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Abstract—Due to their computational convenience, mathe-
matical models for wave energy converters are usually linear.
Including nonlinearities may improve the accuracy of the results,
but often at the price of an additional computational and
complexity burden, which can be justified only if nonlinearities
are significant.

One of the sources of nonlinearity in fluid-body interactions is
the wave field itself. Different wave models exist, among which are
linear Airy’s theory, the Wheeler stretching approach, and the
nonlinear Rienecker-Fenton method, which achieve a different
compromise of accuracy and complexity.

The impact of the accuracy of such wave theories strongly
depends on the specific device (operating principle, power pro-
duction region and survivability mode), and installation site
(water depth, occurrences of each sea state in the scatter diagram
of the installation site). This paper evaluates the performance of
different wave field representations, firstly in absolute terms, and
secondly in relation to the associated computation of nonlinear
Froude-Krylov forces for different wave energy devices.

Index Terms—Nonlinear wave, Wheeler stretching, Rienecker-
Fenton wave, nonlinear Froude-Krylov force, wave energy con-
verters.

I. INTRODUCTION

Linear mathematical models are commonly used to de-

scribe wave energy converters (WECs) dynamics, since they

have the advantage of being very computationally efficient.

Nonetheless, including nonlinear effects may improve the

accuracy of the model, but often at the cost of an additional

computational and complexity burden, which can be justified

only if nonlinearities are significant.

Nonlinearities in fluid-body interactions depend on:

(i) The free surface elevation

(ii) The pressure field distribution

(iii) Geometrical nonlinearities

Points i) and ii) concern the modelling of the wave field,

which is the energy source, while point iii) concern the

computation of the hydrodynamic forces acting on the body,

which are defined as the integral of the pressure acting on the

wetted surface of the device. In particular, Froude-Krylov (FK)

forces are the hydrodynamic components which describe the

action of the undisturbed incident wave on a device; therefore,

accurate modelling of FK forces is likely to be important

for simulating reliable responses of heaving WEC devices,

which are excited mainly by FK forces, while surge devices

are equally responsive to diffraction and FK forces, as shown

in [1]. For example, [2] show that geometrical nonlinearities

may be relevant for the FK force calculation for heaving point

absorbers (HPAs), significantly affecting the response of the

device.

Including geometrical nonlinearities for the computation

of nonlinear FK forces implies an increase in complexity

and computational time, which depends on the complexity

of the geometry itself: for relatively simple geometries, as

axisymmetric heaving point absorbers or oscillating wave

surge converters (OWSCs), computationally-efficient algebraic

solutions are available [3], while complex geometries require

more complex approaches [4].

Likewise, different degrees of accuracy (at different com-

plexity costs) can be achieved in modelling the incident wave

field, starting from the most simple linear Airy theory, to

several nonlinear wave formulations, including Stokes’ waves

(2nd to 4th order), cnoidal waves, and Rienecker-Fenton

(RF) waves [5]. Finally, corrections to linear theory, such as

Wheeler’s stretching method [6], can be used to improve the

results of Airy’s theory, at a negligible additional complexity

cost. The accuracy of such wave theories depends mainly on

the water depth and the wave steepness; therefore, the impact

of such nonlinearity strongly depends on the specific device

(position of the device with respect to the free surface and the

sea bottom; power production region and survivability mode),

and installation site (water depth; occurrence of each sea state

in the scatter diagram of the installation site).

This paper discusses the impact that the choice of the wave

field representation model has on the accuracy and complexity

of the calculation of FK forces for wave energy devices. Linear

Airy’s theory, Wheeler stretching and nonlinear Rienecker-

Fenton waves are considered: firstly, the pressure profile is

evaluated and compared, from the free surface to the sea

bottom, for a comprehensive set of wave conditions. Secondly,

the effect of different pressure field representations on the

calculation of FK forces for WECs is discussed, considering

HPAs and OWSCs as representative devices.
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The reminder of the paper is organized as follows: Sect. II

presents the wave models, based on potential theory. Sect. III

evaluates the overall accuracy of the pressure profile repre-

sentation, while Sect. IV takes into account the effect of the

pressure representation in the context of nonlinear modelling

for wave energy devices. Some final remarks and conclusions

are presented in Sect. V.

II. WAVE THEORIES

The wave theories discussed herein are based on the as-

sumption of a homogeneous, ideal, incompressible fluid, with

irrotational motion [7]. Two-dimensional waves are considered

in the (x, z) coordinate system, where x is the direction of

propagation of the wave, and z is the vertical axis, positive

upwards, with origin at the still water level (SWL), which is

at a distance d from the sea bed. Assuming fluid incompress-

ibility, a velocity potential ϕ can be defined, such that:

u = ∇ϕ (1)

where u is the velocity vector. Since the motion is assumed

irrotational, ϕ satisfies the Laplace’s equation throughout the

fluid:

∇× u = ∇2ϕ = 0 (2)

The periodic boundary condition is satisfied on the lateral

boundaries, with spacial period equal to the wave length λ.

The kinematic boundary conditions are satisfied on the sea

bottom, (3a), and on the free surface η, (3b):

∂ϕ

∂z
= 0, at z = −d (3a)

∂ϕ

∂z
=

∂η

∂t
+

∂ϕ

∂x

∂η

∂x
, at z = η (3b)

Finally, the dynamic boundary condition (Bernoulli’s equa-

tion) is verified on the free surface:

∂ϕ

∂t
+

pdy
ρ

+ gz +
|∇ϕ|

2

2
= 0, at z = η, (4)

where ρ is the water density, g the acceleration of gravity,

and pdy the dynamic pressure. The static pressure is defined

as pst = −ρgz.

A general analytical solution for the wave potential problem,

described by equations (1) to (4), does not exist. In particular,

some further assumption are needed to solve the free surface

boundary conditions (3b) and (4): Airy’s wave theory lin-

earizes such boundary conditions onto the SWL, while Stokes’

wave theory, assuming infinite water depth (with respect to λ),

uses a Fourier series of (3b) and (4), performing a perturbation

expansion in terms of a small parameter, which increases with

the wave height; on the other hand, cnoidal wave theory solves

the potential problem assuming that the wave length is much

longer than the water depth.

The regions of validity of such wave theories are shown in

Fig. 1. Note that there are different orders of Stokes’ theory,

where the first order on the bottom, not explicitly labelled

in Fig. 1 for lack of space, corresponds to the linear Airy’s

theory. The range of applicability of the different theories is

defined by the water depth, the wave length and the wave

height H . The limit between shallow and infinite water depth

is given by an Ursell number (Ur) equal to 40 [8], where Ur

is the ratio between a measure of nonlinearity (H/d), and a

measure of shallowness (d2/λ2). The theoretical limit for the

highest wave possible, based on [9], determines the maximum

achievable wave height, after which the wave breaks and the

potential theory is no longer applicable.
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Fig. 1: Regions of validity of wave theories for different wave

lengths λ and wave height H , both normalized with respect

to the water depth d. The limit between shallow and infinite

water depth is given by the Ursell number (Ur) equal to 40

[8]. The theoretical highest wave possible is based on [9]. The

markers on the graph refer to the wave conditions studied in

Section III

Finally, by means of the Rienecker-Fenton wave’s theory

[5], it is possible to achieve a numerical solution of the

nonlinear potential problem, without any assumption on the

wave depth or height. Indeed, [10] shows how well RF waves

embraces Stokes’ and cnoidal wave theory, in the respective

regions of validity, which have been widely validated against

experimental tests [11]. The drawback is that, while there

are analytical formulations for calculating the Stokes’ and

cnoidal waves parameters, RF approach requires a numerical

optimization routine for each wave condition.

A. Linear Airy’s wave theory

Assuming a small wave steepness (s = H/λ), it is possible

to linearize the kinematic and the dynamic free surface bound-

ary conditions, shown in (3b) and (4), respectively, around the

SWL, namely at z = 0. The solution of the linearized potential

problem consists of a harmonic free surface elevation and an

exponential dynamic pressure, as follows:

2644-



η =
H

2
cos (kx− ωt) (5a)

pdy = ρgη
cosh k (z + d)

cosh kd
(5b)

where k = 2π/λ is the wave number, ω = 2π/T is the

wave frequency, and T the wave period. Note that, at infinite

water depth conditions, the dynamic pressure tends to ρgηekη .

At the free surface (z = η), the total pressure p should

match the atmospheric pressure, equal to zero. According to

Airy’s wave theory at infinite water depth, p at the free surface

is given as:

p = pst + pdy = −ρgη + ρgηekη = ρgη
(

ekη − 1
)

(6)

As a consequence of the linearization of the free surface

boundary conditions, the total pressure is zero at the SWL

(z = 0) instead, implying a modelling error of the pressure at

the actual free surface. Equation (6) shows that such an error

is proportional to
(

ekη − 1
)

, which tends to zero as the wave

steepness tends to zero.

B. Wheeler’s stretching method

The Wheeler stretching approach [6] consists of starting

from the results obtained with the Airy’s theory, and apply a

convenient change of coordinates, in order to correct the free

surface boundary condition error: the vertical coordinate z is

substituted with z′, defined as:

z′ = d
z + d

η + d
− d (7)

Note that the origin of the stretching is located at the

sea bottom, since z′ = z at z = −d. On the other hand,

z′ = 0 at z = η, hence the free surface boundary condition is

satisfied. Notwithstanding the dynamic pressure is punctually

correct at z = η, the whole pressure profile is, in general, an

approximation, since it is based on a linear stretching of the

results from the Airy’s theory.

C. Rienecker-Fenton wave theory

The basis of the Rienecker-Fenton method is to write the

analytical solution for ϕ in a separated variables form:

ϕ =

√

g

k3

NB
∑

j=1

Bj
cosh jk(z − d)

cosh jkd
sin jkx (8)

where Bj are dimensionless constants for a particular wave,

and NB is a finite integer which, according to [5], should be

chosen between 10 and 20. The truncation of the series for

finite NB is the only approximation in this formulation. The

values of Bj are found numerically, using Newton’s method

[5].

Note that the complexity of the pressure formulation in

the RF method is considerably higher than in Airy’s theory

and Wheeler’s stretching method. In fact, once the NB terms

of the potential are obtained, the pressure is computed from

Bernoulli’s equation (4), which requires the computation of

derivatives of the potential. On the other hand, since no

approximation is introduced in the boundary condition formu-

lation, the wave pressure profile obtained with the RF method

is taken as an accuracy benchmark, and used to evaluate Airy

and Wheeler approaches. Likewise, the RF approach provides

an accurate description of the nonlinear free surface elevation,

with higher and steeper peaks with respect to linear waves.

Fig. 2 shows an example of free surface elevation, using Airy’s

theory and the RF model.

−20 −15 −10 −5 0 5 10 15 20
−2

−1

0

1

2

x[m]

η
[m

]

Airy

Rienecker-Fenton

Fig. 2: Free surface elevation for a wave condition with T =
5s, H = 3m, d = 12m, using Airy’s theory, equation (5a),

and Rienecker-Fenton theory, derived from equation (8) [5].

III. PRESSURE PROFILE

The objective of the study is to evaluate the influence of

nonlinear waves on nonlinear FK forces for wave energy

converters. The two elements affecting the response of the

device are the free surface elevation and the pressure profile.

On the one hand, η is just an input to the system, therefore

its complexity does not affect the complexity of the WEC

model, since η is evaluated only once. On the other hand,

the pressure profile has to be evaluated, and integrated over

the wetted surface of the device, at each time step; therefore,

the computational burden of the calculation of nonlinear FK

forces is strongly dependent on the complexity of the pressure

formulation, while independent of η. Hence, hereafter the

nonlinear η is considered for all wave models.

The shape of the pressure profile is evaluated for a com-

prehensive range of wave conditions. Three wave periods are

considered, equal to 5s, 10s, and 15s, and the corresponding

wave lengths are computed according to the water waves

dispersion relation [12]. Three normalized water depths d/λ
are considered, equal to 0.05, 0.3 and 0.6, respectively defining

shallow, intermediate and infinite water depth conditions [12].
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Fig. 3: Normalized pressure profiles for infinite and shallow water depth conditions, for a wave sample with wave height equal

to 40% of the theoretical maximum wave height. The corresponding wave steepness are 2.8% in shallow water depths, 5.5%

in infinite water depth.

Finally, for each wave condition, five wave heights are studied,

corresponding to 5%, 10%, 20%, 40%, and 60% of the

theoretical maximum wave height, as defined in [9]. The

resulting waves conditions are shown by the markers in Fig.

1.

It is worth to highlight that the wave period has just

the effect of scaling the free surface elevation and pressure

profiles, changing the wave length; therefore, the markers

in Fig. 1 overlap for different T . Likewise, the normalized

pressure profiles for different T , but same λ/d and H/d,

overlap.

Fig. 3 shows two representative samples of pressure profiles,

at the wave peak (z = η), having the wave height equal to

40% of the theoretical maximum wave height. In infinite water

depth conditions, RF pressure profile significantly differs from

Airy’s one only at the free surface, converging to almost the

same value at the sea bottom, where the dynamic pressure

is almost zero, due to the large distance between the wave

and the sea bed. Conversely, large errors are found in shallow

water conditions, throughout the whole water depth, since

the nonlinear influence of the near sea bed is considerably

changing the pressure decay rate from the free surface to the

bottom.

The Wheeler stretching approach, as explained in Sect. II-B,

analytically imposes the correct boundary condition at the free

surface, and linearly stretches the pressure profile from the sea

bottom. Indeed, Fig. 3 shows that the pressure according to

the Wheeler stretching model is the same as the RF’s one

at the free surface, while is the same as the Airy’s one at

the sea bottom. Consequently, errors in the pressure profile

modelling for the Wheeler stretching approach are dependent

on the pressure errors at the sea bottom, which increase with

the shallowness of the wave.

In order to have a more global picture of the errors com-

mitted by Airy’s theory and the Wheeler stretching model,

compared to the RF benchmark model, the mean relative

error is computed for all the wave conditions shown in Fig.

1. The relative pressure difference is evaluated at N vertical

points, from the sea bottom to the peak free surface. Given the

variety of water depths considered, trying to define a depth-

independent error index, the same number of points is taken

for all the waves. On the other hand, since the pressure decay

close to the free surface is faster than in deeper water, with

a characteristic exponential decay, the N points are chosen

with a logarithmic spacing, so that points are denser close to

the free surface, and looser towards the sea bed. Fig. 4 plots

such relative errors against the wave steepness, which is a

representative parameter of the degree of nonlinearity in the

wave, as discussed in Sect. II. Finally, note that a positive

relative error stands for an overestimation of the pressure.

In general, Fig. 4 shows that the relative error is always

increasing with the wave steepness, namely with the amount of

nonlinearity in the wave. Besides, for linear waves (steepness

lower than 1%), the relative error is lower than 2% for both

models, in all depth conditions. On the other hand, as the

steepness increases, the curves diverges and the relative error

obtained using Airy’s theory reaches a maximum of 28%,

while with the Wheeler stretching approach, the maximum

error is less than 2% in intermediate/infinite water depths,

about 8% in shallow water conditions. It is evident that the

Wheeler stretching model always outperforms the Airy’s the-

ory: as expected, drastic improvement is found at intermediate

and infinite water depth conditions, where the relative errors

are between 12 and 23 times smaller while, at shallow water

depth, the relative error is about half.

IV. PRESSURE INTEGRAL

The errors shown in Fig. 4 give an overall evaluation of

the pressure profile representation, from the sea bottom to the

free surface, according to the Airy’s and Wheeler stretching

approaches. Nevertheless, as far as nonlinear modelling of

wave energy converters is concerned, what is important is the
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Fig. 4: Relative error committed by Airy’s theory (in blue) and

the Wheeler stretching (in red) model, compared to the RF

benchmark model, for the three water depth (w.d.) conditions,

which are represented by the black markers in the legend. In

the plot, markers have the same colour of the wave theory.

accuracy just in the region of fluid where the device operates,

which affects the accuracy of the computation of the nonlinear

Froude-Krylov force.

Consequently, the device operating principle has to be taken

into account. On the one hand, surface piercing heaving

point absorbers are considered, which work in the proximity

of the free surface, in either infinite or intermediate water

depth conditions. On the other hand, oscillating wave surge

converters are studied, which operate in intermediate/shallow

water conditions, spanning almost all the depth from the free

surface to the sea bed. Therefore, based on Figs. 3 and 4, it

can be expected that the Wheeler stretching approach can be

more effective for HPAs than for OWSCs, since the Wheeler

stretching errors are particularly small close to the surface, and

in infinite or intermediate water conditions.

Inspired by the Wavestar device [13], a spherical HPA is

chosen, with radius of 2.5m, and centre at the still water level.

The dynamic nonlinear FK force is the integral of the dynamic

pressure over the instantaneous wetted surface, which depends

on the relative displacement between the device and the free

surface elevation. The details for an algebraic resolution of

such an integral are given in [14]. Besides, the geometry of

the OWSC is based on the Oyster 2 device [15]. The dynamic

FK torque is the resulting torque due to the pressure on the

front and rear surfaces of the flap, as shown in [3].

The reason for considering the device geometry is to quan-

tify the importance of the nonlinear pressure profile in the

respective operating region. Therefore, with the purpose of

excluding geometrical nonlinearities, a zero relative displace-

ment is used for the HPA, and the vertical (rest) position is

considered for the OWSC. Therefore, the HPA is modelled as

half a sphere, with radius 2.5m, while the OWSC is modelled

as a rectangle, with 9m draft and 26m width. The dynamic

pressure is consequently integrated over the two geometries

to calculate FK forces.

Fig. 4 shows how modelling errors significantly increase

with the wave steepness. However, the occurrence of highly

nonlinear waves is likely to be low, therefore the scatter

diagram of the installation site has to be considered as well.

Furthermore, the device is designed to be operative only in a

determined range of wave conditions, where the physical con-

straints are respected, and the power absorption is guaranteed.

Otherwise, for certain wave conditions, the device is not able

to produce energy (if the waves are not energetic enough), or it

turns into survivability mode (if the waves are too energetic).

Therefore, for power production assessment studies, the

accuracy of the wave representation is important only in the

power production region. On the contrary, highly nonlinear and

energetic sea states must be considered when the maximum

structural loads need to be assessed. However, more complex

fully nonlinear models, like computational fluid dynamics

(CFD), are likely to be necessary for such survivability studies.

The scatter diagram considered in this study is shown in

Fig. 5, which refers to the European Marine Energy Centre

(EMEC), Orkney, Scotland [16]. The solid line defines the

operational region of the OWSC Oyster800, which covers the

86.1% of the total wave occurrences.
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Fig. 5: Significant wave height Hm0, mean wave period

T01 scatter diagram at the European Marine Energy Centre

(EMEC), Orkney, Scotland. The solid line defines the opera-

tional region of the OWSC Oyster800, which covers 86.1% of

the total wave occurrences [16].

A set of regular wave conditions is based on the significant

wave heights (Hm0) and mean wave periods (T01) shown in

Fig. 5. The water depth choice, equal to 13m, is constrained

by the OWSC geometry [15]. However, the HPA is studied in

infinite water depth conditions as well.
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Integrals of the dynamic pressure over the surface of the

HPA and the OWSC are computed at the peak of the free

surface elevation, in order to highlight nonlinear effects. The

computation of such nonlinear integrals is straightforward

for the Airy’s pressure profile, since algebraic solutions are

available, in [14] for the HPA, in [3] for the OWSC. The very

same algebraic solution can be easily adapted to the Wheeler

stretching pressure profile, since just a change of variable is

required. On the contrary, integrating the RF pressure profile is

much more complex: given the high number of terms of the RF

pressure expression, an algebraic solution does not exist, and a

numerical integration scheme must be used. It results that the

numerical integration scheme for the RF approach is about two

orders of magnitude slower than the algebraic solution, which

is applicable only to linear and Wheeler stretching approaches.

As in Sect. III, the results obtained using the RF model are

used as benchmark to evaluate Airy’s and Wheeler stretching

models, whose relative errors are shown in Figs. 6 and 7,

for the HPA and the OWSC, respectively. In both figures,

the surface on the top refers to the Airy’s model, whereas

the surface on the bottom refers to the Wheeler stretching

approach, whose errors are indeed always smaller.
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Fig. 6: Relative error in the pressure integral for the HPA

(water depth of 13 m), using the Airy’s pressure (on the top),

and the Wheeler stretching pressure (on the bottom).

Each surface in Figs. 6 and 7 presents three different shades

(grey, red, and green). The first and outer one covers the

whole scatter diagram. The second shade considers only the

wave conditions within the operational region of the scatter

diagram, shown in Fig. 5, which is the region of interest

for power production assessment studies. The third and inner

shade takes into account only the wave conditions which pass

a significant occurrence threshold, arbitrary set at 1%. Indeed,

higher accuracy is required in more probable wave conditions,

while larger errors can be accepted for rare wave conditions.

The sum of the occurrences over 1% amount to 87%, which

is comparable to the 86.1% of the whole operational region.
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Fig. 7: Relative error in the pressure integral for the OWSC,

using the Airy’s pressure (on the top), and the Wheeler

stretching pressure (on the bottom).

Using Airy’s theory leads to produce similar errors in both

the HPA and the OWSC, up to 36% in the full scatter diagram,

up to 28 % in the operational region, and up to 18% in the

occurrence threshold region. Conversely, the Wheeler stretch-

ing method performs better for the HPA than the OWSC, with

maximum errors of 5% and 20%, respectively. Indeed, HPAs

work close to the free surface, where the boundary condition

error is zero, thanks to the Wheeler stretching change of

coordinates.

Finally, the HPA is studied in infinite water condition as

well. Smaller errors are found, with respect to the 13 m water

depth condition: Airy’s theory maximum error drops from 32%

to 25%, while Wheeler stretching maximum error drops from

5% to 4%. A summary of the maximum errors in each of the

three regions (whole scatter diagram, operational region, and

occurrence threshold region) is tabulated in Table I.

V. CONCLUSION

The accuracy of nonlinear hydrodynamic models for wave

energy converters is directly influenced by the fidelity of the

wave field representation. Concurrently, accuracy improve-

ments have to be weighted by the increase in complexity

and computational cost, required to implement more accurate

wave models. This paper considers three different modelling

approaches, namely the linear Airy’s theory, the Wheeler

stretching approach and the Rienecker-Fenton method. Fig.

4 shows how the Wheeler stretching method performs always

better than the Airy’s theory, especially in infinite/intermediate

water depth conditions, achieving a maximum relative error

less than 2% in intermediate water depth, less than 8% in

shallow water depth. Nevertheless, the complexity of the

Wheeler stretching approach is the same as the Airy’s one,

but much simpler than the RF one.

As far as WEC nonlinear models are concerned, only the

region of fluid where the device operates is relevant for the
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TABLE I: Maximum errors for the whole scatter diagram, the operational region, and occurrence threshold region, for the

HPA and the OWSC. The subscript indicates the water depth for each of the device.

HPA∞ HPA13 OWSC13

Airy Wheeler stretching Airy Wheeler stretching Airy Wheeler stretching

Occurrence ≥ 1% (total 87%) 14.1% -1.0 % 17.3 % 3.1% 18.2 % 9.1 %

Operational boundary (total 86.1%) 20.6 % -2.4 % 26.0 % 4.4 % 27.8 % 14.7 %

Whole scatter diagram (total 100%) 25.1 % -4.2 % 32.5 % 5.3 % 35.8 % 20.5 %

final accuracy of the results. Indeed, Figs. 6 and 7 show that

the Wheeler stretching method performs better than the Airy’s

theory, but produces much smaller errors in HPAs with respect

to OWSCs.

Furthermore, it is important to highlight that the perfor-

mance of the wave models have to be weighted with the

occurrence of each sea condition, according to the scatter

diagram of the installation site. An other criterion to consider

is the operational region, which is the only one taken into

account for power production assessment studies. Table I

shows that the maximum errors in different areas of the scatter

diagram may vary significantly.

Finally, it can be concluded that the Wheeler stretching

approach is a convenient wave modelling option, since it

performs well compared to the RF method, especially for

HPAs, and performs always better than the Airy’s theory, but

maintaining the same level of complexity.
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