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Abstract—How can we achieve the conflicting goals of reduced
transmission power and increased capacity in a wireless network,
without attempting to follow the instantaneous state of a fad-
ing channel? In this paper, we address this problem by jointly
considering power control and multiuser detection (MUD) with
outage-probability constraints in a Rayleigh fast-fading environ-
ment. The resulting power-control algorithms (PCAs) utilize the
statistics of the channel and operate on a much slower timescale
than traditional schemes. We propose an optimal iterative solution
that is conceptually simple and finds the minimum sum power of
all users while meeting their outage targets. Using a derived bound
on outage probability, we introduce a mapping from outage to
average signal-to-interference ratio (SIR) constraints. This allows
us to propose a suboptimal iterative scheme that is a variation
of an existing solution to a joint power control and MUD prob-
lem involving SIR constraints. We further use a recent result
that transforms complex SIR expressions into a compact and
decoupled form, to develop a noniterative and computationally
inexpensive PCA for large systems of users. Simulation results
are presented showing the closeness of the optimal and mapped
schemes, speed of convergence, and performance comparisons.

Index Terms—Code division multiple access (CDMA), large
system analysis (LSA), multiuser detection (MUD), outage prob-
ability, power control, Rayleigh fading.

I. INTRODUCTION

POWER control of transmitters in a wireless network is
an effective way to improve performance and utilization,

whether it be in an interference-limited system such as code
division multiple access (CDMA), or a multiple-access sys-
tem employing frequency reuse among cells as in frequency
division multiple access (FDMA). The problem of allocating
powers in a meaningful way such that users need only expend
sufficient power to meet their quality-of-service (QoS) spec-
ifications has been studied extensively. Early work involved
solving an eigenvalue problem for nonnegative matrices, where
an approach known as signal-to-interference ratio (SIR) bal-
ancing was used to maximize the minimum SIR of the system
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[1]–[4]. The optimal solution was found to occur when all
SIRs are equal, or balanced, and was given by the eigenvector
associated with the maximum eigenvalue of a nondegenerate
channel-gain matrix.

Iterative and distributed power-control algorithms (PCAs)
that converge each user’s power to the minimum power result
[5]–[9] have also been studied and are of practical importance:
They utilize only local measurements to yield a global result
close or equal to the optimal. In contrast, centralized algorithms
require global knowledge of parameters; in practice, this trans-
lates into a requirement for low latency and high-bandwidth
communication paths between base-station receivers (BSRs) in
a multicellular network. A survey of this early work is given
in [10]. More recently, convex optimization-based approaches
have been investigated with the aim of finding the globally
optimal result through centralized interior-point and primal-
dual methods [11], [12].

Much of this prior work considered quasi-stationary channel
models; thus, to cope with a dynamic fading environment, so-
lutions to the respective problems would need to be reevaluated
each time the environment changed. This implies that such
methods would need to be highly efficient to be implemented in
practice, or incur a digital signal processing power penalty due
to intense signal processing requirements. Such methods may
also require frequent communication between mobile stations
and their assigned base station at each reevaluation. Work
capturing the dynamics of the channel include those in [13]
and [14], where channel gains are not assumed to be known
exactly; noise-corrupted estimates are used instead, resulting in
stochastic PCAs.

In this paper, we consider a dynamic fading environment
and a power-control scheme that does not attempt to follow
the instantaneous fading state of the channel. We simply relax
the traditional SIR constraints by allowing the received power
of each user to drop below the prescribed threshold with
low probability. Such a power-control problem with outage-
probability constraints operates on a slower timescale, fol-
lowing lognormal shadowing variations for instance, and was
first considered in [12]. It has many advantages: for example,
should the fading severity and duration increase, we can more
naturally cater for delay-constrained situations by declaring
outage rather than the increasing the interleaving depth in vain.
A consequence of the less frequent power updates, we are also
able to avoid the efficiency problems identified above, includ-
ing situations where power warfare may result from iterative
schemes that cannot keep up with the instantaneous fading state
of the channel. Ultimately however, the tradeoff with such an
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outage-based scheme is an increased power allocation to give
an extra margin of SIR. In return, the probability of fast-fading-
induced outage is reduced to an acceptable level that attains the
given QoS specifications.

The original problem considered in [12] was solved by
a nonlinear optimization, utilizing interior-point methods for
numerical implementation, while receiver noise was neglected
in the interest of convexity. In this paper, we show how a
similar problem that includes receiver noise can be solved using
a conceptually simple iterative algorithm fitting within the
framework given in [15]. We extend and enhance the problem
to jointly include multiuser detection (MUD). It is well known
that in a multiple-access system, MUD can be used to further
enhance the performance of wireless systems by exploiting the
structure of the multiple-access interference [16]. We introduce
a new minimum outage-probability (MOP) multiuser receiver
that finds a linear receiver filter to minimize outage. Should
this receiver be allowed to directly depend on the fast-fading
coefficients, this would be nothing more than the well-known
linear minimum mean squared error (MMSE) receiver [17],
[18] since it is SIR maximizing. However, in this paper, both
power control and receiver updates are specifically designed to
be independent of the fast-fading coefficients. Through a joint
optimization of both power and linear receivers, an increase in
user capacity in addition to a reduction of power consumption
is possible [19].

Traditionally, power allocation and MUD were considered
separately: power allocation assumed a fixed receiver structure
and MUD assumed fixed user transmit powers. Only recently
has such a joint optimization of both user transmit powers
and receiver filters been considered [20]–[22]. However, all
literature to date deals with a joint optimization having SIR
constraints—there is a lack of work dealing with a joint op-
timization to minimize outage probability. In this paper, we
propose three novel iterative methods to solve such a problem:
An optimal method that utilizes the MOP multiuser receiver,
a suboptimal method that utilizes the MMSE receiver, and
another method that is a hybrid of the former two.

We investigate bounds on outage probability in a Rayleigh
fading environment, showing that with receiver noise, these
bounds have the same form and tightness as the noiseless case
in [12]. Using the upper bound, we derive a relationship be-
tween outage probability and average SIR, allowing a mapping
to take place between outage and average SIR constraints.
Now, only considering these average SIR constraints, we can
leverage prior work dealing with instantaneous SIR constraints,
except we now consider the problem on a slower time scale.
We illustrate this idea by considering a large system analysis
(LSA) of a wireless network. Traditionally, a major difficulty in
the analysis of a power-controlled environment is the coupling
of all users through the interference they cause each other.
One simplifying case is the decorrelating detector; however,
recent work has shown that in a large system, decoupling of
the interfering effects is also possible for several other receiver
structures including the MMSE receiver [19]. We use results
from this paper to create a decentralized power-control scheme
that requires little computation and yields good results for
finite-sized systems.

To summarize, the main contributions of this paper are the
following.

1) The design of a conceptually simple iterative algorithm
that minimizes the sum power of all users subject to
outage-probability constraints. The optimization is per-
formed on choice of user powers and linear multiuser
receivers. This problem reduces to that considered in
[12] if background noise is neglected and linear receivers
fixed.

2) A novel suboptimal iterative PCA and MUD (PCA-
MUD) where outage constraints are first mapped to av-
erage SIR threshold constraints. Such a mapping permits
the use of a variant of an existing PCA-MUD given in
[20], which is computationally efficient.

3) A further suboptimal iterative PCA-MUD that combines
the concepts of the above two, yielding results closer to
the optimal, yet with a similar computational efficiency
to the previous algorithm.

4) A decentralized noniterative PCA-MUD for medium to
large systems of users using a recent result that trans-
forms complex expressions for SIR into a compact and
decoupled form.

The paper is organized as follows. In Section II, we introduce
our system and fading model. Section III derives expressions
for SIR, user outage probability, and new upper and lower
bounds relating to a margin of average SIR, when all statistical
variations in signal and noise power are ignored. In Section IV,
we formulate a joint power-control and multiuser-receiver op-
timization problem and give an iterative algorithm that yields
the optimal solution. Section V derives a mapping between
outage probability and average SIR, then formulates a subop-
timal joint power-control and multiuser-receiver optimization
problem based on such a mapping. Section VI introduces a
hybrid PCA-MUD that combines the concepts of the optimal
PCA with the MMSE multiuser receiver. In Section VII, large-
system results are derived. Section VIII provides simulation
results showing the closeness of all iterative schemes and a
comparison to the noniterative PCA-MUD for large systems.
Finally, Section IX contains our conclusions and outlines some
open issues for further investigation.

II. SYSTEM MODEL

In this paper, we consider the uplink in a direct-sequence
synchronous CDMA (DS-SCDMA) communications system
with K users and a processing gain of N . We assume a BPSK
modulation scheme and an N -dimensional chip matched-filter
(MF) vector at each receiver i. The received signal at each filter
input is given by

ri =
K∑

j=1

√
GijFijPjbjsj + ni, i = 1, . . . , K (1)

where
• Gij is the positive slow-varying path gain of user j to the

assigned base station of user i,
• Fij is the associated fast-fading component of the

channel,
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• Pj is the transmit power of user j,
• bj are data bits taking on values of ±1 with equal proba-

bility,
• sj is the fixed N -dimensional spreading sequence of user

j with elements taking values ±1/
√

N ,
• ni is assumed to be additive white Gaussian noise

(AWGN) with zero mean and covariance σ2I,

and we further define S = [s1, . . . , sK ].
More specifically, the terms Fij model fast time scale

Rayleigh fading and are assumed to be unit-mean exponentially
distributed random variables, independent for all j given i.
In this so-called Rayleigh/Rayleigh fading environment, the
received power has mean value

E[GijFijPj ] = GijPj .

The analysis that follows holds only over a time scale where
factors affecting Gij do not change significantly.

Let ci denote the linear receiver for user i at its assigned BSR
and C = [c1, . . . , cK ]. The filter output of user i at its assigned
BSR is given by

yi = cT
i ri =

K∑
j=1

√
GijFijPj

(
cT

i sj

)
bj + ñi (2)

where ñi = cT
i ni is N(0, σ2cT

i ci).

III. OUTAGE PROBABILITY AND CERTAINTY-EQUIVALENT

MARGIN (CEM) WITH NOISE

To simplify the notation in this section, we shall drop the
receiver filter terms (cT

i sj)
2

without loss of generality (since
we can absorb them into the Gij terms). They will become
important in Section IV-B.

A. SIR and Outage Probability

The SIR γ of user i is given by

γi =
GiiFiiPi∑

j �=i GijFijPj + σ2
. (3)

The outage probability of user i, denoted Oi, is defined as
the proportion of time that some SIR threshold γth

i is not met
for sufficient reception at the BSR. By a careful choice of γth

i ,
we can set the QoS for each user. We can express the outage
probability for the ith user as

Oi = Pr
(
γi ≤ γth

i

)

= Pr


GiiFiiPi ≤ γth

i



∑
j �=i

GijFijPj + σ2




 . (4)

In a Rayleigh/Rayleigh fading environment, we have (see [12])

Oi = 1 − exp
(
−σ2γth

i

GiiPi

)∏
j �=i

1

1 + γth
i

GijPj

GiiPi

. (5)

B. CEM With Noise

The CEM was defined in [12] without noise. It represents a
margin of error for average SIR when representing the system
by a certainty-equivalent form (with all statistical variation in
signal and noise power ignored and replaced with their expected
values).

We will take the average SIR (denoted SIR) to mean the
expected value of the ith user’s received power over the ex-
pected value of the interference from the K − 1 other users and
background noise. This is also the certainty-equivalent SIR and
is given by

SIRi =
E[GiiFiiPi]

E
[∑

j �=i GijFijPj + σ2
] =

GiiPi∑
j �=i

GijPj + σ2
. (6)

As with [12], we also define the CEM (with noise, denoted
CEMσ) as the ratio of the certainty-equivalent SIR to the
average SIR threshold

CEMσ
i =

SIRi

γth
i

=
GiiPi

γth
i

{∑
j �=i GijPj + σ2

} . (7)

C. Relation Between the CEMσ and Outage Probability

We make use of the general result

1 + k +
n∑
i

zi ≤ ek
n∏
i

(1 + zi) ≤ ek+
∑n

i
zi (8)

which is valid for any z1, . . . , zn, k ≥ 0 and can easily be
proved by following [12, Appendix II]. We shall use this result
to find the upper and lower bounds on outage probability in
terms of the CEMσ .

From (5), we have

Oi = 1 −


exp

(
σ2γth

i

GiiPi

)∏
j �=i

(
1 +

γth
i GijPj

GiiPi

)
−1

.

Using the left-hand side inequality in (8)

Oi ≥ 1 −


1 +

σ2γth
i

GiiPi
+
∑
j �=i

γth
i GijPj

GiiPi



−1

= 1 −


1 +

γth
i

{∑
j �=i GijPj + σ2

}
GiiPi



−1

= 1 − 1
1 + 1

CEMσ
i

=
1

1 + CEMσ
i

.
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Repeating the procedure above for the right-hand side in-
equality in (8)

Oi ≤ 1 − exp


−σ2γth

i

GiiPi
−
∑
j �=i

γth
i GijPj

GiiPi




= 1 − exp


−

γth
i

{∑
j �=i GijPj + σ2

}
GiiPi




= 1 − exp
(
− 1

CEMσ
i

)
.

The upper and lower bounds on outage are thus

1
1 + CEMσ

i

≤ Oi ≤ 1 − exp
(
− 1

CEMσ
i

)
(9)

which have the same form and tightness in the region of interest
as the noiseless case in [12].

IV. OPTIMAL POWER CONTROL

A. Problem Definition

The aim of the PCA is to find the powers Pi and linear re-
ceivers ci, for i = 1, . . . ,K, such that the total power transmit-
ted by all users is minimized while all user outage constraints
are met. Formulating this as an optimization problem, we have

min
P,C

K∑
i=1

Pi

s.t.

{
1 − exp

(
−σ2

(
cT

i ci

)
γth

i

Gii

(
cT

i si

)2
Pi

)

×
∏
j �=i

[
1 +

γth
i Gij

(
cT

i sj

)2
Pj

Gii

(
cT

i si

)2
Pi

]−1

 ≤ Ot

i ,

Pi ≥ 0, ci ∈ S
N i = 1, . . . ,K

where we used (5) with the linear receivers included, and Ot
i

are the target outage probabilities. We note that any scalar
multiple of the optimal ci results in the same optimal solution.
Thus, to make the problem well defined, we restrict ourselves to
ci ∈ R

N with ‖ci‖ = 1, denoted above by the N -dimensional
unit sphere S

N .
We further note that the optimal solution will have outage

constraints satisfied with equality. We first observe that outage
probability (5) is monotonically increasing in Pj , j �= i, and it
can be shown to be monotonically decreasing in Pi. Suppose
P is a power vector where all users have met their outage
targets with at least one user i having outage Oi < Ot

i . We can
then lower Pi and still meet all outage constraints. This in turn
improves the situation for all other users: they may decrease
their own power. Thus, the optimal power vector P∗ occurs
when Oi = Ot

i ,∀i.

The optimization above is equivalent to the following, where
the inner optimization has been inserted into the constraint set
(see [20] for a similar refinement)

min
P

K∑
i=1

Pi

s.t. min
ci∈SN

{
1 − exp

(
−σ2

(
cT

i ci

)
γth

i

Gii

(
cT

i si

)2
Pi

)

×
∏
j �=i

[
1 +

γth
i Gij

(
cT

i sj

)2
Pj

Gii

(
cT

i si

)2
Pi

]−1

 ≤ Ot

i ,

Pi ≥ 0 i = 1, . . . , K.

(10)

B. Optimal PCA

In this section, we describe an iterative algorithm to solve the
optimization problem (10).

Taking the logarithm of the outage constraint from (10) and
rearranging yields the equivalent constraints

min
ci∈SN


 σ2

(
cT

i ci

)
G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)

+

G̃ii

(
cT

i si

)2
Pi

∑
j �=i

log
(

1 +
Gij(cT

i sj)2
Pj

G̃ii(cT
i
si)2

Pi

)

G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)



≤ Pi

(11)

where G̃ii = Gii/γth
i .

If we view (11) as representing a set of quasi-interference
constraints on the power vector P, we can define a new PCA
where each user i iteratively attempts to compensate for the
interference. At convergence, we would like each of the outage
constraints to be met.

With reference to (11), we define

Ii(P, ci) =
σ2

(
cT

i ci

)
G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)

+

G̃ii

(
cT

i si

)2
Pi

∑
j �=i

log
(

1 +
Gij(cT

i sj)2
Pj

G̃ii(cT
i
si)2

Pi

)

G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)
Ti(P) = min

ci

Ii(P, ci) (12)

and refer to Ii(P, ci) as the interference function to maintain
consistency with the framework in [15].

Furthermore, we propose the PCA

Pn+1 = T(Pn) (13)

where n is the iteration step, T(P) = [T1(P), . . . , TK(P)]T,
and is initialized with powers set to the receiver noise level
P 0

i = σ2 and MF coefficients c0
i = si,∀i.
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This PCA is similar in form to that in [20]; however, we
are dealing with outage rather than SIR constraints and average
quantities on a slower time scale. In Section V, we will see how
a suboptimal variant of the algorithm given by (12) and (13) can
be reduced to a new PCA that is similar in form to [20].

Theorem 1 below proposes that (13) is a standard interfer-
ence function and thus the PCA converges to a fixed solution.
The proof is based on the three properties of a standard inter-
ference function given in [15] and repeated below.
Definition 1: Interference function I(P) is standard if, for

all P ≥ 0, the following properties are satisfied.

1) Positivity—I(P) > 0.
2) Monotonicity—If P ≥ P′, then I(P) ≥ I(P′).
3) Scalability—For all α > 1, αI(P) > I(αP).
Theorem 1: T(P) is a standard interference function.
Proof: We recall that Gij > 0, Pi > 0 and 0 < Ot

i < 1.
Thus, for any fixed ci, Ii(P, ci) > 0. Therefore, Ti(P) =
minci

Ii(P, ci) is positive and T(P) is also positive.
To prove monotonicity of (13), we will first show that (12) is

monotonic for any fixed ci.
Note that Ii(P, ci) is monotonic in all Pj , j �= i, thus, we

only need to prove monotonicity for Pi. This is equivalent to
proving monotonicity of

y = x log
(

1 +
k

x

)
(14)

where x = G̃ii(cT
i si)

2
Pi and k = Gij(cT

i sj)
2
Pj is a constant.

It can be shown that (14) is monotonic, provided k > 0.
We have k = Gij(cT

i sj)
2
Pj , which is positive, thus (12) is

monotonic.
If c∗i = arg min

ci

Ii(P, ci), then, we have

Ti(P) = min
ci

Ii(P, ci)

= Ii (P, c∗i )

≥ Ii (P′, c∗i )

≥ min
ci

Ii(P′, ci)

= Ti(P′).

Thus, Ti(P) ≥ Ti(P′) and (13) satisfies the monotonicity
property.

To prove scalability, we note that for a fixed ci, we have

Ii(αP, ci) =
σ2

(
cT

i ci

)
G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)

+

G̃ii

(
cT

i si

)2
αPi

∑
j �=i

log
(
1 +

Gij(cT
i sj)2

αPj

G̃ii(cT
i
si)2

αPi

)

G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

)
<αIi(P, ci)

since the α’s cancel in the log term and the noise variance σ2 is
nonzero.

If again c∗i = arg min
ci

Ii(P, ci), then, we have

αTi(P) = min
ci

αIi(P, ci)

= αIi (P, c∗i )
> Ii (αP, c∗i )
≥ min

ci

Ii(αP, ci)

= Ti(αP).

Thus, αTi(P) > Ti(αP), and (13) satisfies the scalability
property. �

Since T(P) is a standard interference function, the PCA
(13) converges to a final solution P∗ = T(P∗). This solution
is the minimum power required to meet the outage constraints
(11). The filter coefficients converge to a new type of multiuser
receiver, the MOP receiver. As such, we shall refer to the PCA
(13) as the optimal MOP-PCA.

C. Feasibility

In the previous section, we implicitly assumed that the con-
straint set was nonempty. To be more precise, we should say
that the fixed-point iteration of (13) converges if and only if
there exists a power vector satisfying the outage constraints
(10). We have not given conditions for the feasibility of our
optimization problem and indeed this appears to be a nontrivial
problem. We can however make the following observation:
If the set of signature sequences {s1, s2, . . . , sK} is linearly
independent (which can only be true if K ≤ N ), then there
exists a power vector satisfying the outage constraints (10). To
see this, note that under the linear-independence assumption,
we could choose ci to be the decorrelating multiuser detector,
in which case cT

i sj = 0 for j �= i, so that the outage for user i is

Oi = 1 − exp

(
−

σ2
(
cT

i ci

)
γth

i

Gii

(
cT

i si

)2
Pi

)

where cT
i si > 0 by assumption. Clearly, we can now choose

Pi so that any outage constraint is satisfied. We can further
express the outage probability above as

Oi = 1 − exp
(
− 1

CEMσ
i

)

where CEMσ
i is the CEM for a single-user situation.

The above linear independence assumption provides a suffi-
cient condition for the existence of a feasible power vector. A
full characterization of the feasible (nonempty) constraint sets
in terms of the signature sequences, SIR and outage targets,
remains an open problem.

V. POWER CONTROL WITH SIR CONSTRAINTS

In this section, we introduce a power-control problem that
considers average SIR constraints rather than dealing directly
with outage probability.

To meet our outage-probability constraints, we require that
Oi ≤ Ot

i for all i. Combining this inequality with the upper
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bound in (9), we can define a new constraint on CEMσ
i , which,

when met, will guarantee that our original outage constraints
are also met

Oi ≤ 1 − exp
(
− 1

CEMσ
i

)
≤ Ot

i , i = 1, . . . , K. (15)

Rearranging the right-hand side of (15) yields

exp
(
− 1

CEMσ
i

)
≥ 1 − Ot

i

CEMσ
i ≥ 1

log
(

1
1−Ot

i

)
SIRi ≥

γth
i

log
(

1
1−Ot

i

) (16)

= Γth
i (17)

where we have used the definition of CEMσ
i from (7) and

defined a new quantity

Γth
i =

γth
i

log
(

1
1−Ot

i

) (18)

called the outage-mapped average SIR threshold. We can now
define a new problem

min
P,C

K∑
i=1

Pi

s.t. Pi ≥
Γth

i

Gii

∑
j �=i Gij

(
cT

i sj

)2
Pj + σ2

(
cT

i ci

)
(
cT

i si

)2
Pi ≥ 0, ci ∈ S

N i = 1, . . . ,K

where we have rearranged (6) to form an SIR constraint.
This problem is mathematically equivalent to the power-
control problem in [20]; however, we consider average channel
gains and the outage-mapped average SIR threshold Γth

i as
parameters.

In a similar fashion to [20], the problem is equivalent to

min
P

K∑
i=1

Pi

s.t. Pi ≥
Γth

i

Gii
min
ci∈SN

∑
j �=i Gij

(
cT

i sj

)2
Pj + σ2

(
cT

i ci

)
(
cT

i si

)2
Pi ≥ 0 i = 1, . . . ,K.

(19)

A. Suboptimal PCA

The problem (19) above has an associated PCA given by

Ji(P, ci) =
Γth

i

Gii

∑
j �=i Gij

(
cT

i sj

)2
Pj + σ2

(
cT

i ci

)
(
cT

i si

)2 (20)

Ui(P) = min
ci

Ji(P, ci) (21)

Pn+1 =U(Pn) (22)

where U(P) = [U1(P), . . . , UK(P)]T. We shall refer to this
PCA as the outage-mapped MMSE-PCA.

In [20], it was shown that the MMSE filter coefficients ci

minimize (21), and so we have the following iterative algorithm
for the above problem

ĉi = MMSEi(Pn) (23)

Pn+1
i =

Γth
i

Gii

∑
j �=i Pn

j Gij

(
ĉT

i sj

)2 + σ2
(
ĉT

i ĉi

)
(
ĉT

i si

)2 (24)

where

MMSEi(P) = ρ
(
S−iD−iST

−i + σ2I
)−1

si (25)

ρ is a scalar chosen so that ‖MMSEi(·)‖ = 1; the matrix S−i

is of dimension N × (K − 1) having the same form as S,
omitting the ith column; and D−i is a (K − 1) × (K − 1)
diagonal matrix with entries P1G11, . . . , PKGKK , omitting
PiGii.

The receiver estimate ĉi is updated on each iteration and the
PCA is initialized with powers set to the noise level and MF
coefficients. The convergence proof of this PCA mirrors that in
[20] and relies on the right-hand side of (21) being a standard
interference function.

Since we have used the upper bound on Oi in the derivation
above, the solution is suboptimal; however, we guarantee the
outage constraints from the right-hand side of (15). Recall that
in the region of interest, the outage bounds are tight, and so we
expect that this PCA will result in near-optimal performance as
compared to the optimal MOP-PCA.

VI. HYBRID PCA

The reduced computational requirements of the MMSE-PCA
in the previous section is a key practical advantage, since
the minimizer of the standard interference function Ji(·, ·)
is known in closed form. Contrast this to the MOP-PCA of
Section IV-B: in practice, it requires complex iterative opti-
mization methods for computation since the minimization is
over a nonlinear function of the receiver filter.

Envisage a new algorithm, where we take the MOP-PCA
and replace this complex minimization with the closed-form
MMSE receiver solution. In [12], it was noted that maximiz-
ing CEMi is often nearly equivalent to minimizing outage
probability, since the outage-probability bounds are very tight
(their ratio being often near 1). Given that the bounds (9) for
CEMσ

i have the same form as in [12], we are effectively using
the MMSE receiver to reduce outage probability. Obviously,
such an algorithm benefits from having greater computational
efficiency. Furthermore, no bound is required: we would expect
the final outages to be met with equality, in contrast to the
MMSE-PCA, where this is not necessarily the case, and depend
on the tightness of the bound.

We define a new interference function

Hi(P) = Ii (P, MMSEi(P)) (26)

where Ii(P, ci) was previously defined in (12).
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The new PCA is then of the form

Pn+1 = H(Pn) (27)

where again, n denotes the iteration step, H(P) = [H1(P),
. . . ,HK(P)]T, and the algorithm is initialized with powers
set to the receiver noise level and the MF coefficients. We
shall refer to this algorithm as the hybrid outage-probability
(HOP) PCA.

We conjecture that if the MMSE-PCA converges, indeed
doing so whenever (19) is feasible, then the HOP-PCA will con-
verge to a solution P∗ that is less than the fixed-point solution
of the MMSE-PCA. This conjecture is supported by simulation.
Furthermore, the following theorem proposes that, by starting
from a common initial power vector, the nth iteration generated
by the HOP-PCA is bounded above and below by the nth
iteration vectors generated by the MMSE- and MOP-PCAs,
respectively. We conclude that if the fixed points of the MOP-
and MMSE-PCAs are very close, as determined by the tight
bound on outage, then, for all practical engineering purposes,
the HOP-PCA will, at the very least, converge to some small
region of powers above the optimal fixed-point solution.
Lemma 1: For any fixed power vector P, Ti(P) ≤ Hi(P) ≤

Ui(P).
Proof: We can rewrite the left-hand-side inequality as

min
ci

Ii(P, ci) ≤ Ii (P, MMSEi(P)) .

We can also rewrite the right-hand side inequality as

Ii (P, MMSEi(P)) ≤ Ji (P, MMSEi(P))

where

Ji(P, ci) =
σ2

(
cT

i ci

)
+
∑

j �=i Gij

(
cT

i sj

)2
Pj

G̃ii

(
cT

i si

)2 log
(

1
1−Ot

i

) (28)

is the interference function for the MMSE-PCA (20) put into a
form similar to (12). To show that this inequality holds, we note
that for each i �= j, the summation term in (12) can be bounded
from above as follows

G̃ii

(
cT

i si

)2
Pi log

(
1 +

Gij

(
cT

i sj

)2
Pj

G̃ii

(
cT

i si

)2
Pi

)

≤ G̃ii

(
cT

i si

)2
Pi

Gij

(
cT

i sj

)2
Pj

G̃ii

(
cT

i si

)2
Pi

= Gij

(
cT

i sj

)2
Pj

since log(1 + x) ≤ x, provided x ≥ 0. This bound is exactly
the term appearing within the summation in (28). �

Lemma 2: Given any three power vectors satisfying T P ≤
HP ≤ UP, then Ti(T P) ≤ Hi(HP) ≤ Ui(UP).

Proof: Immediate from Lemma 1 and the monotonicity
properties of Ti(·) and Ui(·). �

Let

T Pn+1 =T(T Pn)

HPn+1 =H(HPn)

UPn+1 =U(UPn)

with

T P0 = HP0 = UP0 = P0.

Theorem 2: For all iterations n

T Pn+1 ≤ HPn+1 ≤ UPn+1.

Proof: Immediate from Lemma 1 and Lemma 2. �

VII. LARGE-SYSTEM ANALYSIS (LSA)

The MMSE filter coefficients ci minimize the interference
function (21) in Section V-A above. Equivalently, ci maximizes
the average SIR of user i. The corresponding maximal SIR for
user i is given by

SIRi = PiGiisT
i

(
S−iD−iST

−i + σ2I
)−1

si (29)

which we can use to restate the optimization problem (19) of
Section V as follows:

min
P

K∑
i=1

Pi

s.t. SIRi ≥ Γth
i

Pi ≥ 0 i = 1, . . . , K.

Recall that the optimal solution to the optimization problems
of Section IV-A occurs when all users meet their outage con-
straints with equality. A similar argument can be constructed
for this problem, dealing with outage-mapped average SIR
constraints. We then reduce this problem to one where we solve
the system of equations

PiGiisT
i

(
S−iD−iST

−i + σ2I
)−1

si = Γth
i (30)

for all i = 1, . . . ,K.
The LSA in [19] derives a closed-form expression that

the left-hand side of (30) converges to, in probability, as N,
K → ∞ and the number of users per degree of freedom, or
system loading, α ≡ K/N remains fixed. This SIR, in the limit,
is a deterministic quantity for each user i, denoted β∗

i . Some-
what surprisingly, the result enables the uncoupling of each user
in the SIR expression above, by representing each user with
an effective interference. Using this decoupled result, we can
then solve a new system of equations that, in a large system, is
equivalent to (30), and where each individual equation can be
solved independently of each other, resulting in a decentralized
and noniterative PCA.
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In a finite-sized system with MMSE receivers, the LSA result
allows us to approximate the average SIR for a given user i,
denoted βi. The average SIR approximation is given by

βi ≈
PiGii

σ2 + 1
N

∑K
j=1 I(PjGjj , PiGii, βi)

(31)

where I(PjGjj , PiGii, βi) is the effective interference term
contributed from the jth user, and is defined as

I(PjGjj , PiGii, βi) ≡
PjGjjPiGii

PiGii + PjGjjβi
. (32)

Combining (31) and (32) yields

βi ≈
PiGii

σ2 + 1
N

∑K
j=1

PjGjjPiGii

PiGii+PjGjjβi

. (33)

For the remaining analysis, we shall assume (33) holds with
equality.

Let α∗
i = βi/PiGii. Equation (33) becomes

α∗
iPiGii =

PiGii

σ2 + 1
N

∑K
j=1

PjGjj

1+PjGjjα∗
i

or

α∗ =
1

σ2 + 1
N

∑K
j=1

PjGjj

1+PjGjjα∗
(34)

since α∗
i does not depend on i.

Substituting PjGj = βj/α∗ = Γth
j /α∗ into (34) gives

α∗ =
1

σ2 + 1
N

∑K
j=1

βj
α∗

1+
βj
α∗ α∗

=
1

σ2 + 1
α∗

1
N

∑K
j=1

Γth
j

1+Γth
j

. (35)

The nontrivial solution to the fixed point (35) is given by

α∗ =
1 − 1

N

∑K
j=1

Γth
j

1+Γth
j

σ2
=

Γth
i

PiGii
(36)

where again, PiGii = Γth
i /α∗. Rearranging the left-hand side

for Pi gives the power solution of the ith user

Pi =
Γth

i

Gii

σ2

1 − 1
N

∑K
j=1

Γth
j

1+Γth
j

(37)

where we have the necessary and sufficient condition

1
N

K∑
j=1

Γth
j

1 + Γth
j

< 1 (38)

for a solution to exist. This solution is a generalization of
a previous result given in [19] for a finite set of J user

classes. Here, we consider a limiting regime of K → ∞ classes
of users.

The expression (37) allows for a totally decentralized and
noniterative PCA since we have a closed-form expression that
only requires a user’s channel gain and a common term com-
prising all outage-mapped SIR thresholds. In practice, such a
decentralized implementation would involve two stages. In the
first stage, the left-hand side of (38) would need to be broadcast
to all users. Here we make the reasonable assumptions that
the individual outage-mapped threshold Γth

i and receiver noise
power σ2 are known by each user, while the uplink channel
gain Gii can be estimated from the respective downlink channel
gain. Having all required parameters for (37), each user can
then compute their required transmit power. The second stage
involves computation of all user transmit powers at the BSR to
form the MMSE expression, giving the required linear receivers
for each user.

We shall refer to this PCA as the LSA-PCA.

VIII. SIMULATION RESULTS

Our simulations consider a single circular CDMA cell with
radius 1 km. We assume a uniform distribution on the location
of the users within the cell who are each subject to a distance-
dependent loss (loss exponent 4) and lognormal (zero mean,
8 dB variance) shadowing. Unless otherwise stated, a process-
ing gain of 32 was chosen, corresponding to a chip rate of
1.2288 MHz and an encoder input rate of 38.4 kb/s under the
cdma2000 specification [23]. Furthermore, an AWGN noise
power equal to σ2 = 10−13 was chosen, corresponding to
approximately a 1 MHz bandwidth.

We define three user classes, each having typical out-
age probability and SIR threshold pairs as {(5%, 10 dB),
(10%, 8 dB), (20%, 6 dB)}. We assign 25% of users to the first
class, 50% to the second, and the remaining to the third.

In all simulations that follow, user signature sequences are
chosen randomly, initial filter coefficients are set to the MF,
and initial user powers are set to the receiver noise power
σ2 = 10−13 where appropriate.

A. Optimal, Outage-Mapped, and Hybrid PCAs

In this section, we compare the optimal MOP-PCA, outage-
mapped MMSE-PCA, and the hybrid HOP-PCA. The MOP-
PCA is computed with (12) and (13), where we employ
sequential quadratic programming [24] to minimize the inter-
ference function in (13). The MOP-PCA is computed from (26)
and (27) once we have obtained the outage-mapped average
SIR thresholds (18) from each user’s outage-probability target.
Finally, the HOP-PCA is computed from (26) and (27). We
declare convergence of an algorithm once successive iterations
yield an average per-user power of within 1%.

For K = 4, 8, 16, 32 users, Fig. 1 shows in log scale the sum
power of all users as a function of the iteration step. All three
algorithms yield almost indistinguishable results, verifying ear-
lier claims on the tightness of the outage-probability bounds
used in the MMSE-PCA.

Fig. 2 considers a system of K = 32 users. It shows the
convergence of the outage probabilities to their targets, for each
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Fig. 1. Total transmitter power with 4–32 users.

Fig. 2. Outage probability for the MOP-PCA with 32 users.

user, as a function of the iteration step for the MOP-PCA. We
clearly see the three outage-probability classes (5%, 10%, and
20%) at convergence.

B. Performance Comparison: Variable Versus
Fixed Linear Filters

This section compares the performance of the developed al-
gorithms, where we have a choice over linear filters, to a similar
one where they remain fixed from the outset. We consider (24),
where the linear filters are fixed to the MF ĉi = ci = si, and
refer to this variant as the MF-PCA. For brevity, we concentrate
on the MMSE-PCA in our comparison, given the observation
in the previous section, where the MOP- and HOP-PCAs have
yielded almost indistinguishable results.

We maintain the specified QoS classes, again mapping them
to an associated average SIR constraint using (18). We consider
1000 independent simulation runs for each algorithm. Signature
sequences are chosen independently between runs; however,
sequences are common across simulations for each algorithm
and specific value of K.

Fig. 3. Total transmitter power with 2–32 users, averaged over 1000
simulations.

Fig. 4. Percentage of users meeting constraints, averaged over 1000
simulations.

For K = 2, 3, 4, 16, 32 users, Fig. 3 shows the total power
allocation, averaged over each simulation run. Simulations
where the problem was infeasible are excluded from this figure
and is the reason for the MF-PCA plot stopping at K = 4. This
result clearly demonstrates that a performance advantage can be
achieved through a joint optimization over user transmit power
and linear receivers.

Note the reduction in total power for the MF-PCA as K was
increased from three to four users. This can be attributed to
the low number of feasible runs (0.425%) in the scenario for
K = 4: only those runs where users had “good” signature
sequences would result in a solution where all constraints
had been met. In the scenarios where K = 3, there was less
competition among users (as each had a higher degree of free-
dom) and a greater number of less-efficient signature-sequence
combinations were possible, in the sense that more feasible runs
were possible at the expense of a higher total power on average.

To appreciate the relative difficulty of obtaining a feasible
run, Fig. 4 shows the percentage of users that met their outage
constraints, averaged over all simulation runs.
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Fig. 5. Comparison between the LSA-, MMSE-, and HOP-PCAs with K =
16, . . . , 512 users and α = 0.75.

C. Large Systems

We now consider the large-system results for K = 16, 32, 64,
128, 256, 512 users and compare the LSA-PCA with both of the
HOP- and MMSE-PCAs. A fixed system loading of α = 0.75
was chosen, with other parameters as above.

Fig. 5 shows in log scale the sum power of all users in
each simulation scenario. As the system size is scaled up-
wards, the accuracy of the LSA-PCA improves significantly
until it becomes indistinguishable from the HOP- and MMSE-
PCAs. For medium-sized systems, the approximate result gives
excellent performance, considering the reduced computational
complexity and decentralized nature of the result.

Fig. 6 shows the percentage of users that did not meet their
outage constraints in each simulation scenario with the LSA-
PCA implementation. Similar statistics are not shown for the
HOP- and MMSE-PCAs, as all users in all scenarios met their
outage constraints with equality. Given the closeness of the
results observed in Fig. 5, we further quantify the average
deviation between the outage-probability specification and sim-
ulated outage probability in Fig. 6, for each user not meeting
their outage target with the LSA-PCA. We see that under all
scenarios, this deviation is small—ranging from 3% to under
1%—and improves as the size of the system is scaled upwards.
This statistic is important as it validates the LSA method, even
for smaller sized systems.

IX. CONCLUSION

This paper introduced a new power-control problem that
aims to jointly optimize user transmit powers and linear receiver
filters according to individual user outage-probability specifica-
tions. An iterative algorithm to solve this problem optimally
was developed and convergence proved. A bound on outage
probability enabled a mapping to take place between outage and
an average SIR threshold. From this, a suboptimal PCA-MUD
that utilized the well-known MMSE receiver was developed.
The approximation to the optimal solution was found to be

Fig. 6. Performance of the LSA-PCA in meeting user outage-probability
constraints, and the average deviation between resultant user outage probability
and respective targets for those users with an inadequate QoS.

exceptionally close in the region of interest. A further subop-
timal PCA-MUD was introduced, which combined the benefits
of the previous two: high computational efficiency with a result
that is closer to the optimal.

Large-system approximations were used to decouple com-
plex SIR expressions when the number of users and degrees
of freedom approach infinity, with a fixed ratio between the
two. This approximation enabled a closed-form solution to
an outage-mapped, joint power control, and MMSE multiuser
receiver optimization problem. In a finite-sized system, the
approximate solution was found to be close to the full HOP-
and MMSE-PCA solutions, giving excellent results for medium
to large finite-sized systems.

Finally, we note that there are a number of important open
issues that arise from the results presented in this paper.

1) The extension of the algorithms to more general fast-
fading distributions such as Rician and Nakagami-m.
Some initial work in this direction is presented in [25].

2) Investigation of feasibility conditions for the outage-
constrained power-control problems. As an example, one
may be interested in controlling the admission of users
to the network so that the resultant outage constraints are
feasible with high probability (see [26] for example).

3) Examination of the extent to which the algorithms can
be decentralized and based on noisy local measurements.
The challenge here is to develop stochastic PCAs along
the lines of those in [13] and [20], which are applicable
for systems with outage constraints.

These issues are currently under investigation.
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