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Abstract
The impact of missing data on the efficiency of homogenisation with ACMANTv3 is examined with simulated monthly surface
air temperature test datasets. The homogeneous database is derived from an earlier benchmarking of daily temperature data in the
USA, and then outliers and inhomogeneities (IHs) are randomly inserted into the time series. Three inhomogeneous datasets are
generated and used, one with relatively few and small IHs, another one with IHs of medium frequency and size, and a third one
with large and frequent IHs. All of the inserted IHs are changes to the means. Most of the IHs are single sudden shifts or pair of
shifts resulting in platform-shaped biases. Each test dataset consists of 158 time series of 100 years length, and their mean spatial
correlation is 0.68–0.88. For examining the impacts of missing data, seven experiments are performed, in which 18 series are left
complete, while variable quantities (10–70%) of the data of the other 140 series are removed.

The results show that data gaps have a greater impact on the monthly root mean squared error (RMSE) than the annual RMSE
and trend bias. When data with a large ratio of gaps is homogenised, the reduction of the upper 5% of the monthly RMSE is the
least successful, but even there, the efficiency remains positive. In terms of reducing the annual RMSE and trend bias, the
efficiency is 54–91%. The inclusion of short and incomplete series with sufficient spatial correlation in all cases improves the
efficiency of homogenisation with ACMANTv3.

1 Introduction

Modern climatology needs large observational climatic
datasets of high quality (Thorne et al. 2017), and one issue
is that some of these long climatic records are often affected
by technical changes in the conditions of the climate observa-
tions, resulting in apparent temporal variations of climate.
These changes are defined as inhomogeneities (IHs), and for
the analysis of true climatic variability, their removal from the
data is desirable in order to establish more accurate climate-
based variations with other effects removed. Several factors
can introduce IHs to climate time series (Aguilar et al. 2003;
Auer et al. 2005). The most frequent form of IHs is a sudden
change in the long-term means (break); this can occur due to
station relocation, changes in the instrumentation or in

observation practice, among other reasons. Urbanisation or
other environmental changes in the surroundings of the ob-
serving station may introduce gradual, trend-shaped IHs
(Jones and Lister 2010; Hausfather et al. 2013), while tempo-
ral deviations from the regular conditions of the observations
may result in platform-shaped IHs (Rienzner and Gandolfi
2011; Domonkos 2011a).

The purpose of time series homogenisation is the re-
moval of IHs from the data. As the data records of nearby
observing stations often include a similar climate signal,
the main tools of homogenisation include the exclusion of
the common climate signal via spatial comparisons (re-
ferred to as relative homogenisation) and statistical tests.
There are a large number of statistical homogenisation
methods in use in climatology, and the use of statistical
homogenisation methods is generally recommended
(Peterson et al. 1998; Aguilar et al. 2003; Ribeiro et al.
2016). Relative homogenisation methods improve the ho-
mogeneity of data, whereas absolute homogenisation
methods have the potential to make the data even more
inhomogeneous (Acquaotta and Fratianni 2014; Hannart
et al. 2014). Other tools for homogenisation are the doc-
umented information about changes in the conditions of
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observations (so-called metadata), and these are often
used in tandem with statistical tests and a visual inspec-
tion of the data (Brunet et al. 2006; Mestre et al. 2013).
Generally, the application of changes based on the statis-
tical methods is given precedence over information from
the metadata, even when the changes in observing net-
works are well documented. There are three main reasons
for this: (i) Most pieces of metadata do not contain quan-
titative information about the size of the IH; (ii) Several
IHs are unintentional (Thorne et al. 2016); hence, they are
not well known and not included in metadata; (iii) The
optimal use of metadata in homogenisation is subject to
debate (Gubler et al. 2017). These issues notwithstanding
the mix of tools applied in homogenisation practice de-
pend primarily on the type of homogenisation task to be
performed. In the case of homogenisation for data sparse
regions or periods, the power of relative homogenisation
is relatively low, and thus the information from metadata
may be of key importance (Gimmi et al. 2007; Prohom
et al. 2016). Whereas in the case of homogenising large
and spatially dense datasets, automatic or semiautomatic
statistical procedures are the more likely tools of choice
(Menne and Williams 2009; Spinoni et al. 2015).

During the European project COST ES0601 (known also
as BHOME^, http://www.homogenisation.org), several
statistical homogenisation methods were tested, and a
surprisingly wide range of efficiencies were found in relation
to both the test dataset properties and according to the
homogenisation methods used (Venema et al. 2012). These
indicate that it is important to learn more in relation to the
method efficiencies, and arising from this to use homogenisa-
tion methods of proven high efficiency for climate data
homogenisation.

In recently published efficiency tests of homogenisation
methods, ACMANT (Domonkos 2011b; Domonkos and
Coll 2017a) consistently produced the best results (Venema
et al. 2012; Killick 2016; Guijarro et al. 2017). Additional
advantages offered by ACMANT are that this method is fully
automatic, easy-to-use and fast; therefore, it is easy to test it on
large datasets.

Earlier tests have given relatively little information
about the missing data effect on the efficiencies of ho-
mogenisation methods, despite the potential for missing
data to affect climatological analyses by reducing the cor-
relation coefficients of station pairs and hence affecting
the performance of relative homogenisation methods
(Hunziker et al. 2018). In this study, the missing data
effect on the efficiency of ACMANTv3 will be analysed
with the help of three monthly surface air temperature test
datasets and with varied ratios of missing data. In our
analyses, the temporal distribution of missing data follows
a pattern frequently appearing in real observational
datasets, namely an important ratio of the missing data

is concentrated at the beginning of time series due to the
varied starting date of observations.

2 Gap filling in statistical homogenisation
procedures

Since data collected at all sites within the same climatic region
is likely to be highly correlated and with similar patterns of
temporal variability, it follows that a lot of missing data has the
potential to affect these relationships even for stations in rela-
tively close geographical proximity. One option to reduce the
effects of missing data on the homogenisation results is to fill
data gaps before homogenisation with interpolated values.
However, any gap filling with interpolation before homogeni-
sation results in an artificial multiplication of the same obser-
vational information within a region and also those of the IHs.
Therefore, several experts advise not to fill data gaps before
homogenisation (Auer et al. 2005, 2007; Guentchev et al.
2010). However, the use of composite reference series needs
complete series at least for the period of the spatial compari-
son, since in case of incomplete reference composites, the
reference series would have non-natural temporal variation
in addition to IHs. Among modern homogenisation methods,
the gap filling before homogenisation is obligatory in MASH
(Szentimrey 1999), Climatol (Guijarro 2014) and ACMANT,
and it is done automatically as part of the homogenisation
procedure in the latter twomethods, while the homogenisation
can be done without gap filling in Pairwise Homogenisation
Algorithm (PHA, known also as USHCNmethod, Menne and
Williams 2009) and data gaps are filled at the end of the
procedure in HOMER (Mestre et al. 2013). Homogenisation
methods vary also in their ability to process datasets with
larger ratios of missing data. Thus, ACMANT, Climatol and
PHA, e.g., have a very high missing data tolerance, whereas
the WMO Task Team on homogenisation guidelines on the
tolerable missing data for the application of HOMER and
MASH are 15 years and 30% respectively (WMO 2016).

Gap filling may be performed at either a daily or monthly
time scale, but gap filling on a daily scale is more problematic
due to the larger temporal and spatial variability of daily
climatic data. Tests conducted by Kemp et al. (1983) showed
that spatial interpolation is the best method for the gap filling
of temperature series, even on a daily scale. However, the use
of more climatic variables or information based on
categorising the prevailing synoptic situation may improve
the accuracy of spatial interpolation on a daily scale (Huth
and Nemesova 1995; Oyler et al. 2015).

In this study, we focus on the treatments with monthly time
series. For the gap filling of monthly series, spatial interpola-
tion is clearly the best tool, but there is no consensus on the
number of data from the neighbourhood which should be used
(Domonkos and Coll 2017b, hereafter DC2017b). In applying
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any interpolation procedures, data of the closest stations and/
or the data most highly correlated with the candidate station
should generally be more highly weighted than the other data
of the neighbourhood. Szentimrey (2010) recommends
kriging as the theoretically most correct interpolation method.
However, kriging uses a large number of parameters, which in
practice may affect accuracy. For instance, the tests of Borges
et al. (2013, 2014) showed that a regression based on geo-
graphical latitude, longitude and altitude and on the residual
inverse distance to be the most accurate interpolation method
for filling the gaps of seasonal precipitation series in Brazil. In
ACMANTv3, the squared spatial correlations are used as
weights in the interpolation of any climatic variable, as these
correlations can be considered the combined information of
the distance and other geographical characteristics.

Spatial correlations can vary seasonally between stations;
hence, routines taking account seasonal variation would be
useful for the calculation of interpolated values. However, in
many instances, the common period of observations between
the candidate series and the time series from neighbouring
stations is simply too short to properly select and weight the
data of the neighbourhood if the estimations of the spatial
relationships are derived from annual data (Costa and Soares
2009). Therefore, we recommend the use of deseasonalised
monthly data for the spatial interpolation, which although ex-
cluding any consideration of the seasonal variation among the
spatial relationships, it provides a sufficient amount of data for
the calculations in the vast majority of practical gap filling
tasks. The gap filling with ACMANTv3 is described in Sect.
3.3 and Appendix 1.

3 Methods

3.1 Test datasets

In DC2017b, the effect of the number of partner series on the
efficiency of homogenisation with the help of five test datasets
(denoted there with A, B, C, D, E) was examined, and three of
the five datasets (A, B, C) are used here with little
modification.

The origin of the homogeneous base of our test datasets is
the US benchmark dataset for testing the efficiency of daily
temperature homogenisation methods (Willett et al. 2014).
The data of BWyoming 2^ are used here, and both the source
data and our homogeneous base consist of 158 time series.
The original dataset contains daily mean surface air tempera-
tures of 42 years long series (1970–2011), but 100 years long
monthly mean temperature series (1901–2000) were derived
from that with a simple method described in DC2017b, and
these monthly data are used in this study. After the transfor-
mation to monthly series, IHs and outliers are randomly
inserted into them. The sequence of IHs can be characterised

as a limited random walk, since the cumulative impact of IHs
(i.e. the cumulated bias from the true climate) is maximised
during the dataset generation. Three datasets were generated
(A, B and C): In dataset A, the frequency of IHs is low, and the
mean size of biases is relatively small. In datasets B (C), the
frequency of IHs is higher (the highest) and the mean size of
biases is higher (the highest). The systematic trend bias caused
by IHs is small in A and C, but pronounced in B. The only
differences here from the versions used by DC2017b are that
(a) all the datasets are 100 years long; (b) in dataset B, the
frequency of platform-shaped IHs is 5 per 100 years; and (c) in
dataset C, the size of platform-shaped IHs is elevated by 30%
compared to the other IH types. More details of the test
datasets are provided in DC2017b for the interested reader.

The mean of spatial correlations (r) is 0.88 in A and B,
while it is 0.68 for C (Fig. 1).

3.2 Missing data fields

Each test dataset is examined with 7 kinds of mean missing
data ratio, but at least 18 series from the 158 are always left
complete, and these complete series offer a sufficient number
of comparable synchronous data for the homogenisation of
any series, except for a few cases of low spatial correlations
in dataset C. This is since in the present analysis we do not
want to confound the problem of the lack of synchronous data
with that of using interpolated data. The availability of com-
plete series does not reduce importantly the use of interpolated
data, as partner series are selected firstly according to their
spatial correlations and not according to the completeness of
the series (Sect. 3.4 and Appendix 2).

Eighteen time series were arbitrary selected from the 158,
and this subset remained unchanged in all experiments.
Regarding the other 140 series of the datasets, they include
10, 20,…,70 percentage missing values on average in the 7
experiments conducted. The missing data ratio is then varied
for time series within the same experiment (Table 1). In each
experiment and for each time series, the monthly missing
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Fig. 1 Frequency distribution of spatial correlations in the three test
datasets (A, B and C) in arbitrary units



values are positioned within the 100-year period according to
the following rules: (i) 50% of the missing values are entered
at the beginning of the period; 20% of the missing values are
entered at the end of the period; 20% of the missing values are
positioned in data gaps of entire years, but otherwise the dates
are selected randomly; and 10% of the missing values are
positioned fully randomly. For instance, the positions of
80%missing values within 1901–2000 are as follows: the data
segments for the periods 1901–1940 and 1985–2000 are
completely missing, the data of a further 16 years are
completely missing between 1941 and 1984, and there are a
further 96 monthly missing values in the remaining 28 years.
Although in real observational time series, the extent of miss-
ing data at the beginning and end sections of time series is
highly varied; the distribution ofmissing data in our datasets is
representative of a typical pattern of the temporal evolution of
data availability from stations. Thus, there is an initial sharp
increase in data availability, followed by a relatively stable,
low proportion of missing values, and then latterly a tendency
for growing ratio of missing values to be present. This pattern
has been observed to be the case for data networks in the USA
(Menne et al. 2009), in China (Hua et al. 2017), in Europe
(Klok and Klein Tank 2009; Coll et al. 2018) and also in
global datasets (Thorne et al. 2016).

3.3 Homogenisation and gap filling with ACMANTv3

We use ACMANTv3 in all of the experiments. ACMANT is a
modern, multiple break homogenisation method in the sense
that it detects jointly the breaks of time series and calculates
jointly the correction terms for all the IHs of a climatic net-
work whose data are homogenised together. While the first
version of ACMANT (Domonkos 2011b) was usable only
for the homogenisation of monthly temperatures of mid- and
high-latitudes, the most recent version (Domonkos and Coll
2017a) is usable for temperature and precipitation homogeni-
sation of any climatic region and for data at both daily or
monthly time resolution.

The accuracy of homogenisation has also been improved
with the release of newer versions. For instance, efficiency
improving novelties in ACMANTv3 compared to earlier ver-
sions are the calculation of monthly temperature adjustment
terms with irregular seasonality for temperature minimums in
general and for any surface air temperature characteristic of
tropical or monsoon regions. Other new features include an
ensemble pre-homogenisation and the application of ordinary
kriging for setting the weights of the reference composites.

Other than for extreme cases, the missing data tolerance of
ACMANTv3 is practically unlimited, and for the interested
reader, more details are in the Manual (http://www.c3.urv.cat/
softdata.php).

The gap filling for a missing monthly value of a candidate
series is performed by using the weighted average of observed
values synchronous with the missing value, but the values are
tuned to a section mean value characterising both the common
effect of local climate and the possible inhomogeneity effect
around the missing value in the candidate series (Appendix 1).
In the best scenario, the interpolated value retains the same
bias from the true climate as the temporally closest observed
values of the candidate series. To achieve this, relatively nar-
row windows are favoured in the estimation of the mean dif-
ference between the mean temperature of the candidate station
and that of the other stations. The optimisation of sample size
at the proximity of data gaps was examined by Tardivo and
Berti (2012) in a partly similar interpolation task. In our case,
the optimisation of sample size was part of the development of
ACMANTv3.

The mean annual cycle is removed from all-time series
before gap filling. Gap filling routines are performed three
times within a homogenisation procedure, first with the use
of raw data, and then in the second and third stages of the
procedure with the use of pre-homogenised data. Any ob-
served value synchronous with the missing data is used in
the interpolation when the spatial correlation between the time
series of the observed value and the candidate series is at least
0.4. More details of the gap filling procedures in ACMANTv3
are provided in Appendix 1.

Table 1 Missing data ratios in
time series in the 7 experiments Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7

N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio N Ratio

18 0 18 0 18 0 18 0 18 0 18 0 18 0

55 0 55 0 15 0 15 0 30 20 15 20 15 40

40 10 40 20 40 10 30 20 40 40 30 40 15 60

30 20 30 40 30 30 50 40 40 60 40 60 55 70

15 30 15 60 15 40 30 60 30 80 55 80 55 80
25 50 15 80
15 70

Exp. experiment, N number of time series, ratio missing data ratio in percentage
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3.4 Automatic networking

Relative homogenisation can be performed within net-
works of the same climatic region, and to enable this,
large datasets are often split into smaller subsets. In ad-
dition, DC2017b showed that the optimal number of
partner series for homogenising a candidate series with
ACMANTv3 is about 30, and that the accuracy of ho-
mogenisation cannot be improved with the inclusion of a
larger number of partner series, even in situations where
the spatial density of data and a similarity of climate
would allow this. While some homogenisation software
packages include the construction of climatic networks,
e.g. Climatol and PHA, the construction of a suitable
climatic network is a separate preparatory task for ho-
mogenisation with ACMANT.

In DC2017b, distinct networks were constructed for each
candidate series, with the inclusion of the other time series
most closely correlated with the candidate series as the refer-
ence series in each case. However, the task encountered here is
somewhat more complicated, as missing data can markedly
lessen the number of the truly comparable observed data.
Accordingly, we introduce the concept of Bnumber of effec-
tive partners^, which indicates the temporally and spatially
usable observed values of partner series for any given month
of the candidate series. During the automatic network con-
struction applied here, the increase of the number of effective
partners and the inclusion of highly correlated partner series
are favoured, while any excess in network size is penalised
(more details are in Appendix 2).

Figures 2 and 3 show the distribution of the number
of partner series and that of the effective partners in the
experiment with a 70% missing data ratio for datasets A
and C. When the spatial correlations are higher (dataset
A), the number of partner series has little variation (i.e. it
varies between 42 and 50), while in dataset C, some
candidate series have much less partner series due to

insufficient spatial correlations. The difference of the
spatial correlations between the two datasets has conse-
quences also for the number of effective partners. In the
case of dataset A, each date of each candidate series has
at least 17 effective partners, as the 18 complete series of
the dataset are well correlated. There is a high peak at
18, since for the starting and ending sections of many
series just the values of the 18 complete series act as
effective partners. By contrast, with dataset C, the num-
ber of effective partners is sometimes much smaller than
for dataset A. Nevertheless, even for dataset C and for a
70% mean missing data ratio with the exception of the
18 complete series, the number of effective partners is at
least 10 in 96.0% of the cases, and at least 15 in 91.8%
of the cases.

3.5 Efficiency measures

The efficiency of homogenisation is evaluated with the ratio
of the removal of raw data error. Three kinds of errors are
monitored, namely the centred root mean squared error
(RMSE) for monthly values, the RMSE for annual values,
and the bias of the linear trend for time series between the first
and the last observed values in them. These error terms are
calculated in the same way as in the closing study of HOME
(Venema et al. 2012).

The connection between raw data error (fraw), error of the
homogenised data (fhom) and efficiency (E) is shown by (1)

E ¼ f raw− f hom
f raw

ð1Þ

If the homogenisation is perfect then E = 1, if it is neu-
tral then E = 0 and when the homogenised data have a
bigger error than the raw data, E is negative. The efficien-
cy can be calculated for any error term and for any char-
acteristic of the error distribution. In this study, the arith-
metic average of errors and the 0.95 value of the
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probability distribution function (P95) will be shown, the
latter is chosen for examining the efficiency in reducing
the threshold for the largest 5% of errors.

4 Results

4.1 Effect of missing data in the partner series
on the homogenisation results of the complete series

Figure 4a, b shows the effect of missing data on the monthly
RMSE reduction of the 18 complete series. It can be seen that
the inclusion of partner series improves the efficiency even
when the missing data ratio is high in them, except for P95
in datasets B and C. In the latter two cases, the use of complete
series gives slightly better results than some of the experi-
ments where incomplete series are included, but these differ-
ences are very small. The efficiency is 50–80% for datasets A
and B and 40–50% for dataset C. Surprisingly, the results of

dataset C, particularly those for P95, have a low dependence
on the missing data ratio of the partner series.

Figure 4c, d shows similar results for the annual RMSE to
the results for monthly RMSE, except that the efficiencies
here always reach or exceed 60%. The efficiencies for dataset
B are often higher than those for dataset A, despite the fact that
the IH structure in dataset B is more complex than that in
dataset A. The inclusion of partner series with any ratio of
missing values impacts positively the results in all the datasets,
and this applies both for the means and for the thresholds of
the largest errors. The efficiencies are much less dependent on
the ratio of missing data in the results of dataset C than in the
results of the other datasets.

The efficiency of removing trend bias is generally higher
than that of removing RMSE (Fig. 4e, f). The inclusion of
partner series with any ratio of missing values reduces the
mean residual trend bias in dataset A and C, while the impact
is less clear for dataset B and for the P95 values. There does
not seem to be any clear impact of the missing data ratio either,
except in the results of dataset A.
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4.2 Overall effect of missing data
on the homogenisation results

Figure 5a, b presents the results of the mean reduction of
monthly RMSE for all of the 158 series. The efficiencies
are markedly lower here than for those presented in Fig.
4, and demonstrate that the removal of monthly RMSE is
less successful in time series with data gaps than in
complete series. The order of efficiencies according to
test datasets is A, B and C for the mean errors, with a
sharp decline being observed in the differences according
to the test dataset used when the missing data ratio in-
creases. Regarding the P95 values, the efficiencies de-
cline rapidly associated with the rising missing data ratio
in dataset A and B, whereas they remain moderately low
in dataset C. The results indicate that the largest 5% of
monthly RMSE for dataset B is not much smaller in the
homogenised data than in the raw data when the missing
data ratio is larger than 20%.

The efficiency in reducing annual RMSE (Fig. 5c, d)
is generally much higher than in reducing monthly
RMSE. Similar to the case of monthly RMSE reduction,
the decline of efficiency with increasing missing data
ratio is more pronounced than for the complete series
(Fig. 4c, d) in datasets A and B, while the missing data
ratio is nearly neutral to the efficiencies in dataset C.
When the missing data ratio is high, the difference of
efficiencies according to test datasets is small.

The efficiency in the removal of trend bias (Fig. 5e, f)
is generally higher than in the removal of annual or
monthly RMSE, and it is always higher than 60% in
the experiments performed. While the efficiencies clearly
decline with increasing missing data ratio for datasets A
and B, a slight opposite tendency is observed in the
results for dataset C. When the missing data ratio is high,
the difference of efficiencies according to test datasets is
small, similar to the efficiencies in reducing annual or
monthly RMSE.
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5 Discussion

5.1 The impact of using short and incomplete series
in homogenising time series

The results show that the inclusion of time series even with
large missing data fields in them almost always improves the
efficiency, and no significant decrease of efficiency for this
reason was observed during the experiments. All these indi-
cate that in spite of at least 18 complete series being included
in each experiment, the inclusion of the available short and
incomplete time series is always advisable in homogenising
with ACMANTv3, as long as the spatial correlations remain
satisfactory (i.e. they are not lower than 0.4). Note that in
several other homogenisation methods, short and incomplete
time series, as well as series with moderately high spatial
correlations are often excluded from network construction
and reference series selection, and hence the number of part-
ner series is sometimes heavily restricted (DC2017b and ref-
erences therein).

In homogenising complete candidate series with partly in-
complete series, the efficiency decreases slightly with an in-
creasing missing data ratio, but the efficiency generally re-
mains higher than if the incomplete series was excluded. In
homogenising incomplete series, the decrease of efficiency
with increasing missing data ratio is faster than is the case
for complete series, particularly in the reduction of monthly
RMSE. Nevertheless, the efficiency has remained positive in
all the experiments, and it is always above 50% for annual
RMSE and trend bias.

5.2 Differences between the monthly RMSE
and annual RMSE results

The reduction of trend bias and annual RMSE is generally
more successful than the reduction of monthly RMSE. This
feature is not specific to ACMANT; rather, it is the case for
statistical homogenisation methods generally (Venema et al.
2012). It is remarkable that in the experiments presented here,
the decline of efficiency with an increasing missing data ratio
is much more rapid for monthly RMSE than for annual
RMSE. As a consequence, the uniform application of annual
correction terms to each calendar month can be more effective
than the derivation and application of month-specific correc-
tion terms. However, the rawmonthly RMSE is larger than the
raw annual RMSE (Table 2). We have not undertaken exper-
iments applying seasonally uniform downscaling of annual
correction terms, but gross estimations about the relation of
the efficiencies can be obtained by relying on the results pre-
sented in Fig. 5 and the data in Table 2. According to these, the
use of month-specific correction terms is the most efficient for
reducing the mean monthly RMSE in datasets A and B, but it
seems slightly less effective for dataset C where the annual

cycle of biases is faint and irregularly shaped. By contrast, the
downscaling of annual correction terms applied in a seasonal-
ly consistent fashion is the most effective for reducing the
largest few percentages of monthly RMSE in series with miss-
ing data, and its advantage in this respect is notable.

The reduction of monthly RMSE is impacted more by the
presence of missing data than that of the annual RMSE, as the
interpolation errors of monthly values act as additional noise
on a monthly scale; hence, their impact is attenuated on longer
time scales. The signal to noise ratio generally influences the
efficiency of homogenisation, as it is shown for the estimation
of break positions (Lindau and Venema 2016), for the accura-
cy of monthly homogenisation results (Venema et al. 2012)
and for the estimation of daily correction terms (Mestre et al.
2011). The results presented here emphasise that although
several statistical techniques are known for the estimation of
correction terms with high temporal resolution, their practical
benefit depends on several factors, first of all on the signal to
noise ratio.

5.3 Variation of results according to test datasets
and missing data ratio

In dataset B, the characteristic IH size is larger than in dataset
A, which favours the signal to noise ratio in dataset B, but the
higher frequency and more complicated structure of IHs in
dataset B makes the homogenisation of this dataset more dif-
ficult. These favourable and unfavourable factors apparently
largely neutralise their common effect, as the efficiencies for
dataset A and dataset B are similar with slightly better results
for dataset A. The characteristic IH size is even larger in
dataset C than in dataset B, but there the spatial correlations
are lower and also the 15 per 100 years frequency of short-
term IHs acts as a larger noise component; hence, the efficien-
cies are generally smaller for dataset C.

Interestingly, the efficiencies for different datasets seem to
converge with an increasing missing data ratio, as efficiencies
decline faster with an increasingmissing data ratio for datasets
A and B than for dataset C. It should also be noted that such
convergence does not appear in the efficiencies for complete
time series. Often, there is no significant decline of efficiency
for dataset C with an increasing missing data ratio, and excep-
tionally, the efficiency slightly increases with a higher missing
data ratio in Fig. 5e, f. We cannot explain the reason for this

Table 2 Ratio of monthly and annual RMSE for the raw and complete
datasets

Ratio of means Ratio of P95

Dataset A 1.628 1.567

Dataset B 1.819 1.453

Dataset C 1.268 1.118
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paradox, perhaps the shortening of the periods with observed
data in experiments with large missing data fields reduces the
frequency of some inhomogeneity problems in dataset C.

The homogenisation results in a much smaller improve-
ment in the largest monthly RMSE of dataset B than in any
other efficiency characteristic examined, and this case is also
exceptional in the sense that here the results are poorer for
dataset B than for dataset C. A possible explanation of the
change of the rank order here is that the estimation of a sinu-
soid shaped annual cycle of correction terms is more sensitive
to the errors associated with monthly data than for that of the
irregular shaped annual cycle, as the latter includes ensemble
calculations and smoothing (Domonkos and Coll 2017a).

5.4 Representativeness of the results

The results of the study characterise the efficiency of
ACMANTv3 in homogenising monthly temperature series
from data dense areas of northern, continental mid-latitude
regions, but they are also at least indicative for the efficiency
of a large number of other kinds of homogenisation tasks.

In each experiment presented here, at least 18 series are
complete, and this situation provides good conditions for
gap filling and relative homogenisation, anything is the miss-
ing data ratio in the other series, although note that in dataset C
not all of the 18 complete series are spatially correlated with
each other. For sparser data in less dense networks, the effi-
ciencies would likely be lower.

Seventy percent of the missing values are positioned at the
beginning or end of the time series (outer missing values);
hence, they shorten the effective length of time series, while
the rest of the missing values are positioned between observed
values (inner missing values). The effects of outer missing data
and inner missing data are not the same on the efficiency of
ACMANTv3, as in most steps of the homogenisation, only the
inner data gaps are filled with interpolated values. Considering
the ratios of inner data gaps relative to the effective lengths of
time series with missing data in the seven experiments, they are
3, 7, 11, 17, 23, 31 and 41%. A larger ratio of inner data gaps
than for those in the experiments performed here would likely
enhance the missing data effect on the efficiency.

It is very likely that our results also fairly characterise the
efficiency of daily temperature homogenisation with
ACMANTv3, as although the interpolation is performed on
a daily scale, most of the steps of the homogenisation are still
performed at an annual or monthly scale in daily homogeni-
sation with ACMANTv3.

The results are indicative also as to the likely efficiency of
temperature homogenisation for tropical regions. Although
the spatial structures of climate are different in the tropics
compared with those of the mid-latitudes, these differences
are likely to have little effect on the efficiencies. Similarly,
the results are transferable to the likely efficiencies of

precipitation homogenisation with ACMANTv3, as the solu-
tion of the homogenisation task is similar for precipitation and
temperature (Domonkos 2015).

Regarding the missing data effect on efficiencies using oth-
er homogenisation methods, the representativeness of the re-
sults presented here are uncertain as other homogenisation
methods use other gap filling techniques, and the organisation
of gap filling—homogenisation sequence(s) can be different
from those of ACMANTv3. It would be useful to see the
results of similar experiments with other high-performance
homogenisation methods such as Climatol or MASH, but
these comparisons are beyond the scope of this study.

6 Conclusions

The impact of missing data on the efficiency of ACMANTv3
in homogenising monthly air surface temperature series has
been examined using three realistic test datasets. Each test
dataset consisted of 158 time series of 100 years length, from
which 18 series were left complete in all the experiments. The
mean missing data ratio for the other 140 series was varied
between 10 and 70%. The efficiency was measured via the
reduction of the monthly and annual RMSE and the reduction
of trend bias by homogenisation. The main conclusions are as
follows.

& All the results showed positive efficiency, and the reduc-
tion of the raw data error is mostly larger than 50%. Short
and incomplete series can be safely homogenised with
ACMANTv3 if the spatial density of data satisfies the
minimum conditions set for the method.

& Although data gaps cause some decrease in the effi-
ciency, the inclusion of short and incomplete series as
partner series has an overall positive impact on the
efficiency of homogenisation.

& For time series with missing data, the reduction of trend
bias and annual RMSE is much more successful than the
reduction of monthly RMSE. For reducing the largest
monthly RMSE, the use of uniform monthly correction
terms is the most efficient.

& The results of the study provide an indication of the effi-
ciency of ACMANTv3 in relation to various homogeni-
sation tasks.

As ACMANT has most often been ranked at the first place
in recent international efficiency tests of homogenisation
methods, we recommend the use of ACMANTv3, first of all
to the homogenisation of large datasets, and to the homogeni-
sation of data sets of any size when metadata is not provided.
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Appendix 1

I Gap filling within ACMANTv3

i) Concepts and definitions

The dataset consists of N monthly time series of n years
length, but the series are incomplete. Series s (s = 1,2,…N) can
be presented as

Xs ¼ xs;1; xs;2;…xs;h…xs;12n ðA1Þ
without indicating possible data gaps, h stands for the
serial number of month from the beginning of the time
series. The relation between h, the serial number of year
from the beginning of time series i and the serial num-
ber of calendar month m is.

h ¼ 12 i−1ð Þ þ m i∈ 1; 2;…nf g ðA2Þ

We will denote the cluster of observed values
(distinguishing from missing values) of series s with Js, and
its sub-cluster for month m with Js,m, and the number of ele-
ments in there with Ks and Ks,m, respectively.

Before any other operation with the data, the seasonal cycle
is removed by extracting the monthly climatic normal (Us,m)
from the observed values, then the deseasonalised series are
denoted with As (Eqs. A3–A5).

As ¼ as;1; as;2;…as;h…as;12n ðA3Þ
as;h ¼ xs;h−Us;m ðA4Þ

Us;m ¼ 1

Ks;m
∑ Js;mxs;h ðA5Þ

Missing data of a candidate series (Ag) will be filled
with interpolation using the synchronous values of part-
ner series (As). In the selection of partner series and for
weighting their contribution, spatial correlations are
considered.

The spatial correlation between series g and series s (rg,s) is
defined by the Pearson correlation coefficient. The sample
size for its calculation includes each h for which both series
have observed values. When the sample size is lower than 50,
the correlation is zero by our definition.

ii) Gap filling

The method of gap filling has remained similar to that in
the first version of ACMANT (Domonkos 2011b), but some
details have been changed since then.

The interpolation for a missing value of month h0 in
the candidate series relies on the synchronous observed
values of surrounding stations, but the values of the part-
ne r se r ie s are tuned to a sec t ion mean value
characterising the common effect of local climate and
possible inhomogeneity effects at the timing of the miss-
ing value in the candidate series. For this purpose, win-
dow [h1, h2] around h0 is constructed. This window must
be wide enough to have sufficient data for the reliable
estimation of the difference between the section means
for the candidate series Ag and its partner series As, but
narrow enough to exclude the effects of temporally dis-
tant IHs.

The window width can be regulated by parameterising
it directly, or via the minimum number of the value pairs
for series g and s. In practice, the window width is varied
according to the frequency of missing data around h0 in
the time series participating in the interpolation, hence
h2 – h1 is functions of both h and s. Table 3 shows various
sets of conditions for the window constructions in terms
of the half window width (L) and the number of observed
value pairs within the window (k). Moving down in
Table 3 the conditions soften, and always the strictest
conditions allowed by data availability are selected for
the window construction.

All the series with rg,s ≥ 0.4 are considered as partner series,
if they have observed value for month h0. Eq. (A6) shows the
tuning of value as,h0 to the candidate series.

a
0
s;h0 ¼ as;h0 þ 1

k
∑h2

h¼h1 ag;h−as;h
� � ðA6Þ

When at least one of the two series do not have observed
data (h is not ϵ Jg∩Js), then as,h = ag,h in (6) by definition. The
interpolated value will be the weighted average of the tuned
values of N* partner series (N* ≤N − 1). The weights are the
squared spatial correlations corrected by coefficient c depend-
ing on the window width (Table 3).

Table 3 Connections between half window width (L), number of
observed value pairs for the candidate series and its partner series (n’)
and coefficient of weight correction (c) in the construction of window
around the timing of the missing data (h). Always the strictest conditions
allowed by data availability are applied

First round Later rounds

L (years) n’ c L (years) n’ c

< 5 100 1.0 < 12 100 1.0

5 30≤ 1.0 12 30≤ 1.0

< 12 30 0.8 < 25 30 0.9

No limit 30 0.5 No limit 30 0.7
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When the sum of the corrected weights (p) is lower
than 0.4, zero anomaly (ag,h = 0) is presumed for the
missing value with a certain or entire weight, according
to Eqs. (A7) and (A8).

ag;h0 ¼ 1

p
∑N*

s¼1csr
2
g;sa

0
s;h0 ðA7Þ

p ¼ max 0:4;∑N*

s¼1csr
2
g;s

� �
ðA8Þ

Note that the optimal sample for the calculation of U and r
(Huang et al. 1996; Tardivo 2015) may also differ from the
sample including all available data and used in this study.
However, this difference from the optimal parameterisation
likely has a minor effect on the accuracy of interpolation.

The gap filling is performed three times within the homog-
enisation, first with the use of raw data, then with the use of
pre-homogenised data in the second and third stages of the
procedure.

Appendix 2

II Automatic networking

Appropriately constructed networks for homogenisation with
ACMANT have three positive attributes: (i) The candidate
series have a sufficient number of highly correlated partner
series; (ii) Each section of the candidate series is covered with
a sufficient number of synchronous observed data of the part-
ner series; (iii) There is no unnecessary excess of the network
size. The algorithm presented here is structured to give solu-
tions with these positive attributes.

The number of partner series and the number of effective
partners (see its definition in Sect. 3.4) are denoted withM and
F, respectively. The spatial correlations used here (r*) are not
the same as those which are used for the interpolation, namely
r* is calculated from the first difference (increment) series of
the deseasonalised monthly temperatures, and following from
how it was introduced to time series homogenisation by
Peterson and Easterling (1994).

For the homogenisation of each candidate series, one dis-
tinct network is constructed. First, the most highly correlated
partner series are selected up to 30 series. When the number of
potential partner series with r* ≥ 0.4. is higher than 30, the
following steps are performed recursively.

i) Possible improvements in F by the inclusion of any
further partner series (s) are considered using score S1
for dates of F < 10 (Eqs. A9, A10).

S1 sð Þ ¼ ∑
12n

h¼1
5r*4s 12−F*

s;h

� �3
ðA9Þ

F* ¼ F if F < 10
12 if F ≥10

� �
for every sandh ðA10Þ

ii) Possible improvements in F by the inclusion of any fur-
ther partner series are considered using score S2 for de-
cadal sections of the candidate series where F < 10 in at
least 25% of the decade. Months belonging to at least one
of such decades are denoted with m in Eqs. A11-A12.

S2 sð Þ ¼ ∑
m
5r*4s 20−F**

s;m

� �2
ðA11Þ

F** ¼ F if F < 20
20 if F ≥20

� �
for every sandm ðA12Þ

iii) The exceedance ofM above 30 is penalised with score
S3 (Eq. A13).

S3 ¼ M−30ð Þ2 ðA13Þ

iv) Summarised score S is calculated for each s (Eq. A14).

S sð Þ ¼ S1 sð Þ þ S2 sð Þ−S3 ðA14Þ

Then the series with the highest S is selected, and the pro-
cedure continues with step i.

If S ≤ 0 for all s, no further partner series is selected, and the
procedure terminates.

The development of this algorithm is based on subjective
decisions, but the important elements of the procedure can be
reasoned well. Frequent occurrence of low Fwithin a relative-
ly short period is considered more destructive to the efficiency
of homogenisation than its sporadic occurrences; therefore,
higher minimum threshold of F is applied in S2 than in S1.
It is more important to raise the smallest F values (if it is
possible) than to raise a large number of F values, that is
why the second factors of (A9) and (A11) are assigned higher
powers. When more series are comparably useful in raising F,
it is important to give preference to the one with relatively
high correlation, therefore the power of r* is raised by 4.
Note that some parameter values are close to those of the
networking in PHA (Menne and Williams 2009), as in PHA
the 40 best correlating partner series are taken at the first step,
and the correlation threshold is 0.5.
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