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Abstract—To maximise energy conversion, real-time control
of a Wave Energy Converter (WEC) requires knowledge of the
present and future excitation force (Fex) acting on the device,
which is a non-measurable quantity. The problem of estimation
and forecasting of Fex becomes more challenging when arrays of
WECs are considered, due to the hydrodynamic interactions in
the array. In this paper, a global Fex estimator for a complete
WEC array is developed and compared to a set of independent
estimators which utilise information local only to each device.
A significant question is whether the array of measurements
is sufficient to compensate for the greater complexity of the
wave field, compared to the isolated body case. The paper
shows that the global estimator is always more accurate than
the independent estimator, improving up to 45% the estimation
accuracy of the independent estimator. Regarding prediction, two
different Fex forecasters for a WEC array are compared: a global
forecaster, utilising Fex estimates from the full set of array devices,
and an independent forecaster, utilising only a local Fex estimate.
We demonstrate that the global forecaster achieves more accurate
results, not only compared to the independent forecaster, but also
compared to the isolated body case.

Index Terms—Wave Energy, Excitation Force, Estimation,
Forecasting, Wave Energy Converter, Arrays, Autoregressive
Model

I. INTRODUCTION

AMONG the renewable energy modalities, wave energy
has a higher power density than solar or wind energies

[1]. In spite of this, the cost involved in generating power
from waves is higher than the cost involved in using wind or
solar [2]. One way to reduce the electricity generating costs
is to maximize the energy extracted from each given Wave
Energy Converter (WEC) [3]. Energy maximization can be
achieved with an optimal control strategy applied to the WEC
[4]. However, an optimal controller requires, in most cases,
knowledge of future excitation force (Fex) or free surface
elevation [4]–[6].

The autoregressive (AR) model has been proven to be a
simple but accurate method of predicting both free surface
elevation, η, and Fex [7] and is adopted here. However,
Fex cannot be directly measured, since there is no absolute
reference for a force sensor that can distinguish between the
various hydrodynamic forces. One solution is to employ a
significant number of pressure sensors over the wetted surface
[8], from which Fex can be deduced, using a suitable model,
in a feed-forward manner. Alternatively, Fex can be estimated
using a feedback strategy, based on measurements of the
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position and velocity of a device, which are relatively cheap
and straightforward to measure [9] and usually available via
the WEC control system.

Commercial WECs are likely to be deployed in arrays,
in order to minimise total infrastructural and operational
costs [10]. Similarly to the WEC control problem [11],
the estimation and forecasting problem for arrays can ei-
ther be considered from an independent device perspective,
where each device has no knowledge of the other devices
(distributed or independent control/estimation/forecasting) or
from a coordinated, or global, perspective, where the global
controller/estimator/forecaster has complete knowledge of the
motion of all the devices in the array. Compared to the isolated
WEC case (i.e. an ‘array’ of just a single device), the wave
field for multiple devices in an array is significantly more
complex, due to the diffraction of the incident waves by each
device and the waves which are radiated by each device, by
virtue of their motion. A question exists as to whether the
increase in information available for the full array is sufficient
to counteract this increased wave field complexity, for the
estimation and forecasting problems. For the control case, it
has been demonstrated that global control always outperforms
independent control [11].

The design of an estimator for Fex, based on position and
velocity measurements of a single WEC is not new [12].
Regarding prediction, a number of studies have focussed
on the prediction of future wave elevation, rather than on
the prediction of future Fex [7]. However, combined estima-
tion/forecasting of Fex has been addressed [13], [14]. The
main novelty in this paper is the consideration of a WEC
array, where the wave field is complicated by the presence
of diffracted and radiated waves from the array WECs. An
estimator, and forecasting model, which has the ability to
utilise the full set of WEC device motions available, is
designed.

Four different array layouts, as shown in Fig. 1, are ex-
amined. In addition, 3 different wave directions (β) and 18
different separation distances between devices (d), for each
layout, are considered. For each of these cases, two alternative
estimation and forecasting models are tested, both global
(using all the available measurements) and independent (where
the Fex estimate/forecast for a WEC depends only on the
motion information local to that WEC). For the independent
estimator, no radiated or diffracted waves from other devices
are explicitly taken into account, but rather appear as a
supplement to incident (far field) waves. With regard to the
forecasting models, the independent model only takes into
account past Fex values of one device to forecast the future
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Fex acting on that body. However, the global forecasting model
uses past Fex values of all the bodies of the array to forecast
Fex.
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Fig. 1. The different array layouts considered

The remainder of the paper is organised as follows: Section
II shows the hydrodynamic model used to describe the WEC
array. Section III describes the estimator design, while Section
IV presents the forecasting models, which use the estimated
Fex from Section III to predict future Fex values. Finally, Sec-
tion V, compares the performances of global and independent
estimation and forecasting models, using the isolated WEC
case as a reference, and conclusions are drawn in Section VI.

II. DEVICE MODEL

The arrays examined comprise a set of cylindrical bodies.
All devices are assumed to be identical, with a diameter (D) of
10m, a draft of 10m, and a mass (m) of 7.9e5kg. It is assumed
that each device is limited to heave-only motion, and that the
WEC array is located in a sea region of relatively small wave
amplitude and steepness, so that linear hydrodynamic theory
applies. The motion of the bodies of the array is given by
Cummin’s equation [15],

(M+A∞)z̈+

∫ t

t0

kRad(t−τ)ż(τ)dτ+KHz+FPTO = Fex (1)

where A∞ is the infinite-frequency added mass asymptote
matrix, KH the hydrostatic stiffness matrix, kRad the radiation
impulse response matrix, and z, ż and z̈ n length vectors
containing the position, velocity and acceleration of the bodies
of the array, respectively, where n is the number of bodies of
the array. Without loss of generality, we assume that the PTO
force (FPTO) is zero, since Fex and η are independent of the
device motion and the PTO force, for a linear hydrodynamic
model.

In Equation (1), the matrices M and KH are n × n
diagonal matrices, containing the values of the mass and
the hydrostatic stiffness of each device of the array on the
diagonals. Additionally, A∞ ∈ Rn×n is a symmetric matrix,
which contains the infinite-frequency added mass asymptote
of each body in the diagonal terms and the infinite-frequency
added mass asymptote of the interactions in the off-diagonal
terms. A∞ matrix is symmetric since, due to the symmetry
of the array, the effect of Device i on Device j and vice
versa are the same (a∞ij

= a∞ji
) [16], where a∞ are the

components of the matrix A∞. By way of example, Fig.2
shows the frequency-dependent values of the radiation added
mass (ARad) for a 3-body array, where the parameters approach
their asymptotic A∞ values on the right-hand side of Fig.2.
Finally, kRad contains the radiation impulse response vectors
of the individual bodies of the array in the diagonal terms,
and the radiation impulse response vector of the interactions
in the off-diagonal terms.

In the present paper, the radiation force (FRad) is modelled,
as shown in Equation (1), by the convolution integral and A∞.
The radiation impulse response kRad can be obtained, along
with A∞, by using the Ogilvie’s relations [17] defined as,

kRad(t) =
2

π

∫ +∞

0

Brad cos(ωt)dω

A∞ = ARad +
1

ω

∫ +∞

0

kRad(t) sin(ωt)dt

(2)

where ω is angular frequency and both ARad and the radiation
damping BRad were obtained using the NEMOH software
utility [18]. In the isolated body case, the coefficients of ARad
and BRad are frequency-dependent scalars. However, for the
array case, they are two-dimensional matrices of dimension
n × n, with frequency-dependent coefficients. At each fre-
quency, the diagonal terms of the n × n matrices represent
the forces measured on a device due to the waves created
by its own motion, while the off-diagonal terms represent the
coefficients of the radiation forces measured on a device due
to the radiated waves created by the motion of other devices,
i.e. the interactions.

By way of example, Fig.2 illustrates ARad for array Layout
2, with d = 20m. Due to the array symmetry, the hydrody-
namic coefficients of Devices 1 and 3 are identical (a11 =
a33). However, due to its position in the array, the diagonal
term corresponding to Device 2 (a22) is different. Regarding
the non-diagonal terms, due to the symmetry of the array, the
waves created from the motion of Device 2 affect Devices
1 and 3 in exactly the same way (a12 = a21 = a23 = a32).
Finally, the effect of Device 1 on Device 3, due to the radiated
waves created by the motion of Device 1, and vice versa, are
the same (a13 = a31).
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Fig. 2. Radiation added mass of the array Layout 2 and d = 20m

Fig.3 shows the radiation damping coefficients of both the
bodies and interactions for array Layout 2 with d = 20m. In
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Fig.3, the same symmetry effects explained for ARad in Fig.2
are evident.
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Fig. 3. Radiation damping of the array Layout 2 and d = 20m

The excitation force Fex in Eq. (1) is obtained as,

Fex =

∫ +∞

−∞
kex(t− τ)η(τ)dτ (3)

where kex is the excitation force kernel, obtained via the
inverse Fourier transform of Kex, supplied via NEMOH. Fig.4
is noteworthy, since it illustrates the variation of Kex for the
array case, compared to the isolated body case, where β = 0◦

gives an incident wave in line with the main axis of the array,
with waves approaching from the LHS of Fig.1. As a result,
the waves diffracted from Device 3 disturb Devices 1 (Kex1)
and 2 (Kex2), while the waves diffracted from Device 2 disturb
Device 1 (Kex1). Thus, the Kex for Device 3 are most similar
to the isolated body’s kex. The small differences between Kex,
for Device 3 (Kex3) and the isolated body, are due to the
shadowing effect from the previous devices [19].
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Fig. 4. Kex for array Layout 2, d = 20m and β = 0◦

The free surface elevation is generated with sets of 200
randomly phased sinusoids to realise the JONSWAP spectrum
in each simulation. Furthermore, as detailed in Section V,
different random initialisations were performed over multiple
simulation runs in order to achieve consistent results. The
amplitude of the waves are given by a JONSWAP spectrum

of γ = 3.3 with a significant wave height (HS) of 1.5m and
a peak period (TP) of 8s.

The motion of the bodies (z, ż and z̈) is calculated using
second order Runge-Kutta numerical integration. Then, in
order to simulate the electrical noise on the real motion mea-
surement sensors, a white noise is added to the measurements
of position and velocity of the devices. This white noise’s
variance corresponds roughly to 1% of the body displacement.

III. EXCITATION FORCE ESTIMATION

In this work, Fex is estimated based on position and velocity
measurements of the devices. A discrete time Kalman Filter
(KF) has been developed [20], with a sampling period (Ts) of
0.01s. In this work, the dynamical system model is:

x̂k = Ax̂k−1 −BF̂Radk−1
+ wk−1

yk−1 = Hx̂k−1 + vk−1

(4)

where x̂k are the estimated states (position, velocity, excitation
force and derivative of the excitation force), k is the discrete
time index (t = kTs), A is the system matrix, B is the input
matrix, F̂Radk−1

is the estimated value of the radiation force
(which is estimated at each step by evaluating the convolution
integral in (1) using previous estimated velocity values), yk−1

are the measured values of position and velocity, H is the
observation matrix, and w and v are, respectively, the process
and measurement noise, which are assumed to be stationary
and independent, with normal distributions p(w) ∼= N(0, Q)
and p(u) ∼= N(0, R) respectively, where Q and R are the
corresponding process covariance matrices. The KF is com-
posed of two parts: a Time Update (TU), in Equation (5), and
a Measurement Update (MU), in Equation (6). Time update:

x̂−k = Ax̂k−1 −BF̂Radk−1

P−k = APk−1A
T +Q

(5)

Measurement update:

Kk = P−k H
T (HP−k H

T +R)−1

Pk = (I −KkH)P−k
x̂k = x̂−k +Kk(yk −Hx̂−k )

(6)

where I is an identity matrix. In the TU, the states and the
error covariance are predicted, i.e. x̂−k and P−k respectively. In
the MU part, the Kalman gain, Kk, is calculated and the state
estimates and the error covariance (x̂k and Pk respectively)
are updated, based on Kk. In essence, in the TU, the states
are estimated and, when new measurements are available, the
estimated values are updated in the MU based on the Kalman
gain, which indicates the optimal weighting between measured
and estimated values. The initial conditions of the KF are
settled to zero.

The estimation precision will depend, mostly, on the ac-
curacy with which the system matrix (A) is defined. The A
matrix connects the estimated Fex with the estimated position
and velocity, which are compared with the measured real val-
ues at each step. Therefore, the more accurate the relationship
between the motion and Fex, the more accurate will be the
Fex estimate. The first 2n rows of A, where the motion of the
bodies is described, are based on Equation (1). Fex is described
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in the last 2nf rows of A using a harmonic oscillator model,
based on f frequencies, since Fex is, in general, oscillatory.
For further details, refer to [13], [14]. Thus, the system matrix
A ∈ R(1+f)2n×(1+f)2n, for an array of n bodies, based on f
frequencies, is defined as

A =


0n,n In,n 0n,nf 0n,nf

−M−1KH 0n,n M
−1N 0n,nf

0nf,n 0nf,n 0nf,nf Inf,nf

0nf,n 0nf,n W 0nf,nf

 (7)

where 01,nf is a 1 × nf null vector, In,n a n × n identity
matrix, and M ∈ Rn×n and N ∈ Rn×nfare defined as

M = M +A∞ (8)

N =


11,nf 01,nf · · · 01,nf

01,nf 11,nf · · · 01,nf

...
...

. . .
...

01,nf 01,nf · · · 11,nf

 (9)

where 11,nf is a 1× nf vector of ones, and W ∈ Rnf×nf is
defined as

W =


−In,n(w1)2 0n,n · · · 0n,n

0n,n −In,n(w2)2 · · · 0n,n
...

...
. . .

...
0n,n 0n,n · · · −In,n(wf )2


(10)

, while the state vector x ∈ R(2+2f)n×1 is

x =
[
x̂1 · · · x̂n ˙̂x1 · · · ˙̂xn F̂ex11· · · F̂exnf

˙̂
Fex11· · ·

˙̂
Fexnf

]T
(11)

and ẑ, ˙̂z, F̂ex and ˙̂
Fex are the estimated values of z, ż, Fex and

Ḟex, respectively. Matrix H is used to determine which of the
states of x̂k can be compared to the measured states yk.

H =
[
I2n,2n 02n,2nf

]T
(12)

As shown in Fig.5, the estimation accuracy of F̂ex increases
with the number of frequencies in the Fex signal generator.
However, A increases by two rows and two columns for
each additional frequency, which impacts the computational
speed. However, from Fig.5, it is seen that the sensitivity of
the estimation accuracy to the number of frequencies is low,
beyond 7 frequencies. Therefore, 7 frequencies are used to
estimate Fex.

The optimal number of frequencies in W (Equation (10))
and their values depends on the sea state; however, they are not
significantly affected by the number of sinusoids used for the
simulation, providing the number of simulation frequencies is
significantly greater than the number of estimator frequencies.
In the current study, 7 frequencies were utilised, with values
chosen by using the frequency combination which gives the
best estimation accuracy. However, in real life, it is possible to
choose the frequencies from a forecasted sea spectrum given
by meteorological agencies, and adapt them as the sea state
changes.
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Fig. 5. The accuracy of the estimator for different number of frequency

As shown in Equation (4), the estimated FRad is multiplied
by the input matrix B ∈ Rn×(1+f)2n, which is defined as:

B =
[
0n,n M

−1 0n,nf 0n,nf
]T

(13)

For the independent estimation case an isolated estimator is
used in each device. Therefore, since n = 1, each body works
independently, without taking into account any interaction with
other bodies of the array. In contrast, the global model takes
into account all the interactions with all the bodies of the
array. Thus, the size of the A matrix for the global estimator
is n times larger than that of the independent estimator.
Correspondingly, the computation time for the global estimator
increases exponentially with the number of bodies of the array,
while the computation time for the independent estimator
remains constant.

IV. EXCITATION FORCE FORECASTING

Fex is forecasted based on its past estimated values. In par-
ticular, in this paper, two different AutoRegressive (AR) mod-
els are compared. The first one, the independent forecaster,
forecasts one body’s Fex only from a linear combination of past
Fex values of that body. In contrast, the global forecaster uses
a linear combination of past Fex values from all the devices
of the array to forecast all the devices’ Fex at the same time.
The independent AR model is given as follows:

F̄exk|k−1
=

h∑
i=1

(φiF̂exk−i
) (14)

where F̄exk|k−1
is the predicted value of Fex at instant k from

data up to, and including, k−1, h is the order of the forecasting
model, φi are the autoregressive coefficients. Equation (14) can
be written more concisely as

F̄exk|k−1
= F̂ ∗exk−1

φ∗ (15)

where F̂ ∗exk−1
is a vector of previously estimated Fex values,

as

F̂ ∗exk−1
=
[
F̂exk−1

F̂exk−2
... F̂exk−h

]
(16)

and φ∗ contains the autoregressive coefficients

φ∗ =
[
φ1 φ2 ... φh

]T
. (17)
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Given a set of training data of dimension Ntr, the coef-
ficients of Equation (17) are identified by minimizing the
following cost function:

JLS =

Ntr∑
i=h+1

(F̂exi − F̄exi|i−1
)2 (18)

which is a linear Least Square (LS) problem. Once the φ∗

parameters are identified, they are used to predict Fex values
p steps ahead on another data set, where p = Thor/Tsfor , Thor is
the prediction horizon and Tsfor is the sampling period used for
the forecasting. Therefore, the p-step-ahead predicted value is
obtained as follows:

F̄exk+p|k = F̂ ∗exk+p−1
φ∗ (19)

where the p step ahead prediction is obtained using an iterative
combination of 1-step-ahead predictions.

The global forecasting model used in this paper, which takes
into account past Fex values of all the devices of the array, is:

F̄exbk|k−1
=

h1∑
i=1

φb1i
F̂exbk−i

+
n∑

u=1
u6=b

h2∑
j=1

φbuj
F̂exuk−j

(20)

where F̄exbk|k−1
is the predicted Fex of Device b, b = {1 . . . n},

F̂exuk−j
the estimated Fex values of Device u, h1 is the order

of the model for the body under analysis (b) and h2 is the
order of the model for the other array bodies. Therefore, as
for the independent forecasting model, Equation (20) can be
written more concisely as

F̄exgk|k−1
= F̂ ∗exgk−1

φ∗g (21)

where F̄exgk|k−1
∈ Rn×1 contains the predicted values of all

the bodies of the array, where F̂ ∗exgk−1
∈ Rn×(h1+h2(n−1)) are

the estimated values of Fex for all devices, as

F̂ ∗exgk−1
=


F̂ex1k−1

· · · F̂ex1k−h1
F̂ex2k−1

· · · F̂ex2k−h2
· · · F̂exnk−h2

F̂ex2k−1
· · · F̂ex2k−h1

F̂ex3k−1
· · · F̂ex3k−h2

· · · F̂ex1k−h2

...
...

...
...

...
F̂exnk−1

· · · F̂exnk−h1
F̂ex1k−1

· · · F̂ex1k−h2
· · · F̂exn−1k−h2


(22)

and φ∗g ∈ Rn×(h1+h2(n−1)) are the autoregressive coefficients:

φ∗g =


φ111
· · · φ11h1

φ121
· · · φ12h2

· · · φ1nh2

φ221 · · · φ22h1
φ231 · · · φ23h2

· · · φ21h2

...
...

...
...

...
φnn1

· · · φnnh1
φn11

· · · φn1h2
· · · φn(n−1)h2


T

(23)
As in the independent predictor model, the coefficients of

Equation (23) are identified on a training data (dimension Ntr),
minimizing the following cost function:

JLS =

Ntr∑
k=r+1

(F̂exgk − F̄exgk|k−1
)2 (24)

where r = h1 + h2(n − 1), and F̂exgk ∈ R
n×1 contains

the estimated Fex values for all bodies at instant k. As in

the independent forecaster, the p-step-ahead forecasting is
an iterative process. The accuracy of the prediction depends
mainly on how many seconds in the past are taken into account
to predict a new value which, in turn, depends on the order of
the AR and the sampling time. One can notice that a model
order of 800 is needed to take into account the last full wave
period (8s), for Ts = 0.01s. In order to reduce the optimal
model order, F̂ex is re-sampled at Tsfor prior to forecasting.
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Fig. 6. The accuracy of the prediction using the independent AR with different
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In Fig.6, the forecasting performance, using different Tsfor ,
is illustrated for Thoriz = 4s. Note that the maximum accuracy
for each Tsfor occurs approximately when 16s of past values
are taken into account, equivalent to two times TP, with
Tsfor = 0.4s selected. The resulting optimal order for the
independent AR model is then h = 40. Fig.6 demonstrates
the AR model order necessary to synthesise a frequency
response which parsimoniously captures the complexity of
the JONSWAP spectrum, with the optimal value of Tsfor

related to the ability to appropriately represent the higher wave
frequencies. We note that, effectively, the number of discrete
frequencies represented by an AR model is half the model
order, though this assumes that adjacent frequency amplitudes
are not parametrically related, as they are in the JONSWAP
model.

Although Fig.6 has been computed with a single body, the
used h remains the best order for independent AR in the array
case.

Regarding the global predictor, the model order which gives
the more accurate prediction varies, depending on the layout,
spacing d, and wave angle β. It is attractive to use a consistent
order for all cases, with an overall best choice of h1 = 40 and
h2 = 40.

The coefficients of the predictors are identified during the
first 150s of the simulation (Ntr=375), which is one third of
the total length (450s). The prediction is carried out over the
remaining 300s.

V. RESULTS

A Goodness of Fit (GoF) metric is used to describe the
accuracy of the predicted values, defined as:

GoFf−f̄ =

1−

√∑N
k=1

(
fk+p − f̄k+p|k

)2√∑N
k=1 (fk+p)

2

 100 (25)
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TABLE I
THE GOFR OF ESTIMATION FOR LAYOUT 1, FOR DIFFERENT DISTANCES AND WAVE DIRECTIONS

Global estimator Independent estimator
distances 2D 3D 4D 5D 6.5D 21D 200D 2D 3D 4D 5D 6.5D 21D 200D

β = 0◦
Device 1 1.009 1.005 0.999 1.003 1.006 1.004 1.003 0.913 0.963 0.950 0.964 0.988 0.999 1.004
Device 2 1.003 1.002 1.004 1.004 1.001 1.006 1.006 0.682 0.879 0.947 0.972 0.974 1.003 1.000

β = 45◦
Device 1 1.004 1.006 0.999 0.998 1.002 1.004 1.000 0.935 0.979 0.968 0.966 0.978 0.993 1.001
Device 2 1.002 1.001 1.003 1.002 1.003 1.002 1.003 0.766 0.880 0.938 0.966 0.981 0.991 1.003

β = 90◦
Device 1 1.004 1.005 1.005 1.005 1.003 1.002 1.002 0.854 0.937 0.961 0.971 0.976 0.997 1.003
Device 2 1.004 1.005 1.006 1.005 1.003 1.001 1.003 0.854 0.938 0.962 0.972 0.976 0.996 1.004

where N is the number of forecasted values. In order to use the
same quality criteria for estimation and forecasting, the GoF
shown in Equation (25) is used also to compute the estimation
accuracy. However, since for the estimation, the value of p is
0, the error is computed between the real value of fk and its
estimated value, f̂k.

As explained in Section II, in order to evaluate the models
in different sea states, multiple sets of phases are randomly
generated. However, since the differences between layouts
have to be analysed, running only one simulation for each case
would lead to results which may not be statistically significant.
Thus, in order to determine how many simulations must be
carried out to obtain a significant GoF value, an estimate of the
GoF mean and variance has been computed with 800 different
simulations (using the isolated body case), obtaining a mean
GoF of 80.86 and a variance of 0.47.

Taking into account the obtained variance and assuming the
central limit theorem, the relationship between the number of
simulations and the 95% confidence interval can be estab-
lished. It is found that 35 simulation are necessary to obtain
a 95% confidence interval with a half-width of 0.25% of the
mean, which means that, for a given average GoF estimate
obtained from 35 simulations, there is a 95% probability that
the actual average GoF lies within ±0.25% of the estimated
average GoF.

In order to show the differences between the global and
independent estimation and forecasting performances, a ratio
between the achieved GoF for the arrays and the GoF of the
isolated body case is computed as

GoFR =
GoFarray

GoFisol
(26)

where GoFisol is 80.79% for the estimations, and the fore-
casting GoF depends on Thoriz. Therefore, the goodness of fit
ratio (GoFR) shown henceforth, states how accurate are the
obtained results of the arrays compared to the isolated body’s
GoF.

In the graphs shown in this section, the distances between
devices (d) are shown in an integer multiples of the device
diameter, D = 10m. Additionally, in Fig.7, since the accu-
racies of the devices for each layout, d and β are similar,
only two traces are shown instead of one trace per device and
model. These two traces illustrate the mean performance for
all bodies, for the global and independent estimators.

In Fig.7, the distance between devices is only shown until
d = 100D, in order to better appreciate the details of the

interactions. As the distance between devices increases, the
power density of the radiated and diffracted waves decreases,
reducing the magnitude of the interactions. Therefore, as
shown in Fig.7, the global and independent estimator accu-
racies converge on that achieved in the isolated body case,
i.e. GoFR → 1. Fig.7 also shows that, when the number of
bodies of the array increases, the magnitude of the interactions
also increases, decreasing the performance of the independent
estimators. However, the global estimator GoFR is always
close to unity. Therefore, one can deduce that the extra
complexity due to interactions among devices is balanced by
the provision of the extra information available to the global
estimator.
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Fig. 7. The estimation GoFR for different layouts

In Table I, the estimation GoFR for array Layout 1 is shown
for different β and d. When β = 0◦ and β = 45◦, the
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two bodies of the array achieve similar GoFR using global
estimation. However, there is a difference between the two in-
dependent estimator performances for close spacing (d < 5D).
Nevertheless, when β = 90◦, both bodies achieve a similar
GoFR for all d with global and independent estimators, due to
the symmetry of that case1. As for Fig.7, Table I demonstrates
that the global estimator always achieves a comparable GoF
to the isolated body case, while the independent estimator
achieves significantly poorer estimates, particularly when d is
small.

Fig.8 illustrates the variation in the prediction performance
when the F̂ex used to identify the forecasting parameters is ob-
tained from the global and independent estimators, illustrated
in (a) and (b), respectively. Only the case for Layout 2, with
β = 0 and d = 20m, is shown in Fig.8, but is representative
of all the cases. The predictor, which uses F̂ex from the global
estimator, consistently achieves better prediction compared to
the use of F̂ex from the independent estimators. In addition,
since incoming waves first impact Device 1 and, later, Devices
2 and 3, the knowledge of F̂ex acting on Device 1 leads
to an improvement of the prediction accuracy for Devices 2
and 3. The degree of improvement depends on the distance
between Device 1 and Devices 2 and 3 i.e. the amount of time
advance in information provided. Thus, Device 3 achieves the
best prediction performance and the prediction performance
of Device 1 is similar to that achieved in the isolated body
case. Only one trace is shown for the independent forecaster,
representing the three bodies’ forecasting GoF mean.
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Fig. 8. Comparison of the GoF of the forecasting using the values obtained
from the global estimator and independent estimator for Layout 2 with β = 0◦

and d = 20m

Fig.9 illustrates the GoFR of the prediction for different β,
with Layout 2 and d = 20m. Since the incident wave direction
is perpendicular to the main axis of the array for β = 90◦ (see
Fig.9 (c)), all devices are affected by the wave front at the same
time. Therefore, there is no greater amount of information
from the array motion, compared to the information from any
single device. Consequently, the global forecaster achieves a
similar GoF to the independent forecaster, and an isolated
single body.

1They are not exactly the same due to the randomness of the noise added
to the position and velocity measurements.
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Fig. 9. The GoF of the forecasting using values obtained from the global
estimator for Layout 2 with β = 0◦, β = 45◦ and β = 90◦

Fig.10 again confirms that the estimation of Fex is more
accurate when using the global estimator. Additionally, it is
shown that, when using the global predictor, the prediction
achieved is quasi-identical to the estimated Fex, due to the
anticipative information provided by Devices 3 and 4.
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Fig. 10. Section of simulated, the estimated and predicted Fex using two
different combinations of estimator/predictor, for a specific realisation. The
device shown is Device 1 of the Layout 4 with d =20m and β = 90◦. The
prediction shown is for Thoriz = 4s

As explained in Section II, there are cases where the hydro-
dynamic coefficients are expected to be equal. For example,
the excitation force coefficients in Layout 1, with β = 90◦, or,
as shown in Fig.2, some of the ARad coefficients of Layout 3
for any β etc. However, in practice, the coefficients obtained
from NEMOH, also verified with WAMIT [21], are not exactly
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the same (less than 1% of variation). Those small differences
between the coefficients of the model may be exaggerated
during simulation, estimation and forecasting, resulting in
a disparity of up to 10% between the forecasting GoF of
devices whose GoF would be expected to be identical, due to
symmetry. For this work, that issue is addressed by equalizing
the values of the coefficients which must be equal from
symmetry considerations.

VI. CONCLUSIONS

This paper addresses the problem of estimating and fore-
casting Fex in an array of WECs which, due to the radiated
and diffracted waves, is a more complex problem than for
an isolated WEC. In this work, two different Fex estimators
are compared: an independent estimator, which estimates Fex
for each device, based only on motion measurements from the
same device, and the global estimator, which estimates Fex for
every device of the array, based on the motion measurements
of all array devices. The results show that the complex wave
field degrades the independent estimator performance, com-
pared to the global estimator, whose performance is consistent
with that of the isolated body case for all the distances, layouts
and β values analysed.

Regarding forecasting of Fex, two different forecasting mod-
els were developed: the independent forecaster, which predicts
the Fex of each device based only on the estimated Fex from
the same device, and the global forecaster, which predicts
Fex for each device based on the estimates of Fex from all
devices. It has been demonstrated that the global forecaster not
only achieves better prediction accuracy than the independent
forecaster, but also outperforms the isolated body case.

As mentioned in Section IV, the optimal order of the global
predictor, which gives the best forecasting accuracy, depends
on the layout parameters, d and β. Thus, slightly better results
can be expected from the global forecaster when the order of
the AR model is optimally selected for each configuration.
However, a pragmatic solution adopts a consistent forecasting
model order, for simplicity.

The natural period of the cylinders and the peak period
of the sea-state employed in this paper are, respectively, 7.2s
and 8s, which suggest that the devices are operating close
to resonance. However, higher interactions can be expected
when a control strategy is implemented, because the velocity
of the devices will increase considerably, with a consequent
increase in radiated waves. Therefore, in case of an array under
optimal control, there may be a greater disparity between the
independent estimator model’s performance and that achieved
by the global estimator, or isolated body case.

The high computational time needed by the global estimator
and forecaster creates some difficulty for real time implemen-
tation. Nevertheless, the estimation and forecasting models can
be parallelised onto several processors, reducing the sequential
computational requirement. In addition, several computational
simplifications (e.g. estimator/forecasting model order, etc)
could be effected, while retaining the spirit of the global
approach.
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