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Abstract—This paper addresses the real-time optimal control
of a 1/25th scale three-body hinge-barge wave energy device. The
objective of the control is to maximize the power extracted by the
device under given constraints on the maximum displacements,
velocities and control forces. An optimal pseudo-spectral control
based on the Half-Range Chebyshev-Fourier basis functions is
presented. HRCF basis functions are well suited for the ap-
proximation of non-periodic signals, allowing the representation
of both the transient and steady-state response of the device.
A reduced equivalent dynamic model of the device, which is
computationally more advantageous than a full dynamic model,
is obtained for the optimal control problem formulation. Results
show that pseudo-spectral control outperforms a simple control
strategy based on the optimal constant passive damping for both
monochromatic and polychromatic waves.

Index Terms—Multi-body wave energy converter, receding
horizon, energy maximization, pseudo-spectral control, 1/25 th
scale model.

I. INTRODUCTION

A multibody hinge-barge Wave Energy Converter (WEC)

is composed of different rectangular bodies interconnected by

joints. The relative motion between each pair of bodies drive

a Power Take Off (PTO) system which is used to extract

energy from the device. The objective of the control is to

maximize the power extracted from the device under given

constraints on the maximum displacements, velocities and

control forces. In [1], an optimal Pseudo-Spectral (PS) control

of a 1/25th scale three-body hinge-barge device based on

Fourier-series basis functions is considered for a finite time

horizon. PS methods are a subset of the class of techniques

used for the discretisation of integral and partial differential

equations known as mean weighted residuals [2], [3]. Apart

from providing a solution for the dynamics of a multi-body

system, PS methods can also be used to efficiently solve an

optimal control problem for the device [4].

Fourier-series basis functions can only represent the steady-

state response of the device. Therefore, with Fourier-series

basis functions, the motion of the device is considered to be

periodic and the transient effects of the dynamics of the device

are neglected. Therefore, the optimal control with PS methods

based on Fourier basis functions cannot be applied for the real-

time control of the WEC, but provides an useful framework

for the evaluation of the achievable power absorption under

both active and passive control.

This paper addresses the real-time optimal control of a

1/25th scale three-body hinge-barge device. For the optimal

control of WECs, the Model Predictive Control (MPC) strategy

has been adopted in [5]. In [6], a broad overview on MPC-like

controllers for WECs is presented. In this paper, an optimal PS

control based on the Half-Range Chebyshev-Fourier (HRCF)

basis functions [7] is presented. HRCF basis functions are well

suited for the approximation of non-periodic signals, allow-

ing the representation of both the transient and steady-state

response of the device. HRCF functions represents a Fourier

extension for nonperiodic signals and, therefore, are especially

suited for the wave energy field, since wave elevation and

fluidstructure interaction forces are all well described using

Fourier analysis. In [8], a receding horizon PS control with

HRCF basis functions is applied to a flap device.

The remainder of the paper is organized as follows: in

Section II, a full dynamic model of a three-body hinge-barge

device is derived while, in Section III, a reduced equivalent

dynamic model of the device is obtained for the optimal

control problem formulation. In Section IV, a receding horizon

optimal PS control based on the HRCF basis functions is

presented while, in Section V, a convex cost function for PS

control with HRCF basis functions is proposed. In Section VI,

results on PS control with HRCF basis functions applied to

a 1/25th scale three-body hinge-barge device are shown for

both monochromatic and polychromatic waves. Finally, overall

conclusions are drawn in Section VII.

II. FULL DYNAMIC MODEL OF A THREE-BODY

HINGE-BARGE DEVICE

This section briefly describes the full dynamic model of

a three-body hinge-barge device in the frequency domain

originally derived in [1]. In Figure 1, the device is represented

together with the global frame Xg, Zg , while a body frame

is assigned to each body composing the device. The number

of degrees of freedom of the device is n = 4: the heave

displacement z2 of body 2, the pitch angle θ2 of body 2 and

the relative pitch angles θrel,1 and θrel,2 of bodies 1 and 3,

respectively. Therefore, the vector of independent velocities of

the device is:

vs = [żbi,b2 θ̇2 θ̇rel,1 θ̇rel,2]
T (1)
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Fig. 1. Three-body hinge-barge device, where XgZg represents the global frame, and a local frame is assigned to each body composing the device.

Note that, in Figure 1, the incoming wave travels from the

right to the left, as body 1 is the forward barge of the WEC.

The PTO is made of two dashpots placed above the hinges and

connecting body 2 to body 1 and 3, as shown in Figure 1. The

control forces are represented by PTO torques acting on the

relative pitch motion between body 2 and body 1 and 3. The

number of control forces is nc = 2. The full dynamic model

of the device in the frequency domain is given as follows:

(−ω2 (Ms + Ma,s(ω)) + jω (Brad,s(ω) + Bvisc,s) + ..

Gs)X̂(ω) = Hex(ω)η + FptoU
(2)

where X̂ ∈ R
n×1 is the position vector, U ∈ R

nc×1 is the

control force vector, Fpto is the configuration matrix of the

PTO, Ms is the inertia matrix, Bvisc,s is the viscous damping

matrix, Gs is the hydrostatic stiffness, Ma,s is the added

mass, Brad,s is the radiation damping and Hex is the transfer

function between the excitation force vector and the wave

elevation. Note that the viscous damping force vector acting

on the WEC in (2), is considered to be linearly proportional

to the velocity vector, with a proportionality matrix Bvisc,s.

The use of a viscous damping force vector, which is linearly

proportional to the velocity vector, allows to represent the

dynamics of the WEC with a linear full dynamic model.

The computational effort required to PS methods to solve the

optimal control problem is greatly reduced by using a linear

full dynamic model, instead of a nonlinear full dynamic model,

for the description of the dynamics of the WEC. Moreover,

the viscous damping matrix Bvisc,s of a linear full dynamic

model of the WEC can be easily tuned to fit the wave-tank

tests carried out on the WEC, as presented in [9].

III. EQUIVALENT REDUCED DYNAMIC MODEL FOR

CONTROL FORMULATION

The full dynamic model in (2) is described in terms of the

motion of the degrees of freedom of the device. An equivalent

reduced dynamic model which is described only in terms of

the relative pitch rotations between the barges can be obtained

[10], [11]. The full dynamic model of the device in (2) can

be rewritten in frequency domain as follows:

(R + jωC)V̂ = Hexη + FptoU (3)

where:

V̂ =
[

Żb
i,b2

Θ̇2 Θ̇rel,1 Θ̇rel,2

]T

(4)

R =

[

R11 R12

R21 R22

]

= Brad,s(ω) + Bvisc,s (5)

C =

[

C11 C12

C21 C22

]

= Ms + Ma,s(ω)−
Gs

ω2
(6)

Hex = [Hex,1 Hex,2]
T

(7)

Fpto = [02 I2]
T

(8)

The dependency of the variables and matrixes in (3)-(7)

from ω is dropped in order to simplify the notation. Then,

equation (3) can be written as a system of two matrix equa-

tions:

[

Żb
i,b2

Θ̇2

]

= Z−1
f

(

Hex,1η −
Gs

ω2
T

[

Θ̇rel,1

Θ̇rel,2

])

(9)

(R22 + jωC22)

[

Θ̇rel,1

Θ̇rel,2

]

= Hex,2η + U − ..

(R21 + jωC21)

[

Żb
i,b2

Θ̇2

] (10)

where Zf = R11 + jωC11 and T = R12 + jωC12. Substi-

tuting equation (9) into (10) yields the following equivalent

reduced model for the relative pitch rotations:

Aeq

[

Θ̇rel,1

Θ̇rel,2

]

= Heqη + U (11)

where:
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Aeq = R22 − R21Z−1
f T + jω

(

C22 − C21Z−1
f T

)

(12)

Heq = Hex,2 − jωC2,1Z−1
f Hex,1 − R2,1Z−1

f Hex,1 (13)

As shown in (11), the equivalent reduced model is described

in terms of the relative pitch rotations which are the modes

that are used to extract energy from the device. Therefore,

the equivalent reduced dynamic model is particularly suitable

for the formulation of the control problem since it involves

a smaller number of variables than the full dynamic model.

However, with the equivalent reduced dynamic model, the

information on the heave and pitch rotation of the central

barge is lost. Therefore, the equivalent reduced dynamic model

represents a less comprehensive description of the motion of

the device than the fully dynamic model, but it reduces the

computational effort required to the controller.

In order to express the dynamic model in (11) in the time

domain, the equivalent added mass at infinity and inertia

matrix need to be computed. If Aeq in (12) is written as

follows:

Aeq = Req + jω

(

Meq,in + Meq,a −
Geq

ω2

)

(14)

where Req is the equivalent radiation damping matrix,

Meq,in is the equivalent inertia matrix, Meq,a is the equivalent

added mass matrix and Geq is the equivalent stiffness matrix.

Therefore, the equivalent added mass at infinity and the inertia

matrix are given as follows:

lim
ω→∞

Im{Aeq}

ω
= Meq,in + Meq,inf (15)

where Meq,inf is the equivalent added mass at infinity. The

equivalent stiffness matrix is given as follows:

lim
ω→0

ω Im{Aeq} = −Keq (16)

Finally, the equivalent reduced model expressed in the time

domain is given as:

q̇eq = veq (17)

Meq,totv̇eq + Beq,viscveq + Geqqeq + ..
∫ t

0

keq,rad(t− τ)veq, dτ = feq,wave + u
(18)

where qeq ∈ R
n×1 is the position vector, veq ∈ R

n×1 is

the velocity vector, u ∈ R
nc×1 is the control force vector,

Meq,tot = Meq,in+Meq,inf , Beq,visc is the equivalent viscous

damping matrix, keq,rad is the kernel function matrix of the

equivalent radiation forces and feq,wave is the equivalent wave

excitation force vector.

IV. RECEDING HORIZON PSEUDOSPECTRAL CONTROL

This section describes the direct transcription of the optimal

control problem for a 3-body hinge-barge device. The vector

of control variables is considered to be u = [τ1 τ2]
T , where

τ1 is the torque applied by the PTO connecting body 2 and

1, while τ2 is the torque applied by the PTO connecting body

2 and 3. The objective of the optimal control problem is to

compute the trajectories of the PTO torques and velocities of

the bodies of device in order to maximize the energy absorbed

by the device. The average power absorbed by the PTOs, over

the time interval [0, T ], is given as:

J =
1

T

∫ t0+T

t0

vTequdt (19)

For simplicity, the time interval [t0, t0 + T ] is mapped

into the time interval [−1, 1] by using the following affine

transformation g : t → τ :

τ = g(t) =
2

T
(t− t0)− 1 (20)

where t ∈ [t0, t0 + T ] and τ ∈ [−1, 1]. Using the affine

transformation in (20), equations (17) and (18) can be written

as:

Q̇eq =
T

2
Veq (21)

V̇eq =
T

2
M−1

eq,tot

(

−Beq,viscVeq − GeqQeq − ..
∫ τ

g−1(0)

Keq,rad(τ − s+ g(0)−1)Veqds+ Feq,wave + U
)

(22)

where Qeq = qeq ◦ g is the scaled position vector, Veq =
veq ◦ g is the scaled velocity vector, Keq,rad = keq,rad ◦ g
is the scaled kernel function matrix of the radiation forces,

Feq,wave = feq,wave ◦ g and U = u ◦ g is the scaled control

force vector. The average power absorbed by the PTOs, over

the time interval [−1, 1], is given as:

J =
1

2

∫ 1

−1

VT
eqUdτ (23)

The optimal control problem consists of computing the

vector of PTO torques that maximize the cost function in (23),

subject to the equations of motion (21)-(22). Additional con-

straints on the applied torques, relative pitch displacements and

velocities can be considered in the optimal control formulation.

The positions, velocities and control forces can be approxi-

mated as a combination HRCF basis functions as follows [8]:

Qeq,i(τ) ≈ QM
eq (τ) =

M
∑

k=0

xq,c
i,kT

h
k

(

cos
π

2
τ
)

+

M−1
∑

k=0

xq,s
i,kU

h
k

(

cos
π

2
τ
)

sin
π

2
τ = Φ(τ)T x̂

q
i

(24)
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Veq,i(τ) ≈ V M
eq (τ) =

M
∑

k=0

xv,c
i,kT

h
k

(

cos
π

2
τ
)

+

M−1
∑

k=0

xv,s
i,kU

h
k

(

cos
π

2
τ
)

sin
π

2
τ = Φ(τ)T x̂

v
i

(25)

Ui(τ) ≈ UM
i (τ) =

M
∑

k=0

uc
p,kT

h
k

(

cos
π

2
τ
)

+

M−1
∑

k=0

us
p,kU

h
k

(

cos
π

2
τ
)

sin
π

2
τ = Φ(τ)T ûp

(26)

where i = 1, .., nc, p = 1, .., nc and M is the order of

expansion of the approximation. The vector of the coefficients

x̂
q
i , x̂

v
i and ûp of the approximated components of the position,

velocity and control vectors, are given as follows:

x̂
q
i =

[

xq,c
i,0 xq,c

i,1 .. xq,s
i,M−2 xq,s

i,M−1

]T

(27)

x̂
v
i =

[

xv,c
i,0 xv,c

i,1 .. xv,s
i,M−2 xv,s

i,M−1

]T

(28)

ûp =
[

uc
p,0 uc

p,1 .. us
p,M−2 us

p,M−1

]T
(29)

while the basis function vector Φ(t) is given as follows:

Φ(τ) =
[

Th
0

(

cos
π

2
τ
)

Th
1

(

cos
π

2
τ
)

.. Th
M

(

cos
π

2
τ
)

Uh
0

(

cos
π

2
τ
)

sin
π

2
τ .. Uh

M−1

(

cos
π

2
τ
)

sin
π

2
τ
]T

(30)

By substituting the approximated velocities and control

torques defined in (25) and (26), respectively, into the expres-

sion for the absorbed power defined in (23), the approximated

average absorbed power is given as:

JM =
1

2

∫ 1

−1

Φ(τ)T XV UT
Φ(τ)dτ

=
1

2
( û

T
1 x̂

v
1 + û

T
2 x̂

v
2)

=
1

4
xT Hx

(31)

where:

XV = [ x̂
v
1, .., x̂

v
nc
] (32)

U = [ û1, .., ûnc
] (33)

x = [ x̂
q,T

x̂
v,T

û
T ]T (34)

H =





0N,N 0N,N 0N,N

0N,N 0N,N H1

0N,N H2 IN



 (35)

H1 =

[

I2M+1 02M+1

02M+1 I2M+1

]

(36)

H2 = HT
1 (37)

with N = nc × 2M + 1. The derivatives of the ith compo-

nents of the position and velocity vector are, respectively,

Q̇M
eq,i(τ) = Φ̇(τ)T x̂

q
i = Φ(τ)T Dx̂

q
i (38)

V̇ M
eq,i(τ) = Φ̇(τ)T x̂

v
i = Φ(τ)T Dx̂

v
i (39)

where D ∈ R
2M+1×2M+1 is a block diagonal matrix given

as follows [12]:

D =
π

2

[

0 H1

H2 0

]

(40)

Substituting the approximated states (24), (25) and their

time derivatives (38), (39) into the equations of motion (21)-

(22), yields the following equations of motion in residual form:

rqi (τ) = Φ(τ)Dx̂
q
i −Φ(τ)x̂vi (41)

rvi (τ) =

nc
∑

p=1

2

T
Meq,toti,p

Φ(τ)Dx̂
v
p + ..

nc
∑

p=1

Beq,visci,p
Φ(τ)x̂vp +

nc
∑

p=1

Geqi,p
Φ(τ)x̂qp + ..

nc
∑

p=1

∫ τ

g(0)−1

Keq,radi,p
(τ − s+ g(0)−1)Φ(s)x̂v

pds

− Feq,wavei
(τ)−Φ(τ)Ûi

(42)

where i = 1, .., nc, and Meq,toti,p
, Beq,visci,p

, Geqi,p
and

Keq,radi,p
are the elements of the matrices Meq,tot, Beq,visc,

Geq and Keq,rad, respectively. PS methods are used to compute

the coefficients x̂
q
i , x̂

v
i and ûp that minimize the residuals (41)-

(42) [13]. The PS methods force the residuals of the equations

of motion to be zero at a certain number of points in time

tk, called nodes. If the number of nodes is 2M + 1, then a

nonlinear system of 2× n×M + 1 equations is solved.

The optimal control problem defined by the maximization

of the cost function (23), subject to the dynamic constraints

(21)-(22), is transformed into a finite dimensional optimization

problem with cost function (31), and dynamic constraints

(41)-(42). Note that, the cost function in (31) is non-convex

quadratic and, therefore, a solution to the optimization problem

can be locally optimal. In Section V, a convex cost function is

proposed, which guarantees that the solution to the optimiza-

tion problem is a global optimal solution.

V. CONVEX COST FUNCTION FOR RECEDING HORIZON

PSEUDOSPECTRAL CONTROL

On average, the absorbed power by the PTO and the

excitation force power less the dissipated power due to the

radiated waves and viscous forces are the same [14]. The

maximization of the difference between the excitation force

power and the dissipated power yields to an convex optimal

control problem in the time domain [5].

Thus, the cost function in (23) can be rewritten as:
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J =
1

2

∫ 1

−1

(

VT
eqFeq,wave − VT

eqBeq,viscVeq − ..

VT
eq

(

∫ τ

g(0)−1

Keq,rad(τ − s+ g(0)−1)Veqdτ

))

dτ

=
1

2

∫ 1

−1

(

Φ(τ)T XV Xex,T
Φ(τ)−Φ(τ)T XV Beq,viscXV,T

Φ(τ)

−Φ(τ)T XV Xrad,T
Φ(τ)

)

dτ

=
1

2
xex,T x −

1

2
xT H̃x

(43)

where:

Xex = [ x̂
ex
1 , .., x̂

ex
nc
] (44)

xex = [ 01,N x̂
ex,T

01,N ]T (45)

Xrad = [ x̂
rad
1 , .., x̂

rad
nc

] (46)

x̂
rad = Pradx̂

v
(47)

H̃ =





0N,N 0N,N 0N,N

0N,N Prad + Dvisc 0N,N

0N,N 0N,N 0N,N



 (48)

Dvisc =

[

Beq,visc
1,1

I2M+1 Beq,visc
1,2

I2M+1

Beq,visc
2,1

I2M+1 Beq,visc
2,2

I2M+1

]

(49)

with Prad ∈ R
N,N is the matrix used to compute the HRCF

coefficients of the radiation forces given the HRCF coefficients

of the velocities [8]. On the contrary of the cost function

in (31), the cost function in (43) is convex and, therefore,

the solution to the optimization problem is a global optimal

solution.

VI. RESULTS

In [9], the full dynamic model presend in Section II is

validated against tank data carried out on a specific three-body

hinge-barge device tested in a wave tank using facilities of the

U.S. Naval Academy, Annapolis [15]. The dimensions of body

1 are: length= 0.68 m, width=0.4 m and height=0.1 m. The

dimensions of body 2 are: length= 0.28 m, width=0.4 m and

height=0.15m. The dimensions of body 3 are: length= 1 m,

width=0.4 m and height=0.1 m.

A. Monochromatic Waves

The power dissipated by the PTO systems was recorded

for a series of regular wave tests performed for a range of

frequencies ω from 3.14 rad/sec to 7.54 rad/secs, amplitudes

of the waves of 2 cm and direction of the waves along the

longitudinal direction of the device. In Figure 2, the full

dynamic model shows, in general, a good agreement with

the tank data in terms of average absorbed power. Note that,

at the frequency ω = 7.5 rad/s, the agreement between the

full dynamic model and the tank data is poor. However, the

frequency interval over which the energy of the waves is

extracted by the WEC is between 3 rad/s and 7 rad/s and,

therefore, the frequency ω = 7.5 rad/s is of little interest for

this study. Further work is required to improve the accuracy of

the full dynamic model, with respect to the tank data, over the

entire frequency interval where the tank tests are performed.

Furthermore, the peak of the average absorbed power given

by the full dynamic model is at a frequency which is slightly

greater than the frequency of the peak of the average absorbed

power given by the tank data. Additional wave-tank tests with

regular waves over the region of maximum power absorption

are required to further validate the full dynamic model against

the tank data.

In [14], a theory for the calculation of the maximum power

absorption of a generic multibody WEC is presented. The

theory is formulated in the frequency domain, and it computes

the maximum theoretical average power that can be achieved

with reactive PTO systems and no constraints on the amplitude

of velocities and PTO forces. In Figure 2, the maximum

theoretical average power that can be absorbed by a 1/25th

scale 3-body hinge-barge device at each frequency of the

incoming regular wave is shown.

An alternative strategy to PS methods is to consider a linear

model in the frequency domain, and compute the optimal

damping coefficients of the PTOs that maximizes the energy

absorption at each frequency of the incoming wave [14]. In

Figure 2, the average power given by the dynamic model with

optimal linear damping coefficients for the PTOs is shown.

Next, a passive controller (i.e. only positive power flow

from the device) based on the reduced model is computed

with PS methods, where the torques applied by the PTOs are

independent of the relative pitch velocity between the bodies.

As Figure 2 shows, the power absorbed with the PS passive

control is higher than the power absorbed with a control

strategy based on optimal linear damping coefficients. Note

that, for the PS passive control, the condition of passivity

introduces a non-convex quadratic inequality constraint in

the optimization problem given by the cost function (43).

Thus, the optimal passive control problem with PS methods

can be considered as a nonconvex Quadratically Constrained

Quadratic Program (QCQP) [16] and, therefore, a globally

optimal solution cannot be guaranteed for the passive control.

For the PS passive control, a number of HRCF basis functions

M = 5 is considered in the approximation of positions,

velocities and control forces, as it provides a trade-off between

the maximization of the absorbed power and the computational

time required to solve the optimization problem.

An active controller based on the reduced model is also

computed with PS methods, where the flow of power is

considered to be bi-directional, so that power from the grid can

be injected into the device. The active controller is computed

with both non-convex and convex cost function, given in

(31) and (43), respectively. As Figure 2, both the PS active

controller with convex and nonconvex cost function show

similar performances, and compute an absorbed power which

is close the maximum theoretical average power. For the PS

active control, a number of HRCF basis functions M = 11
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is considered in the approximation of positions, velocities and

control forces, as it provides an absorbed power which is close

to the maximum theoretical average power.

Now, a comparison between PS optimal control with HRCF

basis functions and PS optimal control with Fourier basis

functions [1] is made. In Figure 3, a comparison between

the PS active and passive control with HRCF basis functions,

and the PS active and passive control with Fourier basis

functions is shown for regular waves. As shown in Figure

3, PS active control with Fourier basis functions computes

a slightly greater average absorbed power than the average

absorbed power computed with PS active control with HRCF

basis functions around the natural resonant frequency of the

device. As shown in Figure 3, PS passive control with Fourier

basis functions compute a greater average absorbed power than

the average absorbed power computed with PS passive control

with HRCF basis functions across all the range of frequencies

considered. The discrepancy between the average absorbed

power computed with the PS passive control with Fourier and

HRCF basis functions is due to the nonconvexity of the passive

control problem.

B. Polychromatic Waves

For polychromatic waves, under the assumption of the

linear superposition of the hydrodynamic loads given by the

frequency components of the incoming wave, the maximum

theoretical average power is given as:

P th,max =

Nf
∑

i

P th,iA
2
i (50)

where Nf is the number of frequency components of the

incoming waves, Ai is the amplitude of the i frequency

component and P th,i is maximum theoretical average power

computed for the i frequency component with unitary ampli-

tude.
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Fig. 3. Comparison between max theoretical power, convex active reduced
model Fourier PS control, convex active reduced model HRCF PS control,
passive reduced model Fourier PS control and passive reduced model HRCF
PS control for different frequencies of a regular wave of amplitude A = 2

cm.

In Figure 4, a comparison between the maximum theoretical

average power and the average power absorbed with the opti-

mal linear damping control, PS passive control and PS active

convex and non-convex control is shown for a polychromatic

wave over a simulation time of 100 s. The polychromatic wave

is from a JONSWAP spectrum with a significant wave height

Hs = 15 cm and significant period T = 1.1 s. While the

PS active and passive control maximize the average absorbed

power over the entire time horizon, the coefficients of dash-pot

systems of the optimal linear damping control are set equal

to their optimal values at the peak frequency of the spectrum

of the incoming wave. As shown in Figure 4, the PS active

convex and non-convex control compute an average power

which asymptotically converges to the maximum theoretical

power. Furthermore, as shown in Figure 4, the passive PS

control shows better performances than the optimal linear

damping control. A number of HRCF basis functions M = 5
and M = 11 is considered in the approximation of positions,

velocities and control forces, for the PS passive and active

control, respectively.

In Figure 5, a comparison between the PS active and passive

control with HRCF basis functions, and the PS active and

passive control with Fourier basis functions is shown for a

polychromatic wave over a simulation time of 30 s. The

polychromatic wave is from a JONSWAP spectrum with a

significant wave height Hs = 15 cm and significant period

T = 1.1 s. As Figure 5 shown, PS active and passive control

with HRCF basis functions converge to an average absorbed

power which is the same as the average absorbed power

computed with PS active and passive control with Fourier basis

functions, respectively.

VII. CONCLUSION

This paper shows the benefits of PS active and passive con-

trol with HRCF basis function, with respect to a strategy based
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Fig. 4. Comparison between the asymptotic maximum average power and
the average power given by the optimal linear damping control, non-convex
active reduced model HRCF PS control, convex active reduced model HRCF
PS control and passive reduced model HRCF PS control for a polychromatic
wave made from a Jonswap spectrum with Hs = 15 cm and Tp = 1.1 s.
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Fig. 5. Comparison between max theoretical power, convex active reduced
model Fourier PS control, convex active reduced model HRCF PS control,
passive reduced model Fourier PS control and passive reduced model HRCF
PS control for a polychromatic wave made from a Jonswap spectrum with
Hs = 15 cm and Tp = 1.1 s.

on optimal linear passive dampers, for the maximization of the

energy extracted by a three-body hinge-barge device. In par-

ticular, for regular waves, the average absorbed power with PS

optimal control with HRCF basis functions is approximately

1.5 times greater than the average absorbed power with optimal

linear passive dampers around the resonance of the device.

For irregular waves, a similar increase of the average power

can be achieved with PS optimal control with HRCF basis

functions, with respect to optimal linear dampers. The results

also show that the average absorbed power computed by PS

passive control is comparable to the average absorbed power

computed by PS active control for both regular and irregular

waves. However, considering a realistic PTO efficiency [17], a

reduction of the benefits of using a reactive control is expected.

Also, the costs involved with the use of a bi-directional PTO

can exceed the increment in the value of absorbed power that

can be achieved with a simpler passive PTO.

The complexity of PS optimal control is greatly reduced

by using a reduced equivalent dynamic model, instead of a

fully dynamic model, for the description of the dynamics

of the device. The reduced equivalent model is described in

terms of the relative pitch rotations only, which are the modes

that are used to extract energy from the device. A convex

optimization problem for the active control with the reduced

equivalent model can be found, which guarantees a globally

optimal solution. However, with the reduced equivalent model,

no constraints on the heave and absolute pitch rotation of the

central barge can be enforced, as the reduced equivalent model

is described in terms of the relative pitch rotations only.

In terms of basis functions used for the PS methods, while

HRCF basis functions represent both the transient and steady-

state response of the device, Fourier basis functions can only

represents steady-state response of the device. Therefore, PS

methods based on HRCF basis functions, rather than PS

methods based Fourier basis functions, are well suited for

the implementation the real-time control of the WEC. In

terms of power absorption performance, for regular waves,

PS active control with Fourier basis functions computes a

slightly greater average absorbed power than the average

absorbed power computed with PS active control with HRCF

basis functions, around the natural resonant frequency of the

device. For regular waves, PS passive control with Fourier

basis functions compute a greater average absorbed power

than the average absorbed power computed with PS passive

control with HRCF basis functions across all the range of

frequencies considered. The discrepancy between the average

absorbed power computed with the PS passive control with

Fourier and HRCF basis functions is due to the nonconvexity

of the passive control problem. For irregular waves, PS active

and passive control with HRCF basis functions converge to

an average absorbed power which is the same as the average

absorbed power computed with PS active and passive control

with Fourier basis functions.
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