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Abstract. The power grid, on which most economic activities rely, is a
critical infrastructure that must be protected against potential threats.
Advanced monitoring technologies at the center of smart grid evolution
increase its efficiency but also make it more susceptible to malicious at-
tacks such as false data injection. This paper develops a game-theoretic
approach to smart grid security by combining quantitative risk man-
agement with decision making on protective measures. Specifically, the
consequences of data injection attacks are quantified using a risk assess-
ment process based on simulations. Then, the quantified risks are used
as an input to a stochastic game model, where the decisions on defensive
measures are made taking into account resource constraints. Security
games provide the framework for choosing the best response strategies
against attackers in order to minimize potential risks. The theoretical
results obtained are demonstrated using numerical examples.

Keywords: Smart grid, automatic generation control, security games

1 Introduction

A power grid is a critical infrastucture that must be protected against poten-
tial threats. As it evolves to a “smart grid” with better efficiency, however,
the security concerns increase due to emergence of new attack vectors exploit-
ing increasing system complexity. While security is an important issue for grid
operators, real world constraints such as resource limitations necessarily force
adoption of a risk management approach to the problem. Protective measures
are usually taken based on a cost-benefit analysis balancing available defensive
resources with perceived security risks.

This paper investigates the important class of false data injection attacks to
smart grids which directly affect the operation of automatic generation control
systems and potentially lead to blackouts. The problem is formulated first as
one of quantitative risk management which in turn is used as an input to a
stochastic (Markov) security game. The resulting game analysis helps smart grid
operators to make informed decisions on their security strategies while taking
into account their resource constraints. Although the paper focuses on a certain
type of attack and subsystem, the approach can be applied to similar security
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problems in smart grid, and hence, can be extended to develop the foundation
of a systematic framework for smart grid security.

A simple but elegant definition of risk is “the probability and magnitude of a
loss, disaster, or other undesirable event” [9]. Security risk analysis can be de-
fined as “the process of identifying the risks to system security and determining
the likelihood of occurrence, the resulting impact, and the additional safeguards
that mitigate this impact” [19]. Most smart grid standards and guidelines, e.g.
IEC 62351-1, NISTIR 7628, identify risk assessment as a critical part of a secu-
rity framework. For instance, the Australian Government advocates the use of
the Australian and New Zealand Standard for Risk Management (AS/NZS ISO
31000:2009) by owners and operators of critical infrastructure [3]. However, the
standard ISO 31000:2009 is “not mathematically based”, and has “little to say
about probability, data, and models” [13].

Security games provide an analytical framework for modeling the interac-
tion between malicious attackers, who aim to compromise smart grid, and oper-
ators defending them. The “game” is played on smart grids, which are complex
and interconnected systems. The rich mathematical basis provided by the field of
game theory facilitates formalising the strategic struggle between attackers and
defenders for the control of the smart grid [1]. Utilising the risk framework and
some of the concepts of earlier studies [5, 17], this work applies game theory to
the modeling of attacks on and defenses for a critical power system component
called automatic generation control (AGC).

The main contributions of this work include

– Assessment and identification of risks faced by the automatic generation
control system, which constitute an important part of smart grid, due to
false data injection attacks.

– A discussion of the security threat model, potential attacks, and counter-
measures.

– A stochastic (Markov) security game for analysis of best defensive actions
building upon the risk analysis conducted and under resource limitations.

– A numerical study illustrating the framework developed.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 states the problem of assessing the cyber security risks of automatic
generation control, an essential power system component. Section 4 presents our
game and risk model. In Section 5, we specify an informal threat model; we also
discuss attack and defense actions under this threat model. In Section 6, we
apply the game and risk model to automatic generation control, and present our
simulation results. Section 7 concludes this paper.

2 Related Work

Smart grid cyber security is an emerging area. Substantial research effort is
still being dedicated to exploring cyber attacks and their effects on power grids.
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Stamp et al. [22] develop a cyber-to-physical modeling approach called Reliabil-
ity Impacts from Cyber Attack, for quantifying the degradation of system reli-
ability for a given probability of cyber attack. Several metrics are investigated,
including frequency of interruption, loss of load expectancy, load curtailed per
interruption, etc. Kundur et al. [10] present two simulation studies on the effects
of attacks against a single-generator system and a 13-bus system by injecting
three levels of errors into a single sensor in the systems. Esfahani et al. [6,7] de-
sign elaborate schemes for controlling maliciously injected AGC output signal to
maximally disrupt a grid. Our focus on AGC is in a way inspired by their work.
However, we focus on one of the AGC input signals (i.e., frequency deviation),
since from an attacker’s perspective, compromising a meter potentially costs less
than compromising an automatic generation controller.

Risk assessment has been garnering a lot of attention lately. We note that
some authors erroneously refer to risk assessment as vulnerability assessment,
which is a different concept [19]. Attack trees or attack graphs is a common
starting point for most work in this area. An attack tree represents attacks
against a system in a tree structure, with the goal as the root node and differ-
ent ways of achieving that goal as leaf nodes. Ten et al. [24] propose a frame-
work based on attack trees for evaluating system security. They focus on attacks
originating from substations connecting to the control center through a virtual
private network. They limit cyber intrusions to firewall penetration and pass-
word cracking, singling out password policies and port auditing as the two most
important security measures – these assumptions are used in other work by the
same research team [21, 23]. Their framework define three vulnerability indices:
the system vulnerability index is the maximum of scenario vulnerability indices,
which are products of leaf vulnerability indices, which in turn depend on subjec-
tive definitions of port vulnerability and password strength. Liu et al. [14] take
an attack tree as input, and assign a “difficulty level” to each action on the tree
using Analytic Hierarchy Process. Their methodology produces a vulnerability
factor, an artificial measure of the success probability of an attack. Analytic
Hierarchy Process is a decision making methodology that is often applied to
risk management, but for its reliance on subjective scoring and failure to satisfy
several statistical axioms (e.g., transitivity), the risk management community is
divided regarding its validity [9]. In comparison, only empirical evidence is used
in this work.

The limitation of attack trees is not unrecognized. Sommestad et al. [20] pro-
pose defense graphs as an alternative to attack graphs, to take into account the
countermeasures already in place within a system. They model defense graphs
using influence diagrams, which are essentially Bayesian networks enhanced with
indicators that express beliefs on likelihood values. The output of their assess-
ment methodology is the expected loss associated with a successful attack. Hahn
et al. [8] propose privilege graphs to model the privilege states in a system and
the paths exploitable by an attacker. The essence of their proposal is an algo-
rithm for computing an exposure metric, that takes into account (i) the number
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of attack paths through the security mechanisms protecting a target asset, and
(ii) the path length representing the effort required to exploit a path.

Ten et al. [23] model attacks using stochastic Petri Nets, which encapsulate
the probability and risk of attacks. They define the metric system vulnerability
which is the maximum of all scenario vulnerability values, and the metric im-
pact factor w.r.t to a substation disconnected by a successful attack. Sridhar
et al. [21] use stochastic Petri Nets to model computers, firewalls and intrusion
protection systems. To assess the steady-state impact of attacks on the power
system itself, they present the impact study of six coordinated attack scenarios,
where coordination is in the sense of targeting multiple power system compo-
nents at the same time. They define risk as the product of the probability of a
successful attack and the resultant shed load; we adopted this definition of risk.
With the exception of [21], most risk assessment work discussed so far is ICT-
centric, and does not consider the impact of cyber attacks on the power system
itself. In comparison, our work involves the detailed modeling and simulation of
attacks on the AGC system.

3 Automatic Generation Control in Power Grid

The most critical aspect of a power system is stability, and one of the most
important parameters to stabilize is frequency. This is because the frequency
of a power system rises/falls with decreased/increased loading. Failure to stabi-
lize frequency may lead to damage to equipment (utility’s or end users’), harm
to human safety, reduction of or interruption to electricity supply. Violation of
frequency stability criteria is one of the main reasons for numerous power black-
outs [4]. Less tangible secondary impacts, including loss of data or information
and damage to reputation, are equally undesirable.

The frequency control system operates at three levels. Primary frequency
control takes the form of a turbine governor’s speed regulator, a proportional
controller of gain 1/R, where R is the droop characteristic (drop in speed or
frequency when combined machines of an area change from no load to full
load). Secondary frequency control is for correcting the steady-state error residue
left by the proportional controller, and may take the form of an integral con-
troller; in which case, primary and secondary frequency control form a parallel
proportional-integral controller, capable of driving frequency deviations to zero
whenever a step-load perturbation is applied to the system. Tertiary frequency
control is supervisory control based on offline optimizations for (i) ensuring ade-
quate spinning reserve in the units participating in primary control, (ii) optimal
dispatch of units participating in secondary control, (iii) restoration of band-
width of secondary control in a given cycle. While primary and secondary control
respond in seconds and tens of seconds respectively, tertiary control is usually
manually activated minutes after secondary control. Our study concerns only
the dynamics of frequency control, and hence does not consider tertiary control.

In an interconnected system with two or more control areas, in addition to
frequency, the generation within each area must also be controlled to maintain
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scheduled power interchanges over tie lines (inter-area transmission lines). The
control of both frequency and generation is called load-frequency control. Within
each area, each generation unit has primary control, while secondary control is
centralized. Together, decentralized primary control and centralized secondary
control achieve the purpose of load-frequency control. Automatic generation
control (AGC) is load-frequency control with the additional objective of eco-
nomic dispatch (distributing the required change in generation among units to
minimize costs) [11, 26]. However, AGC is sometimes referred to as automated
(vs manual) load-frequency control [2], or even the entire frequency control sys-
tem itself [16]. AGC is an indispensable part of the “central nervous system” of
a power grid called the energy management system (EMS), and possibly
the only automatic closed loop between the IT and power system of a control
area [6]; because of this, it is subject to attacks propagated through the IT
system. A detailed threat model is given in Section 5.

When system frequency deviates from the nominal frequency (60 Hz for
Americas, 50 Hz for most other parts of the world) by a certain threshold, over-
frequency and underfrequency protection relays execute tripping logic defined
by a protection plan that varies from operator to operator. Assuming a nomi-
nal frequency of 60 Hz, overfrequency relays start tripping thermal plants when
frequency rise exceeds 1.5 Hz [15,16], but these relays are usually set to tolerate
deviations due to post-fault transients for short periods of time. Underfrequency
relays perform underfrequency load shedding (UFLS), which is the sole
concern of our study because it results in directly measurable revenue loss. For
our study, we adopt Mullen’s UFLS scheme [18]. The gist of the scheme is, when
the system frequency drops by more than 0.35 Hz below the nominal frequency,
to shed this amount of load:

∆Pm −∆Pe − 0.3/R,

where ∆Pm is the change in generator’s mechanical power, ∆Pe is the change
in generator’s electrical power, and R is the droop characteristic. Our aim is to
model and quantify the risks posed by an attacker whose intention is to inflict
revenue loss on the electricity provider by injecting false data to the automatic
generation controller in the hope of triggering load shedding.

For this work, we use the two-area AGC system model and associated sim-
ulation parameters in Fig. 1. The automatic generation controller is an integral
controller of gain KAGC. We note that AGC design is an established area with
designs dating back to the 1950s; a simple integral controller seems to be a logi-
cal starting point. The UFLS relay in each area decides on the necessity to shed
load, and the amount of load to shed if necessary, using Mullen’s algorithm [18].
Once the system frequency has stabilized for at least 30 s, the UFLS relays
reconnect the shed loads in the reverse order they were shed.

In this sample configuration, the maximum sheddable loads are capped at 4
p.u. and 1 p.u. for the areas 1 and 2 respectively. “p.u.” stands for “per unit”
and is simply the ratio of an absolute value in some unit to a base/reference
value in the same unit. The base load for both areas is taken to be 1000 MW.
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LFC / AGC system model from Bevrani's "Robust Power System Frequency Control," pp. 23-25 
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Symbols Definition Symbols Definition
H,D Inertia constant, damping coefficient Tg, Tt Time constants for turbine governor
R Droop characteristic B Frequency bias factor
KAGC Gain of secondary frequency control T12 Tie-line synchronizing coefficient

KAGC i (s) Di (p.u./Hz) 2Hi (p.u. s) Ri (Hz/p.u.) Tgi (s) Tti (s) Bi (p.u./Hz)

i = 1 0.3 0.015 0.1667 3.00 0.08 0.40 0.3483
i = 2 0.2 0.016 0.2017 2.73 0.06 0.44 0.3827

Fig. 1. Simulink representation and simulation parameters for a two-area AGC system
model based on Bevrani’s [4, Fig. 2.10 and Table 2.2]. The top area is labeled area 1.
The demand time series demand1 and demand2 are the demand profiles of Victoria on
4-5 June 2012 and of South Australia on 7-8 June 2012 respectively, provided by the
Australian Energy Market Operator. Nominal frequency = 60 Hz.

4 Security Game Model

Our security game model is based on Alpcan and Başar’s framework [1]. The
concept of risk states is combined with this model. A system has a set of states,
and a different level of risk is associated with each state. In this work, we define
risk as the product of the probability of a successful attack and the resultant shed
load (in the unit of power). Clearly under this definition, risk ranges from 0 to
the maximum sheddable load for all areas combined. As a starting point, we
partition this risk space into only two states: s0 where risk is zero (no load is
shed), and s1 where risk is nonzero (some load is shed). We model the state
to evolve probabilistically according to a stochastic process with the Markov
property. Accordingly, we model the interactions between an attacker and a
defender using stochastic or Markov security games.

As a general basis for Markov security games, consider a 2-player (attacker vs.
defender) zero-sum Markov game played on a finite state space, where each player
has a finite number of actions to choose from. Let the attacker’s action space

be AA def
= {a1, . . . , aNA}, the defender’s action space be AD def

= {d1, . . . , dND},
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and the state space be S def
= {s1, . . . , sNS}. It is assumed that the state evolves

according to a discrete-time finite-state Markov chain which enables utilization of
well-established analytical tools to study the problem. Then, the state transitions
are determined by the mapping M : S × AA × AD → S. Let pS(t) be the
probability distribution on the state space S, i.e.,

pS(t)
def
=
[
Pr[s(t) = s1] Pr[s(t) = s2] · · · Pr[s(t) = sNS ]

]T
,

where t ≥ 1 denotes the discrete time (stage) of the repeated Markov game. The
mapping M can then be represented by the NS × NS state transition matrix
M(a, d) = [Msi,sj (a, d)]NS×NS , which is parameterized by a ∈ AA and d ∈ AD,
such that

pS(t+ 1) = M(a, d)pS(t). (1)

The matrix entry Msi,sj (a, d) represents the probability of state si transitioning
to state sj under attacker action a and defender action d.

The mappingM can alternatively be parameterized by the state to obtain as
many zero-sum game matrices G(s) as the number of states, each of dimension
NA × ND. In other words, given a state s(t) ∈ S at a stage t, the players
play the zero-sum game G(s(t)) = [Ga,d(s(t))]NA×ND . The matrix entry Ga,d(s)
represents the attacker’s gain from risk state s by taking action a when the
defender action is d. As a simplifying assumption, actions have no cost other than
their “contribution” to load shedding, so Ga,d(s) is the expected total load shed in
state s under attacker action a and defender action d. In particular, G(s0) = 0.
Due to the adopted zero-sum Markov game formulation, the attacker’s gain (loss)
equals the defender’s loss (gain).

The attacker’s strategy is defined as a probability distribution on AA for a

give state s, i.e., pA(s)
def
=
[
Pr[a(s) = a1] · · · Pr[a(s) = aNA ]

]T
. The defender’s

strategy is similarly defined. For the zero-sum Markov game formulation here,
the defender aims to minimize its own expected total cost, Q̄, in response to the
attacker who tries to maximize it. The reverse is true for the attacker due to
the zero-sum nature of the game. Hence, it is sufficient to describe the solution
algorithm for only one player, which is the defender in our case.

The game is played in stages over an infinite time horizon. The defender’s Q̄
at the end of a game is the sum of all realized stage costs discounted by a scalar
discount factor γ ∈ [0, 1):

Q̄
def
=

∞∑
t=1

γtGa(t),d(t)(s(t)), a(t) ∈ AA, d(t) ∈ AD, s(t) ∈ S, (2)

where Ga(t),d(t)(s(t)) is the (a(t), d(t))-th element of the stage-t game matrix
G(s(t)). The discount factor γ is a logical construct for de-emphasizing the
payoff of future stages (smaller γ =⇒ smaller future payoffs). The defender
can theoretically choose a different strategy pD(s(t)) at each stage t of the game
to minimize the final realized cost Q̄ in (2). Fortunately, this complex problem
can be simplified significantly. First, it can be shown that a stationary strategy
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pD(s) = pD(s(t)),∀t is optimal, and hence there is no need to compute a separate
optimal strategy for each stage. Second, the problem can be solved recursively
using dynamic programming to obtain the stationary optimal strategy (solving
a zero-sum matrix game at each stage). The optimal strategy can be mixed, i.e.,
stochastic for each state s. At a given stage t, the optimal cost Qt(a, d, s) (the
dependency of s, a and d on t is omitted for notational brevity) can be computed
iteratively using the dynamic programming recursion

Qt+1(a, d, s) = Ga,d(s) + γ
∑
s′∈S

Ms,s′(a, d) · min
pD(s′)

max
a

∑
d∈AD

Qt(a, d, s
′)pDd (s′),

(3)
for t = 0, 1, . . . and a given initial condition Q0. In (3), pDd (s′) is the element of
pD(s′) that corresponds to d. (3) converges to the optimal Q∗ as t→∞.

There are multiple ways to implement (3). The algorithm called value itera-
tion is prescribed here due to its scalability. To describe the algorithm, we first
split (3) into two parts:

V (s) = min
pD(s)

max
a

∑
d∈AD

Qt(a, d, s)p
D
d (s), (4)

Qt+1(a, d, s) = Ga,d(s) + γ
∑
s′∈S

Ms,s′(a, d)V (s′), t = 1, 2, . . . (5)

We can formulate (4) as a linear program:

min
pD(s)

V (s)

s.t.V (s) ≥
∑
d∈AD

Qt(a, d, s)p
D
d (s),∀a ∈ AA, (6)

pDd ≥ 0,
∑
d

pDd = 1,∀d ∈ AD.

Algorithm 2: The value iteration algorithm

Given arbitrary Q0 and V
repeat

for a ∈ AA and d ∈ AD do
Update V and Q according to (6) and (5)

end for
until V (s) → V ∗, i.e., V (s) converges

The strategy pD(s),∀s ∈ S com-
puted from (6) is the minimax
strategy w.r.t. Q. The fixed points
of equations (4) and (5), V ∗ and
Q∗, lead to the optimal mini-
max solution for the defender. The
value iteration algorithm, using
(6) and (5) to find V ∗ and Q∗, is
given in Algorithm 2.

5 Threat Analysis

Fig. 2 shows the communication architecture involving a control center and a
substation based on the international standard IEC 61850 [23,26]. Access to the
control system in either the control center or the substation is enabled through
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a virtual private network (VPN). Some authors [24] equate the compromise of
an entire control center or substation to the successful cracking of a VPN access
password and the penetration of an Internet-facing firewall (see Fig. 2). This
strong attacker model is not entirely unrealistic, however, our goal is to investi-
gate the strategy of an attacker that has successfully penetrated the protected
network but whose actions within the AGC system are bounded by several re-
source constraints. We assume the following resource constraints:

– The attacker cannot directly trip generators, or transmission lines (by open-
ing circuit breakers).

– The attacker cannot tamper with turbine governors.

– The attacker cannot tamper with underfrequency load shedding (UFLS) re-
lays. Some commercial relays (e.g., SEL-387E) have an integrated frequency
meter, and are thereby not subject to false frequency data injection attacks.

– The attacker cannot tamper with the EMS.

– The attacker can reduce but not block the input/output of the EMS.

Without the above constraints, it is a trivial exercise for any attacker that has
successfully penetrated the protected network to trigger cascading failures across
the power grid. It is therefore conceivable that an energy provider would make
protecting its generators, circuit breakers, turbine governors, UFLS relays, and
EMS its foremost priority. Despite the above constraints, an attacker can forge
and send false frequency deviation (∆f) data to the AGC software executing on
one of the EMS servers, by compromising one of the meters in the substation
(see Fig. 2). In the spirit of stealthy attacks as embodied by Stuxnet, Duqu and
Flame, it is also conceivable that a persistent attacker would adopt this subtle
and stealthy strategy. Then, it is up to the AGC software to detect such attacks.

WANWAN

InternetInternet

Control center

EMS 
servers

Substation

Site engineers

SCADA 
master

VPN 
server

Corporate LAN

Cyber intruders

Relays

Substation bus (IEC 61850-8-1)

Meters

Merging units

DB Process bus (IEC 61850-9-1/9-2)

Modem

Other control centers

Firewall

IEC 60870-6

VPN 
server

Fire
wall

Fig. 2. Accessibility of a power system control center and substation from the Internet.
AGC is executed on one of the EMS servers. In our threat model, an attacker can feed
the AGC software with false frequency deviation data.

Basic attacks: It is impossible to exhaust all injection patterns, but there
are four basic patterns on which more sophisticated attacks are based:



10 Y. W. Law, T. Alpcan, M. Palaniswami, S. Dey

– Constant injection: If an attacker injects a constant false ∆f , then the it
effectively disables the integral control loop, causing the system frequency
to converge to a non-nominal frequency. If the false ∆f is positive, then the
system will settle on a below-nominal frequency, causing loads to be shed;
otherwise, the system will settle on an above-nominal frequency, causing
generators to be tripped. Both cases lead to cascading failures.

– Bias injection: When the false ∆f is a constant bias (displacement) from
the true ∆f , the effect is similar to that of constant injection because nor-
mally the true ∆f ≈ 0.

– Overcompensation: If the false ∆f is k times the true ∆f , where k is a
large positive number, then the attack effectively causes overcompensation
by the integral control loop, and consequently unstable oscillations. As the
system frequency sweeps past the overfrequency and underfrequency thresh-
olds, generators will be tripped and loads will be shed, followed by cascading
failures. Fig. 3 shows the result of an attack using k = 8.

– Negative compensation: If the false ∆f is −k times the true ∆f , where k
is a positive number, then the attack effectively reverses the intended effect
of the integral control loop, causing the system frequency to diverge from
the nominal frequency (see Fig. 3). This attack directly triggers generator
tripping, but not load shedding.

For our study, we concentrate only on the overcompensation attack, as it in-
flicts maximum damage in terms of triggering both load shedding and generator
tripping.
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Fig. 3. (Left and Middle) An example of “overcompensation” attack, where the at-
tacker substitutes ∆f1 with 8∆f1 as frequency input to the area-1 integral controller.
As long as the attack persists, neither generator tripping nor load shedding helps sta-
bilize the system. (Right) Negative compensation attack: for large enough k (e.g., 1.2),
the system frequency → +∞.

Basic defenses which are applicable to the overcompensation attack in-
clude:

– Saturation filter: We can constrain the attack by limiting the ∆f input
to the integral controller to [−4.5, 3.5] Hz (i.e., passing the input through a
saturation filter), because at ∆f = −4.5 Hz, not only should all sheddable
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loads have been shed, but also all generators would be tripped. At ∆f = 3.5
Hz, all generators would be tripped as well [15].

– Redundancy: Measurement redundancy is routinely provisioned for critical
grid parameters [12]. Multiple frequency meters of different grades can be
installed, so that the likelihood of all meters being compromised is small and
the AGC software has a non-zero chance of getting genuine frequency data.

– Detection: Saturation filtering and redundancy only limit the effect of an
attack, stopping an attack requires the attack to be detected and the source
be removed. A threshold-based algorithm can be designed to observe the
quantity

∑
t |∆f(t)|; if the quantity is larger than a certain threshold, the

system could be under attack. Alternatively, a clustering-based algorithm
can be designed to count the number of clusters in the time series {∆f(t)};
if more than one cluster is observed, the system could be under attack.

There are unlimited ways to improve upon the overcompensation attack to
counter the above defenses. Correspondingly, there are unlimited ways to de-
tect these improved attacks with varying accuracy, and certainly there are more
advanced controllers that are less susceptible to these attacks. Nevertheless, our
interest is not on the design of attacks, defenses or the controller, but on the
modeling of system risk dynamics under the actions of the attacker and defender
for any given system.

6 Simulation Study

An AGC system under the interactions of an attacker and a defender is simulated
in order to observe the state transition matrix M(a, d) = [Msi,sj (a, d)]NS×NS ,
and the game matrix G(s) = [Ga,d(s(t))]NA×ND . Msi,sj (a, d) is readily obtained
by fixing attacker action at a, defender action at d, and measuring the probability
of a session starting in state si ends in state sj . Based on our assumption that
actions have no cost other than their “contribution” to load shedding, G(s0) = 0;
G(s1) is the expected total load shed in state s1. To obtain Ga,d(s1), we fix
attacker action at a, defender action at d, and measure the total load shed
during the combined duration of s1. Suppose the total energy shed is Es1 and
the combined duration of s1 is Ts1 , then Ga,d(s1) = Es1/Ts1 .

For numerical simplicity, we define only two attacker actions and two defender
actions, although our approach can be applied to any finite number of attacker
and defender actions. The chosen attacker actions are:

a1 Send N samples, N/2 of which are false.
a2 Send N samples, N of which are false.

a1 and a2 are two special cases of the general attacker action space AA = { Send
N samples, i of which are false (i = 1, . . . , N)}. The attacker sets a false ∆f
to -4.5 Hz if the true ∆f is negative, or 3.5 Hz if the true ∆f is positive. This
implements the overcompensation attack, and takes into account the saturation
filter in Section 5.
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The defender implements the saturation filter and redundancy measure de-
scribed in Section 5. For redundancy, the defender reads N consecutive samples
alternately from two frequency meters of different builds (one is more secure than
the other). N consecutive samples from one meter constitute one session/stage
(see Fig. 4(a)). Upon collecting N samples, the defender performs one of the
following defender actions:

d1 Run Detection Algorithm 1, a hypothetical algorithm with an attack detec-

tion probability of 1−α(x/N)β1

1 , where x is the number of malicious samples
among N samples, α1 and β1 are constants. Detection Algorithm 1 emulates
a clustering-based anomaly detection algorithm.

d2 Run Detection Algorithm 2, a hypothetical algorithm with an attack detec-
tion probability of 1/[1 + e−α2(x/N−β2)], where x is the number of malicious
samples among N samples, α2 and β2 are constants. Detection Algorithm 2
emulates a threshold-based algorithm.

We assume that the defender can run only one detection algorithm at the end
of each session due to time constraint. If the detection result is positive, the
defender disinfects the meter (e.g., by refreshing its firmware, cryptographic
keys and so on). Disinfection is assumed to complete within the time frame of
one session (see Fig. 4(a)).
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Fig. 4. (a) A session/stage in our security game. (b) Attack detection probabilities of
Detection Algorithms 1 and 2 if N = 20, α1 = 0.2, β1 = 0.8127, α2 = 20, β2 = 0.5203.

For simulations, we use the two-area AGC system model and associated simu-
lation parameters in Fig. 1. Since AGC signals are transmitted to the generating
plant once every 2 to 4 seconds [11], we set the sampling rate of the “Defender”
and “Attacker” blocks to 2 seconds. Attacks are simulated to start at time 100
s. We set N = 20, i.e., 20 samples are read from a meter in each session. The
parameters of the detection algorithms are set according to the parameters in
Fig. 4(b), such that Detection Algorithm 1 is good for low concentration of ma-
licious samples, while Detection Algorithm 2 is good for high concentration of
malicious samples. After a meter is detected to be compromised and disinfected,
it will become compromised again after some time; Meter 1 and Meter 2 take 4
sessions and 20 sessions to compromise respectively. Using MATLAB/Simulink,
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each simulation is conducted for 30 virtual minutes. The obtained M and G
are fed into Algorithm 2. Fig. 5 shows the simulation results and the following
observations.

Effect of sampling rate: Since AGC signals are usually transmitted to the
generating plant once every 2 to 4 seconds [11], we initially set the AGC sampling
rate to 0.5 Hz. A lower sampling rate means a malicious sample will have longer
effect on the controller. When we increase the AGC sampling rate to 1 Hz,
the amount of load shed drops conspicuously as evidenced by the lower-valued
G(s1) (less gain for the attacker). Thus, besides improving control precision, a
sufficiently high sampling rate provides a good buffer against attacks. Fig. 5(f,
g, h) indicates that except for low discount factors, increasing the sampling rate
(diminishing the attacker’s gain) tend to drive both attacker and defender to
adopt a mixed strategy.

Effect of the discount factor: Fig. 5(f, g, h) shows that at a higher sam-
pling rate, where the attacker’s gain is lower, defender action d1 increases in
effectiveness as the discount factor increases (future payoffs get more empha-
sized). In the limit, a pure defense strategy using only d2 should suffice.

7 Conclusion

Risk assessment for power grids has been identified as a critical area by the
public sector, industry and academia. However, existing risk management stan-
dards such as ISO 31000:2009 are more about general principles and guidelines
than concrete mathematical techniques. In this work, we identify and assess
the risks faced by a critical power system component called automatic genera-
tion control (AGC). Our discussion of potential attacks and countermeasures is
based on an explicit security threat model. We propose a quantitative risk model
capturing the probability and magnitude of security threats faced by the AGC
system due to false data injection attacks. Building upon the risk analysis, we
model attacker-defender interactions using stochastic (Markov) security games
to analyze the best defensive actions under resource constraints. The developed
framework is illustrated with a detailed AGC model and simulation results.

For our preliminary study, we have adopted a risk-neutral framework, such
that the expected loss from a blackout tends to conceal the significance of rare
events at the tail-end of a probability distribution. Financial risk measures such
as value-at-risk and conditional value-at-risk have been proposed to account for
these rare events [25], and are being explored in ongoing work. In addition to
attacks on the frequency input to AGC, we will consider attacks on the tie-line
power input, and the AGC output. We will also use more precise models for
AGC, turbine governor, generator and underfrequency load shedding. In this
work, generators are as per convention simulated as a lumped “System inertia”
block, but fine-grained simulations of the electrical circuits in each control area,
including the effects of generator tripping triggered by overfrequency protection
and islanding, are desirable.
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AGC sampling rate: 0.5 Hz
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Fig. 5. Attack and defense strategies organized according to AGC sampling rate and
discount factor γ.
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