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Abstract 

In conventional symmetric encryption, it is common for the encryption/decryption key to be reused for multiple 

plaintexts. This gives rise to the concept of a known-plaintext attack. In optical image encryption systems, such as 

double random phase encoding (DRPE), this is also the case; if one knows a plaintext- 

ciphertext pair, one can carry out a known-plaintext attack more efficiently than a brute-force attack, using 

heuristics based on phase retrieval or simulated annealing. However, we demonstrate that it is likely that an 

attacker will find an imperfect decryption key using such heuristics. Such an imperfect key will work for 

the known plaintext-ciphertext pair, but not an arbitrary unseen plaintext-ciphertext pair encrypted using the 

original key. In this paper, we illustrate the problem and attempt to characterise the increase in security it 

affords optical encryption. 
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1 Introduction 

Optical encryption has received much attention in recent years; the reason can be primarily attributed to some 

of its distinct advantages over conventional digital electronic hardware and software encryption. Double ran- 

dom phase encoding (DRPE), proposed by Réfrégier and Javidi in 1995 [Refregier and Javidi, 1995], is one 

of the most studied and extended technologies in optical encryption to date. A security concern about op- 

tical encryption was first reported by Carnicer et al. in 2005, where a chosen-ciphertext attack (CCA) was 

introduced to find the exact decryption key [Carnicer et al., 2005]. Subsequently, Peng et al. proposed a 

chosen-plaintext attack (CPA) to extract the exact key [Peng et al., 2006a], as well as a proposal that the orig- 

inal key could be obtained by solving a linear system of equations from Frauel et al. [Frauel et al., 2007].In a more 

practical circumstance, if an attacker only has one plaintext-ciphertext pair, a phase-retrieval al- 

gorithm [Peng et al., 2006b] or an heuristic algorithm [Gopinathan et al., 2006] can obtain an approximation 

of the decryption key. A multiplicity of known pairs could be used to significantly reduce the error in the 

output image [Situ et al., 2007]. To respond to the above attacks, some DRPE-based security enhancement 

approaches have introduced additional parameters in the Fresnel domain [Situ and Zhang, 2004] and in the 

fractional Fourier domain [Unnikrishnan et al., 2000], and have added an extra amplitude mask directly be- 

hind the Fourier domain mask [Cheng et al., 2008] as extra keys to force attackers to find improvements 

from their side. However, the two phase masks are still the main concern of a number of optimized at- 

tacks [Kumar et al., 2012, Wang and Zhao, 2012, Zhang et al., 2013, Wang et al., 2015, Li and Shi, 2016]. 

 DRPE is a symmetric encryption algorithm, which means the encryption and decryption steps share the 

same key. All symmetric encryption keys can only be shared over a secure channel. (It is different from 

asymmetric key encryption system where the public key used for encryption can be openly shared.) It is 

inconvenient to apply new key to each subsequent image in symmetric optical encryption because the size 

of the key is relatively large (routinely hundreds of times that in conventional cryptography). One possible 

solution is to apply modes of operation to optical encryption [Naughton et al., 2008]. 
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Figure 1: An illustration of symmetric DRPE, showing the location of the two phase-encoded image masks (p1 

and p2) that constitute the encryption key (and the decryption key). Image mask p1is located immediately after 

the input image (which effects a pointwise multiplication between the input and p1). Image mask p2is located 

in the Fourier plane, where it will be pointwise multiplied by the Fourier transform of the product of the input 

and p1. A second Fourier transform returns the encrypted image from the spatial frequency domain to the space 

domain. 

2 Keyspace analysis 

The numerical implementation of the encryption process in DRPE (see illustration in Fig.1) can be described 

as 

Ψ (x,y) = F {F [𝑓 (x,y) p1 (x,y) ] p2 (u, v)}, (1) 

where the p1 (x, y) and p2 (u, v) are two statistically independent phase masks representing the encryption key 

of the system, and F is a Fourier transform. Each phase key is of the form exp(im(x,y)), where m is a 

discrete phase mask with height M pixels and width N pixels, and with values randomly taken from the range 

[0,2π). The relevant keyspace has size K=Q2(M×N), where Q is the number of quantization levels in the phase 

distribution. A study of the keyspace has been proposed by Monaghan et al. [Monaghan et al., 2007], where a 

small 3×3 pixels mask with 4 quantisation levels was used. They showed that 43×3 possible keys in the keyspace 

have to be examined, in the worst case, to decrypt a known plaintext-ciphertext pair. In this discussion, they 

selected a tolerable decryption error threshold. Multiple keys in the keyspace were found which could decrypt 

the known ciphertext with an error lower than or equal to the threshold, exactly Q of which (as is well known) 

were equivalent to the correct key. These Q perfect keys differ from each other only by a constant additive 

phase 2π/Q. 

 We determined which of the keys would decrypt subsequently unseen plaintext-ciphertext pairs encrypted 

using the same original key. We summarise our results using one of the grayscale and one of the binary plaintext 

images from our experiment. The size for each image continues the use of 3×3 pixels as chosen by Monaghan 

et al. [Monaghan et al., 2007] and we choose to have 8 quantisation levels in the encryption key. Normalized 

root mean square (NRMS) error was used to determine the quality of the decrypted output, calculated as 

 

𝐸NMRS = {
∑ ∑ |𝐼d(𝑥,𝑦)−(𝐼(𝑥,𝑦)|2

𝑦𝑥

∑ ∑ |𝐼(𝑥,𝑦)|2
𝑦𝑥

}
1/2

 , (2) 

 

Where Id denotes the intensity of the decryption output and I is the expected intensity. A NRMS error threshold 

of 0.1 was chosen to decide whether decryption was successful or not. The first mask is not required in the 

decryption process and therefore the second mask can be regarded as the only decryption key in this system. 

There are 83×3=1.3×109 possible keys in this keyspace. 

 Our specific experimental platform runs on a Dell Optiplex 780 desktop PC with an Intel CoreTM2 Duo 

E7500 CPU and 4 GB of RAM, running Python 3.5.2 in Linux. For this experiment with binary-valued plaintext 
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Figure 2: Binary image experiment (all subimages are explained in detail in the main text). 

 

 

Figure 3: Binary image experiment: for all 408 keys that decrypted the known pair with NRMS error of 0.1 or 

less, this figure shows how well they decrypted the two unseen images. 
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Figure 4: Greyscale image experiment (all subimages have the same meaning as those in Fig. 2). 

images, it took approximately 10 hours to investigate all 1.3×109 possible keys. Figures 2(a) and (b) show the 

plaintext part of the known pair and the second random phase mask, respectively, the latter being the phase 

distribution before being multiplied by 2π. Figures 2(c)-(d) are the second and third binary-valued plaintext 

images, for which their encrypted versions only will be known to the attacker. Of the 1.3×109 possible keys, 

408 keys decrypted the encrypted version of the known plaintext image in Fig. 2(a) with a NRMS error of 

0.1 or less. Then each of these keys were used to decode encrypted versions of Figs. 2(c) and (d) that were 

encrypted with the same key Fig. 2(b). The corresponding NRMS errors are plotted in Fig.3, which shows that 

in general they yield much higher errors with unseen images than the 0.1 error yielded with the known pair. For 

this second stage, a NRMS error threshold of 0.2 was introduced to discriminate correct decryption (following 

Monaghan et al. [Monaghan et al., 2007]), followed by the application of a threshold of 0.5 to determine if the 

binary pixel is white (1) or black (0). From the 408 keys that decrypted the known pair with error up to 0.1, 

only 24 of them could correctly decrypt both unseen encrypted images, including the Q (Q=8) perfect keys. 

Another 16 keys produced one correct decryption, with the remainder resulting in errors consistently over 0.2. 

  Example decryption keys and corresponding decrypted outputs are shown in Figs. 2(e)-(l). Fig. 2(e) is a 

decryption key with one incorrect pixel – it decrypts encrypted versions of the above three plaintext images 

with NRMS errors of 0.1, 0.13 and 0.17, respectively, and Figs. 2(f)-(h) are the corresponding outputs. Fig. 2(i) 

is a decryption key with half of the pixels incorrect – it decrypts the same images with NRMS errors of 0.1, 

0.23 and 0.26, respectively, and Figs. 2(j)-(l) are the corresponding outputs. It can seen that although Fig. 2(i) 

decrypts the known pair with low error, it decrypts the unseen images with higher error. 

 The experiment was repeated for grayscale 3×3 pixel images. The results are shown in Figs. 4 and 5 and 

each subimage has the same explanation as those in Figs. 2 and 3. In this test, 120 keys were able to decrypt 

the known pair with NRMS error of 0.1 or less. Of these, only 32 could successfully decrypt both subsequent 

unseen images (using our choice of a threshold of 0.3 being reasonable based on visual inspection). As with the 

binary image case, only a minority of keys that successfully decrypt the known pair can successfully decrypt 

the unseen images. The key in Fig. 4(e) decrypts encrypted versions of the three plaintext images with NRMS 

errors of 0.1, 0.21 and 0.22, respectively. The key in Fig. 4(i) decrypts encrypted versions of the three plaintext 

images with NRMS errors of 0.1, 0.33 and 0.35, respectively. It can seen that although Fig. 4(i) decrypts the 

known pair with low error, it decrypts the unseen images with higher error. 

 We define "imperfect keys" as those keys that decrypt the known pair successfully, but do not consistently 

decrypt unseen images successfully. Of keys that decrypt the known pair, these imperfect keys are in the 

majority. They disrupt the job of the attacker and their presence increases the security of optical encryption 
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Figure 5: Greyscale image experiment: for all 120 keys that decrypted the known pair with NRMS error of 0.1or 

less, this figure shows how well they decrypted the two unseen images. 

because an attacker cannot know from one known plaintext pair if they have deduced an approximation of 

aperfect key or a (relatively useless) imperfect key. 

3 Investigation of large keyspaces 

The examined keyspaces in the previous section were of small sized phase keys. In practice, the plaintext 

image would have at least two orders of magnitude more pixels. Relatively, the cryptanalysis of the rele- 

vant keyspace becomes computationally difficult. In order to prove the existence of the imperfect key in the 

large size of the keyspace, such as 64×64 pixels, we intentionally selected the keys found using a simulated 

annealing algorithm. This heuristic approach designed to the DRPE has been proposed by Gopinathan et 

al. [Gopinathan et al., 2006]. The prerequisite of the SA algorithm is one known plaintext-ciphertext pair and 

more ciphertexts all encrypted with the same key, that is well fitted with our analysis. In that paper, the keys 

found in the SA algorithm based on a binary image pair have been examined to decrypt the second unseen im- 

age, the decrypting NRMS errors for 32×32 pixels and 64×64 pixels plaintexts were both close to an average of 

0.4. Some examples are shown in Fig. 6(a)-(d). Moreover, we have complemented the test adopting grayscale 

image, the errors to decrypt the second unseen image found that sometime reached to the NRMS of 0.8, which 

is consistent with the worst cases shown in the Fig. 5. The threshold for the known pair remains the NRMS of 

0.1. 

 As considered binary image is more immune to the noise than grayscale image, the peak error of 0.4 that 

still provides a tolerable visibility, referring to the Fig. 6(d). Referring to the binary plaintext image can not 

support details as many as the grayscale image, it is not an ideal choice for hiding text or graph, we do not 

further discuss it. On the other side, when the noise in the grayscale output exceeds NRMS of 0.8 the attacker 

can not recover any useful information. It is worth to mention the collision problem in DRPE that also arouse 

high noise in result, as shown in Fig. 6(j). Collision is commonly inevitable phenomenon in a linear system, 

such as DRPE. More details of the collision problem can be referred to [Situ et al., 2008]. That suggests to use 

grayscale image rather than binary image in DRPE to resist the known-plaintext attack. 

4 Regions in the keyspace 

There is no doubt that all correct but imperfect keys can be presented as adding a small amount of noise to the 

perfect keys. For example, the key in Fig. 2(e) and Fig. 4(e). That implies a small region around the perfect 



Proceedings of the 19th Irish Machine Vision and Image Processing conference  IMVIP 2017 

Aug 30th-Sept 1st, 2017, Maynooth, Ireland  207  ISBN 978-0-9934207-2-6  

 

Figure 6: Original and decrypted 64×64 pixel images using the SA algorithm. (a) and (b) are the plaintext part 

of the known binary pair and a second pair, respectively; (c) and (d) are the decrypted versions using the SA 

algorithm yielding NRMS errors of 0.1 and 0.4, respectively; (e) is the input part of the known grayscale pair; 

(f) is the encryption key with 256 Q-levels; (g) is the second grayscale plaintext; (h) is the decrypted version 

of the original input image, with NRMS error of 0.09; (i) and (j) are decrypted versions of the second unseen 

image; (k) is the imperfect key found using the SA algorithm; (l) is a highly approximated version of the key 

in (f). 

key in which contains the correct keys (decryption error in 0.1) in keyspace. The theory of region is previously 

introduced in [Situ et al., 2010]. We also believe that there is the region of imperfect keys in the keyspace. 

 Table.1 illustrates the increased amount of noise added to a imperfect and an approximate key to explore 

the region of each that guarantees an average of NRMS of 0.1, the experimental keys were found using the 

SA algorithm and produced by adding a slight noise to the original encryption key, shown in Fig. 6(k) and 

(l),respectively, the two keys decrypts the known pair yielding identically NRMS of 0.09. The known plaintext 

was chosen from the Fig. 6(e), and the same encryption key (f) was reused as well. In this trial, the additional 

noise was presented as a matrix with the equal size of the keys, and to be randomly produced based on the 

normal(Gaussian) distribution algorithm which simulates equivalent possibility for all pixels of the trial keys to 

receive a random phase error. We used one phase-level in phase distribution (2π/Q) as the unit of the adding 

noise, Q=256 in the encryption key. The mean parameter of the normal distribution algorithm in this trial 

was fixed as 0, and its standard deviation(STD) was initialized as 1.0 that indicates noise added to pixels are 

mainly centralized at one or two phase-levels at the beginning. For the same level of STD, noise was randomly 

generated for 10 thousand times and each simultaneously added to both experimental keys to generate new 

keys. If the average error to decrypt the known pair using the new keys is under NRMS of 0.1, the STD of the 

algorithm increases 0.1 to perform higher amount of noise added to both keys. 

 

Table 1: The table shows the result of additive normal (Gaussian) noise with a standard deviation (STD) of 1.4. 

Each column shows an average of ten thousand simulations, the mean and standard deviation of decryption 

errors are listed, followed by the maximum and the minimum error in the decrypted output. The last two 

columns show the NRMS errors of using the newly found keys to decrypt the second unseen image. 

 



Proceedings of the 19th Irish Machine Vision and Image Processing conference  IMVIP 2017 

Aug 30th-Sept 1st, 2017, Maynooth, Ireland  208  ISBN 978-0-9934207-2-6  

 

Figure 7: A portion of the keyspace (explained in the text). The total size of the keyspace is (3×3)8. 

 The two trial keys showed almost identically capability to accept noise to estimate more keys, that yields 

errors in a close range (see in Table. 1), the STD was both stopped at 1.4. Furthermore, the new keys derived 

from the imperfect key are exactly consistent style, the evidence is shown in the last column of Table.1. It 

is clear that how many of the correct regions in the keyspace that is equivalent to the number of perfect keys 

in the keyspace. We presume that the size of correct region to be larger than any of the imperfect regions in 

the keyspace, because the perfect key would provide zero error in decryption but no imperfect could do, that 

implies the perfect key would undertake higher noise to still satisfy the error threshold. 

5 Classification of the keyspace 

In this context, the keyspace of the DRPE can be classified as, 

1.  Incorrect keys, this kind of keys occupied the main part of the keyspace, which is unable to decrypt the 

known pair yielding NRMS errors in a preset threshold. 

2.  Perfect keys, they provide zero noise in the output intensity, the exact number is equivalent to the Q-levels 

in the encryption key. 

3.  Approximations of perfect keys, the high approximation of the perfect keys that decrypt the known pair with 

a tolerable noise, these keys can be expected to decrypt all ciphertext with consistently low errors. 

4.   Imperfect keys, the keys can ideally decrypt the known image pair but which unable to decrypt all ciphertexts 

within a reasonable error range. 

 Figure 7 is an illustration of a significant part of the keyspace. The exact data is originated from a previous 

trial (see in Fig. 4). Each of the possible keys has a unique index according to the sequence of it being examined, 

the corresponding coordinate is calculated and drawn on a 2d map. We use several remarks to represent different 

keys, such as, the triangle means the perfect key, the cross stands for the imperfect keys and the circle denotes 

the approximate key. Fig. 4 typically reflects the characteristic of the entire keyspace, also strongly supports 

our analysis of the keyspace, the perfect keys (triangle) appear always closely attached with a few approximate 

keys (circle), the evidence of the correct regions. Theoretically, there is only one correct region for each of 

the perfect keys. Besides, we notice that one imperfect key separately located at the right and left side of the 

correct region, that mean the flexible choice of different error threshold would inappropriately determine some 

keys actually close to the perfect key. Meanwhile, the imperfect keys in Fig. 7 display as clusters or lines, that 

is regarded as the imperfect region. Fig. 7 can be mapped into the keyspace by continuously adding a constant 

phase of1/Q. 

6 Conclusion 

In optical encryption, many previous studies have considered a known-plaintext attack. A commonality among 

these studies has been them seeking a highly approximated decryption key using an efficient heuristic algorithm 
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rather than an exhaustive attack. In this paper, we show that these attacks are not robust, and that while the key 

found will decrypt the known encryption/decryption pair, it is not likely to decrypt unseen images encrypted 

with the same key. This implies that optical encryption may not be as susceptable to plaintext attacks as 

previously reported. 
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