
A Digital Edition of a Spanish 18th Century Account Book:
Formalisation and Encoding

Abstract

In this, part two of a two part paper, we will discuss our approach to the formalisation of our document encoding 
approach, derived from software engineering, which treats of the three classes of a digital edition; the Logical, the 
Physical and the Interaction Classes. We specifically address our decision to use XML (Extensible Mark-up 
Language), not TEI (Text Encoding Initiative), as our encoding language. An argument is provided as to why TEI is 
unsuitable for function-based documents, this addresses both source integrity and the restrictive nature of TEI. TEI 
does not support our forward engineering approach, which allows us to simultaneously produce the model, the 
encoding and the software environment. 

[1] Introduction

[2] We will discuss the formalisation and practicalities of the encoding of the Alcalá Account Book. Part one, User Driven 
Digitisation, has discussed the origins of the project and the manuscript. The source manuscript was chosen, 
encoded and made available in a web based, dual language, searchable and interactive environment. This 
environment was specifically designed to support the historian in the type of research directly prompted by the 
source. We will discuss the theoretical framework that lies behind this assertion, including the identification of Primary 
Use Cases. The remainder of the paper provides a thorough description of our digitisation decisions, the 
maintenance of source integrity, the restrictive nature of TEI and our conclusions.

[3] Digitisation Decisions

[4] (i) Objective: Primary Use Case Support

[5] Our project objective was to produce a digital edition that supported the user by supporting the primary Use Cases. 
We define primary and secondary Use Cases for any document. Primary Use Cases are content-driven and are 
derived from the document’s original raison d’être, for example criminal, medical, financial or creative. They are also 
based on the meaning of the document. For instance, if the medical records of an Irish Hospital for one year were 
available, the primary Use Cases would answer questions such as, »how many patients were admitted during the 
year?«, »who were they?«, »what procedures did they undergo?«, »what care were they given?«, »how long was 
their average stay?« and »what was the average cost?«. Secondary Use Cases are driven by the interests of a 
specific audience and may not necessarily be linked to the document’s original raison d’être, for instance, a linguist 
might wish to perform linguistic analysis of the records, but that is not contingent upon the document being a medical 
record. 

[6] Naturally, secondary Use Cases should be supported where there are sufficient resources to do so. However, 
concentrating on the provision of support for primary Use Cases has two main, linked advantages: user-base size 
and longevity. Given an audience for any particular document, most of that audience will be interested in the content 
of the document, rather than any other aspect, such as the paper or language. For those seeking to study other 
aspects, many will wish to relate that aspect to the content, for instance a linguist studying language patterns will 
seek to link those to the historical and geographical context provided by the content. Regardless of the size of the 
user base population, we contend that supporting the greatest proportion of it will improve the edition’s longevity. 
Therefore, in order to provide for the greatest number of users, for the longest time, the edition should support 
primary Use Cases. 

[7] Our project was based on an account book, therefore our sample primary Use Cases include »how much was spent 
in total in 1798?«, »what was the relation between food expenses and student numbers across the period?«, »what 
was the relation between food expenses and time of year?« and »how much did Rector X sign off on over a given 
period, did that amount vary?«. We created a software environment that supports these primary Use Cases, and 
many others. The digital edition will no doubt prove to be a rich resource for codicologists, palaeographers and 
linguists, but no more so than any other machine-readable, internet-based text. Lavagnino states: 

[8] Ten years ago, it seemed sufficient to say that you were going to create such an edition in the form of a hypertext: often with very 
little elaboration on just what the result would be or why it would be significant, as though the medium itself would automatically 
make such an edition significant. [1]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297036563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[9] The value of these editions lies in their machine readability and general availability, the value of this edition lies its 
usability.

[10] (ii) XML or XML/TEI [2]

[11] One of the decisions to be made in relation to the digital edition was whether this usability could be best supported by 
designing a custom schema and associated document-tree [3], like XML, or by exploiting an existing subset that 
provides a generic schema and document-tree, like XML/TEI. In this document we refer to TEI as XML/TEI because, 
in reality, even if not historically, it is a specialisation of XML, implemented as a schema (in P5). To provide the 
functionality required by our users we had to create an encoding and accompanying software guided by the logical 
and physical models and their methods. Only in this way could our software deliver the functionality of the original 
account book and manuscript, to be built upon by the functionality of the digital edition. We found that this approach 
preserved our source’s integrity while preserving the usability of the original manuscript and providing additional, 
digitally driven, uses, for instance instant translation and keyword search. It also facilitated the creation of a high-
quality, self-documenting, strongly-typed and validatable encoding.

[12] (iii) XML/TEI Encoding Guide

[13] The TEI was established in 1987, thus it pre-existed XML. It is a specialisation of their common ancestor, SGML. [4]
Used by scholarly projects and libraries, [5] it seeks to develop, maintain, and promulgate »high-quality guidelines for 
the encoding of humanities texts« and then provide a language to embody those guidelines. [6] It is this attempt at 
standardisation that separates it from XML, which uses a custom approach. The TEI community is large, active and is 
a valuable source of support to its practitioners. Having a focus and a forum in which to discuss commonly occurring 
encoding difficulties and successes with researchers from a similar field is a major benefit to the digital humanities 
community. There is also, as Unsworth points out, »some benefit in expressing the consensus of those communities 
in things like standards and guidelines, if only to lay our cards on the table, and articulate in public the rules that we 
will, in any case, apply in private«. [7] However, these benefits are derived from the community involved in encoding. 
They are not benefits of the encoding language itself. There should be something specific to the language itself to 
recommend it, on technical grounds, as an encoding choice for a given project. In our case there were insufficient 
technical grounds to use XML/TEI.

[14] When discussing the ability of XML/TEI to support our approach we have excluded the addition of non-required 
attributes and the customisation of the XML/TEI schema, as any custom XML Schema can be emulated simply by 
converting to XML/TEI. Given that XML supports transformations; add a basic header and transform using the rule 
<div type= “XMLDocumentElementName”>. The encoding would validate against the XML/TEI schema but it is 
clearly not an XML/TEI guided encoding. Our discussion is based on the possibilities provided for, and the approach 
encouraged by, the existing guidelines. We would argue that unless the document is driven and guided by XML/TEI it 
is not, in fact, XML/TEI. Indeed, viewing XML/TEI as an approach, not just an encoding language, is de facto within 
the TEI community; »TEI« references both the guidelines and the language used to express them.

[15] In our discussion we have also excluded from consideration the addition of metadata to the header in XML/TEI 
encodings. Addition of metadata in paragraphs can be ad-hoc and cannot be validated by automatic means. Apart 
from that, if the information is recorded in the original source (and not an editorial addition for instance) the encoder 
should be able to represent the information adequately using an appropriate schema, which would make it 
manipulable by a computer, not just by humans. This does not preclude the addition of any and all metadata in an 
encoding, just that metadata in the header that is not properly broken down and tagged. Header metadata should 
only contain data about the source, not data to make the source more manipulable.

[16] (iv) Classes, Attributes, Methods and Object Instantiation

[17] The digital edition of the Alcalá Account Book manuscript is a specialisation of a general account book. The notion of 
an account book, the heuristic discussed in the previous paper, that was used to inform the iterative segmentation 
process corresponds to an Abstract Class (in a software development sense). This Abstract Class is specialised 
through several other Concrete Classes until it can be instantiated as the digital edition of the Alcalá Account Book
manuscript. Firstly, a logical model that corresponds to the notion of the Alcalá Account Book is described, indicating 
what it is, what it can be used for, and how to use it. Secondly, a physical model is added, corresponding to the Alcalá 
Account Book manuscript, what it can be used for, and how to use it. The last specialisation, an interaction model, 
provides a description of the features (attributes) of the digital edition of the Alcalá Account Book manuscript, of the 
user-requirements (methods) and how to implement them. An example of the structure of these classes is provided in 
Figure 1. The innermost class (Logical Model of Account Book) is an abstract class; all other classes are concrete. All 
of the concrete classes shown implement the enclosed classes' attributes and methods. An example of the attributes 
and methods belonging to each of the classes can be seen in Figure 2.



[18] 

[19] Figure 1. Class structure for the Digital Edition of Alcalá Account Book Manuscript

[20] Once the classes have been defined it is possible to instantiate an object, in this case, the digital edition of the Alcalá 
Account Book manuscript. This object includes all of the attributes of all of the classes, that is, it encapsulates what 
tasks (methods) it can perform and it knows how to perform them. The methods are as inherent to its existence as 
the attributes; without them, it is useless. 

[21] (v) Use Cases and Supporting Class Functionality

[22] To discover the methods in the classes we employed Use Cases. [8] These are typical examples of the goals a user 
might wish to accomplish using the object, and the methods they would employ to achieve them, for instance, 
»calculate how much was spent on bread at the college in 1778« requires six methods. If the user speaks only 
English then they must (1) select the translation as the version to search, (2) enter »bread« as the keyword for the 
search, (3) examine the returned facsimiles from 1778, (4) select the entries in the journal pertaining to bread using 
the checkbox, (5) transfer the pertinent entries to the datasheet for calculation, and (6) switch to the datasheet view 
to read the total. This Use Case requires information from all three classes: the information on expenses and how to 
manipulate them is drawn from the Logical Class, information on the pages related to the expenses comes from the 
Physical Class, and the ability to search the translation and select appropriate expenses comes from the Interaction 
Class. 

[23] The example above illustrates that all three classes in our Digital Edition must work together to deliver the 
functionality. Each class must be encoded so that it supports the class built upon it. Therefore, when the source 
(Logical and Physical Class) is encoded using mark-up, that mark-up must support the functionality that is to be 
delivered by the software (Interaction Class). XML/TEI does not provide for the functionality in the logical or Physical 
Classes to be exploited by the Interaction Class built upon them, nor does it consider the functionality of the 
Interaction Class. Therefore it was unsuitable for our project.



[24] The following table, developed in the analysis phase of the design approach, illustrates where there is a 
straightforward provision in XML or XML/TEI mark-up languages for the named classes, their attributes and methods.

[25] 

[26] Figure 2. Sample attributes and elements of the Logical, Physical and Interaction Classes, and whether XML/TEI can 
be readily used to support them. 

[27] Although these are only a sample of the attributes and methods of each class the table illustrates that XML can 
support the full suite of all the classes required to create a digital edition of the Alcalá Account Book manuscript. In 
fact, we guarantee that any source that can be adequately modelled as a tree can be encoded, along with its 
functionality, using XML (though XML is not restricted to this data structure). The diamond marking certain entries 
signifies that it is possible, though unlikely, for XML/TEI to straightforwardly support the encoding of that attribute or 
method. For instance, if the special interest group set up to create an Account Book module included people who 
wished to digitise this particular source for these particular use cases, it probably would support them. However, this 
is a special case. XML/TEI seeks to create a generic language for generating machine-readable text (TEI Consortium 
2007b). Given that it cannot, and does not seek to, forecast user-requirements it does not support the provision of 
functionality. If this particular source and user group were not envisaged then XML/TEI would probably fail to cater for 
the methods, and maybe even the attributes of the Logical Class. It would definitely fail to cater for the attributes and 
methods of the Interaction Class as these are entirely derived from the user-requirement, the primary Use Cases, 
which inform how the source should be described. Therefore, in the universal case, XML/TEI fails to straightforwardly 
provide for functionality.



[28] (vi) XML/TEI Cannot Support the Logical Class

[29] We consider the Alcalá Account Book manuscript to be an account book, which happens to be captured on a 
manuscript; it is not a »manuscript with specialisations«. By encoding the structure and meaning of the content of the 
document, the accounts in the account book (Logical Class), we are accurately modelling our source and also 
supporting the primary Use Cases, and in turn the user. The Logical Class is the basis for the digital edition, it 
captures the meaning of the content. It should be the primary model (rather than the physical) if the primary Use 
Cases are to be fulfilled. In order to represent the Logical Class in our encoding we required firstly that the structure 
of our schema could be freely created to match the tree we had modelled on the logical structure. This is not possible 
using an XML/TEI P5 generic schema as its structure is pre-defined. Secondly, we required that the element names 
that described the Logical Class could be drawn from our heuristically informed understanding of the Alcalá Account 
Book. Again, this was impossible using pre-defined element names, especially as the source did not have an 
associated tagset in XML/TEI. Lastly, it was imperative that the encoding language supported the methods 
associated with the Logical Class, but XML/TEI currently does not. 

[30] The software support that was derived from the encoding of the model of the Logical Class has been previously 
described in some detail. Suffice to note here that the custom structure and element names contributed to supporting 
the methods, as did some elements that were explicitly included to provide aid to the software in processing and 
presenting the data, for instance <pageID>. The software, in turn, provides support to the user. In this way we can 
trace the fulfillment of the objective, that is supporting the user, back through the software and the encoding to the 
Logical Class, expressable only using a custom language, XML. XML allows us to create the solution to solve the 
problem, rather than fitting the problem to the solution provided by the tool, XML/TEI.

[31] Source Integrity

[32] (i) Digital Editions

[33] From our perspective, informed by computer science methodologies, it is important that the encoding closely 
resembles the Alcalá Account Book manuscript (Logical and Physical Classes) so that we ensure that as many future 
requirements as possible can be supported without having to substantially rewrite the encoding. This involves 
creating an encoding that preserves the attributes and methods of the original source, and the methods allow us to 
meet these future needs. Source integrity is best maintained and addressed by using a metalanguage closely related 
to the source, rather than a generic, prescribed encoding language. In the case of facsimile editing, from digital 
images to diplomatic transcriptions, »the scholar's object is to provide as accurate a simulation of some particular 
document as the means of reproduction allow«. [9] Therefore, editors should seek to exploit the inherent slide in 
natural language rather than introducing distance between them and the text by increasing the machine-like quality of 
the encoding language.

[34] Lavagnino, among others, states, 

[35] It is true that there are no chapters in this book or in the Guidelines on encoding cookbooks, newspapers, guidebooks, [...]; there 
just hasn't been space or occasion to discuss them specifically. For the most part these particular genres can be readily handled 
using TEI's provisions for encoding prose texts, with the addition of some other elements for their distinctive features. [10]

[36] We refute the notion that cookbooks, newspapers, et cetera, are merely prose texts with »some distinctive features« 
– this particular account book is clearly highly structured with its own elicitable rules that guide internal consistency. 
From a humanities researcher’s perspective, surely it is more desirable to closely model those actual structures and 
their meanings, rather than to try to fit them to structureless or inappropriately structured prose tags?

[37] Using a single witness we created a facsimile and diplomatic edition. We understand that our source is not self-
describing [11] and that there are non-trivial issues that relate to the transformation involved in the first encoding of 
the work, that is, the instantiation of the Alcalá Account Book that occurred when it was first written down. [12]
Essentially, this means that we recognised that the edition was interpretive. This is not in opposition to the close 
modelling of the document: recognising editions as interpretive does not render them pointless or less scholarly, and 
so rigorous modelling and strong encoding remained desirable.

[38] If every edition (diplomatic or critical) and every encoding is interpretive then the use of an encoding language that 
allows for self-documentation (contemporaneous with its creation and use), and for the explicit recording of the 
thought processes behind the encoding, is imperative. XML/TEI encourages the use of the <header> element to 
document the evolution of the encoding. However, this approach fails to document the thought-processes involved in 
any particular encoding as it lacks the custom document that is the result of the XML encoding process.

[39] Self-documentation and thought-process analysis are facilitated by examining the schema and resultant encoding, 
which both act as an unambiguous record of the interpretation of the document. The schema tells us both how the 
segments of the document were interpreted (as expenses, as signatures, as introductions, as dates, et cetera) and 



the hierarchical structure and internal rules the encoder considers the document to embody. In this way the encoding 
itself acts as a framework for scholarly discussion, embracing the interpretive and subjective nature of mark-up. 
XML/TEI does not provide for this as the structures are prescribed, the internal rules of the document are not 
considered, and the elements cannot be custom named. Burnard calls for the creation of »an uncritical edition[,] one 
which does not attempt to settle controversy, but to ignite it«. [13] The use of XML/TEI as a standardising language 
promotes the false notion of authoritative objectivity, it fails, as Burnard puts it, »to problematize the textuality that a 
traditional critical edition tends to gloss over« [14] and thus reduces the document to pre-defined, pre-imagined, 
prescribed elements and structures.

[40] There are additional issues associated with encoding the facsimile and diplomatic editions for computer hosting, 
manipulation and use as a digital edition. Firstly, given that the digital edition is dependent on a tree, which 
instantiates only one possible model that could be used to describe the Logical Class of the source, the choice of tree 
structure impacts on the accuracy of the representation, and thus, the edition. [15] Secondly, the tag-names used to 
contextualise the data are themselves open to interpretation, thus introducing more ambiguity. Lastly, the chosen 
encoding language, in this case XML, impacts on the presentation of the source as it enforces certain rules and 
constraints. As indicated by Vanhoutte,

[41] […] the practice of creating an edition with the use of text-encoding calls for explicit ontologies and theories of the text which do 
generate new sets of theoretical issues. Maybe they are not different sets of editorial issues, but they are certainly new sets of 
textual issues such as problems of document architecture, encoding time, etc. [16]

[42] Given all of these encoding decisions, each of which has ramifications for the creation of a facsimile or diplomatic 
edition, it would seem prudent to attempt to minimise the impact of the encoding language, element names, and 
structuring decisions by modelling the source as closely as possible. It is only by using a custom structure and 
custom element names that we were able to achieve this, thus XML was used to minimise these additional editorial 
issues.

[43] (ii) Exploiting Custom Naming in XML

[44] Definition-slide is inherent to all mark-up, that is, there is a difference between what is recorded on the page and how 
we mark what is recorded on the page. This is because of the heteroglot nature of language [17] and its attendant 
interpretation, and it is this inherent slide that allows a computer to process human language at all. [18] XML mark-up 
allows us to provide entity (element) naming capabilities similar to noun or verb sense in natural language. We can 
then use these capabilities to create element names (tags) to contextualise data, which is itself often represented as 
text on a page. Common-sense would dictate that an item of expense, recorded in an expense account, should be 
marked as <expenseItem>. This mark-up allows a human user of the encoding to perform any interpretation that is 
necessary to make sense of the data contained in the tag:

[45] <expenseItem>

[46] <description>bread</description>

[47] <amount>€1.50</amount>

[48] </expenseItem>

[49] By supporting the creation of custom tags XML helped to overcome the additional editorial difficulties associated with 
the digital edition of our source. We found that XML/TEI offered no such help as it fails to exploit the benefit 
associated with custom naming. 

[50] (iii) Creative and Functional Documents

[51] Far from supporting all humanities texts, XML/TEI is, itself, a custom schema created for those creative documents 
and formats it explicitly seeks to describe (novels, poems, codices, manuscripts), for an intended audience it implicitly 
foregrounds (librarians, editors, literary scholars, palaeographers). In fact, XML/TEI has created a tagset that is 
capable of describing most creative texts; there is almost always some tag that can be used to adequately describe 
the devices used in a novel or poem. Though that tagset is still not capable of describing the meaning held within 
creative works. This paper, however, is concerned with functional documents. XML/TEI is of little use when seeking to 
describe a functional document, which, by definition, encapsulates functionality and has a number of predetermined 
uses that are linked to their primary Use Cases.

[52] (iv) Machine Readable Text

[53] 



Given that machine-readable texts preserve (in some sense) their sources and make them available to a wider 
audience there is some merit in arguing that even allowing for them to be rendered does provide more usage for 
them than if they were held in archives and subject to conservation. However, hope that this standardised language 
might meet all user requirements, current and future, is unfounded, and cannot be supported in the generic encoding. 
XML/TEI manages to provide a tag-set for creating machine-readable texts that help to at least make the sources 
available, and often additionally provide automated search functionality. Perhaps this is all that can reasonably be 
expected of a global drive to create a generic encoding approach. The richness of XML/TEI in relation to this type of 
source and its own, particular, audience is clear; as is its lack of an adequate tagset for those sources and users 
outside these two spheres. This is evidenced by the fact that the features of our source it can capture are those that 
instantiated account books have in common with novels, poems, codices and manuscripts, that is, those attributes, 
and perhaps (but not definitely) methods, derived from the Physical Class. 

[54] XML/TEI covers only a subset of documents, formats and user-requirements that are of interest to humanities 
scholars. Without extensive customisation it cannot even provide a machine-readable version of all humanities 
documents:

[55] Because the TEI Guidelines must cover such a broad domain and user community, it is essential that they be customizable: both 
to permit the creation of manageable subsets that serve particular purposes, and also to permit usage in areas that the TEI has 
not yet envisioned. Customization is a central aspect of TEI usage and the Guidelines are designed with customization in mind. 
[19]

[56] While XML/TEI openly relies on customisation and extension to cover areas, »that the TEI has not yet envisioned«, it 
is worth noting that XML/TEI can only ever cover a small subset of areas. It cannot create a tagset for every record, 
functional document, novel, poem, manual, etc. in existence, let alone combine this with every user-requirement of all 
research audiences. Even exhaustive, on-going work will never create a tagset that describes the majority of 
humanities texts. This is widely acknowledged but the general response is »any useful markup scheme must 
therefore be extensible«. [20] We disagree; any useful mark-up scheme must therefore be custom designed. Relying 
on customisation and extension to fill in the significant gaps is, in effect, relying on people to use XML (translated into 
XML/TEI, but not guided by XML/TEI). Our source (an account book) had no associated module in XML/TEI and thus 
we would have had to rely on significant customisation to preserve our user driven approach. We therefore 
considered it unsuitable as the encoding language for this digital edition.

[57] Restrictive Nature of XML/TEI

[58] Once an encoder becomes comfortable and adept at eliciting a document’s structure it is much easier to freely 
encode the document using XML. Furthermore, at this stage, the user-requirements should be used to inform the 
encoding. The XML/TEI Guidelines become restrictive – the encoder ends up wrestling with permitted nesting 
structures and tag-names that do not quite match the encoder’s tree model of the source, if infact they have created 
one, or how this model will be used. Time is wasted learning and/or finding the appropriate tags rather than capturing 
the document correctly. As the edition could be supported in XML, without placing extra demands on the resources, it 
was chosen as the encoding language.

[59] (i) Problems Associated with Generic Element Names

[60] XML vocabularies cannot define the intended use for element names to the extent that those definitions can be 
enforced (unless an enumeration or pattern is used, which is only applicable to a tiny subset of elements).

[61] It is up to the creators of XML vocabularies (such as these Guidelines) to choose intelligible element names and to define their 
intended use in text markup. That is the chief purpose of documents such as the TEI Guidelines. From the need to choose 
element names indicative of function comes the technical term for the name of an element type, which is generic identifier, or GI. 
[21]

[62] This is problematic because although one might assume that everyone understands what »title« means and even 
give it a specific definition (the XML/TEI guidelines define <title> as, »contains the full title of a work of any kind.« 
[22] different encoders will, quite legitimately, apply that element tag to different elements in the same poem or novel. 
The same is true of defining the nesting elements of a given element. According to the Guidelines <title> can 
contain 171 other elements, including other <title> elements. [23] XML/TEI practitioners might argue that this 
flexibility allows an appropriate structure to be made explicit by the encoder. In reality, however, this leaves the 
description of any given document open to many variations – even from one seemingly easily definable element. If a 
more refined element name, such as <expense> could be used when contextually appropriate this problem would 
be minimised, though never eliminated. XML provides for the custom naming of elements so that their function as 
mark-up is clearer, it also provides strongly typed validation on the custom schema to ensure, as far as possible, that 
the encoding is standardised, regardless of who performs the mark-up. XML/TEI did not provide this, therefore XML 
was chosen to support the digital edition.



[63] (ii) Interoperability

[64] XML is designed for interoperability, which is derived from using a standard mode to store information, not from using 
the same set of words to describe various sources. By studying a schema that describes how the data were stored, a 
skilled software engineer can use XSLT, or other translation mechanism, to modify the attendant XML document to 
work with, and in, their own software engineering environment. The schema acts as a blueprint for the encoding 
mechanism used for the data, therefore, it must be specific and easily understandable. By using custom naming in 
the XML tags the schema is made specific and easily understandable to the software engineer.

[65] As demonstrated in our paper »Part 1: Visualisation and Information Architecture«, XML allows for the dynamic 
generation of the interface and interaction mechanisms of the software application. This XML could be harnessed by 
another software application to dynamically generate other contextually appropriate interfaces and interaction 
mechanisms. Our XML can only provide this interoperability because the custom schema allowed us to create this 
design; a generic schema could not.

[66] It is very complicated to create a translation mechanism for an XML/TEI document encoding because the generic 
schema provides no way to extract the rules of the encoding (all rules for all encodings are contained in it). This does 
not remove the need for translation once the encoding document is transmitted to another processing software 
application. Instead it introduces ambiguity, for instance, as demonstrated above, the tag <title> can be used as 
the title of a book, or of a poem. The receiving software does not know which way it has been used. Apart from 
translation mechanisms, namespaces are employed by XML to surmount this obstacle, they qualify which domain the 
<title> element belongs to, for instance one that uses <title> for books, or one that uses <title> for poems. 
XML/TEI provides no such method, making translations more difficult. There is no additional interoperability (current 
or future) that can be, or has been, gained by using XML/TEI instead of XML. This is despite the additional time 
resources it requires to learn XML/TEI rather than implement XML.

[67] (iii) Sacrifice Specialist Encoding for Pan-Comparison of Documents

[68] We have already documented our reasons for closely modelling the source, and believe that this adds to the 
scholarly value of the digital edition. However, there is another way to value an encoding. After discussing the myriad 
complexities inherent in various texts and how mark-up can make them explicit, Burnard states, 

[69] it now should be apparent why the availability of a single encoding scheme, a unified semiotic system, is of such importance to 
the emerging discipline of digital transcription. By using a single formalism we reduce the complexity inherent in representing the 
interconnectedness of all aspects of our hermeneutic analysis, and thus facilitate a polyvalent analysis. [24]

[70] An encoding that supports polyvalent analysis opens up a document to more than one kind of analysis, in other 
words, it supports scholars from a variety of backgrounds. Burnard’s assertion should mean that XML/TEI supports 
the study of many disparate, technologically unconnected, documents by one scholar, for one research aim. A 
popular contention is that XML/TEI helps scholars by allowing for the pan-comparison of various XML/TEI-encoded 
documents; even if certain subtleties are lost in the standardised encoding there is sufficient value in being able to 
conduct a pan-comparison to offset this, as in figure 3.

[71] Figure 3. View of XML/TEI supporting pan-comparison

[72] In reality, we have discovered no XML/TEI-dependent tools that allow for semantic analysis across multiple XML/TEI 
encoded texts. If pan-comparison of documents is to be supported by examining the actual encoding then, as 
previously argued, the fully customised schema and encoding is by far the most appropriate documenting system to 
examine. The reality of the situation is demonstrated in figure 4.

[73] 



[74] Figure 4. XML/TEI does not allow for general use

[75] The notion of pan-comparison of documents, supporting polyvalent analysis across documents, is one of the main 
implied benefits of XML/TEI; allowing for the exchange of document encodings across projects and repositories. If 
this were true, we should now be seeing the fruits of decades of XML/TEI encoding as scholars should be able to 
compare disparate documents under a variety of lenses – not just for metadata but for primary Use Case material. It 
is reasonable to expect that software tools developed to interrogate semantically one XML/TEI encoded collection or 
document could be applied to another, imported, document encoding. From a review of published literature we have 
been, thus far, unable to locate any example of this having occurred without prior joint planning by the 
project/repository designers. In fact, any example of either of these expected outcomes (pan-comparison of 
documents or cross-project document-encoding exchange) would be welcomed by all in the digital humanities 
community.

[76] (iv) Overcoming XML/TEI Shortcomings

[77] It is possible to manipulate XML/TEI in order to overcome its drawbacks. As discussed above, one can change 
custom elements to <div type = “XMLDocumentElementName”> and perform the manipulation and extraction 
of meaning on the attribute names. There are three main problems with customising: firstly, it is not really XML/TEI. 
Secondly, it is difficult to do. Lastly, elements in the original XML that required attributes cannot be given those 
attributes because they are now attributes themselves. They cannot be broken down into their own sub-elements. In 
other words, you cannot create complexTypes (complexTypes are elements defined in an XML schema to contain 
other defined sub-elements), which are required to accurately model the interface and interaction between the 
Logical, Physical and Interaction classes of our digital edition. 

[78] It is important to note that there is a distinction between what is possible, and what is desirable and appropriate. Of 
course it is possible to use XML/TEI to express some of the various aspects of our document but it is neither 
appropriate nor desirable, for the reasons we have described. It is also possible to use XML/TEI to describe the 
manuscript and then add an account book module using the Roma schema generator, but we do not believe that 
there are any benefits to be gained by using a standardised encoding – it certainly does not facilitate pan-comparison 
of documents or cross-project document exchange. 

[79] (v) Schema for Validation

[80] XML/TEI’s generic schema approach, and even the work-around mentioned above, precludes proper validation of the 
encoding. Proper validation is provided only by a custom schema. An XML schema is used to define the elements 
and attributes of an encoding document. It further defines the order and occurrence of the elements and attributes, 
and the type of the elements, including enumerations or patterns for the data contained in them. [25] Validating 
against an XML schema provides assurance that the encoding document is accurate. If a generic schema is used this 
check cannot be performed, only very basic validation is possible. The designer loses control of the document and, if 
the source is of any significant size, there is no way to perform rigorous checking of the encoding document. 
Validation of our encodings was considered to be of paramount importance to the functionality and quality of the 
digital edition, consequently the custom schema of XML was chosen over the generic schema of XML/TEI.

[81] (vi) Forward Engineering into XML/TEI

[82] While we consider TEI/XML to have a number of flaws, as detailed above, the fundamental issue is that TEI/XML 
does not support our user driven approach. We use a software engineering model where we follow a forwarding 
engineering process that provides both the software environment and the encoding model. Forward engineering from 
the Unified Modeling Language (UML) into a full software solution and encoding is a good approach that provides 
good functionality for the user.

[83] 



One alternative is to use a pre-existing text-encoding framework, such as XML/TEI. The problem with this is that it 
only provides circumscribed encoding guidelines, and not tools to create an environment, so this becomes a 
significant design constraint.

[84] It is possible to generate a model based on XML/TEI that is flexible, if you are just concerned with encoding. 
However, this is also constraining in that you are modelling structure and meaning before you engage in a Use Case 
Analysis process, which results in fixed use case support.

[85] As part of the editorial process for this paper, we engaged in discussion with XML/TEI experts and we have encoded 
a validating XML/TEI version of some of the pages of the account book. In order to »make it work« we had to re-
purpose some of the encoding tagset. This, in and of itself, is a violation of the TEI guidelines. However, there is one 
last approach open within the XML/TEI paradigm: customisation.

[86] We have been encouraged to create an Account Book module using the Roma customised XML/TEI schema 
generator and are engaged in the process. However, there are additional drawbacks to using this approach, while 
there appear to be no compelling benefits. Firstly, this requires more work than forward engineering straight into the 
encoding and software environment: it is an additional, and unnecessary, step. Secondly, the next time we need to 
use the Guidelines for an account book from a different time or place, we will have to again forward engineer into our 
encoding and environment, and then re-customise the Account Book module.

[87] In fact, the range of possible permutations offered by the combination of project researcher, source document/data 
and research community is massive. While XML can support the forward engineering process for all mark-up suitable 
permutations, XML/TEI cannot.

[88] Conclusions

[89] The differences between the language registers associated with computer science and humanities sometimes 
manifest themselves in misunderstandings and mis-communication: some disambiguation would help to clarify 
matters. General references to »standards« within the discourse of Digital Humanities and Humanities Computing, 
without doubt, should be qualified. »Standard« in computer science usually refers to a technology with a strong, 
independently verified, technical specification – in this register XML is a standard, defined by the World Wide Web 
Consortium, but XML/TEI is not. »Standard« can also refer to an acceptable level of encoding, as in the phrase, »this 
encoding is up to standard«. Depending on the needs of the user, both XML/TEI and XML can deliver acceptable 
levels of encoding and can both thus be considered to support a »standard« of encoding. Lastly, »standard« can be 
used to describe something that is usual, regular or normal. XML/TEI may be considered by the TEI community to be 
the usual text encoding language of the humanities, but it is not exclusively the conduit for acceptable levels of 
encoding. In fact, it is our opinion that it acts as a barrier to acceptable encoding, and is not a technical standard.

[90] We have demonstrated that the appropriate encoding for this class of document (that is functional documents such as 
medical records, bank statements and police reports) and this group of users is a user-driven language and custom 
schema, expressed in XML. We have further demonstrated that XML/TEI does not straightforwardly support user-
requirements derived from our functional document and thus is not suitable for this approach, encoding or digital 
edition.

[91] Notwithstanding the popularity of XML/TEI, ready to use with its standardised schema, guidelines, regular training 
sessions, and active community, we remain unconvinced that XML/TEI offers compelling benefits that are not already 
available to the community through the use of good, rigorous, XML. We believe that if this community is to conduct 
humanities computing, rather than TEI research, then alternative, and potentially disruptive, encoding approaches 
should at least be considered. This assertion, while likely to be contentious, stems from regular public declarations 
that XML/TEI is the de facto encoding standard, which we believe inhibits other possible avenues of digital 
humanities development and humanities computing research into document and data encoding. 

[92] We believe that the XML/TEI approach should at least be broadened to support the entire project life-cycle. Currently 
the guidelines foreground the use of XML/TEI as a solution, in isolation from accompanying software, and before the 
problems of the project are even enunciated. Our approach allows us to forward engineer an entire solution: we 
analyse our project objectives and then design our encoding in tandem with our software, both of which are derived 
from a single, unified model of the document, process and usability. We found that XML/TEI-guided encoding was not 
compatible with our engineering methodology without extensive customisation; it significantly curtailed our ability to 
meet immediate and future user requirements for the development of this digital edition. We recommend that the TEI 
Guidelines provide support for implementing XML/TEI within a whole-project context, and that appropriate revisions 
to the TEI Guidelines are undertaken. We believe that this will encourage digital humanities projects to engage in 
formal design, encoding and development processes. In the meantime, our modelling process, custom encoding and 
supporting software, allow us to meet the needs of our team (the developers, encoders and humanities scholars) and 
end-users. It also enables us, the humanities computing community, to exploit this wonderful source for new 
research. 



[93] Acknowledgement

This project was jointly funded by the Higher Education Authority’s PRTLI Cycle 4 and the National University of 
Ireland, Maynooth’s President’s Fund. We would like to thank the staff of the Russell Library for their continued 
support. We would also like to thank the editors for insightful comments on the draft paper. 

John G Keating/Aja Teehan/Damien Gallagher/Thomas O’Connor
An Foras Feasa

National University of Ireland, Maynooth
Maynooth, Co. Kildare, Ireland

@

(17.06.2009)

Bibliography

Bakhtin, Mikhail
1981 The Dialogic Imagination: Four Essays. Michael Holquist (ed): Caryl Emerson and Michael Holquist (translation). Austin and London: 

University of Texas Press.

Burnard, Lou
2006 Is Humanities Computing an Academic Discipline? or, Why Humanities Computing Matters [1].

Card, Stuart K./Moran, Thomas P./Newell, Allen (ed)
1983 The Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Lavagnino, John
2006 When Not to Use TEI. In: Lou Burnard/Katherine O’Brien O’Keeffe/John Unsworth (eds): Electronic Textual Editing. New York: Modern 

Language Association of America, p. 334–338 [2].

Lavagnino, John quoted in Vanhoutte, Edward
2006 Prose Fiction and Modern Manuscripts. Limitations and Possibilities of Text Encoding for Electronic Editions. In: Lou Burnard/Katherine 

O’Brien O’Keeffe/John Unsworth (eds): Electronic Textual Editing. New York: Modern Language Association of America, p. 161 [3].

McGann, Jerome/Buzzetti, Dino
2006 Critical Editing in a Digital Horizon. In: Lou Burnard/Katherine O’Brien O’Keeffe/John Unsworth (eds): Electronic Textual Editing. New 

York: Modern Language Association of America, p. 53–73 [4].

Redding, Paul
2008 Georg Wilhelm Friedrich Hegel. In: Edward N. Zalta (ed): The Stanford Encyclopedia of Philosophy (Fall 2008 Edition) [5].

Renear, Allen/Mylonas, Elli/Durand, David
1996 Refining our Notion of What Text Really Is: The Problem of Overlapping Hierarchies. In: Nancy Ide and Susan Hockey (eds): Research 

in Humanities Computing 4. Oxford University Press, p. 263 - 280.

Sperberg-McQueen, Michael
1991 Text in the Electronic Age: Texual Study and Textual Study and Text Encoding, with Examples from Medieval Texts. In: Literary and 

Linguistic Computing 6 (1). ALLC, p. 34–46 [6].

TEI Consortium
2007 TEI: Goals and Mission [7].

TEI Consortium
2007 TEI: Text Encoding Initiative [8]. 

TEI Consortium
2008 TEI: Customization [9].

TEI Consortium
2008 TEI: Projects Using the TEI [10].

TEI Consortium
2009a TEI: A Gentle Introduction to XML [11].

TEI Consortium
2009b TEI: Guidelines for Electronic Text Encoding and Interchange, P5 [12].

Unsworth, John
2002 Electronic Textual Editing and the TEI. Annual Convention of the Modern Language Association [13].

Vanhoutte, Edward
2006 Prose Fiction and Modern Manuscripts. Limitations and Possibilities of Text Encoding for Electronic Editions. In: Lou Burnard/Katherine 

O’Brien O’Keeffe/John Unsworth (eds):): Electronic Textual Editing. New York: Modern Language Association of America, p. 161–180 
[14].

Websites

[1] <http://users.ox.ac.uk/~lou/wip/hc.html> (05.06.2009).



[2] <http://www.tei-c.org/About/Archive_new/ETE/Preview/lavagnino.xml> (05.06.2009).

[3] <http://www.tei-c.org/About/Archive_new/ETE/Preview/vanhoutte.xml> (05.06.2009).

[4] <http://www.tei-c.org/About/Archive_new/ETE/Preview/mcgann.xml#body.1_div.5> (05.06.2009).

[5] <http://plato.stanford.edu/archives/fall2008/entries/hegel/> (05.06.2009).

[6] <http://llc.oxfordjournals.org/cgi/content/abstract/6/1/34> (05.06.2009)

[7] <http://www.tei-c.org/About/mission.xml> (05.06.2009).

[8] <http://www.tei-c.org/index.xml> (05.06.2009).

[9] <http://www.tei-c.org/Guidelines/Customization/index.xml> (05.06.2009).

[10] <http://www.tei-c.org/Activities/Projects/> (05.06.2009).

[11] <http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SG.html> (05.06.2009).

[12] <http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-title.html> (05.06.2009).

[13] <http://www3.isrl.uiuc.edu/~unsworth/mla-cse.2002.html> (05.06.2009).

[14] <http://www.tei-c.org/About/Archive_new/ETE/Preview/vanhoutte.xml> (05.06.2009).

[15] <http://www.w3.org/DOM/#specs> (05.06.2009).

[16] <http://www.w3.org/MarkUp/SGML/> (05.06.2009).

[17] <http://www.w3.org/XML/> (05.06.2009).

[18] <http://www.w3schools.com/schema/schema_intro.asp> (05.06.2009).

[1] Lavagnino in Vanhoutte (2006: 161).

[2] TEI Consortium: Text Encoding Initiative (TEI) [8].

[3] World Wide Web Consortium: Document Object Model (DOM) [15]

[4] World Wide Web Consortium: Standard Generalized Markup Language (SGML) [16].

[5] TEI Consortium: 2008.

[6] TEI Consortium: 2007.

[7] Unsworth 2002.

[8] Card, Moral, Newell: 1983. The formalisation of the processes involved in usability analysis sprung from work undertaken by Card, Moran and 
Newell in their book, The Psychology of Human Computer Interaction (1983). They used the acronym, GOMS (Goals, Operators, Methods and 
Selection rules) to classify the interaction between human and computer.

[9] McGann/Buzzetti (2006: 53).

[10] Lavagnino (2006: 334).

[11] In relation to »self-identical«: Hegel’s view (see Redding’s entry on, Georg Wilhelm Friedrich Hegel, The Stanford Encyclopedia of Philosophy 
[Fall 2008 Edition]) is that nothing can be equal to itself, or self-describing, as everything is self-contradictory, mutable and connected to other 
things, continuously changing over time. Only abstractions can be motionless and unchanging; concrete realities exist in a time and place and 
thus can only be understood in relation to other things. Therefore, a document can only be understood within a material context, and an 
encoding, designed using that understanding, will also be informed by that context. While it may seem obvious that the encoding is not equal to 
the document, the document is not, in fact, equal to itself either.

[12] McGann/Buzzetti 2006.

[13] Burnard 1999.

[14] Ibd.

[15] Renear provides an in-depth discussion on the problems associated with viewing texts as ordered hierarchies of content objects (OHCO) that 
can be represented in tree models. For further on-line reading see Renear et al (1996).

[16] Vanhoutte (2006: 161).

[17] In his essay, Discourse in the Novel, Bakhtin posited the notion of language as heteroglot, that is that it is written, and eventually read, in a time 
and place, and that that time and place inform both the creation and understanding of the language (Bakhtin 1981). It is neither immutable nor 
directly interpretable as it is fundamentally fluid and changing. Therefore, words that are used to describe something will ›slide‹ away from their 
authorially given meaning as they are being read this slide gets greater with time and distance, and with the use of metalanguage (languages 
used to describe languages, including metalanguages themselves).



[18] McCann/Buzzetti 2006. They point out that the approximating metalanguage allows the encoder to describe something non-quantifiable or 
definitive in a way that a computer can manipulate quantifiably and definitively. 

[19] TEI Consortium 2008b.

[20] Sperberg-McQueen: 1991.

[21] TEI Consortium 2009.

[22] TEI Consortium 2009b.

[23] Ibd.

[24] Burnard 1999.

[25] Apart from the tutorials and specifications available from the World Wide Web Consortium at [17] there is an excellent introductory tutorial on 
schemas at W3Schools, Introduction to XML Schema [18].


