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Abstract-Ordinary Bessel functions are a common function 

used when examining the spectral properties of frequency 
modulated signals, particularly in sound synthesis applications. 
Recently, it was shown that modified Bessel functions can also 
be used for sound synthesis. However, to limit the impact of 
aliasing distortion when using these functions, it is essential to 
set an upper limit on the frequency-dependent modulation 
index used when computing these functions. However, it can 
be impossible to do this beyond a certain threshold when using 
standard mathematical software tools such as Matlab, or the 
scientific toolbox of the Python language, because of numerical 
overflow issues. This short paper presents an approach to 
overcome this limitation using the MaxStar algorithm. Results 
are also presented to demonstrate the usefulness of this 
solution. 

Keywords: Modified Bessel functions, numerical overflow, 
Maxstar algorithm.  

I. INTRODUCTION  

Frequency Modulated (FM) signals are important in both 

the fields of telecommunications and sound synthesis. 

Ordinary Bessel functions are a key mathematical tool for 

the understanding of the spectral properties of these FM 

signals [1]. The success of FM synthesis as a sound 

generating technique led to the exploration of other 

techniques similar in concept, specifically using Modified 

Bessel functions [2]. However, for a long period this work 

was forgotten until recently when it was shown that a 

synthesis technique based on Modified Bessel functions was 

very useful for the generation of high quality, low-aliasing 

digital reproductions of the periodic waveforms used in 

analog subtractive synthesizers [3], for example, sawtooth 

waves. Specifically, the synthesis equation is 
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where m is the Modulation index. 

This can be expressed using Modified Bessel functions as 
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where 

 

( ).nI  is a modified Bessel function of order n and cω  and 

mω  are the carrier and modulation frequencies respectively 

[3]. 

 

From (2), it can be seen that equation (1) generates a 

harmonic signal with a spacing of frequency mω  and 

magnitude scaling given by the set of Modified Bessel 

functions ( )mI n
 where ∞= ,,0 Kn . 

In practical applications (1) should be scaled by a factor 

[3] 
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which leads to  

( ) ( )( ) ( )tets c

mtm m ω= −ω
cos

cos
 (4) 

 

If the ratio between the carrier and modulation 

frequencies is one, then Equation (5) describes a unipolar 

pulse train. The width, and thus the smoothness of the pulse, 

is determined by the value of the modulation index m.  
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Figure 1. Plot of the pulseshape defined by (5) for various values of 

modulation index. 

 

Lower values of m give a broader pulse shape. Figure 1 

shows an example of this for values of m ranging from 2 to 

14. For this plot the sampling rate was set to be 8 kHz and 

55=ω=ω mc Hz.  
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The spectrum of this pulse train is given by [3] 
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The harmonic amplitudes of the expression for the 

spectrum in (5) are determined by the modified Bessel 

functions ( ).nI  that are scaled by the factor g(m). This 

factor gives a smooth low pass characteristic to the 

spectrum with the steepness of the roll-off being determined 

by the value of m. Figure 2 provides a spectral example of 

(5) for a carrier frequency of 100Hz.  

 

0 100 200 300 400 500 600 700 800
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Example Spectrum of (5) for carrier frequency 100Hz

Frequency (Hz)

M
a
g
n
it
u
d
e

 
Figure 2. Plot of tan example of (5) showing the lowpass characteristic 

of the harmonic amplitudes. 

 

The implications of this for the digital generation of the 

classic waveforms of subtractive synthesis is that by 

integrating this pulse train it is possible to create a signal 

spectrum that is an approximation to that of a sawtooth 

wave, whose harmonic magnitudes decrease with respect to 

the harmonic number. The equation for the integrated 

spectrum is 
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If the integrated signal is then passed through a suitable DC 

blocker filter as described in [4], then the output waveshape 

should be close to that of a sawtooth, as illustrated in Figure 

3. The example in Figure 3 was generated for carrier and 

modulator frequencies of 440 Hz and a sampling frequency 

of 44100 Hz. The modulation index was chosen to be 943 

and was determined empirically. It is clear from Figure 3 

that the waveshape is that of a sawtooth, validating the 

usefulness of this technique for the application. 
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Figure 3. Sawtooth wave generated by integrating (4), followed by DC 

blocking, and whose spectrum is given by (6). 

 

II. OPTIMISING BANDLIMITED SIGNAL SYNTHESIS 

What is of primary concern when creating this 

approximation is that the signal should be effectively 

bandlimited, that is, any aliased components should be of 

sufficiently low magnitude so as to be imperceptible. To 

ensure this, it is then a question of choosing a suitable value 

for m such that any harmonics that exist in theory beyond 

half the sampling frequency are sufficiently small such that 

their aliased version will not be heard. This can be posed as 

an optimsation problem, as given by in (7). Here, a figure of 

-90dB is chosen as the upper threshold on the spectral 

magnitude of the aliased components [3]. 
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where N is the number of harmonics in the sawtooth wave 

from DC to half the sampling frequency and 
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To perform this optimization it is possible to use a 

standard routine such as ‘fmin’, for example, that is 

available as a routine in the Matlab software package. This 

routine uses a Nelder-Mead Simplex search method [5]. 

However, in the implementation of the optimization of (7) a 

problem was discovered. Specifically, when attempting to 

compute the magnitude of the Modified Bessel function for 

values of modulation index greater than 700 the algorithm 

used generates a numerical overflow and will return a value 

of infinity. A similar behaviour was observed when using 

the Sci.py module of python for the computation in [6].  

 

A. Computing Modified Bessel Functions using Logs 

To compute a Modified Bessel function of order n and 

modulation index m it is possible to use the formula [7] 
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From (9) both the numerator and denominator of the 

summation will grow to be infinitely large, but empirical 

observation found that the value of their ratio will first reach 

a maximum and then decrease to zero as m increases. In an 

implementation it can be surmised that the maximum 

number of terms in the summation can be restricted as long 

as it exceeds the point where the ratio reaches zero. This is a 

valid approach but fails when the maximum of the ratio is 

beyond the numerical precision of the machine. As stated 

already, this occurs for large values of modulation index 

and thus an alternative is required in such cases. An obvious 

choice for compressing the numerical values generated by 

each term of (9) is to use the logarithmic function 
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(10) 

and using the logarithmic property 

 

xzx z loglog =   (11) 

 

Equation (11) can then be rewritten using the multiplicative 

property given in (12) 
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to give 
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A number of possibilities exist for expressing the logarithm 

of a factorial. Firstly, the exact expression is [8]. 
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 Alternatively, a very good approximation for the logarithm 

of a factorial due to Ramaujan [8], for 0≠x , can be written 

which would reduce the computational effort in evaluating 

the multiplications in ( )!log x  for each term.  
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Furthermore, it also is more robust numerically. Particularly, 

in the case of Matlab [5], if the number of terms k selected 

exceeds 170, then ( ) ∞=!log k . 

 

Using (15), equation (13) can be rewritten to produce 
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B. Applying the MaxStar algorithm 

From (16) it can be seen that each term in (10) can be 

computed using logarithms which will significantly reduce 

the size of its numerical value, thus avoiding overflow 

problems. However, the next issue is how to add them 

without computing the exponential of each term. They 

should also be added in the log domain and then the 

exponential found of the overall result. To this end a very 

useful algorithm from the field of telecommunications is the 

MaxStar algorithm [9] 
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where 
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This expression is applied iteratively to the summation until 

the final term is reached [10]. An alternative approximation 

was recently given in [10], which was  
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Once the sum of terms is found using (17) or (18) all that 

remains to compute (9) is to find the exponential of this sum.  

This procedure will work in Matlab [5] as long as the total 

value of the log of the sum of the terms in (9) is 709 or less 

as otherwise an infinite output will result because in this 

package  

∞=710
e   (19)  

This could be problematic in the general case, but if all we 

want to do is solve the optimization problem of (7) then the 

logarithmic can also be rewritten as 

( )( )( ) ( )( )mINmI N 110
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Ignoring the first term which is a constant and 

substituting (8) into (20) gives 

( ) ( )( ) ( ) ( )( )mImImImI NN 2010210 loglog +−+= +  

      (21) 

Both terms in (21) are structurally similar, so, for 

example, considering the first term only and defining the 

output of the MaxStar algorithm as ( ).MS  leads to the 

definition 
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Then  
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where for clarity the function exp(x) is used to represent 
x

e . 

Applying the MaxStar algorithm to (23) produces the nested 

expression in (24) 

( )( ) ( )( )( )( )( )mIMSmIMSMS NN 210 explog ++=  

      (24) 

It is possible then to apply the property 
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which results in  
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Thus, the exponential power has been removed and now is 

present in (26) in the form of a multiplication by a constant. 

In this form any issues with numerical overflow should be 

overcome. The optimization in (7) can finally be rewritten 

using the formulation in (26) as 
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For example, if we have a pitch frequency for the sawtooth 

wave of 146.8324 Hz  (note D) and a sampling rate of 

44100 Hz, the number of harmonics that will exist to half 

the sampling frequency is N=150. Setting the maximum 

number of terms in the summation to be 2000, the 

optimization routine returns a value of modulation index 

m=2131.7. Figure 4 is a plot of the lower portion of the 

spectrum of this sawtooth, after hanning windowing, 

showing its harmonics with no visible alias components 

present. 
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Figure 4. Lower part of spectrum of optimized sawtooth. 

 

III. CONCLUSION 

This short paper has presented an approach for the 

computation of Modified Bessel functions with high 

modulation indices that uses the MaxStar algorithm to 

overcome numerical difficulties currently experienced with 

mathematical software packages. Furthermore, it also has 

shown how an optimisation formulation can be rewritten 

using the MaxStar algorithm that obviates the need to 

explicitly compute large numbers that are raised to an 

exponential power.Future work will seek out other similar 

applications where the MaxStar  algorithm would prove to 

be useful. 
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