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ABSTRACT

Several methods have been developed to identify a parametric model that
represents the radiation force convolution term in Cummins’ equation.
The reason behind such an approximation is twofold: obtaining a model
with less computational (effort) requirements, and easing model-based
control design procedures. In this paper, a case study on the paramet-
ric approximation of such a convolution term using frequency-domain
data is considered, based on recent advances in model order reduction
by moment-matching. Both the force-to-motion and radiation impulse
response dynamics are considered. The advantages of a moment-based
strategy are discussed, while providing a comparison with well-known
existing methods.

KEY WORDS: Radiation forces; Parametric form; Model order reduc-
tion; Frequency domain identification; Moment-matching

INTRODUCTION

Several methods have been developed to obtain the hydrodynamic coef-
ficients for the mathematical models of floating bodies, such as Bound-
ary Element Methods (BEMs), Computational Fluid Dynamics (CFD)
or Smoothed-Particle Hydrodynamics (SPH). The speed with which the
hydrodynamic coefficients are computed using BEM makes it a common
choice to compute such parameters for a floating body (Penalba et al.,
2017a). To compute the hydrodynamic coefficients of a Wave Energy
Converter (WEC), the most widely used BEMs are the open-source soft-
ware NEMOH (Babarit and Delhommeau, 2015) and the commercially
available software WAMIT (Newman and Lee, 2002). One of the hand-
icaps of BEMs is that the coefficients are given in the frequency-domain
and, therefore, only the steady-state motion of the WEC is characterised.
Since the motion of the free surface in a realistic sea state rarely reaches
steady-state conditions, a time-domain representation gives a more com-
prehensive description, which is useful in several applications. The dy-
namics of a WEC can be expressed in the time-domain using the well-
known Cummins’ equation (Cummins, 1962). The relationship between
the hydrodynamic frequency-domain data obtained by BEMs and Cum-
mins’ equation is given in (Ogilvie, 1964), and recalled in this study in
the section “WEC equations of motion”. The resulting time-domain rep-
resentation includes a convolution term to characterise the fluid memory

effects associated with the radiation forces acting on the device.

The main disadvantages of such a convolution term is that it is both com-
putationally expensive and inconvenient for any model-based control de-
sign procedures, which are usually based on state-space representations
of the system under analysis. In fact, the vast majority of the optimal
control techniques which attempt to maximise the absorbed energy of
the WEC, found in the literature, require a state-space approximation of
the convolution term (Faedo et al., 2017a).

Several methods to approximate the radiation convolution term using a
time-invariant state-space representation can be found in the literature,
as discussed in, for example, (Faedo et al., 2017b). One of the most
popular methods, referred to in this paper as the NTNU method (Pérez
and Fossen, 2008), consists of finding a state-space representation based
on the frequency response of the radiation force system, which can be
computed using the hydrodynamic frequency-domain data obtained from
BEM solvers. Another widely used strategy is Prony’s method (Duclos
et al., 2001, De Prony, 1795), which finds a state-space representation by
first approximating the radiation force impulse response by a weighted
sum of complex exponentials. Such an impulse response is usually gen-
erated from the frequency-domain data obtained by BEM solvers, due to
the computational requirements of time-domain solvers, but time-domain
solvers are also used (Achil3D).

Overall, an ideal parametric approximation of a WEC model should rep-
resent as closely as possible the target device dynamics over a given fre-
quency range, which should be wide enough to include all the relevant
(from an energetic perspective) input frequencies. In fact, there are some
frequencies that have a strong impact on the system dynamics such as,
for example, the resonant frequency of the device. Therefore, an impor-
tant objective for any approximation would be to match the behaviour of
the WEC on those key frequencies. Another feature of an ideal identi-
fication technique is that the error of the approximation should always
decrease while increasing the order of the approximated model, which is
not always the case, as already reported for several strategies.
Considering the characteristics that an ideal parametric approximation
should satisfy, Faedo et al. (2017b) introduces an approximation tech-
nique based on recent advances on model order reduction by moment-
matching. Moment-matching methods are based on the idea of interpo-
lating a certain number of points on the complex plane called moments.
Such moments have a direct relationship with the frequency-response of
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the dynamical system under analysis. In fact, the transfer function of
the reduced order model obtained by moment-matching exactly matches
the behaviour of the target system at these specific interpolation points.
Therefore, by choosing a set of key input frequencies (from a dynamic
perspective) as interpolation points, one of the ideal features, discussed
earlier in this section, can be fulfilled straightforwardly. In addition to the
choice of the matching frequencies, this method allows the selection of
the eigenvalues of the time-domain approximated system; it is thus pos-
sible to enforce some essential physical properties of the WEC, such as
input-output stability. In this paper, a moment-matching approximation
of both the force-to-motion dynamics and the radiation force convolu-
tion are presented for the float body of the OPT WEC (see Edwards and
Mekhiche (2014) for further details on the OPT device).

Notation

Standard notation is used through this paper, with some exceptions fur-
ther detailed in this preliminary section. IR* (IR™) denotes the set of
non-negative (non-positive) real numbers. C° denotes the set of pure-
imaginary complex numbers and C~ denotes the set of complex num-
bers with negative real part. The symbol O stands for any zero element,
according to the context. The symbol I, denotes an order » identity ma-
trix. The spectrum of a matrix A € R™", i.e. the set of its eigenvalues, is
denoted as 0(A). The symbol @ denotes the direct sum of n matrices,
ie. P, A; = diag(A,A,,...,A,). The notation R{z} and I{z}, with
z € C, stands for the real-part and the imaginary-part operators, respec-
tively. The expression ||x||, with x € C™!, denotes the £>-norm of the
complex-valued vector x. The Kronecker product between two matrices
M; € R™™ and M, € R”* is denoted as M, ® M, € R"”™4 while the
convolution between two functions f(¢) and g(¢) over a finite range [0, 7],
i.e. fot f(r)g(t — 1)dt is denoted as f *x g. The Fourier transform of a
function f(r) € L2(R) is denoted by .Z{f(1)} = f(¢), where L*(R) is the
function space of all real-valued square-integrable functions. Finally, the
symbol &, € R™! denotes a vector with odd components equal to 1 and
even components equal to 0.

In the remainder of this section, the formal definitions of two important
operators are presented, since their definition in the literature can often
be ambiguous.

Definition 1. (Brewer, 1978) (Kronecker sum) The Kronecker sum be-
tween two matrices Py and P,, with Py € R and P, € R®¥ is defined
(and denoted) as

P1®P2£P1®Hk+ﬂn®])2. (1)
MODEL ORDER REDUCTION BY MOMENT-MATCHING

Specific notions and definitions of moment-based theory are recalled and
summarised in this section. The reader is referred to key studies, such
as (Astolfi, 2010) or (Scarciotti and Astolfi, 2017a), where a detailed
theoretical development of such concepts is provided.

Moments for Linear Systems

In this subsection, the notion of moment for linear systems, as formulated
in (Astolfi, 2010), is presented. Consider a finite-dimensional, single-
input, single-output, continuous-time system described, for > 0, by the
state-space model

X(t) = Ax(2) + Bu(z), y(t) = Cx(1), 2)

where x(f) € R”, u(r) e R, y(1) e R, A e R™", B R™! and C € R"™".
Consider the associated transfer function

W(s) = C(sI, — A)'B (3

and assume that (2) is minimal (i.e controllable and observable).

Definition 2. (Antoulas, 2005) The 0-moment of system (2) at s; €
C\o(A) is the complex number ny(s;) = C (s;I, — A)~' B. The k-moment
of system (2) at s; € C is the complex number

B (—l)k dk "
ms) = - | Sz (cet, - ayB)| @

S=5;

with k > 1 integer.

In (Astolfi, 2010), a new interpretation of moments is given in terms of
the steady-state response (provided it exists) of the output of the inter-
connection between a signal generator and a system (2). This result is
recalled, without a proof, in the following theorem (the reader is referred
to Astolfi (2010) for a comprehensive proof).

Theorem 1. (Astolfi, 2010, Scarciotti and Astolfi, 2017a, Scarciotti and
Astolfi, 2017b) Consider system (2) and the signal generator

D =S &0, u)=LE&W, (5)

with &) € R, § € R™, L € R™ and £0) € R™. Assume that the
triple (L, S, £(0)) is minimal, 0(A) ¢ C~, o(S) c C° and the eigenvalues
of S are simple. Let I1 € R™" be the (unique) solution of the Sylvester
equation

ATl + BL =TIS. (©6)

Then there exists a one-to-one relation between the moments ny(sy),
no(82), ..., Mo(sy), with s; € o(S) foralli = 1,...,v, and the steady-
state response CII¢ of the output y of the interconnection of system (2)
with the signal generator (5). In fact, the moments are uniquely deter-
mined by the matrix CIL

As discussed in (Scarciotti and Astolfi, 2017b), the assumption on the
eigenvalues of S is a sensible hypothesis, since any contribution from a
stable mode will decay exponentially to zero. The minimality of the triple
(L, S,£(0)) implies the observability of (L, S) and the controllability of
(8,£(0)).

Remark 1. From now on, the matrix CI1 = Y is referred as the moment-
domain equivalent of y(t).

Lastly, the following key result is recalled from (Astolfi, 2010, Scarciotti
and Astolfi, 2017a).

Theorem 2. (Astolfi, 2010, Scarciotti and Astolfi, 2017a) The family of
systems described by

0@ = (S — GL)O(t) + Gu(t), 6(t) = Y O(r), )

parametrised on G € R™!, such as o(S — GL) N o(S) = 0, contains
all the models of dimension v interpolating the moments of system (2) at
a(S).

Remark 2. The transfer function of the reduced order model (7) inter-
polates the transfer function of system (2) at the eigenvalues of S. Equiv-
alently, the steady-state output of the reduced order model (7) matches
exactly the steady-state output of the system resulting from the intercon-
nection between system (2) and the signal generator (5).

Remark 3. The matrix G can be selected to enforce specific properties
of the original system on the reduced order model, such as a set of pre-
scribed eigenvalues, as detailed in (Astolfi, 2010, Scarciotti and Astolfi,
2017a) and considered in section “Eigenvalue assignment”.



WEC EQUATIONS OF MOTION

A 1-DoF (degree of freedom) WEC is considered in this study, since the
extension of the algorithm to multiple degrees of freedom can be done in
an analogous procedure.

Time-domain formulation

The linearised equation of motion for a 1-DoF device can be expressed
in the time-domain in terms of Newton’s second law, obtaining the fol-
lowing linear hydrodynamic formulation:

mi(t) = F,.(t) + Fu(®) + Fo(0), ®)

where m is the mass of the buoy, x(¢) the device excursion, 7,(¢) the
wave excitation force, 7,(¢) the radiation force and 7(¢) the hydrostatic
restoring force. The linearised hydrostatic force for a floating body can
be written as 75,(f) = —s,x(t), where s, > 0 denotes the hydrostatic
stiffness. The radiation force #,(¢) is modelled using linear potential
theory and, using the well-known Cummins’ equation (Cummins, 1962),
is

Fl) = —1ook(0) - f ko)l - D, ©)
0

where (o, = limy_ 400 A(W). o > 0 represents the added-mass at infinite
frequency, A(w) is the radiation added mass and k() € L*(R) is the
(causal) radiation impulse response, containing all the memory effect of
the fluid response. Finally, the complete linearised equation of motion of
the WEC is given by

(m + peo)X(2) + k(1) 3% X(1) + 5,x(1) = Fe(0), 10)

The equation of motion (10) is of a Volterra integro-differential form,
specifically of the convolution class (Wazwaz, 2011). The internal sta-
bility of such an equation, for the WEC case, has been analysed and
guaranteed for any physically meaningful values of the parameters and
the convolution kernel k(¢) involved (Falnes, 2002).

Frequency-domain formulation

Since the mapping in (10) has a well-defined steady-state response, it is
often useful to perform a frequency-domain analysis of such a system.
Applying the Fourier transform to (10), and considering velocity as the
measurable output, the following representation

i(jw) = Fo(jw)H(jw), (11

where H(jw) represents the force-to-velocity frequency response, holds.
H(jw) is a function of a specific set of characteristic frequency-
dependent parameters, namely

1

B(w) + jo [A(w) + m] +
Jjw

H(jw) = (12)

where B(w) is the radiation damping of the device (Falnes, 2002). The
hydrodynamic parameters A(w) and B(w) can be efficiently obtained us-
ing existing BEM solvers, such as WAMIT or NEMOH.

Ogilvie’s relations: mapping between time and frequency

(Ogilvie, 1964) established a direct relationship between time-domain
(10) and frequency-domain (11) models, as a function of the parameters
B(w) and A(w), and the radiation kernel k(¢), using the definition of the
Fourier transform, namely

B(w) = f N k(1) cos(wt)dt,

0 | e (13)

A(W) = oo — — f k(t) sin(wr)dt.
w Jo

It follows that the impulse response k(f) can be written as a mapping
involving the frequency-dependent parameters as

k(t) = 7% f ) B(w) cos(wt)dw. (14)
0

Equation (14) allows a frequency-domain analysis of k(¢): a direct appli-
cation of the Fourier transform, yields

k(jw) = Bw) + jw[A(w) - pe] = K(jw). (15)

MOMENT-BASED WEC FORMULATION

The equation of motion presented in (10) needs to be re-written in a more
suitable structure, since the theory presented in the section “Model order
reduction by moment-matching” is based on a state-space representation
of the system under analysis. Considering such a fact, the following
state-space representation is proposed:

@) = Agp(t) + Bou(), v, (1) = Cop(1), (16)

where @(f) = [x(¢), x(#)]T € R™!, with n = 2, is the state-vector of the
continuous-time model and y,(f) = X(f) € R is the output of the system
(assuming velocity as measurable output of the device). The function
u(?) € R, assumed to be the input of system (16), is defined as

u(t) = Fe(t) — k(1) * (1), an

Under this assumption, the matrices in (16) are given by

0 1 0
Ag=|_ s ol Be=| i . Co=[0 1] (18)
m+ fleo M+ oo

Within the moment-based framework, the input 7, is expressed as a sig-
nal generator (5), written in implicit form as

E(N) =S &M, Fot)= L&), (19)

where the dimension of S and L are as in (5), &(f) € R*! and, without
loss of generality, the initial condition of the signal generator is chosen
as &,(0) = g,. The matrix S can be written in a real block-diagonal form
as

f
— 0 w,

s ]Q? [—w,, K ] : (20)
where v = 2f, f > O integer. With this selection of matrices, the as-
sumption on the minimality of the triple (L, S, £.(0)) holds as long as the
pair (L,S) is observable. Also note that each w, represents a desired
interpolation point for the model reduction process (see Remark 2). Un-
der this selection of matrices, the moments of system (16), driven by the
signal generator (19), can be computed by solving a Sylvester equation
(see Theorem 2). The Sylvester equation for the WEC device case can
be written as

A, + By(L, — Z) = 1,8, 1)

where I1, € R™ and Z is the moment-domain equivalent of the ra-
diation convolution term. Note that the moment-domain equivalent of
the velocity can be simply expressed in terms of the solution of (21), as
V=C,,

Proposition 1. (Faedo et al., 2017b) The moment-domain equivalent of
the convolution integral in (9) can be computed as

7=V, (22)



where # € R™ is a block-diagonal matrix defined by

-l &

and its entries depend on the added mass A(w) and the radiation damping
B(w) of the device at each specific frequency induced by the eigenvalues
of S, as

Ry = Bw)), My, =~w, [A(wp) —pm] . (24)

With the analytical definition of the moment-domain equivalent of the
radiation force convolution term, the following proposition is recalled
from (Faedo et al., 2017b), which allows (21) to be solved.

Proposition 2. (Faedo et al., 2017b) The moment-domain equivalent of
the output y,, of system (16) can be computed as

V=LY, (25)
where

> = [(]I + D7) (D¢]
(26)
D, = (1,8C,)(S &4, ) (I, ® -B,),

with O € R™” and ®, € R™".

Proposition 2 shows an explicit analytical expression for the moment-
domain equivalent of the output of system (16). Such a result allows the
computation of a reduced order model of system (16) using Theorem 2
in a straightforward way. Explicitly:

5 ]0u(= (S = GuL) O,(1) + G, T (1),

o) ! - @n
0,(1) = V ©,(1),

is the family of reduced order models parametrised in G, interpolating
the moments of system (16) at the eigenvalues of S, where V = Led)? .

Remark 4. The reduced order model (27) has dimension v = 2f, where
f is the number of interpolation points (frequencies) selected. This is a
consequence of the fact that, for each frequency w;, both + jw; are chosen
as eigenvalues of the real-valued matrix § .

Remark 5. The notation ﬁr(s) refers to an approximated time-domain
model of the force-to-velocity dynamics of the device under analysis, by
matching the frequencies selected in o(S).

Eigenvalue assignment

As discussed in Remark 3, the additional degree of freedom provided by
G, can be exploited to arbitrarily assign the eigenvalues of the reduced
order model (27), i.e. given a set of eigenvalues X, one can select G,
such as 0(S — Gy,L,) = Z,. In this case, the following procedure is
proposed. Define the following transfer function (notation adopted from
Remark 5):

-1
Hys5)(5) = V|sL, — (S = G,L,)| G,. (28)

The frequency-dependent device parameters are calculated using hydro-
dynamic codes at a finite number of frequencies w; € [w;, w,], With a
frequency step of Aw;, where w, and w, represents the lower and upper
bound of the range, respectively. The chosen frequency range depends

explicitly on the application. Define the complex-valued vectors H,,, H,
as,

H(jwy) ~ H,ys)(jwr)
H(j(w; + Aw;)) 5 Hy5)(j(w; + Awy))
H, = . , H, = . . (29
H(.]wu) H(r(S)(.jwu)

Then, the proposed optimisation procedure, to assign the eigenvalues of
the reduced order model £, ¢ €~ can be formulated as,

: S & ATV
Zigg}_ [[Hy, = Holl;- (30)

On the radiation force convolution operation

The radiation convolution term in (9) defines a linear time-invariant
system completely characterised by the impulse response function k(z),
where the input considered is the velocity of the device x(7), i.e.

Yi(®) = k(t) * x(2). @3N

A reduced order model obtained by moment-matching can be achieved
using the result on the moment-domain equivalent of such a convolution
term, provided in Proposition 1, as developed in the following. Assume
that the velocity x(¢) of the WEC can be written as a signal generator in
implicit form, in a similar fashion to (19), expressed as a set of linear
differential equations given by

&M =S &0, (1) = L &), (32)

with &(0) = &, and L; such that the pair (L, S) is observable. Then,

recalling Proposition 1, the moment-domain equivalent of the output of

(31) can be straightforwardly computed as ¥, = L;%, and a reduced or-

der model of (31) can be obtained by applying Theorem 3. Specifically:

Ko, - {@)k(t) = (S = GiLy) (1) + Gi(1), 33
() = Y O(0),

is the family of reduced order models parametrised in Gy, interpolating
the moments of system (31) at the eigenvalues of S, where ¥; = Li.Z.
Following Equation (28), the transfer function of the reduced order
model (31) can be computed as,

-1
Kos)(5) = Yi|sL, = (S = GiLy)| G, (34)

and the complex-valued vectors K, and K,, are defined as in (29), by
considering the frequency response of the radiation convolution kernel
K(jw) (15) (instead of H(jw)), and the reduced order model transfer
function K,s)(s) (instead of Hys)(s)). Then, the set of desired eigen-
values Z; of system (33), can be assigned using the same optimisation
criterion described in the section “Eigenvalue assignment”, namely,

. e
2{2%1_ ”Kw Kw”2~ (35)
NUMERICAL EXAMPLE

For this case study, the float body of the OPT point absorber WEC has
been chosen, which is shown in Fig.1. For the sake of simplicity, it is
assumed that the device only moves in heave. The hydrodynamic coeffi-
cients, which have been computed using the BEM software NEMOH, are
shown in Fig.2. The radiation added-mass and damping of the WEC can
be seen in Figs. 2a and 2b respectively, the radiation kernel frequency
response K(jw) in Figs. 2¢ and 2d, and the force-to-velocity frequency
response H(jw) in Figs. 2e and 2f.
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Fig. 2 Device characteristics: a radiation damping; b radiation added-mass; Bode diagram of the radiation impulse response K(jw) (magnitude
¢, phase d); Bode diagram of the force-to-velocity frequency response H(jw) (magnitude e, phase f)
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Fig.1 The low-order mesh for the float of the OPT device

As can be appreciated from Fig.2, the hydrodynamic coeflicients have
been computed over a frequency range of w = 0.01 [rad/s] to w = 10
[rad/s]. However, ocean peak periods are usually between 3 and 16 sec-
onds (Faedo et al., 2017a), which implies that the frequency range of the
excitation force, which is the input of the system, lies approximately in
the frequency interval [0.4,2.1] [rad/s]. A more conservative frequency
range is considered in this study, specifically w; = 0.3 [rad/s] and w, = 3
[rad/s].

The numerical examples computed in this section are carried out by con-
sidering irregular waves as inputs. Such irregular waves are generated
from a JONSWAP spectrum (Hasselman, 1973), with a peak period of
T, = 8 [s], a significant wave height of H, = 2 [m] and a peak enhance-
ment factor of y = 3.3. As shown in Fig.3, all the non-zero values of
the spectrum lie in the frequency range selected to approximate the para-
metric model, which is denoted with a white area in all the following
graphs.

On a force-to-velocity parametric model by moment-
matching

In this subsection, the results obtained for the model order reduction of
the force-to-velocity frequency response H(jw) are discussed. After the
frequency range is selected, which is done by inspecting the spectrum of
the input depicted in Fig. 3, the first step of this moment-matching based
identification technique is to select a set of suitable interpolation points.

SDF [m?/s]

w [rad/s]

Fig. 3 JONSWAP spectrum considered to generate the irregular
waves for this study.

Due to the (dynamic) complexity of H(jw) for the float of the OPT de-
vice, the minimum number of frequencies considered in this study, to
achieve moment-matching, is set to two. A sensible choice for a first
interpolation point, can be made by inspecting Figs. 2e and 2f: the
resonant frequency of the device represents a key interpolation point,
which is approximately w = 2.3 [rad/s]. In the following, a low fre-
quency component is chosen as the second interpolation point, selected
as w = 1[rad/s]. Fig. 4 shows the frequency response of both the WEC,
computed with NEMOH (dashed-black), and the frequency response of
the parametric model obtained by applying the moment-matching tech-
nique H,;.3,(jw) (solid-red). It can be immediately appreciated that the
approximated model matches exactly (up to the numerical imprecision
when computing the moments) the target frequency response, at the in-
terpolation points chosen (w = 2.3 [rad/s] and w = 1 [rad/s]).
Furthermore, when choosing a third interpolation point, the approxima-
tion of H(jw) improves significantly, as illustrated in Fig.5.

Fig. 6 shows the time-domain response of the reduced order model
7:(41,13.2.3) for irregular waves computed from the spectrum of Fig.3. It
can be appreciated that the steady-state behaviour of the approximated
model converges to the target steady-state output. For this application
case, there is no significant improvement when considering more than
three interpolation points in the moment-matching identification frame-
work. However, the approximation error continues to decrease monoton-
ically when the parametric model order increases, as further exemplified
in the next subsection.
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Fig.5 Bode diagram of the force-to-velocity frequency re-
sponse computed with the coefficients obtained from
NEMOH (dashed-black) and the moment-matching para-
metric model frequency response (solid-red), for three in-
terpolation points (black dots).

On a radiation impulse response parametric model by
moment-matching

In this subsection, the moment-matching framework to obtain a paramet-
ric form of the radiation kernel K(jw), as defined in (15), is applied to the
dynamics of the studied WEC. Analogously to the force-to-velocity case,
there is no significant improvement in the approximation accuracy when
selecting more than three interpolation frequencies. As an example, Fig.

Velocity [m/s]

0 5 10 15 20 25 30 35 40
Time [s]

Fig. 6 Comparison between the time-domain output of the re-
duced order model H; 523 (solid-red) and the force-to-
velocity frequency response H (dotted-black).

7 shows the Bode diagram of the radiation impulse frequency response
computed from the hydrodynamic coefficients obtained by NEMOH
(dashed-black) and the obtained parametric model frequency response
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Fig.7 Bode diagram of the radiation kernel frequency re-
sponse computed with the coefficients obtained from
NEMOH (dashed-black) and the moment-matching para-
metric model frequency response (solid-blue), for three in-
terpolation points (black dots).

As discussed by Faedo et al. (2017b), the approximated radiation ker-
nel frequency response K(jw) should have the same physical properties
as the target frequency response K(jw) (the reader is referred to Pérez
and Fossen (2008) for a comprehensive list of such properties). Among
the implication of those physical properties, the transfer function of the
device has the following structural characteristics: it has a zero at the
origin; it is strictly proper; and is stable. Fig. 8b depicts the pole-zero
map of the transfer function of the approximated model obtained when
considering three interpolation frequencies. It can be acknowledged that
such a parametric model accomplishes all the desired properties.

Another important physical property of radiation forces is passivity. Pro-
vided that the results obtained from the BEM solver are accurate, K(jw)
should be passive and so should be K( Jjw). To demonstrate that the mod-
els approximated by the moment-matching technique are usually inher-
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Fig. 8 Pole-zero ‘map of the moment- matching parametric model

can be appremated that the real-part of such an approximated frequency
response is always positive and, therefore, the system is passive (the
reader is referred to Khalil (1996) for a comprehensive demonstration
on the passivity conditions for a linear system). Note that passivity is not
explicitly ensured by the moment-matching technique described in this
study. However, a nonlinear constraint can be added to the optimisation
process defined in (35) to explicitly guarantee passivity, as discussed in
(Faedo et al., 2017b).

In Fig. 9, the quality of the time-domain response of the approximated
model is further exemplified, showing the radiation impulse response
computed using the data obtained from NEMOH (dotted-black), and the
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Fig.9 Comparison between the radiation impulse response com-
puted with data from NEMOH (dotted-black) and the im-

Finally, Fig. 10 shows the approximation error of the obtained paramet-
ric models of both the force-to-motion and radiation impulse frequency
responses for different model orders v (i.e. different number of interpola-
tion points). The error is given in terms of the Mean Absolute Percentage
Error (MAPE) between the frequency domain data computed using the
data from NEMOH Z,, € C#*! and the reduced order model frequency
response Z,, € €', for the frequency range selected for the approxima-
tion!, i.e.

100

MAPE = — 'Z(Jw)_

Z(jw;)

(36)

As previously discussed, the approximation error decreases when the or-
der v increases, for both the force-to-motion and the radiation kernel fre-
quency response.

'Note that the vectors Z,, and Z,, are constructed as in (29).

2 4 6 8 10 12 14
Model order v

Fig. 10 Error (MAPE) of both the force-to-velocity (dashed-red)
and radiation impulse response (solid-blue) approximation
models for different orders v.

Comparison with existing strategies

In this subsection a comparison between methods proposed in (Pérez and
Fossen, 2008) (NTNU), (Duclos et al., 2001, De Prony, 1795) (Prony’s)
and the moment-matching method considered in this paper, is provided.
Such a comparison is given in terms of the Normalised Root Mean
Square Error (NRMSE), which is defined as follows:

N EOREO
2 X(1)?

where %(¢) is the steady-state velocity of the WEC computed using each
corresponding approximation model. Since the wave inputs are gener-
ated randomly, a mean of 20 different simulations is considered to com-
pute each NRMSE in order to present significant results, as shown in
Fig. 11. It is important to notice that, the NTNU and Prony methods
(as developed in (Pérez and Fossen, 2008) and (De Prony, 1795), respec-
tively), provide a parametric model of the radiation force convolution
term of (10). In the case of the moment-matching strategy presented in
this study, both a radiation force convolution term and a force-to-motion
parametric model can be obtained.

While, in the case of the force-to-velocity parametric model, the output
is directly the velocity of the device, when only the radiation convolution
term is approximated, two additional elements in the state-space approx-
imation are required to compute the simulation, i.e. the number of ele-
ments in the state vector required to represent the approximation of the
convolution term plus two elements to describe the position and the ve-
locity of the device. Therefore, and as can be seen in Fig.11, the methods
which approximate the radiation force convolution term have a minimum
state-space order of 4.

With the exception of Prony’s method, the remaining strategies (NTNU
and moment-matching) perform similarly for orders from 8 to 12. It
should be noted that, among the methods analysed, only the moment-
matching based strategy obtains a monotonically decreasing NRMSE.
One can notice that the NRMSE obtained by the NTNU method increases
for orders greater than 12. One possible reason for such decline in the
accuracy of the approximation could be attributed to the fact that the
strategy needs to “flip” any unstable poles to enforce the input-output
stability of the parametric model, which translates to a significant error
in the phase of the frequency response of such a model. Finally, only the
parametric models obtained by the moment-matching method are passive
for all the model orders considered. Such results are not extensively
discussed in this study due to a lack of space, and the reader is referred
to (Faedo et al., 2017b) for further details.

NRMSE = (37)
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Fig. 11 The NRMSE of the time-domain output computed us-
ing a moment-matching force-to-velocity approximated
model (solid-red), and using the approximated radia-
tion impulse response computed using moment-matching
(dashed-blue), NTNU method (dotted-black) and Prony’s
method (dash-dot-green) for different model orders.

CONCLUSIONS

This paper illustrates, via a case study, how to obtain a finite-order para-
metric model using frequency-domain hydrodynamic data computed by
BEMs, for both the force-to-motion and the radiation force convolu-
tion operation, based on recent advances on model order reduction by
moment-matching. This method matches the steady-state behaviour of
the system at a set of selected key frequencies, while enforcing specific
physical properties of the studied device, such as input-output stability.
Although the results obtained by the models approximated using this
moment-matching framework are similar to those obtained by well-
known current methods, this paper shows that the moment-matching
strategy is the only method whose approximation error decreases mono-
tonically with an increase of the model order. Additionally, only the ap-
proximation of the radiation impulse response computed in the moment-
matching framework fulfils all the radiation force physical properties.
Finally, an open-source MATLAB toolbox, to obtain finite-order hydrody-
namic models using this moment-matching strategy, is currently under
development and it will be available over the next months at the Centre
for Ocean Energy Research website?.
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