesian rRNA Classifier versão 2.2 (Confidence threshold: 95%).

Clones	Filo		Classe		Ordem		Família		Gênero		Espécie
BacS1E99	Acidobacteria	96%	Acidobacteria_Gp4	96%	Gp4	96%					
BacS1E140	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E148	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Bacillaceae	100%	Bacillus	99%	
BacS1E92	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	97%	Burkholderiales_incertae_sedis	55%	Leptothrix	38%	
BacS1E100	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E141	Acidobacteria	100%	Acidobacteria_Gp1	100%	Gp1	100%					
BacS1E149	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Terrimonas	40%	
BacS1E101	Acidobacteria	100%	Acidobacteria_Gp7	99%	Gp7	99%					
BacS1E150	Acidobacteria	100%	Acidobacteria_Gp1	100%	Gp1	100%					
BacS1E143	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E95	Acidobacteria	85%	Acidobacteria_Gp1	81%	Gp1	81%					
BacS1E103	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E144	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E145	Acidobacteria	77%	Acidobacteria_Gp10	77%	Gp10	77%					
BacS1E97	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E146	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Flavisolibacter	66%	
BacS1E98	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E106	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E184	Acidobacteria	74%	Acidobacteria_Gp10	70%	Gp10	70%					
BacS1E195	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E203	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					
BacS1E211	Acidobacteria	80%	Acidobacteria_Gp4	80%	Gp4	80%					
BacS1E185	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%					

	T									
BacS1E196	Acidobacteria	52%	Acidobacteria_Gp4	44%	Gp4	44%				
BacS1E204	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae 100%	Flavisolibacter	100%	
BacS1E212	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%				
BacS1E162	Acidobacteria	72%	Acidobacteria_Gp4	64%	Gp4	64%				
BacS1E197	Acidobacteria	63%	Acidobacteria_Gp4	55%	Gp4	55%				
BacS1E213	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae 100%	Segetibacter	91%	
BacS1E163	Acidobacteria	76%	Acidobacteria_Gp4	67%	Gp4	67%				
BacS1E190	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%				
BacS1E206	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae 100%	Flavisolibacter	93%	
BacS1E214	Acidobacteria	80%	Acidobacteria_Gp4	74%	Gp4	74%				
BacS1E222	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae 100%	Flavisolibacter	56%	
BacS1E156	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae 100%	Flavisolibacter	99%	
BacS1E164	Proteobacteria	100%	Gammaproteobacteria	100%	Enterobacteriales	100%	Enterobacteriaceae 100%	Citrobacter	76%	
BacS1E191	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%				
BacS1E215	Acidobacteria	68%	Acidobacteria_Gp4	51%	Gp4	51%				
BacS1E157	Proteobacteria	100%	Betaproteobacteria	99%	Burkholderiales	99%	Oxalobacteraceae 66%	Duganella	31%	
BacS1E165	Acidobacteria	96%	Acidobacteria_Gp4	91%	Gp4	91%				
BacS1E192	Acidobacteria	100%	Acidobacteria_Gp15	100%	Gp15	100%				
BacS1E158	Acidobacteria	68%	Acidobacteria_Gp4	59%	Gp4	59%				
BacS1E166	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Bacillaceae 100%	Bacillus	89%	
BacS1E193	Proteobacteria	100%	Gammaproteobacteria	100%	Enterobacteriales	100%	Enterobacteriaceae 100%	Escherichia/Shigella	29%	
BacS1E209	Acidobacteria	97%	Acidobacteria_Gp4	97%	Gp4	97%				
BacS1E194	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Bacillaceae 989	Bacillus	95%	
BacS1E218	Acidobacteria	89%	Acidobacteria_Gp4	86%	Gp4	86%				
BacS1E75	Acidobacteria	100%	Acidobacteria_Gp6	100%	Gp6	100%				
BacS1E83	Acidobacteria	100%	Acidobacteria_Gp6	100%	Gp6	100%				
BacS1E76	Acidobacteria	33%	Acidobacteria_Gp4	33%	Gp4	33%				

												\neg
BacS1E84	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						
BacS1E77	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	71%	Burkholderiales_incertae_sedis	46%	Thiobacter	44%		
BacS1E79	Acidobacteria	100%	Acidobacteria_Gp6	100%	Gp6	100%						
BacS1E87	Firmicutes	100%	Bacilli	100%	Bacillales	99%	Bacillaceae	98%	Ornithinibacillus	66%		
BacS1E80	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						
BacS1E88	Proteobacteria	100%	Betaproteobacteria	96%	Nitrosomonadales	19%	Nitrosomonadaceae	19%	Nitrosospira	19%		
BacS1E15	Firmicutes	65%	Clostridia	51%	Clostridiales	49%	Incertae	Sedis	XVIII	15%	Symbiobacterium	15%
BacS1E109	Proteobacteria	100%	Gammaproteobacteria	100%	Enterobacteriales	100%	Enterobacteriaceae	100%	Erwinia	88%		
BacS1E117	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						
BacS1E118	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						
BacS1E119	Acidobacteria	99%	Acidobacteria_Gp6	99%	Gp6	99%						
BacS1E112	Acidobacteria	94%	Acidobacteria_Gp6	91%	Gp6	91%						
BacS1E120	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						
BacS1E113	Acidobacteria	100%	Acidobacteria_Gp4	100%	Gp4	100%						

Apêndice 6

Resultado da comparação das sequencias parciais do gene 16S rRNA da biblioteca do solo da pastagem sob cultivo (sítio B), do domínio Bacteria, com o banco de dados do RDP II, pelo programa *RDP Naive Bayesian rRNA Classifier* versão 2.2 (*Confidence threshold*: 95%).

Clones	Filo		Classe		Ordem		Família		Gênero	
BacR121	Proteobacteria	100%	Alphaproteobacteria	100%	Sphingomonadales	100%	Erythrobacteraceae	100%	Porphyrobacter	100%
BacR161	Acidobacteria	100%	Holophagae	100%	Holophagales	100%	Holophagaceae	100%	Geothrix	89%
BacR154	Acidobacteria	100%	Acidobacteria_Gp1	100%	Gp1	100%				
BacR162	Firmicutes	100%	Clostridia	100%	Clostridiales	100%	Ruminococcaceae	94%	Acetivibrio	90%
BacR170	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Filimonas	48%
BacR115	Acidobacteria	100%	Acidobacteria_Gp18	100%	Gp18	100%				
BacR139	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	100%	Ramlibacter	97%
BacR155	Acidobacteria	100%	Acidobacteria_Gp18	98%	Gp18	98%				
BacR187	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	96%	Curvibacter	87%
BacR124	Proteobacteria	100%	Betaproteobacteria	95%	Burkholderiales	83%	Alcaligenaceae	21%	Derxia	16%
BacR132	Acidobacteria	98%	Acidobacteria_Gp7	98%	Gp7	98%				
BacR148	Chloroflexi	92%	Anaerolineae	48%	Anaerolineales	48%	Anaerolineaceae	48%	Leptolinea	32%
BacR156	Proteobacteria	52%	Deltaproteobacteria	24%	Desulfurellales	5%	Desulfurellaceae	5%	Hippea	5%
BacR172	Acidobacteria	72%	Acidobacteria_Gp7	72%	Gp7	72%				
BacR101	Gemmatimonadetes	81%	Gemmatimonadetes	81%	Gemmatimonadales	81%	Gemmatimonadaceae	81%	Gemmatimonas	81%
BacR125	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Flavisolibacter	46%
BacR110	Bacteroidetes	26%	Flavobacteria	26%	Flavobacteriales	26%	Flavobacteriaceae	23%	Zunongwangia	7%
BacR118	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Burkholderiales_incertae_sedis	97%	Methylibium	92%
BacR174	Chloroflexi	76%	Anaerolineae	37%	Anaerolineales	37%	Anaerolineaceae	37%	Leptolinea	18%
BacR127	Proteobacteria	100%	Gammaproteobacteria	100%	Xanthomonadales	100%	Xanthomonadaceae	100%	Dyella	95%
BacR135	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	97%	Burkholderiales_incertae_sedis	74%	Rubrivivax	42%
BacR112	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	99%	Ramlibacter	89%
BacR192	Proteobacteria	36%	Deltaproteobacteria	6%	Syntrophobacterales	1%	Syntrophobacteraceae	1%	Desulforhabdus	1%
BacR201	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Paenibacillaceae	100%	Paenibacillus	98%
BacR209	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Bacillaceae	79%	Lysinibacillus	61%
BacR195	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Paenibacillaceae	100%	Paenibacillus	99%
BacR235	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Ferruginibacter	97%
BacR243	Firmicutes	100%	Bacilli	100%	Bacillales	100%	Bacillaceae	100%	Bacillus	97%
BacR212	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Burkholderiales_incertae_sedis	100%	Methylibium	46%
BacR220	Acidobacteria	75%	Holophagae	75%	Holophagales	75%	Holophagaceae	75%	Geothrix	45%
BacR236	Proteobacteria	76%	Deltaproteobacteria	71%	Syntrophobacterales	70%	Syntrophaceae	69%	Syntrophus	69%
BacR197	Gemmatimonadetes	92%	Gemmatimonadetes	92%	Gemmatimonadales	92%	Gemmatimonadaceae	92%	Gemmatimonas	92%

DD221	C1-4	C00/	C	C00/	C	600/	C	C90/	C	C00/
BacR221	Gemmatimonadetes	68%	Gemmatimonadetes	68%	Gemmatimonadales	68%	Gemmatimonadaceae	68%	Gemmatimonas	68%
BacR237	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	91%	Comamonadaceae	81%	Acidovorax	23%
BacR238	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	100%	Simplicispira	34%
BacR246	Chloroflexi	50%	Anaerolineae	48%	Anaerolineales	48%	Anaerolineaceae	48%	Levilinea	43%
BacR207	Proteobacteria	36%	Deltaproteobacteria	6%	Syntrophobacterales	5%	Syntrophobacteraceae	5%	Desulforhabdus	3%
BacR247	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	100%	Simplicispira	26%
BacR248	Bacteroidetes	97%	Sphingobacteria	22%	Sphingobacteriales	22%	Flammeovirgaceae	20%	Limibacter	20%
BacR73	Proteobacteria	100%	Betaproteobacteria	70%	Burkholderiales	67%	Alcaligenaceae	41%	Derxia	37%
BacR18	Firmicutes	99%	Bacilli	99%	Bacillales	99%	Paenibacillaceae	90%	Paenibacillus	82%
BacR58	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	98%	Comamonadaceae	98%	Curvibacter	74%
BacR74	Planctomycetes	100%	Planctomycetacia	100%	Planctomycetales	100%	Planctomycetaceae	100%	Zavarzinella	96%
BacR19	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	100%	Curvibacter	99%
BacR27	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Burkholderiales incertae sedis	100%	Ideonella	100%
BacR43	Proteobacteria	100%	Betaproteobacteria	95%	Rhodocyclales	16%	Rhodocyclaceae	16%	Azospira	13%
BacR51	Proteobacteria	100%	Alphaproteobacteria	100%	Sphingomonadales	100%	Erythrobacteraceae	70%	Altererythrobacter	70%
BacR59	Firmicutes	100%	Bacilli	100%	Bacillales	99%	Bacillaceae	97%	Bacillus	87%
BacR67	Proteobacteria	100%	Gammaproteobacteria	100%	Xanthomonadales	100%	Sinobacteraceae	100%	Singularimonas	68%
BacR91	Cyanobacteria	100%	Cyanobacteria	100%	Chloroplast	100%	Bacillariophyta	100%		
BacR44	Proteobacteria	100%	Betaproteobacteria	58%	Burkholderiales	30%	Alcaligenaceae	26%	Pusillimonas	23%
BacR29	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	100%	Comamonadaceae	100%	Curvibacter	96%
BacR37	Proteobacteria	100%	Gammaproteobacteria	100%	Xanthomonadales	100%	Xanthomonadaceae	100%	Dyella	68%
BacR45	Proteobacteria	99%	Deltaproteobacteria	99%	Desulfobacterales	99%	Desulfobacteraceae	99%	Desulfonema	51%
BacR53	Bacteroidetes	100%	Sphingobacteria	100%	Sphingobacteriales	100%	Chitinophagaceae	100%	Flavisolibacter	73%
BacR77	Proteobacteria	100%	Betaproteobacteria	100%	Burkholderiales	80%	Comamonadaceae	80%	Ramlibacter	63%
BacR30	Verrucomicrobia	30%	Opitutae	23%	Opitutales	20%	Opitutaceae	20%	Alterococcus	18%
BacR62	Proteobacteria	100%	Deltaproteobacteria	100%	Desulfobacterales	100%	Desulfobacteraceae	100%	Desulfonema	47%
BacR86	Cyanobacteria	84%	Cyanobacteria	84%	Family VIII	64%	GpVIII	64%		
BacR23	Proteobacteria	100%	Gammaproteobacteria	100%	Xanthomonadales	100%	Xanthomonadaceae	100%	Aspromonas	34%
BacR87	Acidobacteria	100%	Acidobacteria_Gp1	100%	Gp1	100%				
BacR40	Firmicutes	30%	Clostridia	30%	Thermoanaerobacterales	7%	Thermodesulfobiaceae	6%	Thermodesulfobium	6%
BacR05	Proteobacteria	100%	Gammaproteobacteria	100%	Pseudomonadales	100%	Pseudomonadaceae	100%	Pseudomonas	100%
BacR06	Proteobacteria	100%	Betaproteobacteria	100%	Rhodocyclales	51%	Rhodocyclaceae	51%	Quatrionicoccus	28%
BacR14	Proteobacteria	100%	Gammaproteobacteria	100%	Pseudomonadales	100%	Pseudomonadaceae	100%	Pseudomonas	100%
BacR07	Proteobacteria	100%	Deltaproteobacteria	100%	Syntrophobacterales	98%	Syntrophaceae	98%	Smithella	83%
BacR120	Gemmatimonadetes	85%	Gemmatimonadetes	85%	Gemmatimonadales	85%	Gemmatimonadaceae	85%	Gemmatimonas	85%
BacR39	Proteobacteria	100%		100%	Burkholderiales	87%	Comamonadaceae	87%	Ramlibacter	64%

Apêndice 7

Resultado da comparação das sequencias parciais do gene 16S rRNA da biblioteca do solo da pastagem nativa (sítio A), do domínio Archaea, com o banco de dados do RDP II pelo programa *RDP Naive Bayesian rRNA Classifier* versão 2.2 (*Confidence threshold*: 95%).

Clones	Filo		Classe		Ordem	Família	Gênero	
ArcS1E09	Euryarchaeota	60%	Methanococci 2	.0%	Methanococcales 20%	Methanocaldococcaceae 19%	Methanotorris	19%
ArcS1E33	Euryarchaeota	65%	Methanococci 3	5%	Methanococcales 35%	Methanocaldococcaceae 17%	Methanotorris	17%
ArcS1E49	Crenarchaeota	95%	Thermoprotei 9	5%	Desulfurococcales 52%	Pyrodictiaceae 21%	Pyrolobus	21%
ArcS1E73	Euryarchaeota	63%	Methanococci 2	6%	Methanococcales 26%	Methanocaldococcaceae 26%	Methanotorris	26%
ArcS1E81	Euryarchaeota	81%	Methanococci 3	7%	Methanococcales 37%	Methanocaldococcaceae 27%	Methanotorris	27%
ArcS1E89	Euryarchaeota	67%	Methanococci 2	7%	Methanococcales 27%	Methanocaldococcaceae 22%	Methanotorris	22%
ArcS1E02	Crenarchaeota	79%	Thermoprotei 7	9%	Acidilobales 38%	Caldisphaeraceae 34%	Caldisphaera	34%
ArcS1E10	Crenarchaeota	48%	Thermoprotei 4	8%	Sulfolobales 23%	Sulfolobaceae 23%	Sulfurisphaera	18%
ArcS1E18	Euryarchaeota	67%	Methanococci 3	5%	Methanococcales 35%	Methanocaldococcaceae 34%	Methanotorris	34%
ArcS1E26	Euryarchaeota	80%	Methanococci 2	1%	Methanococcales 21%	Methanocaldococcaceae 16%	Methanotorris	16%
ArcS1E42	Euryarchaeota	50%	Methanococci 1	6%	Methanococcales 16%	Methanocaldococcaceae 15%	Methanotorris	15%
ArcS1E50	Crenarchaeota	63%	Thermoprotei 6	3%	Desulfurococcales 25%	Desulfurococcaceae 22%	Ignisphaera	20%
ArcS1E58	Euryarchaeota	100%	Methanomicrobia 9	0%	Methanomicrobiales 51%	Methanomicrobiaceae 34%	Methanosphaerula	4%
ArcS1E66	Euryarchaeota	64%	Methanococci 3	4%	Methanococcales 34%	Methanocaldococcaceae 19%	Methanotorris	19%
ArcS1E82	Euryarchaeota	75%	Methanococci 2	7%	Methanococcales 27%	Methanocaldococcaceae 26%	Methanotorris	26%
ArcS1E90	Euryarchaeota	74%	Methanococci 2	9%	Methanococcales 29%	Methanocaldococcaceae 25%	Methanotorris	25%
ArcS1E19	Euryarchaeota	87%	Methanococci 3	0%	Methanococcales 30%	Methanocaldococcaceae 6%	Methanotorris	6%
ArcS1E43	Euryarchaeota	69%	Methanococci 2	8%	Methanococcales 28%	Methanocaldococcaceae 22%	Methanotorris	22%
ArcS1E51	Euryarchaeota	87%	Methanococci 3	1%	Methanococcales 31%	Methanocaldococcaceae 26%	Methanotorris	25%
ArcS1E75	Crenarchaeota	87%	Thermoprotei 8	7%	Acidilobales 30%	Caldisphaeraceae 28%	Caldisphaera	28%
ArcS1E91	Euryarchaeota	87%	Methanococci 2	4%	Methanococcales 24%	Methanocaldococcaceae 22%	Methanotorris	22%
ArcS1E36	Euryarchaeota	68%	Methanococci 3	3%	Methanococcales 33%	Methanocaldococcaceae 31%	Methanotorris	31%
ArcS1E60	Euryarchaeota	69%	Methanomicrobia 3	4%	Methanomicrobiales 30%	Methanomicrobiaceae 25%	Methanomicrobium	25%
ArcS1E68	Euryarchaeota	68%	Methanococci 2	5%	Methanococcales 25%	Methanocaldococcaceae 15%	Methanotorris	15%
ArcS1E76	Euryarchaeota	85%	Methanococci 1	8%	Methanococcales 18%	Methanocaldococcaceae 17%	Methanotorris	17%
ArcS1E84	Euryarchaeota	64%	Methanococci 2	2%	Methanococcales 22%	Methanocaldococcaceae 18%	Methanotorris	18%
ArcS1E92	Euryarchaeota	95%	Methanococci 2	4%	Methanococcales 24%	Methanocaldococcaceae 22%	Methanotorris	21%
ArcS1E05	Crenarchaeota	64%	Thermoprotei 6	4%	Thermoproteales 19%	Thermoproteaceae 19%	Thermocladium	17%
ArcS1E13	Crenarchaeota	96%	Thermoprotei 9	6%	Desulfurococcales 49%	Desulfurococcaceae 37%	Thermosphaera	15%

ArcS1E37	Euryarchaeota	67%	Methanococci	20%	Methanococcales	20%	Methanocaldococcaceae	17%	Methanotorris	17%
ArcS1E85	Euryarchaeota	59%	Methanococci	18%	Methanococcales	18%	Methanocaldococcaceae	18%	Methanotorris	18%
ArcS1E06	Euryarchaeota	70%	Methanococci	31%	Methanococcales	31%	Methanocaldococcaceae	15%	Methanotorris	15%
ArcS1E30	Euryarchaeota	62%	Methanococci	15%	Methanococcales	15%	Methanocaldococcaceae	14%	Methanotorris	14%
ArcS1E38	Euryarchaeota	84%	Methanococci	40%	Methanococcales	40%	Methanocaldococcaceae	35%	Methanotorris	35%
ArcS1E94	Euryarchaeota	56%	Methanococci	26%	Methanococcales	26%	Methanocaldococcaceae	22%	Methanotorris	22%
ArcS1E15	Euryarchaeota	48%	Methanococci	18%	Methanococcales	18%	Methanocaldococcaceae	16%	Methanotorris	16%
ArcS1E55	Euryarchaeota	62%	Methanococci	27%	Methanococcales	27%	Methanocaldococcaceae	23%	Methanotorris	23%
ArcS1E71	Euryarchaeota	77%	Methanococci	15%	Methanococcales	15%	Methanocaldococcaceae	10%	Methanotorris	10%
ArcS1E87	Euryarchaeota	71%	Methanococci	34%	Methanococcales	34%	Methanocaldococcaceae	27%	Methanotorris	27%
ArcS1E95	Euryarchaeota	79%	Methanococci	14%	Methanococcales	14%	Methanocaldococcaceae	11%	Methanotorris	11%
ArcS1E08	Euryarchaeota	40%	Methanococci	9%	Methanococcales	9%	Methanocaldococcaceae	8%	Methanotorris	8%
ArcS1E16	Crenarchaeota	55%	Thermoprotei	55%	Thermoproteales	19%	Thermoproteaceae	16%	Thermocladium	12%
ArcS1E72	Euryarchaeota	73%	Methanococci	25%	Methanococcales	25%	Methanocaldococcaceae	13%	Methanotorris	13%
ArcS1E88	Euryarchaeota	57%	Methanococci	16%	Methanococcales	16%	Methanocaldococcaceae	14%	Methanotorris	14%
ArcS1E96	Euryarchaeota	57%	Methanococci	14%	Methanococcales	14%	Methanocaldococcaceae	13%	Methanotorris	13%
ArcS2E153	Crenarchaeota	79%	Thermoprotei	79%	Acidilobales	34%	Caldisphaeraceae	33%	Caldisphaera	33%
ArcS2E161	Crenarchaeota	94%	Thermoprotei	94%	Acidilobales	47%	Caldisphaeraceae	46%	Caldisphaera	46%
ArcS2E185	Euryarchaeota	80%	Methanococci	33%	Methanococcales	33%	Methanocaldococcaceae	27%	Methanotorris	27%
ArcS2E146	Euryarchaeota	76%	Methanococci	32%	Methanococcales	32%	Methanocaldococcaceae	21%	Methanotorris	21%
ArcS2E178	Crenarchaeota	98%	Thermoprotei	98%	Desulfurococcales	61%	Desulfurococcaceae	61%	Desulfurococcus	23%
ArcS2E186	Euryarchaeota	93%	Methanococci	29%	Methanococcales	29%	Methanocaldococcaceae	23%	Methanotorris	23%
ArcS2E179	Crenarchaeota	43%	Thermoprotei	43%	Thermoproteales	31%	Thermoproteaceae	23%	Thermocladium	13%
ArcS2E187	Euryarchaeota	86%	Methanococci	36%	Methanococcales	36%	Methanocaldococcaceae	24%	Methanotorris	23%
ArcS2E156	Crenarchaeota	65%	Thermoprotei	65%	Acidilobales	31%	Caldisphaeraceae	28%	Caldisphaera	28%
ArcS2E172	Euryarchaeota	81%	Methanococci	20%	Methanococcales	20%	Methanocaldococcaceae	14%	Methanotorris	14%
ArcS2E180	Euryarchaeota	64%	Methanococci	29%	Methanococcales	29%	Methanocaldococcaceae	22%	Methanotorris	22%
ArcS2E165	Euryarchaeota	47%	Methanococci	13%	Methanococcales	13%	Methanocaldococcaceae	13%	Methanotorris	13%
ArcS2E173	Euryarchaeota	70%	Methanococci	35%	Methanococcales	35%	Methanocaldococcaceae	30%	Methanotorris	30%
ArcS2E158	Crenarchaeota	72%	Thermoprotei	72%	Acidilobales	42%	Caldisphaeraceae	42%	Caldisphaera	42%
ArcS2E174	Crenarchaeota	87%	Thermoprotei	87%	Acidilobales	32%	Caldisphaeraceae	30%	Caldisphaera	30%
ArcS2E190	Euryarchaeota	61%	Methanococci	24%	Methanococcales	24%	Methanocaldococcaceae	20%	Methanotorris	20%
ArcS2E175	Euryarchaeota	86%	Methanococci	44%	Methanococcales	44%	Methanocaldococcaceae	36%	Methanotorris	36%

							T		T	
ArcS2E184	Crenarchaeota	92%	Thermoprotei	92%	Acidilobales	48%	Caldisphaeraceae	47%	Caldisphaera	47%
ArcS2E192	Crenarchaeota	50%	Thermoprotei	50%	Sulfolobales	29%	Sulfolobaceae	29%	Sulfurisphaera	26%
ArcS2E41	Euryarchaeota	51%	Methanococci	19%	Methanococcales	19%	Methanocaldococcaceae	12%	Methanotorris	12%
ArcS2E65	Crenarchaeota	58%	Thermoprotei	58%	Thermoproteales	25%	Thermoproteaceae	23%	Thermocladium	11%
ArcS2E73	Euryarchaeota	97%	Methanomicrobia	74%	Methanomicrobiales	34%	Methanomicrobiaceae	16%	Methanomicrobium	10%
ArcS2E81	Euryarchaeota	68%	Methanococci	16%	Methanococcales	16%	Methanocaldococcaceae	16%	Methanotorris	16%
ArcS2E18	Euryarchaeota	62%	Methanococci	20%	Methanococcales	20%	Methanocaldococcaceae	16%	Methanotorris	16%
ArcS2E50	Euryarchaeota	69%	Methanococci	15%	Methanococcales	15%	Methanococcaceae	15%	Methanothermococcus	15%
ArcS2E58	Euryarchaeota	75%	Methanococci	14%	Methanococcales	14%	Methanocaldococcaceae	11%	Methanotorris	11%
ArcS2E66	Euryarchaeota	60%	Methanococci	23%	Methanococcales	23%	Methanocaldococcaceae	18%	Methanotorris	18%
ArcS2E27	Euryarchaeota	65%	Methanococci	26%	Methanococcales	26%	Methanocaldococcaceae	24%	Methanotorris	24%
ArcS2E43	Euryarchaeota	77%	Methanococci	30%	Methanococcales	30%	Methanocaldococcaceae	23%	Methanotorris	23%
ArcS2E67	Euryarchaeota	97%	Methanomicrobia	69%	Methanocellales	9%	Methanocellaceae	9%	Methanocella	9%
ArcS2E75	Euryarchaeota	77%	Methanococci	27%	Methanococcales	27%	Methanocaldococcaceae	26%	Methanotorris	26%
ArcS2E28	Euryarchaeota	84%	Methanococci	40%	Methanococcales	40%	Methanocaldococcaceae	21%	Methanotorris	21%
ArcS2E44	Euryarchaeota	73%	Methanococci	31%	Methanococcales	31%	Methanocaldococcaceae	27%	Methanotorris	27%
ArcS2E68	Euryarchaeota	63%	Methanococci	24%	Methanococcales	24%	Methanocaldococcaceae	17%	Methanotorris	17%
ArcS2E78	Euryarchaeota	64%	Methanococci	29%	Methanococcales	29%	Methanocaldococcaceae	14%	Methanotorris	14%
ArcS2E31	Euryarchaeota	60%	Methanococci	27%	Methanococcales	27%	Methanocaldococcaceae	24%	Methanotorris	24%
ArcS2E95	Euryarchaeota	77%	Methanococci	32%	Methanococcales	32%	Methanocaldococcaceae	26%	Methanotorris	26%
ArcS2E40	Crenarchaeota	45%	Thermoprotei	45%	Sulfolobales	14%	Sulfolobaceae	14%	Sulfurisphaera	11%
ArcS2E17	Euryarchaeota	68%	Methanococci	15%	Methanococcales	15%	Methanocaldococcaceae	13%	Methanotorris	13%
ArcS2E36	Crenarchaeota	49%	Thermoprotei	49%	Sulfolobales	23%	Sulfolobaceae	23%	Sulfurisphaera	17%
ArcS2E37	Euryarchaeota	46%	Methanococci	20%	Methanococcales	20%	Methanocaldococcaceae	16%	Methanotorris	16%
ArcS2E53	Euryarchaeota	81%	Methanococci	37%	Methanococcales	37%	Methanocaldococcaceae	31%	Methanotorris	31%
ArcS2E79	Euryarchaeota	85%	Methanococci	30%	Methanococcales	30%	Methanocaldococcaceae	25%	Methanotorris	25%
ArcS2E72	Crenarchaeota	96%	Thermoprotei	96%	Acidilobales	35%	Caldisphaeraceae	33%	Caldisphaera	33%

Apêndice 8

Resultado da comparação das sequencias parciais do gene 16S rRNA da biblioteca do solo da pastagem sob cultivo (sítio B), do domínio Archaea, com o banco de dados do RDP II pelo programa *RDP Naive Bayesian rRNA Classifier* versão 2.2 (*Confidence threshold*: 95%).

Clones	Filo		Classe		Ordem		Família		Gênero	
ArcR01	Euryarchaeota 10	00%	Thermoplasmata 54	% Tł	hermoplasmatales	54%	Thermoplasmatales_incertae_sedis	51%	Thermogymnomonas	51%
ArcR09	Crenarchaeota	96%	Thermoprotei 96	% A	cidilobales	50%	Caldisphaeraceae	50%	Caldisphaera	50%
ArcR17	Crenarchaeota	37%	Thermoprotei 379	% De	Desulfurococcales	21%	Pyrodictiaceae	16%	Pyrodictium	12%
ArcR25	Euryarchaeota 9	92%	Thermoplasmata 80	% Th	hermoplasmatales	80%	Thermoplasmatales_incertae_sedis	71%	Thermogymnomonas	71%
ArcR33	Euryarchaeota :	59%	Methanomicrobia 289	% M	Methanomicrobiales	16%	Methanomicrobiales_incertae_sedis	13%	Methanolinea	13%
ArcR41	Euryarchaeota 10	00%	Methanomicrobia 100	% M	Methanosarcinales	100%	Methanosaetaceae	92%	Methanosaeta	92%
ArcR49	Euryarchaeota 10	00%	Methanomicrobia 100	% M	Methanosarcinales	100%	Methanosaetaceae	82%	Methanosaeta	82%
ArcR57	Euryarchaeota 9	97%	Methanomicrobia 789	% M	Methanomicrobiales	58%	Methanomicrobiales_incertae_sedis	24%	Methanolinea	24%
ArcR65	Euryarchaeota	75%	Thermoplasmata 30°	% Th	hermoplasmatales	30%	Thermoplasmatales_incertae_sedis	21%	Thermogymnomonas	21%
ArcR73	Euryarchaeota	79%	Thermoplasmata 289	% Th	hermoplasmatales	28%	Thermoplasmatales_incertae_sedis	25%	Thermogymnomonas	25%
ArcR81	Euryarchaeota 10	00%	Methanomicrobia 100	% M	Methanosarcinales	100%	Methanosaetaceae	73%	Methanosaeta	73%
ArcR89	Euryarchaeota	39%	Methanomicrobia 76	% M	Methanomicrobiales	63%	Methanomicrobiales_incertae_sedis	40%	Methanolinea	40%
ArcR02	Crenarchaeota	13%	Thermoprotei 439	% Th	hermoproteales	24%	Thermoproteaceae	24%	Thermocladium	19%
ArcR18	Euryarchaeota 10	00%	Methanomicrobia 819	% M	Methanomicrobiales	26%	Methanomicrobiaceae	21%	Methanomicrobium	15%
ArcR42	Crenarchaeota	38%	Thermoprotei 889	% De	Desulfurococcales	58%	Desulfurococcaceae	39%	Thermosphaera	22%
ArcR50	Euryarchaeota	96%	Methanomicrobia 74	% M	Methanomicrobiales	34%	Methanomicrobiaceae	34%	Methanomicrobium	26%
ArcR58	Euryarchaeota	38%	Thermoplasmata 429	% Th	hermoplasmatales	42%	Thermoplasmatales_incertae_sedis	26%	Thermogymnomonas	26%
ArcR66	Euryarchaeota 10	00%	Methanomicrobia 100	% M	Methanosarcinales	100%	Methanosaetaceae	80%	Methanosaeta	80%
ArcR74	Crenarchaeota	78%	Thermoprotei 789	% De	Desulfurococcales	56%	Desulfurococcaceae	38%	Thermosphaera	19%
ArcR82	Euryarchaeota	98%	Methanomicrobia 79	% M	Methanomicrobiales	26%	Methanomicrobiaceae	26%	Methanomicrobium	23%
ArcR11	Euryarchaeota 10	00%	Methanomicrobia 100	% M	Methanosarcinales	100%	Methanosaetaceae	100%	Methanosaeta	100%
ArcR19	Euryarchaeota	99%	Methanomicrobia 999	% M	Methanosarcinales	97%	Methanosaetaceae	71%	Methanosaeta	71%

Euryarchaeota	97%	Methanomicrobia 58	%]	Methanomicrobiales	24%	Methanomicrobiaceae	24%	Methanomicrobium	19%
Euryarchaeota	100%	Methanomicrobia 99	%]	Methanosarcinales	98%	Methanosaetaceae	88%	Methanosaeta	88%
Euryarchaeota	80%	Methanococci 16	i%]	Methanococcales	16%	Methanocaldococcaceae	16%	Methanotorris	16%
Euryarchaeota	66%	Methanococci 14	.%]	Methanococcales	14%	Methanocaldococcaceae	14%	Methanotorris	14%
Euryarchaeota	100%	Methanomicrobia 100	%]	Methanosarcinales	100%	Methanosarcinaceae	100%	Methanosarcina	100%
Euryarchaeota	87%	Thermoplasmata 68	% 7	Thermoplasmatales	68%	Thermoplasmatales_incertae_sedis	58%	Thermogymnomonas	58%
Euryarchaeota	92%	Methanomicrobia 79	%]	Methanomicrobiales	54%	Methanomicrobiaceae	24%	Methanosphaerula	23%
Euryarchaeota	100%	Methanomicrobia 100	%]	Methanosarcinales	100%	Methanosaetaceae	100%	Methanosaeta	100%
Euryarchaeota	91%	Thermoplasmata 86	% 7	Thermoplasmatales	86%	Thermoplasmatales_incertae_sedis	56%	Thermogymnomonas	56%
Euryarchaeota	97%	Methanomicrobia 67	'%]	Methanomicrobiales	34%	Methanomicrobiaceae	34%	Methanomicrobium	29%
Crenarchaeota	92%	Thermoprotei 92	.%	Acidilobales	68%	Caldisphaeraceae	68%	Caldisphaera	68%
Euryarchaeota	72%	Thermoplasmata 67	%	Thermoplasmatales	67%	Thermoplasmatales_incertae_sedis	26%	Thermogymnomonas	26%
Euryarchaeota	100%	Methanomicrobia 100	9%]	Methanosarcinales	100%	Methanosaetaceae	94%	Methanosaeta	94%
Euryarchaeota	91%	Thermoplasmata 81	%	Thermoplasmatales	81%	Thermoplasmatales_incertae_sedis	58%	Thermogymnomonas	58%
Crenarchaeota	89%	Thermoprotei 89	% 4	Acidilobales	28%	Caldisphaeraceae	28%	Caldisphaera	28%
Euryarchaeota	91%	Thermoplasmata 30	% 7	Thermoplasmatales	30%	Thermoplasmatales_incertae_sedis	27%	Thermogymnomonas	27%
Euryarchaeota	100%	Methanomicrobia 98	3%]	Methanosarcinales	90%	Methanosaetaceae	33%	Methanosaeta	33%
Euryarchaeota	82%	Thermoplasmata 30	% 7	Thermoplasmatales	30%	Thermoplasmatales_incertae_sedis	28%	Thermogymnomonas	28%
Euryarchaeota	97%	Methanomicrobia 85	%]	Methanomicrobiales	65%	Methanomicrobiales_incertae_sedis	16%	Methanolinea	16%
Euryarchaeota	83%	Thermoplasmata 30	% 7	Thermoplasmatales	30%	Thermoplasmatales_incertae_sedis	20%	Thermogymnomonas	20%
Euryarchaeota	82%	Methanococci 32	.%]	Methanococcales	32%	Methanocaldococcaceae	29%	Methanotorris	29%
Euryarchaeota	80%	Thermoplasmata 25	%	Thermoplasmatales	25%	Thermoplasmatales_incertae_sedis	22%	Thermogymnomonas	22%
Euryarchaeota	89%	Methanomicrobia 65	%]	Methanomicrobiales	57%	Methanomicrobiales_incertae_sedis	29%	Methanolinea	29%
Euryarchaeota	78%	Thermoplasmata 75	%	Thermoplasmatales	75%	Thermoplasmatales_incertae_sedis	58%	Thermogymnomonas	58%
Euryarchaeota	77%	Thermoplasmata 27	%	Thermoplasmatales	27%	Thermoplasmatales_incertae_sedis	23%	Thermogymnomonas	23%
Euryarchaeota	98%	Methanococci 61	%]	Methanococcales	61%	Methanocaldococcaceae	32%	Methanotorris	32%
	Euryarchaeota	Euryarchaeota 100% Euryarchaeota 80% Euryarchaeota 66% Euryarchaeota 100% Euryarchaeota 100% Euryarchaeota 92% Euryarchaeota 100% Euryarchaeota 91% Euryarchaeota 97% Crenarchaeota 92% Euryarchaeota 97% Crenarchaeota 92% Euryarchaeota 91% Euryarchaeota 92% Euryarchaeota 92% Euryarchaeota 92% Euryarchaeota 100% Euryarchaeota 91% Crenarchaeota 91% Crenarchaeota 91% Euryarchaeota 91% Euryarchaeota 91% Euryarchaeota 91% Euryarchaeota 91% Euryarchaeota 82% Euryarchaeota 82% Euryarchaeota 83% Euryarchaeota 82% Euryarchaeota 80% Euryarchaeota 89% Euryarchaeota 78% Euryarchaeota 78%	Euryarchaeota 100% Methanomicrobia 99 Euryarchaeota 80% Methanococci 16 Euryarchaeota 66% Methanococci 14 Euryarchaeota 100% Methanomicrobia 100 Euryarchaeota 87% Thermoplasmata 68 Euryarchaeota 92% Methanomicrobia 100 Euryarchaeota 100% Methanomicrobia 79 Euryarchaeota 91% Thermoplasmata 86 Euryarchaeota 91% Thermoplasmata 86 Euryarchaeota 92% Methanomicrobia 67 Crenarchaeota 92% Thermoprotei 92 Euryarchaeota 72% Thermoplasmata 67 Euryarchaeota 100% Methanomicrobia 100 Euryarchaeota 91% Thermoplasmata 81 Crenarchaeota 91% Thermoplasmata 81 Crenarchaeota 91% Thermoplasmata 81 Crenarchaeota 91% Thermoplasmata 30 Euryarchaeota 91% Thermoplasmata 30 Euryarchaeota 91% Thermoplasmata 30 Euryarchaeota 97% Methanomicrobia 98 Euryarchaeota 82% Thermoplasmata 30 Euryarchaeota 82% Thermoplasmata 30 Euryarchaeota 82% Thermoplasmata 30 Euryarchaeota 83% Thermoplasmata 30 Euryarchaeota 84% Thermoplasmata 30 Euryarchaeota 85% Thermoplasmata 30 Euryarchaeota 85% Methanomicrobia 65 Euryarchaeota 80% Thermoplasmata 25 Euryarchaeota 80% Thermoplasmata 75 Euryarchaeota 89% Methanomicrobia 65 Euryarchaeota 78% Thermoplasmata 75 Euryarchaeota 78% Thermoplasmata 75	Euryarchaeota 100% Methanomicrobia 99% Euryarchaeota 80% Methanococci 16% Euryarchaeota 66% Methanococci 14% Euryarchaeota 100% Methanomicrobia 100% Euryarchaeota 87% Thermoplasmata 68% Euryarchaeota 92% Methanomicrobia 100% Euryarchaeota 100% Methanomicrobia 100% Euryarchaeota 91% Thermoplasmata 86% Euryarchaeota 91% Thermoplasmata 86% Euryarchaeota 97% Methanomicrobia 67% Crenarchaeota 92% Thermoprotei 92% Euryarchaeota 72% Thermoplasmata 67% Euryarchaeota 100% Methanomicrobia 100% Euryarchaeota 72% Thermoplasmata 67% Euryarchaeota 91% Thermoplasmata 81% Crenarchaeota 91% Thermoplasmata 30% Euryarchaeota 82% Thermoplasmata 30% Euryarchaeota 82% Thermoplasmata 30% Euryarchaeota 97% Methanomicrobia 98% Euryarchaeota 82% Thermoplasmata 30% Euryarchaeota 82% Thermoplasmata 30% Euryarchaeota 82% Methanomicrobia 85% Euryarchaeota 82% Methanococci 32% Euryarchaeota 80% Thermoplasmata 25% Euryarchaeota 89% Methanomicrobia 65% Euryarchaeota 78% Thermoplasmata 75% Euryarchaeota 78% Thermoplasmata 75% Euryarchaeota 78% Thermoplasmata 75%	Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales Euryarchaeota 80% Methanococci 16% Methanococcales Euryarchaeota 66% Methanococci 14% Methanococcales Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales Euryarchaeota 87% Thermoplasmata 68% Thermoplasmatales Euryarchaeota 92% Methanomicrobia 100% Methanomicrobiales Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales Euryarchaeota 91% Thermoplasmata 86% Thermoplasmatales Euryarchaeota 91% Methanomicrobia 67% Methanomicrobiales Euryarchaeota 97% Methanomicrobia 67% Methanomicrobiales Crenarchaeota 92% Thermoprotei 92% Acidilobales Euryarchaeota 72% Thermoplasmata 67% Thermoplasmatales Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales Euryarchaeota 91% Thermoplasmata 30% Thermoplasmatales Euryarchaeota 91% Thermoplasmata 30% Thermoplasmatales Euryarchaeota 100% Methanomicrobia 98% Methanosarcinales Euryarchaeota 82% Thermoplasmata 30% Thermoplasmatales Euryarchaeota 82% Thermoplasmata 30% Thermoplasmatales Euryarchaeota 82% Methanomicrobia 85% Methanomicrobiales Euryarchaeota 83% Thermoplasmata 30% Thermoplasmatales Euryarchaeota 82% Methanomicrobia 85% Methanomicrobiales Euryarchaeota 82% Methanomicrobia 32% Methanomicrobiales Euryarchaeota 80% Thermoplasmata 25% Thermoplasmatales Euryarchaeota 80% Thermoplasmata 25% Thermoplasmatales Euryarchaeota 89% Methanomicrobia 65% Methanomicrobiales Euryarchaeota 78% Thermoplasmata 75% Thermoplasmatales	Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales 16% Euryarchaeota 80% Methanococci 16% Methanococcales 14% Euryarchaeota 66% Methanococci 14% Methanococcales 14% Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Euryarchaeota 87% Thermoplasmata 68% Thermoplasmatales 54% Euryarchaeota 100% Methanomicrobia 100% Methanomicrobiales 54% Euryarchaeota 100% Methanomicrobia 100% Methanomicrobiales 100% Euryarchaeota 100% Methanomicrobia 100% Methanomicrobiales 100% Euryarchaeota 91% Thermoplasmata 86% Thermoplasmatales 86% Euryarchaeota 97% Methanomicrobia 67% Methanomicrobiales 34% Crenarchaeota 97% Methanomicrobia 67% Methanomicrobiales 68% Euryarchaeota 92% Thermoprotei 92% Acidilobales 68% Euryarchaeota 72% Thermoplasmata 67% Thermoplasmatales 67% Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales 100% Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales 81% Crenarchaeota 89% Thermoprotei 89% Acidilobales 28% Euryarchaeota 91% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 91% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 82% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 82% Methanomicrobia 85% Methanosarcinales 30% Euryarchaeota 82% Methanomicrobia 85% Methanomicrobiales 65% Euryarchaeota 82% Methanomicrobia 85% Methanomicrobiales 65% Euryarchaeota 80% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 80% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 80% Methanomicrobia 85% Methanomicrobiales 65% Euryarchaeota 80% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 80% Thermoplasmata 30% Thermoplasmatales 30% Euryarchaeota 80% Methanomicrobia 65% Methanomicrobiales 57% Euryarchaeota 77% Thermoplasmata 25% Thermoplasmatales 25% Euryarchaeota 77% Thermoplasmata 25% Thermoplasmatales 25%	Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales 16% Methanocacaeae Euryarchaeota 80% Methanococci 16% Methanococcales 14% Methanocadococcaeae Euryarchaeota 66% Methanococci 14% Methanococcales 14% Methanocadococcaeae Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Methanosarcinaceae Euryarchaeota 87% Thermoplasmata 68% Thermoplasmatales 68% Thermoplasmatales, incertae_sedis Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Methanomicrobiaceae Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Methanomicrobiaceae Euryarchaeota 100% Methanomicrobia 100% Methanomicrobiales 54% Methanomicrobiaceae Euryarchaeota 91% Thermoplasmata 86% Thermoplasmatales 86% Thermoplasmatales_incertae_sedis Euryarchaeota 97% Methanomicrobia 67% Methanomicrobiales 34% Methanomicrobiaceae Euryarchaeota 97% Thermoplasmata 86% Thermoplasmatales 86% Caldisphaeraceae Euryarchaeota 72% Thermoplasmata 67% Thermoplasmatales 67% Thermoplasmatales_incertae_sedis Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Methanosaetaceae Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales 67% Thermoplasmatales_incertae_sedis Euryarchaeota 91% Thermoplasmata 81% Thermoplasmatales 81% Thermoplasmatales_incertae_sedis Euryarchaeota 91% Thermoplasmata 30% Thermoplasmatales 90% Methanosaetaceae Euryarchaeota 100% Methanomicrobia 98% Methanosarcinales 90% Methanosaetaceae Euryarchaeota 82% Thermoplasmata 30% Thermoplasmatales 90% Methanosaetaceae Euryarchaeota 82% Methanomicrobia 85% Methanomicrobiales 65% Methanomicrobiales_incertae_sedis Euryarchaeota 83% Thermoplasmata 30% Thermoplasmatales 30% Thermoplasmatales_incertae_sedis Euryarchaeota 83% Thermoplasmata 30% Thermoplasmatales 30% Thermoplasmatales_incertae_sedis Euryarchaeota 83% Methanomicrobia 85% Methanomicrobiales 65% Methanomicrobiales_incertae_sedis Euryarchaeota 83% Methanomicrobia 65% Methanomicrobiales_incertae_sedis Euryarchaeota 75% Thermoplasmatales 25% Thermoplasmatales_incertae_sedis Euryarchaeota 75%	Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales 98% Methanosataceae 88% Euryarchaeota 80% Methanococci 15% Methanococcales 16% Methanocaldococcaceae 16% Euryarchaeota 100% Methanomicrobia 100% Methanosarcinales 100% Methanosarcinaceae 100% Euryarchaeota 87% Thermoplasmata 68% Thermoplasmatales 68% Thermoplasmatales, incertae_sedis 58% Euryarchaeota 92% Methanomicrobia 100% Methanomicrobiales 54% Methanomicrobiaceae 24% Euryarchaeota 91% Methanomicrobia 100% Methanomicrobiales 54% Methanomicrobiaceae 24% Euryarchaeota 91% Thermoplasmatale 86% Thermoplasmatales incertae_sedis 55% Euryarchaeota 97% Methanomicrobia 67% Methanomicrobia 34% Methanomicrobiaceae 34% Crenarchaeota 97% Thermoplasmatale 67% Thermoplasmatales <td< td=""><td>Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales 98% Methanosaetaceae 16% Methanosaetaceae 100% Methanosaetaceae 24% Methanosaetacae 24% Methanosaetaceae 100% Methanosaetaceae 100%</td></td<>	Euryarchaeota 100% Methanomicrobia 99% Methanosarcinales 98% Methanosaetaceae 16% Methanosaetaceae 100% Methanosaetaceae 24% Methanosaetacae 24% Methanosaetaceae 100%

ArcR14	Crenarchaeota	54%	Thermoprotei 5	4%	Thermoproteales	14%	Thermofilaceae	13%	Thermofilum	13%
ArcR22	Crenarchaeota	87%	Thermoprotei 8	7%	Acidilobales	27%	Caldisphaeraceae	22%	Caldisphaera	22%
ArcR30	Crenarchaeota	83%	Thermoprotei 8	3%	Thermoproteales	30%	Thermofilaceae	28%	Thermofilum	28%
ArcR38	Crenarchaeota	32%	Thermoprotei 3	2%	Desulfurococcales	11%	Desulfurococcaceae	9%	Ignisphaera	8%
ArcR46	Euryarchaeota	96%	Thermoplasmata 8	3%	Thermoplasmatales	83%	Thermoplasmatales_incertae_sedis	68%	Thermogymnomonas	68%
ArcR54	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	100%	Methanosarcinaceae	100%	Methanosarcina	100%
ArcR62	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	99%	Methanosaetaceae	94%	Methanosaeta	94%
ArcR78	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	99%	Methanosaetaceae	92%	Methanosaeta	92%
ArcR86	Euryarchaeota	61%	Methanomicrobia 4	2%	Methanomicrobiales	19%	Methanomicrobiales_incertae_sedis	14%	Methanolinea	14%
ArcR94	Euryarchaeota	98%	Methanomicrobia 6	0%	Methanosarcinales	39%	Methanosarcinaceae	37%	Methanococcoides	25%
ArcR07	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	100%	Methanosaetaceae	89%	Methanosaeta	89%
ArcR15	Crenarchaeota	54%	Thermoprotei 5	4%	Desulfurococcales	14%	Desulfurococcaceae	11%	Ignisphaera	10%
ArcR23	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanocellales	100%	Methanocellaceae	100%	Methanocella	100%
ArcR31	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	100%	Methanosaetaceae	79%	Methanosaeta	79%
ArcR39	Euryarchaeota	87%	Methanomicrobia 6	6%	Methanomicrobiales	47%	Methanomicrobiales_incertae_sedis	32%	Methanolinea	32%
ArcR55	Euryarchaeota	55%	Halobacteria 3	2%	Halobacteriales	32%	Halobacteriaceae	32%	Halosimplex	10%
ArcR63	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	100%	Methanosaetaceae	100%	Methanosaeta	100%
ArcR71	Crenarchaeota	79%	Thermoprotei	9%	Acidilobales	21%	Caldisphaeraceae	20%	Caldisphaera	20%
ArcR79	Euryarchaeota	96%	Thermoplasmata 8	5%	Thermoplasmatales	85%	Thermoplasmatales_incertae_sedis	53%	Thermogymnomonas	53%
ArcR95	Crenarchaeota	25%	Thermoprotei 2	5%	Desulfurococcales	20%	Desulfurococcaceae	17%	Ignisphaera	17%
ArcR24	Crenarchaeota	66%	Thermoprotei 6	6%	Desulfurococcales	21%	Desulfurococcaceae	19%	Ignisphaera	13%
ArcR40	Euryarchaeota	69%	Methanococci 1	0%	Methanococcales	10%	Methanocaldococcaceae	10%	Methanotorris	10%
ArcR48	Euryarchaeota	93%	Methanomicrobia 7	2%	Methanomicrobiales	64%	Methanomicrobiales_incertae_sedis	28%	Methanolinea	28%
ArcR64	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	100%	Methanosaetaceae	89%	Methanosaeta	89%
ArcR72	Euryarchaeota	78%	Thermoplasmata 7	0%	Thermoplasmatales	70%	Thermoplasmatales_incertae_sedis	53%	Thermogymnomonas	53%
ArcR80	Euryarchaeota	100%	Methanomicrobia 10	0%	Methanosarcinales	99%	Methanosaetaceae	79%	Methanosaeta	79%

ArcR88	Euryarchaeota	90%	Thermoplasmata 37%	Thermoplasmatales	37%	Thermoplasmatales_incertae_sedis	31%	Thermogymnomonas	31%
ArcR96	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	100%	Methanosaetaceae	99%	Methanosaeta	99%
ArcR105	Crenarchaeota	48%	Thermoprotei 48%	Thermoproteales	30%	Thermofilaceae	19%	Thermofilum	19%
ArcR113	Euryarchaeota	98%	Methanomicrobia 74%	Methanomicrobiales	29%	Methanomicrobiaceae	29%	Methanomicrobium	23%
ArcR121	Euryarchaeota	100%	Methanomicrobia 80%	Methanomicrobiales	34%	Methanomicrobiaceae	31%	Methanomicrobium	25%
ArcR129	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	99%	Methanosaetaceae	65%	Methanosaeta	65%
ArcR145	Euryarchaeota	80%	Thermoplasmata 36%	Thermoplasmatales	36%	Thermoplasmatales_incertae_sedis	32%	Thermogymnomonas	32%
ArcR153	Euryarchaeota	57%	Methanomicrobia 23%	Methanomicrobiales	20%	Methanomicrobiales_incertae_sedis	11%	Methanolinea	11%
ArcR161	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	97%	Methanosaetaceae	94%	Methanosaeta	94%
ArcR177	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	100%	Methanosaetaceae	99%	Methanosaeta	99%
ArcR106	Euryarchaeota	100%	Methanomicrobia 98%	Methanosarcinales	97%	Methanosaetaceae	94%	Methanosaeta	94%
ArcR114	Euryarchaeota	91%	Thermoplasmata 38%	Thermoplasmatales	38%	Thermoplasmatales_incertae_sedis	37%	Thermogymnomonas	37%
ArcR130	Crenarchaeota	87%	Thermoprotei 87%	Acidilobales	31%	Caldisphaeraceae	30%	Caldisphaera	30%
ArcR138	Euryarchaeota	89%	Thermoplasmata 62%	Thermoplasmatales	62%	Thermoplasmatales_incertae_sedis	43%	Thermogymnomonas	43%
ArcR162	Euryarchaeota	91%	Methanomicrobia 52%	Methanomicrobiales	42%	Methanomicrobiales_incertae_sedis	39%	Methanolinea	39%
ArcR178	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	100%	Methanosarcinaceae	100%	Methanosarcina	100%
ArcR99	Crenarchaeota	99%	Thermoprotei 99%	Acidilobales	70%	Caldisphaeraceae	70%	Caldisphaera	70%
ArcR115	Euryarchaeota	92%	Methanomicrobia 62%	Methanomicrobiales	50%	Methanomicrobiales_incertae_sedis	29%	Methanolinea	29%
ArcR123	Euryarchaeota	91%	Thermoplasmata 80%	Thermoplasmatales	80%	Thermoplasmatales_incertae_sedis	59%	Thermogymnomonas	59%
ArcR131	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales	100%	Methanosarcinaceae	100%	Methanosarcina	93%
ArcR155	Euryarchaeota	98%	Methanomicrobia 60%	Methanomicrobiales	31%	Methanomicrobiaceae	31%	Methanomicrobium	29%
ArcR163	Euryarchaeota	86%	Thermoplasmata 78%	Thermoplasmatales	78%	Thermoplasmatales_incertae_sedis	61%	Thermogymnomonas	61%
ArcR179	Euryarchaeota	52%	Methanomicrobia 27%	Methanomicrobiales	13%	Methanomicrobiales_incertae_sedis	5%	Methanolinea	5%
ArcR108	Euryarchaeota	87%	Thermoplasmata 61%	Thermoplasmatales	61%	Thermoplasmatales_incertae_sedis	44%	Thermogymnomonas	44%
ArcR116	Euryarchaeota	90%	Thermoplasmata 54%	Thermoplasmatales	54%	Thermoplasmatales_incertae_sedis	54%	Thermogymnomonas	54%
ArcR132	Euryarchaeota	61%	Methanomicrobia 35%	Methanomicrobiales	29%	Methanomicrobiaceae	18%	Methanomicrobium	13%

ArcR140	Crenarchaeota	81%	Thermoprotei 81%	Acidilobales 40	0%	Caldisphaeraceae	40%	Caldisphaera	40%
ArcR148	Crenarchaeota	96%	Thermoprotei 96%	Thermoproteales 36	6%	Thermofilaceae	31%	Thermofilum	31%
ArcR164	Crenarchaeota	49%	Thermoprotei 49%	Sulfolobales 34	4%	Sulfolobaceae	34%	Sulfurisphaera	32%
ArcR180	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales 10	00%	Methanosaetaceae	100%	Methanosaeta	100%
ArcR101	Euryarchaeota	98%	Methanomicrobia 60%	Methanomicrobiales 26	6%	Methanomicrobiaceae	26%	Methanomicrobium	22%
ArcR109	Crenarchaeota	93%	Thermoprotei 93%	Thermoproteales 34	4%	Thermofilaceae	31%	Thermofilum	31%
ArcR117	Euryarchaeota	82%	Thermoplasmata 38%	Thermoplasmatales 38	8%	Thermoplasmatales_incertae_sedis	30%	Thermogymnomonas	30%
ArcR125	Euryarchaeota	98%	Methanomicrobia 77%	Methanomicrobiales 28	8%	Methanomicrobiaceae	28%	Methanomicrobium	15%
ArcR133	Euryarchaeota	92%	Methanomicrobia 87%	Methanomicrobiales 71	1%	Methanomicrobiales_incertae_sedis	26%	Methanolinea	26%
ArcR141	Euryarchaeota	92%	Thermoplasmata 84%	Thermoplasmatales 84	4%	Thermoplasmatales_incertae_sedis	75%	Thermogymnomonas	75%
ArcR157	Euryarchaeota	99%	Methanomicrobia 92%	Methanomicrobiales 67	7%	Methanomicrobiales_incertae_sedis	27%	Methanolinea	27%
ArcR165	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales 10	00%	Methanosaetaceae	100%	Methanosaeta	100%
ArcR173	Crenarchaeota	96%	Thermoprotei 96%	Thermoproteales 41	1%	Thermofilaceae	36%	Thermofilum	36%
ArcR181	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales 10	00%	Methanosarcinaceae	100%	Methanosarcina	98%
ArcR102	Euryarchaeota	97%	Thermoplasmata 90%	Thermoplasmatales 90	0%	Thermoplasmatales_incertae_sedis	54%	Thermogymnomonas	54%
ArcR110	Crenarchaeota	93%	Thermoprotei 93%	Acidilobales 41	1%	Caldisphaeraceae	41%	Caldisphaera	41%
ArcR118	Euryarchaeota	80%	Thermoplasmata 21%	Thermoplasmatales 21	1%	Thermoplasmatales_incertae_sedis	12%	Thermogymnomonas	12%
ArcR126	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales 99	9%	Methanosaetaceae	83%	Methanosaeta	83%
ArcR134	Euryarchaeota	87%	Thermoplasmata 54%	Thermoplasmatales 54	4%	Thermoplasmatales_incertae_sedis	49%	Thermogymnomonas	49%
ArcR158	Euryarchaeota	97%	Methanomicrobia 67%	Methanosarcinales 39	9%	Methanosarcinaceae	31%	Methanococcoides	23%
ArcR166	Crenarchaeota	51%	Thermoprotei 51%	Sulfolobales 17	7%	Sulfolobaceae	17%	Sulfurisphaera	7%
ArcR182	Euryarchaeota	82%	Thermoplasmata 46%	Thermoplasmatales 46	6%	Thermoplasmatales_incertae_sedis	39%	Thermogymnomonas	39%
ArcR103	Euryarchaeota	99%	Thermoplasmata 45%	Thermoplasmatales 45	5%	Thermoplasmatales_incertae_sedis	44%	Thermogymnomonas	44%
ArcR111	Euryarchaeota	91%	Thermoplasmata 36%	Thermoplasmatales 36	6%	Thermoplasmatales_incertae_sedis	33%	Thermogymnomonas	33%
ArcR119	Crenarchaeota	99%	Thermoprotei 99%	Thermoproteales 33	3%	Thermofilaceae	27%	Thermofilum	27%
ArcR127	Euryarchaeota	100%	Methanomicrobia 100%	Methanosarcinales 10	00%	Methanosaetaceae	100%	Methanosaeta	100%

ArcR135	Engraphaata	99%	Thomasloomata	90%	Themsenleameteles	90%	Thermanicamentales in control andis	81%	Thomassymnomones	81%
AICK155	Euryarchaeota	99%	Thermoplasmata	90%	Thermoplasmatales	90%	Thermoplasmatales_incertae_sedis	81%	Thermogymnomonas	81%
ArcR143	Euryarchaeota	100%	Methanomicrobia	73%	Methanomicrobiales	22%	Methanomicrobiaceae	22%	Methanomicrobium	18%
ArcR151	Euryarchaeota	100%	Methanomicrobia	100%	Methanosarcinales	100%	Methanosaetaceae	84%	Methanosaeta	84%
ArcR159	Euryarchaeota	93%	Methanomicrobia	84%	Methanomicrobiales	48%	Methanomicrobiales_incertae_sedis	20%	Methanolinea	20%
ArcR167	Euryarchaeota	93%	Thermoplasmata	82%	Thermoplasmatales	82%	Thermoplasmatales_incertae_sedis	57%	Thermogymnomonas	57%
ArcR175	Euryarchaeota	100%	Methanomicrobia	100%	Methanosarcinales	100%	Methanosaetaceae	100%	Methanosaeta	100%
ArcR183	Euryarchaeota	100%	Methanomicrobia	100%	Methanosarcinales	100%	Methanosarcinaceae	100%	Methanosarcina	99%
ArcR104	Crenarchaeota	85%	Thermoprotei	85%	Thermoproteales	41%	Thermofilaceae	40%	Thermofilum	40%
ArcR112	Crenarchaeota	88%	Thermoprotei	88%	Acidilobales	26%	Caldisphaeraceae	26%	Caldisphaera	26%
ArcR120	Euryarchaeota	100%	Methanomicrobia	79%	Methanosarcinales	46%	Methanosarcinaceae	41%	Methanococcoides	23%
ArcR128	Crenarchaeota	33%	Thermoprotei	33%	Sulfolobales	26%	Sulfolobaceae	26%	Sulfurisphaera	21%
ArcR136	Euryarchaeota	77%	Methanococci	29%	Methanococcales	29%	Methanocaldococcaceae	26%	Methanotorris	26%
ArcR152	Euryarchaeota	99%	Methanomicrobia	77%	Methanosarcinales	43%	Methanosarcinaceae	41%	Methanococcoides	26%
ArcR160	Euryarchaeota	93%	Thermoplasmata	25%	Thermoplasmatales	25%	Thermoplasmatales_incertae_sedis	23%	Thermogymnomonas	23%
ArcR176	Euryarchaeota	97%	Thermoplasmata	91%	Thermoplasmatales	91%	Thermoplasmatales_incertae_sedis	83%	Thermogymnomonas	83%

ANEXOS

Anexo 1. Metodologia de extração de plasmidial (Sambrook et al, 1989)

- 1- Adicionar a cada poço 240 μl de GET (Glicose 50 mM; Tris-HCl 25 mM; EDTA 10 Mm);
- 2- Selar a placa com adesivo e agitar (vortex) por 2 minutos, para ressuspender as células.
- 3- Centrifugar no mínimo 9 minutos, 4000rpm, ate sedimentar as células.
- 4- Retirar o adesivo e descartar o sobrenadante. Deixar a placa invertida em papel absorvente por cerca de 5 minutos.
- 5- Adicionar a cada poço 80 μl, de GET, selar a placa com adesivo e agitar (vortex) por 2 minutos, para ressuspender as células.
- 6- Adicionar 2,5 µl de RNase (10mg/ml) a cada poço de uma microplaca (tipo Elisa).
- 7- Transferir 80 µl da suspensão de células para a microplaca que já contem RNase.
- 8- Adicionar a cada poço 80 μl de NaOH 0,2N / SDS 1%.
- 9- Selar a placa com adesivo e misturar 30 vezes por inversão.
- Incubar 10 minutos a temperatura ambiente. Centrifugar por alguns segundos (spin a 4000 rpm).
- 11- Adicionar a cada poço 80 µl de KOAc 3M (acetato de potássio). Selar a placa com adesivo e misturar 30 vezes por inversão.
- 12- Incubar por 10 minutos temperatura ambiente. Spin a 4000 rpm.
- 13- Remover o adesivo e incubar a placa aberta em estufa a 90°C, por 30 minutos.
- 14- Selar a placa e esfriar em gelo por 10 minutos. Centrifugar por 9 minutos, 4000 rpm, 20°C.
- 15- Fixar com fita adesiva, uma placa milipore (MAGV N22) no topo de uma microplaca de fundo V.
- 16- Transferir todo o volume do sobrenadante para a placa millipore e centrifugar (sem a tampa) por 6 minutos, 4000 rpm.
- 17- Remover e descartar a placa Millipore. Adicionar 100 µl de isopropanol ao filtrado.
- 18- Selar bem a placa com adesivo e misturar 15X por inversão.
- 19- Centrifugar por 45 minutos, 4000 rpm, 20°C.
- 20- Retirar o adesivo e descartar o sobrenadante.
- 21- Adicione 200 µl de etanol 70% gelado.
- 22- Centrifugar por 5 minutos, 4000 rpm, 20°C. Descarte o sobrenadante.
- 23- Inverter a placa sobre papel absorvente e pulsar 900 rpm, 20°C.
- 24- Deixar a placa secar em a temperatura ambiente, por 60 minutos
- 25- Ressuspender o DNA com 30 µl de água milliQ, cobrir com adesivo, e deixar a temperatura ambiente overnight.
- 26- Guardar placa no freezer 20°C.

Anexo 2. Metodologia de açúcares redutores (Somogyi-Nelson)

Pré-cultivo - Repassar uma colônia da bactéria para um Erlenmeyer contendo 10 mL de meio LB, incubar em *shaker* a 200 rpm, a temperatura adequada, *overnight*;

Produção enzimática - Transferir 1 mL do pré-cultivo para 50 mL de meio de produção e incubar em *shaker* a 200 rpm, a temperatura adequada, por 24, 48 e 72 horas;

Atividade enzimática - retirar a cada 24 h uma alíquota de 10 mL assepticamente, centrifugar a 8000 rpm, por 20 min, a 6° C, recolher o sobrenadante e proceder o método de Somogyi-Nelson para avaliar a atividade enzimática em diferentes pH e temperaturas.

Preparar 5 tubos tipo Eppendorfs para cada amostra:

Tubos 1, 2 e 3- 33 uL de buffer¹, 33 uL do substrato² e 33 uL de amostra³;

Tubos 4 - deverá conter tudo que foi descrito acima, menos a amostra (só deverá colocar a amostra posteriormente). Esse tubo é o branco pra cada amostra.

Tubo 5 - tubo único contendo água milli-Q, que servirá como zero de calibração para todas as amostras;

Procedimento:

- Incubar os tubos a 50 55° C, pelo tempo mínimo de 15 min (podendo ficar de 30 a 60 min, dependendo da enzima teste);
- Esfriar em gelo 5 min;
- Adicionar 150 uL de água Milli-Q;
- Adicionar 250 uL do reativo de (Somogyi solução 1): solução I:II (4:1);
- Adicionar a amostra ao tubo 3 e misturar bem;
- Misturar em vortex todos os tubos;
- Ferver a 100° C por 10 min;
- Esfriar no gelo 5 min;
- Adicionar 250 uL do reativo de (Nelson solução 2): H₂SO₄: Arsenomolibdato (4:2);
- Misturar com a pipeta ou no vortex por alguns segundos;
- Adicionar 750 mL de água milli-Q;
- Centrifugar a 14.000 rpm por 2 min;
- Medir a absorbância de cada tubo a 520 nm (OD₅₂₀).

Solução 1 _ Somogyi

Solução I (1 litro)	Tartarato de sódio e	e potássio - 15 g	Dissolver primeiro o tartarato e
	Na_2CO_3 - 30 g		o Na ₂ CO ₃ , e depois adicionar
	NaHCO ₃ - 20 g		NaHCO ₃ e o Na ₂ SO ₄ já
	Na ₂ SO ₄	- 180 g	dissolvido também.
Solução II (250 mL)	CuSO ₄ .5H ₂ O	- 5 g	Dissolver os regentes e colocar
	Na ₂ SO ₄	- 45 g	em frasco escuro ou envolvido
		-	com papel alumínio

Solução 2 _Nelson

Solução	(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O	- 25 g	Dissolver o (NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O em
arsenomolibdato	Na ₂ HAsO ₄ .7H ₂ O	- 3 g	água destilada e acrescentar o H ₂ SO ₄
(500 mL)	NaHCO ₃	- 20 g	96%; agitar e acrescentar
(200 1112)	H ₂ SO ₄ 96%	- 21 mL	Na ₂ HAsO ₄ .7H ₂ O previamnete diluído
			em água. Incubar durante 24 a 48 h a
			37° C e guarda em frasco escuro ou
			envolvido com papel alumínio.
Solução de H ₂ SO ₄	1,5 N		Adicionar água e depois o ácido (nunca
			o inverso)

¹Buffer - os tampões devem ser previamente preparados dependendo do pH (ver Tabela 1 em Maerial e Métodos);

²Substratos - para celulase (Carboximetilcelulose - Sigma, USA - 4,5%) e para xilanase (Xylan - from Birchwood ou Beechwood - Sigma, USA - 4,5 % em água);

³Amostra - a amostra é o sobrenadante do crescimento bacteriano em meio específico, após

centrifugação;

Anexo 3. Metodologia SDS-PAGE - Zimograma

- Montar a cuba.
- Preparar o Resolving gel (ver Tabela A).
- Aplicar o Resolving gel no aparato até o nível desejado.
- Aplicar água Milli-Q ou álcool P.A ou 70%, para nivelar o gel.
- Após polimerização, retirar a água ou álcool e secar com papel.
- Preparar o Stacking gel (ver Tabela B). Aplicar o Stacking gel e inserir o pente.
- Esperar 15 min pela polimerização
- Montar o aparato de eletroforese contendo o tampão de corrida (ver Tabela C).
 - OBS.: Retirar a borracha seladora. Usar grampo para manusear as placas.
 - OBS.: Colocar sempre tampão de corrida novo no meio da cuba.
- Retirar o pente.
- Preparar as amostras: misturar 2 volumes da amostra para cada volume do tampão da amostra (ver Tabela D).
- Ferver as amostras por 5 minutos (apenas para ver proteínas totais, Coomassie) e esfriar no gelo (para zimograma, não é necessário ferver).
- Aplicar as amostras nos poços. Realizar a eletroforese a 200 V, 400 mA.
- Retirar o gel com cuidado.

Tabela A - Resolving gel (8%) (Sambrook et al., 1989)

Reagentes	Para um gel com 5 mL	Para dois géis com 3,75 mL cada	
		(7,5 mL)	
Água destilada estéril	2,3 mL ¹	3,45 mL ²	
Acrilamida 30% mix	1,3 mL	1,95 mL	
Tris 1,5 M (pH 8,8)	1,3 mL	1,95 mL	
SDS 10%	0,05 mL	0,075 mL	
Persulfato de amônia 10%	0,05 mL	0,075 mL	
TEMED	0,003 mL	0,0045 mL	
Substrato (CMC e/ou xilano 2%)	0,5 mL	0,45 mL cada, após divisão do gel	

^{1 –} descontar 0,5 mL do substrato; 2 – descontar 0,9 mL dos dois substratos (esse volume do gel deverá ser divido pra dois géis).

Tabela B - Stacking gel (5%) (Sambrook et al., 1989)

Reagentes	Para 2 mL
Água destilada estéril	1,4 mL
Acrilamida 30% mix	0,33 mL
Tris 1,5 M (pH 8,8)	0,25 mL
SDS 10%	0,02 mL
Persulfato de amônia 10%	0,02 mL
TEMED	0,002 mL

Tabela C - Tampão de corrida 10X

Reagentes	2X
Tris base	250 mM
SDS	1%
Glicina pH 8,3	2,5 M

Tabela D - Tampão de Amostra 2X (Loading buffer-2X)**

Reagentes	2X
Tris/HCl pH 6,8	100 mM
SDS	4%
Azul de bromofenol	0,2%
Glicerol	20%

^{**}Antes do uso, adicionar **dithiotreitol** (DTT) q.s.p. 200mM (estoque: 1 M armazenado a -20° C)

Tabela E - Solução Descorante

Reagentes	1 L
Metanol	450mL
Ácido acético glacial	100mL
Água Milli-Q	450mL

Coloração proteínas totais:

- Colocar o gel na solução de Coomassie (<u>Solução estoque</u>: **PlusOne Coomassie tablets PhastGel Blue R-350, seguir as instruções do fabricante -** <u>Solução de trabalho</u>: misturar 1 parte da solução estoque adicionada de 1 parte de ácido acético 20%.), por 30 minutos.
- Em seguida, colocar o gel na solução descorante (ver Tabela E), por 30 minutos no agitador de placas (baixa rotação). Guardar solução usada.
- Repetir o procedimento acima com nova solução descorante e/ou deixar por overnight.

Coloração zimograma (atividade enzimática para celulase e xilanase):

- Colocar o gel na solução de Triton 100X (2,5 %) por 30 minutos, em agitador de placas (baixa rotação), após este período, descartar o Triton e passar um pouco de água destilada no gel.
- Em seguida, colocar o gel em tampão fosfato de sódio pH 6,5 (50 mM) por 30 minutos, em agitador de placas (baixa rotação), descartar e adicionar mais tampão fosfato e incubar 15 min a 50° C.
- Descartar o tampão e corar com vermelho congo 0,1 % por 15 min, descartar e adicionar Nacl 1 M por 15 min. Descartar o Nacl e adicionar ácido acético 10 %. Visualizar e fotografar o gel