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Abstract—This paper presents an efficient approach to com-
puting the capacity of multiple-input multiple-output (MIMO)
channels under multiple linear transmit covariance constraints
(LTCCs). LTCCs are general enough to include several special
types of power constraints as special cases such as the sum
power constraint (SPC), per-antenna power constraint (PAPC),
or a combination thereof. Despite its importance and generality,
most of the existing literature considers either SPC or PAPC
independently. Efficient solutions to the computation of the
MIMO capacity with a combination of SPC and PAPC have
been recently reported, but were only dedicated to multiple-
input single-output (MISO) systems. For the general case of
LTCCs, we propose a low-complexity semi-closed-form approach
to the computation of the MIMO capacity. Specifically, a modified
minimax duality is first invoked to transform the considered
problem in the broadcast channel into an equivalent minimax
problem in the dual multiple access channel. Then alternating
optimization and concave-convex procedure are utilized to derive
water-filling-based algorithms to find a saddle point of the
minimax problem. This is different from the state-of-the-art
solutions to the considered problem, which are based on interior-
point or subgradient methods. Analytical and numerical results
are provided to demonstrate the effectiveness of the proposed
low-complexity solution under various MIMO scenarios.

Index Terms—MIMO, linear transmit covariance constraints,
sum power constraint, per-antenna power constraint, minimax
duality, concave-convex procedure.

I. INTRODUCTION

The capacity of a Gaussian multiple-input multiple-output
(MIMO) channel under a sum power constraint (SPC) or per-
antenna power constraint (PAPC) has been studied extensively
[1]–[8]. While the former is apparently due to power budget
or regulations, the latter is considered to avoid nonlinear
distortions of the power amplifier associated with each trans-
mit antenna. In practice, other power constraints can also be
imposed on a MIMO system, not necessarily limited to SPC or
PAPC separately. For example, optimal transmit covariance for
multiple-input single output (MISO) channels with joint SPC
and PAPC was studied in [9], [10]. In the context of cognitive
networks, interference temperature constraints can be imposed
on a secondary user (SU) to limit the interference generated
at a primary user (PU) [11]–[13]. All of these constraints can
be generally modeled as linear transmit covariance constraints
(LTCCs) [11].

Efficient solutions to the computation of MIMO capacity
with either SPC or PAPC have been well-studied [1], [2],

[5], [6], [8]. More recent research efforts have been made
to characterize the capacity of Gaussian MIMO channels
with joint SPC and PAPC [9], [10]. However, the work of
[9] is only applicable to MISO systems, while that of [10]
partially addresses general MIMO channels. For the general
form of LTCCs, interior-point and subgradient methods were
presented in [11], [12] to compute optimal transmit covariance
matrices. However, it was demonstrated in [14] that these
high-complexity methods are not useful for massive MIMO
systems.

In this paper we propose efficient methods for computing
the capacity of a single user MIMO (SU-MIMO) system
under multiple LTCCs in the most general form. The chan-
nel state information is assumed to be known at both the
transmitter and the receiver. In particular, we first transform
the considered problem in the broadcast channel (BC) into
an equivalent minimax problem in the dual multiple access
channel (MAC), generalizing several results on the BC-MAC
duality in the previous studies of [7], [11], [15]. In fact,
a mimimax optimization approach was also considered in
[7] but by interior-point algorithms. To find a saddle point
of the considered minimax problem, we combine alternating
optimization (AO) and concave-convex procedure (CCP) to
arrive at an iterative algorithm, where each iteration is based
on closed-form expressions. Our contributions are summarized
as follows:

• We generalize the BC-MAC duality for an arbitrary
number of LTCCs. In this way, the capacity of the BC
with multiple LTCCs can be equivalently expressed as
a minimax optimization problem in the dual MAC. The
objective of the minimax problem is a concave-convex
function of transmit and noise covariance matrices, re-
spectively.

• We then propose a closed-form approach to computing
a saddle point of the minimax problem by efficiently
combining AO and CCP. The idea is to alternately op-
timize the transmit and noise covariance matrices, which
is indeed a standard routine drawn on AO. For minimax
problems, the convergence of AO is not guaranteed
in general. The novelty of our proposed method is to
optimize a bound of the objective obtained from the
CCP when optimizing the noise covariance matrix. The



proposed algorithm is provably convergent.
• We provide numerical results on the capacity of large-

scale MIMO systems with multiple LTCCs, which have
not been reported previously.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively. IN defines an identity matrix of size N ; I and 0
define identity and zero matrices respectively, of which the size
can be easily inferred from the context. CM×N denotes the
space of M×N complex matrices; H† and HT are Hermitian
and ordinary transpose of H, respectively; Hi,j is the (i, j)-
entry of H; |H| is the determinant of H; diag(x) denotes the
diagonal matrix having diagonal entries matching the vector
x; diag(H), where H is a square matrix, is the vector of
diagonal elements of H; tr(H) is the trace of a square matrix
H. Furthermore, we denote the expected value of a random
variable by E[.], and [x]+ = max(x, 0). The ith unit vector
(i.e., its ith entry is equal to one and all other entries are zero)
is denoted by ei.

II. SYSTEM MODEL

We consider a SU-MIMO model, where the transmitter and
the receiver are equipped with N and M antennas, respec-
tively. Note that a transmitter can obtain channel knowledge
through receiver feedback or reciprocity of the MAC and
BC. Therefore, we assume in this paper that the channel
state information is perfectly known at the transmitter and the
receiver. The received signal is given by

y = Hs + z (1)

where s is the vector of transmitted symbols, and z ∈ CM×1

is the background noise with distribution CN (0, IM ). Let
S = E[ss†] be the input covariance matrix for the transmitted
signal. We are interested in finding the capacity of the above
channel with multiple LTCCs, which is formulated as

maximize
S�0

log |I + HSH†| (2a)

subject to tr(EiS) ≤ Pi, i = 1, 2, . . . , L (2b)

where Ei � 0 is a predefined positive semidefinite matrix and
Pi is the corresponding power constraint, L is the number
of power constraints. Note that (2b) is called general linear
constraints on the transmit covariance and it can include
several types of transmit power constraints as special cases.
Some examples are given below:
• If Ei is an identity matrix, the resulting constraint (2b)

becomes a SPC.
• If Ei = diag(ei), where i = 1, 2, . . . , N and ei is a

vector of all zeros except a value of one at the ith position,
the constraint reduces to a PAPC.

• If Ei = GG†, where G is the effective channel between
a SU and the PU, then the resulting constraint limits the
overall interference experienced by the PU.

In this paper we assume that Ei’s are introduced in such a
way that the feasible set of (2) is bounded, and thus (2) is
solvable. Since (2) is in fact a convex problem, it can be solved

by a proper general-purpose optimization software. However,
the computational complexity of convex solvers, which are
mostly based on interior-point methods, increases dramatically
with the problem size, and thus is not suitable for large-
scale MIMO systems. Hence, we propose a low-complexity
iterative algorithm which will be numerically shown to achieve
a superlinear convergence rate.

III. PROPOSED ALGORITHM

A. Algorithm Description

The focus of our paper is to transform the convex problem
in the BC into an equivalent minimax problem in the MAC
for which an efficient algorithm is derived. First we assume
that the Slater condition holds for (2) which can be achieved
if Pi > 0 for all i. As a result, the duality gap is zero
and (2) can be optimally solved in the dual domain. In this
regard, let us denote q = [q1, q2, . . . , qL]T be the vector of
the Lagrange multipliers of (2) and p = [P1, P2, . . . , PL]T be
the corresponding power constraints. The proposed algorithm
is based on the following theorem.

Theorem 1. The Lagrangian dual problem of (2) is equivalent
to the following minimax problem

min
q≥0

max
S̄�0

log
|∑L

i=1 qiEi+H†S̄H|
|∑L

i=1 qiEi| , f(q, S̄)

subject to tr(S̄) ≤ P ; pTq ≤ P
(3)

where P =
∑L
i=1 Pi, S̄ is the covariance matrix in the MAC.

Proof: See the Appendix.
We remark that the above result is in fact a generalization

of several results for LTCCs presented in previous studies
[7], [11], [15]. Without loss of optimality, the inequalities
of (3) can be replaced with equalities. Let us define Q ,
{q|q ≥ 0,pTq = P} and S = {S̄|S̄ � 0, tr(S̄) = P}, we
note that f(q, S̄) is concave with S̄, and convex with q, and
twice differentiable. Thus a saddle point (q∗, S̄∗) exists for
the minimax problem of (3) and it holds that

f(q∗, S̄) ≤ f(q∗, S̄∗) ≤ f(q, S̄∗). (4)

For this general minimax problem, pure AO is not guaranteed
to converge [7]. On the other hand, interior-point methods
are possible but their complexity increases rapidly with the
problem size, thus they are not attractive for large-scale MIMO
systems [14].

In this paper we propose an iterative method that combines
AO and CCP to solve (3) efficiently. The proposed method
can be summarized as follows:
• For a given q, we maximize f(q, S̄) with respect to S̄,

which can be solved efficiently by the classical water-
filling algorithm.

• For a given S̄, we minimize a convex upper bound of
f(q, S̄) which is obtained from the CCP. The novelty of
the proposed method lies in the use of a convex upper
bound, which is proved to generate a decreasing sequence
of objective values. This method avoids fluctuations in a
pure AO algorithm, and thus convergence is guaranteed.



In the following we provide the details of the above steps.
Let qn be the value of q at the nth iteration of the proposed
method and Qn =

∑L
i=1 q

n
i Ei. Then, S̄n is the solution to

the following problem

maximize
S̄�0

log |Qn + H†S̄H|

subject to tr(S̄) = P.
(5)

The problem above admits the water-filling solution [1], [2].
More explicitly, S̄n can be found as

S̄n = UnΣ̂nU†n (6)

where UnΣnU†n = HQ−1
n H† , Σ̂n = [µI−Σ−1

n ]+ and µ is
the water-level, which satisfies the total power constraint

r∑
i=1

[
HQ−1

n H†
]

+ = P (7)

where r is the rank of the matrix HQ−1
n H†. As mentioned

earlier, monotonic convergence cannot be guaranteed by pure
AO, which simply alternates between maximization and min-
imization of the same objective function. Herein, to avoid
fluctuations, we propose using an upper bound of the objective
for the minimization. In light of the CCP, we note that f(q, S̄)
in (3) can be expressed as a difference of two convex functions.
Particularly, by the concavity property of the logdet function,
we have

log |Q + H†S̄nH| ≤ log |Φn|+ tr
(
Φ−1
n

(
Q−Qn

))
(8)

which produces

f(q, S̄n) ≤ log |Φn|+ tr
(
Φ−1
n

(
Q−Qn

))
− log |Q| (9)

where Φn = Qn + H†S̄nH and Q ,
∑L
i=1 qiEi. The right

hand side of (9) is a convex upper bound of the objective.
To find qn+1 we solve the minimization of the upper bound.
Since log |Φn| is a constant in this regard, qn+1 is in fact the
solution to the following problem

minimize
q≥0

tr
(
Φ−1
n Q

)
− log |Q|

subject to pTq = P
(10)

or equivalently,

minimize
q≥0

∑L
i=1 qiφn,i − log |

∑L
i=1 qiEi| , g(q)

subject to pTq = P
(11)

where φn,i = tr
(
Φ−1
n Ei

)
.

Remark 1. Our idea of using a convex upper bound for mini-
mizing a cost function has a deep root in the successive convex
approximation (SCA) framework. However, in the context of
SCA, the objective to be minimized is often nonconvex. In the
considered problem, f(q, S̄) is indeed convex with respect to
q but an upper bound can be derived easily following the
CCP. We note that other upper bounds can also be used in the
proposed algorithm, as long as they meet the other conditions
as well (see Property A of [16] for the detail). The upper

bound found in (9) is relatively straightforward but it results
in efficient methods for solving (11) as shown next.

In the general case of LTCCs, the gradient projection or
conjugate gradient projection method can be utilized to solve
(11) efficiently. The reason is that the feasible set of (11) is
a simplex, and projection onto a simplex admits water-filling-
like algorithms [17]. A gradient projection based algorithm
for solving (11) is described in Algorithm 1. When only
PAPC is considered, a closed-form method for solving (11)
was proposed in [8]. For the special case of joint SPC and
PAPC, a closed-form solution for (11) is provided in the next
subsection.

Algorithm 1: The gradient projection algorithm for
solving (11).
Input: q0 , ε1 > 0, m := 0.

1 repeat
2 Calculate the gradient ũm = −∇g(qm).
3 Choose an appropriate positive scalar ρm for

q̃m = qm + ρmũm.
4 Project q̃m onto Q to obtain q̄m.
5 Choose appropriate step size νm using the Armijo

rule [18] and set qm+1 = qm + νm(q̄m − qm).
6 m := m+ 1.
7 until |∇g(qm)T (qm+1 − qm)| < ε1;

Output: qm as the optimal solution to (11).

The complete algorithm to find the optimal transmit covari-
ance matrix with multiple LTCCs is summarized in Algorithm
2. The convergence proof of Algorithm 2 follows the same
arguments as those in [8], and thus is omitted here due to
space limitations. The interested reader is referred to [8] for
more details.

Algorithm 2: Proposed solution based on AO and
CCP.

Input: q0 feasible to Q, and ε2 > 0.
1 Initialize n := 0, τ = 1 + ε2.
2 while τ > ε2 do
3 Compute Qn =

∑L
i=1 q

n
i Ei.

4 Apply water-filling algorithm (i.e., (6) and (7)) to
compute S̄n = arg max

S̄∈S
log |Qn + H†S̄H|.

5 For n ≥ 1, let τ = |f(qn, S̄n)− f(qn−1, S̄n−1)|.
6 Let Φ−1

n = (Qn + H†S̄nH)−1.
7 Find qn+1 = arg min

q∈Q
tr
(
Φ−1
n Q

)
− log |Q| using

Algorithm 1.
8 n := n+ 1.
9 end

Output: S̄n .

B. MIMO Capacity with Joint SPC and PAPC

For the special case of joint SPC and PAPC that has received
growing interest recently [9], [10], we provide another method



to solve (11) by closed-form expressions. However, no efficient
method was proposed for this special case for the general
MIMO setups in these two papers. In this case L = N + 1
and we assume EN+1 = IN which represents the SPC, and
Ei = diag(ei) for i = 1, 2, . . . , N which represents the PAPC.
In this way PN+1 is the total transmit power PT , and Pi,
i = 1, 2, , . . . , N is the power constraint for the ith antenna.

We only consider the non-trivial case where min{Pi} <
PN+1 <

∑N
i=1 Pi. If PN+1 ≤ min

1≤i≤N
{Pi}, it is easy to see

that (2) reduces to the MIMO capacity with a single SPC.
Similarly, if PN+1 ≥

∑N
i=1 Pi, the SPC can be omitted and

thus (2) becomes the MIMO capacity with PAPC [8].
It is trivial to see that in this case, problem (11) may be

equivalently rewritten as

minimize
q≥0

qN+1φn,N+1 +
∑N
i=1 (qiφn,i − log(qN+1 + qi))

subject to
∑N+1
i=1 Piqi = P.

(12)
The Lagrangian function of (12) is given by

L(q, γ) = qN+1φn,N+1 +
∑N

i=1
qiφn,i

−
∑N

i=1
log(qN+1 + qi) + γ

(∑N+1

i=1
qiPi − P

)
(13)

where γ is the multiplier. The dual function of (12) is

g(γ) = min
q≥0

L(q, γ). (14)

For a given γ, note that the maximization of L(q, γ) over qi,
i = 1, . . . N , can be done in parallel, motivating us to apply the
nonlinear Gauss–Seidel method [19] to compute g(γ). In what
follows, we use the subscript m to denote the Gauss–Seidel
iteration index. In particular, given the current iterate qm =
[qm,1, qm,2, . . . , qm,N+1]T , we have the following iteration

qm+1,i =

[
1

φn,i + γPi
− qm,N+1

]
+, i = 1, . . . , N (15)

qm+1,N+1 = [x∗]+ (16)

where x∗ is the root of the equation

φn,N+1 + γPN+1 −
N∑
i=1

1

x+ qm+1,i
= 0. (17)

The above equation can be solved easily by the Newton
method or bisection method [19].

We also notice that Φ−1
n and the eigenvalue decomposition

(EVD) of HQ−1
n H† can be computed with reduced complex-

ity. Specifically let GR = H be the QR decomposition of
H. If the singular value decomposition (SVD) of the upper
triangular matrix RQ

−1/2
n is ŨnΣ̃nṼ†n = RQ

−1/2
n , the EVD

of HQ−1
n H† is simply given by UnΣnU†n = HQ−1

n H†,
where Un = GŨn and Σn = Σ̃

2

n. In addition, we can apply
the matrix-inversion lemma [20] to compute Φ−1

n . Let Σ̇n be
the diagonal matrix containing all strictly positive entries of
Σ̂n, and V̇n be the corresponding singular vectors. After some
manipulations, we arrive at Φ−1

n = Q−1
n −Q

−1/2
n V̇n

(
Σ̇
−1

n +

I
)−1

V̇†nQ
−1/2
n in which the inversion of the diagonal matrices

Σ̇
−1

n + I and Qn can be computed easily. Following similar
arguments to those in [8], we can obtain a per-iteration
complexity of 6(2MN2 + 11N3) and 6(2NM2 + 11M3) for
the cases M ≥ N and M < N , respectively.

C. The Special Case of MISO Capacity with Joint SPC and
PAPC

As mentioned earlier, this special case was recently studied
in [9], [10]. We now show that a closed-form solution is also
achievable using the minimax formulation in (2). Again we
are only interested in the nontrivial case where min{Pi} <
PN+1 <

∑N
i=1 Pi.

It is easy to see that for MISO channels, S̄ in (3) becomes
a scalar and thus maximization of f(q, S̄) with S̄ is always
obtained at S̄ = P =

∑N+1
i=1 Pi. Thus the minimax problem

is reduced to

min
q≥0

log | diag(qN+1+q)+PH†H|
| diag(qN+1+q)|

subject to
∑N+1
i=1 Piqi = P

(18)

which is equivalent to (by noting that H is a row vector)

min
q≥0

H (diag(qN+1 + q)
−1

H†

subject to
∑N+1
i=1 Piqi = P.

(19)

To make notation clear, let us write H = [h1, h2, . . . , hN ].
Then (19) is explicitly written as

min
q≥0

∑N
i=1

|hi|2
qi+qN+1

subject to
∑N+1
i=1 Piqi = P.

(20)

Without loss of generality let us assume { |hi|√
Pi
} are in decreas-

ing order, i.e., |h1|√
P1
≥ |h2|√

P2
≥ . . . ≥ |hN |√

PN
. By manipulating the

Karush–Kuhn–Tucker (KKT) conditions of the above problem,
we arrive at the following closed-form solution

qN+1 =
1
√
γ

√√√√ ∑N
i=k+1 |hi|2(

PT −
∑k
i=1 Pi

) (21)

qi =
1
√
γ

 |hi|√
Pi
−

√√√√ ∑N
i=k+1 |hi|2(

PT −
∑k
i=1 Pi

)
 , i = 1, . . . , k (22)

qi = 0, i = k + 1, k + 2, . . . , N (23)

where k is the least solution to the following inequality:∑N
i=k+1 |hi|2

PT −
∑k
i=1 Pi

≥ |hN |
2

PN
(24)

and

γ =


∑k
i=1 |hi|

√
Pi + (PT −

∑k
i=1 Pi)

√ ∑N
i=k+1 |hi|2(

PT−
∑k

i=1 Pi

)
P


2

.

(25)
The detailed derivation of this closed-form solution is omitted
due to space limitations.



IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm by numerical experiments. More specifically, we fo-
cus on the important case of joint SPC and PAPC. We consider
here the most common case encountered in practice, where
each transmit antenna is subject to the same power constraint,
i.e., P0, for i = 1, 2, . . . , N . Further, as mentioned earlier, we
are only interested in the case where P0 < PT < NP0 = PA.
Unless stated otherwise, the error tolerances ε1 and ε2 are
set to 10−6 for all simulations. Other relevant simulation
parameters are specified for each setup. Note that any average
result is obtained over 1000 i.i.d. channel realizations. The
MATLAB code was executed on a 64-bit desktop that supports
8 Gbyte RAM and Intel CORE i7.

First, we study the convergence properties of the proposed
algorithm under SPC, PAPC and interference power constraint.
In this experiment, we fix the ratio between the interference
power constraint and SPC at 0.5. The convergence rate of
Algorithm 2 with different ratios of PT /PA is plotted in
the Fig. 1. The residual error is defined as the absolute
difference between two consecutive objectives. For the ran-
domly generated channel realization considered in Fig. 1,
Algorithm 2 can converge with less than eight iterations and
even fewer iterations in high power scenarios. For a fixed PA,
the convergence results of Algorithm 2 seem to be insensitive
to the ratio between PT and PA. We also notice that when the
solution is close to the optimal one, the proposed algorithm
exhibits a superlinear convergence.

Next, we report the average run time of Algorithm 2 along
with available free and commercial interior-point solvers e.g.,
SEDUMI [21] and MOSEK [22]. Both the solvers are executed
through the parser YALMIP [23]. The ratio PT /PA is set
to 0.8. The symbol × denotes a case where the run time is
extremely high or where the solvers could not run successfully
due to insufficient memory. As can be seen clearly from Table
I, interior-point method based convex solvers are not suitable
for large-scale MIMO systems because their complexity can
increase rapidly with the problem size which results in pro-
hibitive overall computation time. Meanwhile, the proposed
algorithm shows a consistently low run time.

Finally, we compare the average capacity of MIMO systems
under different power constraint settings i.e., SPC, PAPC, and
joint SPC and PAPC. As shown in Fig. 2, the capacity under
joint SPC and PAPC is lower than that of PAPC because in
this case, the maximum is achieved at a point where not all
PAPCs are satisfied with equality. We also observe that when
the PAPC is set to be equal for all transmit antennas, the
capacity of PAPC is close to the one under SPC as previously
observed in [6], [14].

V. CONCLUSIONS

We have proposed efficient algorithms for computing the
MIMO capacity under multiple LTCCs. We have first trans-
formed the maximization problem in the BC into an equivalent
minimax problem in the dual MAC. Then, CCP together with
AO have been utilized to derive a closed-form solution. Our
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Fig. 1. Convergence rate of the proposed algorithm for SU-MIMO under
multiple power constraints i.e., SPC, PAPC and interference power constraint
with the number of transmit antennas N = 2 and the number of receive
antennas M = 8. The interference power constraint is set to half of the SPC.

TABLE I
AVERAGE RUN TIME (SECONDS) COMPARISON WITH PT /PA = 0.8,

NUMBER OF RECEIVE ANTENNAS M = 2. THE RUN TIME IS AVERAGED
OVER 1000 CHANNEL REALIZATIONS.

PA Algorithms/solvers No. of transmit antennas N
8 16 32 64 128

0dBW
Algorithm 2 0.048 0.089 0.243 0.676 2.371

SEDUMI 0.058 0.225 3.485 × ×
MOSEK 0.007 0.040 0.588 × ×

10dBW
Algorithm 2 0.037 0.082 0.242 0.690 2.262

SEDUMI 0.057 0.247 3.957 × ×
MOSEK 0.007 0.047 0.612 × ×
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Fig. 2. Average capacity with the number of transmit antennas N = 16,
PT /PA = 0.8 for joint SPC and PAPC.



analysis and numerical results have demonstrated that this
proposed approach has low complexity, is highly scalable, and
thus is suitable to study the capacity of very large-scale MIMO
systems.

APPENDIX
PROOF OF THEOREM 1

In this appendix, we prove the duality transformation in (3).
We first write the partial Lagrangian function of (2) as

L(a,S) = log |I + HSH†| −
∑
i

ai(tr(EiS)− Pi)

= log |I + HSH†| − tr(BS) + pTa (26)

where B =
∑
i

aiEi, a = [a1, a2, . . . , ai, . . . , aL]T . Note

that B must be positive definite (and therefore invertible),
otherwise max

S�0
L(a,S) → ∞. Let Ŝ = B1/2SB1/2, then

(26) becomes

L(a,S) = log |I+HB−1/2ŜB−1/2H†|− tr(Ŝ)+pTa. (27)

Denote UΣV† be the singular value decomposition of
HB−1/2, i.e.,UΣV† = HB−1/2, we proceed with the in-
troduction of dual objective:

D(a) = max
Ṡ�0

log |I + B−1/2H†ṠHB−1/2| − tr(Ṡ) + pTa

(28)
where the relationship between Ŝ and Ṡ is given by Ŝ =
VU†ṠUV†.

By definition, the dual problem is min
a≥0
D(a), or equivalently

min
a≥0

max
Ṡ�0

log
|B + H†ṠH|

|B|
− tr(Ṡ) + pTa. (29)

We can introduce a new optimization δ > 0 so that the problem
above can be rewritten as

min
a≥0,δ>0

max
Ṡ�0

log |B+H†ṠH|
|B| − δP + pTa

subject to tr(Ṡ) ≤ δP.
(30)

Again, we can change the variables by

q̂i =
ai
δ
, S̄ =

Ṡ

δ
, (31)

Substituting (31) into (30), we arrive at the following opti-
mization problem

min
q̂≥0

max
S̄�0

log
|∑

i
q̂iEi+H†S̄H|

|∑
i
q̂iEi|

subject to tr(S̄) ≤ P
pT q̂ ≤ P

(32)

which completes the proof.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun, vol. 10, pp. 585–598, Nov. 1999.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communica-
tions in a fading environment when using multiple antennas,” Wireless
Pers.Commun, vol. 6, pp. 311–335, Mar. 1998.

[3] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative water-filling for
Gaussian vector multiple-access channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[4] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
“Sum power iterative water-filling for multi-antenna Gaussian broadcast
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1570–1580, Apr.
2005.

[5] M. Vu, “MISO capacity with per-antenna power constraint,” IEEE Trans.
Commun., vol. 59, no. 5, pp. 1268–1274, May 2011.

[6] ——, “MIMO capacity with per-antenna power constraint,” in Proc.
IEEE GLOBECOM, Dec. 2011, pp. 1 – 5.

[7] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna
downlink with per-antenna power constraints,” IEEE Trans. Signal
Process., vol. 55, no. 6, pp. 2646–2660, Jun. 2007.

[8] T. M. Pham, and R. Farrell, and L.-N. Tran, “Low-complexity ap-
proaches for MIMO capacity with per-antenna power constraint,” in
Proc. IEEE VTC-Spring, Jun. 2017, pp. 1–7.

[9] P. L. Cao, T. J. Oechtering, R. F. Schaefer, and M. Skoglund, “Optimal
transmit strategy for MISO channels with joint sum and per-antenna
power constraints,” IEEE Trans. Signal Process., vol. 64, no. 16, pp.
4296 – 4306, Aug. 2016.

[10] S. Loyka, “The capacity of Gaussian MIMO channels under total and
per-antenna power constraints,” IEEE Trans. Commun., vol. 65, no. 3,
pp. 1035 – 1043, Mar. 2017.

[11] L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On Gaussian
MIMO BC-MAC duality with multiple transmit covariance constraints,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2064 – 2078, Apr. 2012.

[12] H. Huh, H. C. Papadopoulos, and G. Caire, “Multiuser MISO transmitter
optimization for intercell interference mitigation,” IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 4272 – 4285, Aug. 2010.

[13] Y. Yang, G. Scutari, P. Song, and D. P. Palomar, “Robust MIMO
cognitive radio systems under interference temperature constraints,”
IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2465–2482, Nov.
2013.

[14] T. M. Pham, and R. Farrell, and L.-N. Tran, “Alternating optimization
for capacity region of Gaussian MIMO broadcast channels with per-
antenna power constraint,” in Proc. IEEE VTC-Spring, Jun. 2017, pp.
1–6.

[15] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 361–374, Feb. 2006.

[16] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric
convex approximation method with applications to nonconvex truss
topology design problems,” Journal of Global Optimization, vol. 47,
no. 1, pp. 29–51, 2010.

[17] L. Condat, “Fast projection onto the simplex and the `1 ball,” Math-
ematical Programming, Series A, vol. 158, no. 1, pp. 575 – 585, Jul.
2016.

[18] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives.” Pacific J. Math., vol. 16, no. 1, pp. 1 – 3, 1966.

[19] R. L. Burden and J. D. Faires, Numerical analysis, 9th ed. Brooks
Cole, 2011.

[20] G. H. Golub and C. F. V. Loan, Matrix Computations, 4th ed. The
John Hopkins Univ. Press, 2013.

[21] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11–12,
pp. 625–653, 1999.

[22] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 7.1 (Revision 28)., 2015.

[23] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proc. the CACSD Conference, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/326645407

