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Abstract: This paper studies a joint transmission scheduling and controller design problem,
which minimizes a linear combination of the control cost and expected energy usage of the
sensor. Assuming that the sensor transmission decisions are event-based and determined using
the random estimation error covariance information available to the controller, we show a
separation in the design of the transmission scheduler and controller. The optimal controller
is given as the solution to an LQG-type problem, while the optimal transmission policy is a
threshold policy on the estimation error covariance at the controller.

1. INTRODUCTION

In event triggered estimation and control, sensors and/or
controllers will communicate only when certain events
occur, see e.g. Li et al. (2010), Wu et al. (2013), Trimpe and
D’Andrea (2014), Tabuada (2007), Heemels et al. (2012),
Ramesh et al. (2012), Quevedo et al. (2014). Using such
event triggering mechanisms can often lead to a reduction
in communication and energy usage, important in resource
constrained environments such as wireless control systems,
while still maintaining a certain level of performance.
Various different event triggering mechanisms have been
proposed, such as thresholding type policies which trigger
a transmission if and only if certain quantities such as the
estimation error, error in predicted output, or estimation
error covariance, exceed a given threshold.

The motivations for using event triggering rules are often
based on heuristics, although some structural results on
optimal triggering rules have also been derived. In estima-
tion, for the case of noiseless measurements and no packet
drops, Lipsa and Martins (2011) and Nayyar et al. (2013)
showed a threshold behaviour in the difference between
the current state and most recently transmitted state.
For variance based triggering (where transmit decisions
depend on the estimation error covariance with packet
drops, it was shown in Leong et al. (2017) that a threshold
policy is optimal, in the sense that it minimizes a linear
combination of the expected estimation error covariance
and expected energy usage. In event triggered control,
the optimality of certainty equivalence in the control law
was shown in Molin and Hirche (2013), but with noisy
measurements the conditional expectations are in general
difficult to evaluate (Molin and Hirche (2010)).

In the present work we study a joint transmission schedul-
ing and controller design problem which minimizes a linear
combination of the control cost and expected energy usage
of the sensor. The sensor transmits local state estimates
over an i.i.d. packet dropping link to the controller. Sensor
transmissions are scheduled at the controller, which is
assumed to have more computational capabilities, based
on the randomly time-varying estimation error covari-
ances at the controller. Under this setup, we show that
a separation of the transmission scheduling and controller
design problems holds. The controller design problem is a
LQG-type problem, and the transmission scheduling prob-
lem is similar to a problem previously studied in Leong
et al. (2017), with the optimal transmission policy being a
threshold policy in the estimation error covariance. In the
infinite horizon case, simple analytical expressions for the
performance can also be derived.

The paper is organized as follows. The system model is
presented in Section 2, and the problem formulation in
Section 3. The separation of transmission scheduling and
controller design is shown in Section 4, with the optimal
controller also given. The transmission scheduling problem
is analyzed in Section 5. The infinite horizon case is
considered in Section 6. Numerical results are presented
in Section 7.

2. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. Consider
a discrete time process

xk+1 = Axk +Buk + wk (1)
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where xk ∈ Rn, uk ∈ Rp, and wk is i.i.d. Gaussian with
zero mean and covariance Q > 0. 1 The initial state x0 is
Gaussian with zero mean and covariance P0. The sensor
has measurements

yk = Cxk + vk, (2)

where yk ∈ Rm and vk is Gaussian with zero mean and
covariance R > 0. The noise processes {wk} and {vk} are
assumed to be mutually independent.

The sensor transmits local state estimates x̂s
k|k to the

controller, which generally gives better performance than
transmitting measurements (Xu and Hespanha (2005)).
Let νk ∈ {0, 1} be decision variables such that νk = 1
if and only if x̂s

k|k is to be transmitted to the controller at

time k. Define the information set available to the sensor
at time k as: 2

Is
k = {y0, . . . , yk, u0, . . . , uk−1, ν0, . . . , νk} (3)

and the local state estimates and error covariances by:

x̂s
k|k−1 � E[xk|Is

k−1], x̂s
k|k � E[xk|Is

k]

P s
k|k−1 � E[(xk − x̂s

k|k−1)(xk − x̂s
k|k−1)

T |Is
k−1]

P s
k|k � E[(xk − x̂s

k|k)(xk − x̂s
k|k)

T |Is
k].

At time instances when νk = 1, the sensor transmits its
local state estimate x̂s

k|k over a packet dropping channel

to the controller. To take into account energy usage, we
will assume that each transmission will require an energy
of E, while non-transmissions do not consume energy. Let
γk be random variables such that γk = 1 if the sensor
transmission at time k is successfully received, and γk = 0
otherwise. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

At instances where νk = 1, it is assumed that the controller
knows whether the transmission was successful or not,
with dropped packets discarded. Define the information
set available to the controller at time k as

Ic
k �{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s

0|0, . . . , νkγkx̂
s
k|k,

u0, . . . , uk−1}
(4)

1 For a symmetric matrix X, we say that X > 0 if X is positive
definite, and X ≥ 0 if X is positive semi-definite. For symmetric
matrices X and Y , we say that X > Y if X − Y is positive definite,
and X ≥ Y if X − Y is positive semi-definite.
2 We assume that uk−1 is fed back to the sensor before transmission
at time k, and is needed in order to form state estimates at the
sensor. Instead of uk−1, it will turn out that feeding back γk−1 is
also sufficient for reconstructing uk−1 at the sensor, see Remark 1.

and the state estimates and error covariances at the
controller by:

x̂c
k|k−1 � E[xk|Ic

k−1], x̂c
k|k � E[xk|Ic

k]

P c
k|k−1 � E[(xk − x̂c

k|k−1)(xk − x̂c
k|k−1)

T |Ic
k−1]

P c
k|k � E[(xk − x̂c

k|k)(xk − x̂c
k|k)

T |Ic
k].

The decision variables νk are computed at the controller
(based on information available at time k−1), and fed back
to the sensor before transmission at time k. This can be
done at the same time as the feedback of uk−1, see Fig. 1.

3. PROBLEM STATEMENT

We wish to jointly design the transmission decisions {νk}
and control signals {uk} to solve the following problem:

min
{νk,uk}

E
[N−1∑

k=0

(xT
kWxk+uT

k Uuk+βνkE)+xT
NWxN

]
(5)

where the matrices W ≥ 0 and U > 0, and the scalar
parameter β ≥ 0 is a design parameter weighting the
tradeoff between the control cost and energy usage.

As stated before, the decision variables νk are deter-
mined at the controller and fed back to the sensor. As-
suming that the transmit decisions νk depends only on
(P c

0|0, . . . , P
c
k−1|k−1),

3 in the next section we will show

that the design of {νk} and {uk} can be “separated”, in
the sense that we can rewrite (5) as

min
{νk}

[
min
{uk}

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk) + xT
NWxN

]

+ E
[N−1∑

k=0

βνkE
]]
,

(6)

with the inner optimization over {uk} being the solu-
tion to an LQG-type control problem. In a similar spirit,
separation-type results have been derived for various dif-
ferent problems such as joint sensor and controller de-
sign for information regularized LQG control (Tanaka and
Sandberg (2015)), power management for wireless control
systems (Gatsis et al. (2014)), and joint transmission en-
ergy allocation and control for energy harvesting sensors
(Knorn and Dey (2015)).

4. SEPARATION OF TRANSMISSION SCHEDULER
AND CONTROLLER DESIGN

In this section, we will prove the following:

Theorem 1. For transmit decisions νk dependent only on
(P c

0|0, . . . , P
c
k−1|k−1), problem (5) is equivalent to problem

(6). Furthermore, the optimal solution to the problem:

min
{uk}

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk) + xT
NWxN

]
(7)

is of the form

u∗
k = −(BTSk+1B + U)−1BTSk+1Ax̂c

k|k � Lkx̂
c
k|k, (8)

3 This is in fact equivalent to letting νk depend only on P c
k−1|k−1

,

see Corollary 1. Allowing transmission decisions to depend on
P c
k−1|k−1

is similar to the variance based event triggering scheme of

Trimpe and D’Andrea (2014), although random packet drops were
not considered there.
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transmission at time k is successfully received, and γk = 0
otherwise. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

At instances where νk = 1, it is assumed that the controller
knows whether the transmission was successful or not,
with dropped packets discarded. Define the information
set available to the controller at time k as

Ic
k �{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s

0|0, . . . , νkγkx̂
s
k|k,

u0, . . . , uk−1}
(4)

1 For a symmetric matrix X, we say that X > 0 if X is positive
definite, and X ≥ 0 if X is positive semi-definite. For symmetric
matrices X and Y , we say that X > Y if X − Y is positive definite,
and X ≥ Y if X − Y is positive semi-definite.
2 We assume that uk−1 is fed back to the sensor before transmission
at time k, and is needed in order to form state estimates at the
sensor. Instead of uk−1, it will turn out that feeding back γk−1 is
also sufficient for reconstructing uk−1 at the sensor, see Remark 1.

and the state estimates and error covariances at the
controller by:

x̂c
k|k−1 � E[xk|Ic

k−1], x̂c
k|k � E[xk|Ic

k]

P c
k|k−1 � E[(xk − x̂c

k|k−1)(xk − x̂c
k|k−1)

T |Ic
k−1]

P c
k|k � E[(xk − x̂c

k|k)(xk − x̂c
k|k)

T |Ic
k].

The decision variables νk are computed at the controller
(based on information available at time k−1), and fed back
to the sensor before transmission at time k. This can be
done at the same time as the feedback of uk−1, see Fig. 1.

3. PROBLEM STATEMENT

We wish to jointly design the transmission decisions {νk}
and control signals {uk} to solve the following problem:

min
{νk,uk}

E
[N−1∑

k=0

(xT
kWxk+uT

k Uuk+βνkE)+xT
NWxN

]
(5)

where the matrices W ≥ 0 and U > 0, and the scalar
parameter β ≥ 0 is a design parameter weighting the
tradeoff between the control cost and energy usage.

As stated before, the decision variables νk are deter-
mined at the controller and fed back to the sensor. As-
suming that the transmit decisions νk depends only on
(P c

0|0, . . . , P
c
k−1|k−1),

3 in the next section we will show

that the design of {νk} and {uk} can be “separated”, in
the sense that we can rewrite (5) as

min
{νk}

[
min
{uk}

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk) + xT
NWxN

]

+ E
[N−1∑

k=0

βνkE
]]
,

(6)

with the inner optimization over {uk} being the solu-
tion to an LQG-type control problem. In a similar spirit,
separation-type results have been derived for various dif-
ferent problems such as joint sensor and controller de-
sign for information regularized LQG control (Tanaka and
Sandberg (2015)), power management for wireless control
systems (Gatsis et al. (2014)), and joint transmission en-
ergy allocation and control for energy harvesting sensors
(Knorn and Dey (2015)).

4. SEPARATION OF TRANSMISSION SCHEDULER
AND CONTROLLER DESIGN

In this section, we will prove the following:

Theorem 1. For transmit decisions νk dependent only on
(P c

0|0, . . . , P
c
k−1|k−1), problem (5) is equivalent to problem

(6). Furthermore, the optimal solution to the problem:

min
{uk}

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk) + xT
NWxN

]
(7)

is of the form

u∗
k = −(BTSk+1B + U)−1BTSk+1Ax̂c

k|k � Lkx̂
c
k|k, (8)

3 This is in fact equivalent to letting νk depend only on P c
k−1|k−1

,

see Corollary 1. Allowing transmission decisions to depend on
P c
k−1|k−1

is similar to the variance based event triggering scheme of

Trimpe and D’Andrea (2014), although random packet drops were
not considered there.
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with SN =W , Sk=ATSk+1A+W −ATSk+1B(BTSk+1B+
U)−1BTSk+1A, k = N − 1, . . . , 0, and optimal cost

tr(S0P0) +

N−1∑
k=0

tr(Sk+1Q)

+
N−1∑
k=0

tr
(
(ATSk+1A+W − Sk)E[P c

k|k]
)
.

(9)

Proof Let us first assume that {νk} is a deterministic
sequence. Then E[xk|Is

k] = E[xk|y0, . . . , yk, u0, . . . , uk−1],
and the local state estimates and error covariances at
the sensor can be computed using the standard Kalman
filtering equations:

x̂s
k|k = x̂s

k|k−1 +Kk(yk − Cx̂s
k|k−1)

x̂s
k+1|k = Ax̂s

k|k +Buk

P s
k|k = P s

k|k−1 − P s
k|k−1C

T (CP s
k|k−1C

T +R)−1CP s
k|k−1

P s
k+1|k = AP s

k|kA
T +Q,

(10)

where Kk = P s
k|k−1C

T (CP s
k|k−1C

T + R)−1. In addition,

one can easily show that the state estimates and error
covariances at the controller can be computed by:

x̂c
k|k =

{
Ax̂c

k−1|k−1 +Buk−1 , νkγk = 0
x̂s
k|k , νkγk = 1

P c
k|k =

{
AP c

k−1|k−1A
T +Q , νkγk = 0

P s
k|k , νkγk = 1.

(11)

Following similar arguments as in Schenato et al. (2007),
we can show that problem (7) has the solution given by
(8). Furthermore, the value functions

VN (Ic
N ) � E[xT

NWxN |Ic
N ]

Vk(Ic
k) � min

uk

E[xT
kWxk + uT

k Uuk + Vk+1(Ic
k+1)|Ic

k]

(12)

can be expressed as

Vk(Ic
k) = E[xT

k Skxk|Ic
k] + ck

cN = 0

ck = tr
(
(ATSk+1A+W − Sk)P

c
k|k

)
+ tr(Sk+1Q)

+ E[ck+1|Ic
k], k = N − 1, . . . , 0.

(13)

Problem (7) then has optimal cost V0(Ic
0) given by (9).

Thus, the results (8)-(9) hold when the sequence {νk}
is deterministic. We will next show that problem (5) is
equivalent to problem (6), and that (8)-(9) also hold when
each νk depends only on (P c

0|0, . . . , P
c
k−1|k−1). Firstly, νk

being dependent only on (P c
0|0, . . . , P

c
k−1|k−1) means that

it is a function of Ic
k−1. Hence, by comparing (3) and (4),

one can see that the decision νk does not provide any
additional information about xk. Therefore,

E[xk|Is
k] = E[xk|y0, . . . , yk, u0, . . . , uk−1, ν0, . . . , νk]

= E[xk|y0, . . . , yk, u0, . . . , uk−1],

and (10) will still hold. To show that (11) also holds
when νk depends only on (P c

0|0, . . . , P
c
k−1|k−1), we will use

induction. The claim is clearly true for k = 0. Suppose
that (11) holds for k = 0, . . . , l. Since νl+1 depends only

on (P c
0|0, . . . , P

c
l|l), which by the induction hypothesis (11)

means that νl+1 does not depend on xl, we then have

x̂c
l+1|l+1 =

{
Ax̂c

l|l +Bul , νl+1γl+1 = 0
x̂s
l+1|l+1 , νl+1γl+1 = 1

P c
l+1|l+1 =

{
AP c

l|lA
T +Q , νl+1γl+1 = 0

P s
l+1|l+1 , νl+1γl+1 = 1.

Thus by induction (11) holds for all k. Since the recursion
(11) for P c

k|k does not depend on the control signals {uk},
νk also does not depend on {uk}, and therefore problem
(5) is equivalent to (6). As the control does not affect the
estimation error covariance, we also have separation of the
estimator and controller (Bertsekas (2005)). Finally, we
may use the fact that νk does not depend on the control
signals, and similar arguments as in Schenato et al. (2007),
to verify that (8)-(9) will also hold. �

By the above results, we have that

min
{νk,uk}

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk + βνkE) + xT
NWxN

]

= tr(S0P0) +

N−1∑
k=0

tr(Sk+1Q) + min
{νk}

[N−1∑
k=0

tr
(
(ATSk+1A

+W − Sk)E[P c
k|k]

)
+

N−1∑
k=0

E[βνkE]
]

with the optimal control u∗
k given by (8). It then remains

to solve the problem

min
{νk}

[N−1∑
k=0

tr
(
(ATSk+1A+W−Sk)E[P c

k|k]
)
+

N−1∑
k=0

E[βνkE]
]

(14)

to determine the optimal transmission scheduling. Now by
(11), P c

k|k is a function of only P c
k−1|k−1, νk, and γk, with

{γk} being i.i.d. By regarding P c
k−1|k−1 as the “state”, νk

as the “decision”, and γk as the “disturbance”, from the
basic assumptions of dynamic programming (Bertsekas,
2005, pp. 13, 17) we can conclude the following:

Corollary 1. In problem (14), restricting νk to be a func-
tion of only P c

k−1|k−1 is equivalent to letting νk be a

function of (P c
0|0, . . . , P

c
k−1|k−1).

In Leong et al. (2017) a related problem, namely transmis-
sion scheduling for state estimation,

min
{νk}

[N−1∑
k=0

tr
(
E[P c

k|k]
)
+

N−1∑
k=0

E[βνkE]
]
,

was studied. In the next section we will briefly describe
how problem (14) can be solved, by extending the tech-
niques used in Leong et al. (2017).

Remark 1. From (11) and (8), we see that if γk−1 is fed
back to the sensor before transmission at time k, then the
sensor can reconstruct x̂c

k−1|k−1 and hence uk−1. From the

communication viewpoint this may be advantageous, since
γk−1 is binary valued, rather than the real valued (and
possibly vector) control signal uk−1. Feeding back γk−1

can also be used by the sensor to reconstruct P c
k−1|k−1,

thus also allowing the scheduling of {νk} to be done at the
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sensor (provided the sensor has sufficient computational
capabilities).

5. SOLUTION OF TRANSMISSION SCHEDULING
PROBLEM

To simplify the notation, let us denote

Gk � ATSk+1A+W − Sk.

We wish to solve the problem

min
{νk}

[N−1∑
k=0

tr
(
GkE[P c

k|k]
)
+

N−1∑
k=0

E[βνkE]
]

(15)

where νk depends only on P c
k−1|k−1, see Corollary 1.

Problem (15) can be further rewritten as

min
{νk}

E
[N−1∑

k=0

tr
(
GkE[P c

k|k|I
c
k−1, νk]

)
+

N−1∑
k=0

E[βνkE|Ic
k−1, νk]

]

= min
{νk}

E
[N−1∑

k=0

tr
(
GkE[P c

k|k|P
c
k−1|k−1, νk]

)

+
N−1∑
k=0

E[βνkE|P c
k−1|k−1, νk]

]

= min
{νk}

E
[N−1∑

k=0

νkλtr(GkP
s
k|k)+(1−νkλ)tr(Gkf(P

c
k−1|k−1))

+
N−1∑
k=0

βνkE
]
.

(16)

The first equality in (16) holds since P c
k−1|k−1 is a deter-

ministic function of Ic
k−1, and P c

k|k is a function of only

P c
k−1|k−1, νk, and γk. The second equality holds since

tr
(
GkE[P c

k|k|P
c
k−1|k−1, νk]

)

= tr
(
Gk(νkλP

s
k|k + (1− νkλ)f(P

c
k−1|k−1))

)

= νkλtr(GkP
s
k|k) + (1− νkλ)tr(Gkf(P

c
k−1|k−1)).

Define the set

S � {fn(P s
k|k)|n = 0, 1, . . . , k = 0, 1, 2, . . . }, (17)

where
f(X) � AXAT +Q,

and fn(.) denotes the n-fold composition of f(.), with the
convention f0(X) = X. From (11) we see that S consists
of all possible values of P c

k|k.

Now define the functions Jk(.) : S → R by:

JN (P ) � 0

Jk(P ) � min
νk

{
νkλtr(GkP

s
k|k) + (1− νkλ)tr(Gkf(P ))

+ βνkE + νkλJk+1(P
s
k|k) + (1− νkλ)Jk+1(f(P ))

}

for k = N − 1, . . . , 1, 0, where we note that {P s
k|k} is a

deterministic sequence given the initial error covariance.
Numerically, problem (16) can then be solved by using
dynamic programming, by computing Jk(P

c
k−1|k−1) for

k = N − 1, . . . , 1, 0.

To provide further insight, we will next derive some
structural results on the optimal solution to problem (16).

Since νk takes on either the values 0 or 1, Jk(P ) can be
rewritten as

Jk(P ) = min
{
tr(Gkf(P )) + Jk+1(f(P )),

λtr(GkP
s
k|k) + (1− λ)tr(Gkf(P )) + βE

+ λJk+1(P
s
k|k) + (1− λ)Jk+1(f(P ))

}

with the two terms in the minimization corresponding to
the cases νk = 0 and νk = 1. Let

φk(P ) � λtr(Gkf(P ))− λtr(GkP
s
k|k)− βE + λJk+1(f(P ))

− λJk+1(P
s
k|k),

(18)

which denotes the difference between the two terms, con-
sidered as a function of P . Note that if φk(P ) < 0 then
the sensor will not transmit, while if φk(P ) > 0 then the
sensor will transmit.

Definition 1. A function f(.) : S → R is increasing if
X ≤ Y ⇒ f(X) ≤ f(Y ).

Theorem 2. (i) The function φk(P ) is an increasing func-
tion of P , for k = 0, . . . , N − 1.
(ii) Suppose that the pair (A,C) is observable, the pair
(A,Q1/2) is controllable, and that the Kalman filter at the
sensor is operating in steady state. For unstable systems
the optimal solution to problem (16) is a threshold policy
of the form

ν∗k(P
c
k−1|k−1) =

{
0 , P c

k−1|k−1 ≤ P ∗
k

1 , otherwise,

where the threshold P ∗
k ∈ S in general depends on k.

Proof (i) Let us first verify that Gk ≥ 0. From the
recursion for Sk we have

Gk = ATSk+1A+W − Sk

= ATSk+1B(BTSk+1B + U)−1BSk+1A,

which is positive semi-definite since Sk+1 is positive semi-
definite, and U is positive definite by assumption. Next,
since Gk ≥ 0, we can easily show by using Lemma
8.4.12 of Bernstein (2009) that tr(Gkf(P )) is increasing
in P . Finally, a simple induction argument shows that
Jk+1(f(P )) is increasing in P . Hence the function φk(P )
defined by (18) is increasing in P .
(ii) Since the pair (A,C) is observable and the pair
(A,Q1/2) is controllable, P s

k|k converges to a steady state

value P̄ as k → ∞. If the Kalman filter at the sensor is
operating in steady state, then the set S defined in (17)
simplifies to S = {P̄ , f(P̄ ), f2(P̄ ), . . . }, and the elements
of S satisfy the total ordering (see e.g. Shi and Zhang
(2012))

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ . . . .

Furthermore, if the system is unstable, then tr(Gkf
n(P̄ )) →

∞ as n → ∞, and so φk(P ) > 0 for sufficiently large P , i.e.
the sensor will transmit for sufficiently large P . Combining
this fact with (i) gives the result. �

6. INFINITE HORIZON FORMULATION

The infinite horizon counterpart of problem (5) can also
be studied. In this section, we will assume that the pairs
(A,B) and (A,Q1/2) are controllable, and that the pairs
(A,C) and (A,W 1/2) are observable.
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sensor (provided the sensor has sufficient computational
capabilities).

5. SOLUTION OF TRANSMISSION SCHEDULING
PROBLEM

To simplify the notation, let us denote

Gk � ATSk+1A+W − Sk.

We wish to solve the problem

min
{νk}

[N−1∑
k=0

tr
(
GkE[P c

k|k]
)
+

N−1∑
k=0

E[βνkE]
]

(15)

where νk depends only on P c
k−1|k−1, see Corollary 1.

Problem (15) can be further rewritten as

min
{νk}

E
[N−1∑

k=0

tr
(
GkE[P c

k|k|I
c
k−1, νk]

)
+

N−1∑
k=0

E[βνkE|Ic
k−1, νk]

]

= min
{νk}

E
[N−1∑

k=0

tr
(
GkE[P c

k|k|P
c
k−1|k−1, νk]

)

+
N−1∑
k=0

E[βνkE|P c
k−1|k−1, νk]

]

= min
{νk}

E
[N−1∑

k=0

νkλtr(GkP
s
k|k)+(1−νkλ)tr(Gkf(P

c
k−1|k−1))

+
N−1∑
k=0

βνkE
]
.

(16)

The first equality in (16) holds since P c
k−1|k−1 is a deter-

ministic function of Ic
k−1, and P c

k|k is a function of only

P c
k−1|k−1, νk, and γk. The second equality holds since

tr
(
GkE[P c

k|k|P
c
k−1|k−1, νk]

)

= tr
(
Gk(νkλP

s
k|k + (1− νkλ)f(P

c
k−1|k−1))

)

= νkλtr(GkP
s
k|k) + (1− νkλ)tr(Gkf(P

c
k−1|k−1)).

Define the set

S � {fn(P s
k|k)|n = 0, 1, . . . , k = 0, 1, 2, . . . }, (17)

where
f(X) � AXAT +Q,

and fn(.) denotes the n-fold composition of f(.), with the
convention f0(X) = X. From (11) we see that S consists
of all possible values of P c

k|k.

Now define the functions Jk(.) : S → R by:

JN (P ) � 0

Jk(P ) � min
νk

{
νkλtr(GkP

s
k|k) + (1− νkλ)tr(Gkf(P ))

+ βνkE + νkλJk+1(P
s
k|k) + (1− νkλ)Jk+1(f(P ))

}

for k = N − 1, . . . , 1, 0, where we note that {P s
k|k} is a

deterministic sequence given the initial error covariance.
Numerically, problem (16) can then be solved by using
dynamic programming, by computing Jk(P

c
k−1|k−1) for

k = N − 1, . . . , 1, 0.

To provide further insight, we will next derive some
structural results on the optimal solution to problem (16).

Since νk takes on either the values 0 or 1, Jk(P ) can be
rewritten as

Jk(P ) = min
{
tr(Gkf(P )) + Jk+1(f(P )),

λtr(GkP
s
k|k) + (1− λ)tr(Gkf(P )) + βE

+ λJk+1(P
s
k|k) + (1− λ)Jk+1(f(P ))

}

with the two terms in the minimization corresponding to
the cases νk = 0 and νk = 1. Let

φk(P ) � λtr(Gkf(P ))− λtr(GkP
s
k|k)− βE + λJk+1(f(P ))

− λJk+1(P
s
k|k),

(18)

which denotes the difference between the two terms, con-
sidered as a function of P . Note that if φk(P ) < 0 then
the sensor will not transmit, while if φk(P ) > 0 then the
sensor will transmit.

Definition 1. A function f(.) : S → R is increasing if
X ≤ Y ⇒ f(X) ≤ f(Y ).

Theorem 2. (i) The function φk(P ) is an increasing func-
tion of P , for k = 0, . . . , N − 1.
(ii) Suppose that the pair (A,C) is observable, the pair
(A,Q1/2) is controllable, and that the Kalman filter at the
sensor is operating in steady state. For unstable systems
the optimal solution to problem (16) is a threshold policy
of the form

ν∗k(P
c
k−1|k−1) =

{
0 , P c

k−1|k−1 ≤ P ∗
k

1 , otherwise,

where the threshold P ∗
k ∈ S in general depends on k.

Proof (i) Let us first verify that Gk ≥ 0. From the
recursion for Sk we have

Gk = ATSk+1A+W − Sk

= ATSk+1B(BTSk+1B + U)−1BSk+1A,

which is positive semi-definite since Sk+1 is positive semi-
definite, and U is positive definite by assumption. Next,
since Gk ≥ 0, we can easily show by using Lemma
8.4.12 of Bernstein (2009) that tr(Gkf(P )) is increasing
in P . Finally, a simple induction argument shows that
Jk+1(f(P )) is increasing in P . Hence the function φk(P )
defined by (18) is increasing in P .
(ii) Since the pair (A,C) is observable and the pair
(A,Q1/2) is controllable, P s

k|k converges to a steady state

value P̄ as k → ∞. If the Kalman filter at the sensor is
operating in steady state, then the set S defined in (17)
simplifies to S = {P̄ , f(P̄ ), f2(P̄ ), . . . }, and the elements
of S satisfy the total ordering (see e.g. Shi and Zhang
(2012))

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ . . . .

Furthermore, if the system is unstable, then tr(Gkf
n(P̄ )) →

∞ as n → ∞, and so φk(P ) > 0 for sufficiently large P , i.e.
the sensor will transmit for sufficiently large P . Combining
this fact with (i) gives the result. �

6. INFINITE HORIZON FORMULATION

The infinite horizon counterpart of problem (5) can also
be studied. In this section, we will assume that the pairs
(A,B) and (A,Q1/2) are controllable, and that the pairs
(A,C) and (A,W 1/2) are observable.
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We wish to solve the following problem:

min
{νk,uk}

lim sup
N→∞

1

N
E
[N−1∑

k=0

(xT
kWxk+uT

k Uuk+βνkE)
]
(19)

Theorem 3. (i) For transmit decisions νk dependent only
on P c

k−1|k−1, problem (19) is equivalent to the problem:

min
{νk}

[
min
{uk}

lim sup
N→∞

1

N
E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk)
]

+ lim sup
N→∞

1

N
E
[N−1∑

k=0

βνkE
]]
.

(ii) In steady state, the optimal solution to:

min
{uk}

lim sup
N→∞

1

N
E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk)
]

is of the form

u∗
k = −(BTS∞B + U)−1BTS∞Ax̂c

k|k � L∞x̂c
k|k,

where S∞ satisfies S∞ = ATS∞A+W−ATS∞B(BTS∞B+
U)−1BTS∞A, with optimal cost

tr(S∞Q)+lim sup
N→∞

1

N

N−1∑
k=0

tr
(
(ATS∞A+W−S∞)E[P c

k|k]
)
.

(20)

(iii) Consider the problem:

min
{νk}

lim sup
N→∞

1

N

N−1∑
k=0

(
tr
(
(ATS∞A+W − S∞)E[P c

k|k]
)

+E[βνkE]
)
.

(21)

Suppose λ > 1− 1
maxi |σi(A)|2 , where σi(A) is an eigenvalue

of A. Then there exists a stationary solution to problem
(21) which is a threshold policy of the form

ν∗k(P
c
k−1|k−1) =

{
0 , P c

k−1|k−1 ≤ P ∗

1 , otherwise,
(22)

where the threshold P ∗ ∈ S does not depend on k.

Proof Theorem 3 can be proved by using similar argu-
ments as in Sections 4 and 5, and taking limits as N → ∞.
For the existence of stationary solutions to problem (21)
in part (iii), this is shown by verifying conditions in Sen-
nott (1999) for the existence of solutions to average cost
problems with countably infinite state space. Under the
condition λ > 1− 1

maxi |σi(A)|2 , this verification can be ac-

complished by using similar arguments as in Theorem III.1
of Leong et al. (2017). �

Under the threshold policy (22), simple analytical 4 ex-
pressions for E[νkE] and E[P c

k|k] can also be derived. We

will only state the results, the derivations can be found in
Leong et al. (2017). Let t ∈ N represent the threshold such
that P ∗ = f t(P̄ ). Note that t will depend on the value of
β chosen in problem (19). Also let

4 The threshold parameter t where P ∗ = f t(P̄ ) will in general still
need to be found numerically

πj =




λ

λt+ 1
, j = 0, . . . , t

(1− λ)j−tλ

λt+ 1
, j = t+ 1, t+ 2, . . . .

Then we have

E[νkE] =
Eπ0

λ
=

E

λt+ 1
,

and

E[P c
k|k] =

∞∑
j=0

πjf
j(P̄ ).

It can be shown that the infinite series above converges
if λ > 1 − 1

maxi |σi(A)|2 , and can then be computed

numerically. Problem (19) thus has optimal cost

tr(S∞Q)+tr
(
(ATS∞A+W−S∞)

∞∑
j=0

πjf
j(P̄ )

)
+β

E

λt+ 1
,

with expected energy usage per-stage

E[νkE] =
E

λt+ 1
(23)

and expected control cost per-stage given by

E
[
xT
kWxk + uT

k Uuk

]

= tr(S∞Q) + tr
(
(ATS∞A+W − S∞)

∞∑
j=0

πjf
j(P̄ )

)
.

(24)

7. NUMERICAL RESULTS

We consider a system with parameters

A =

[
1.3 0.5
0.2 0.9

]
, B =

[
1
2

]
, C = [ 1 1 ] , Q = I, R = 1.

The weighting matrices for the control cost are W = I
and U = 1. The packet reception probability λ = 0.7, and
transmission energy is here taken as E = 1.

7.1 Finite Horizon

We use the finite horizon N = 10. We assume that
the Kalman filter at the sensor is in steady state with
P s
k|k = P̄ , ∀k, and the initial covariance of x0 is P0 = f(P̄ ).

Fig. 2 plots the expected energy usage E
[∑N−1

k=0 νkE
]
vs

the expected control cost

E
[N−1∑

k=0

(xT
kWxk + uT

k Uuk) + xT
NWxN

]
,

obtained by solving problem (5) for different values of β.
Each of the points is obtained by Monte Carlo averaging
over 100000 different iterations. One can observe a tradeoff
between the energy usage and the control performance.

7.2 Infinite Horizon

Next we consider the infinite horizon problem. Fig. 3 plots

the per-stage expected energy usage E
[
νkE

]
vs the per-

stage expected control cost E
[
xT
kWxk+uT

k Uuk

]
, obtained

by solving problem (19) for different values of β. Each of
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Fig. 2. Finite horizon. Expected energy usage vs Expected
control cost.
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Fig. 3. Infinite horizon. Expected energy usage per-stage
vs Expected control cost per-stage.

the points is obtained by time averaging a Monte Carlo
iteration of length 1000000. Also plotted in Fig. 3 are the
analytical expressions (23) and (24). We see that there is
very close agreement between the simulation results and
analytical expressions (23)-(24).

8. CONCLUSION

A joint transmission scheduling and control design prob-
lem has been studied in this paper, which minimizes a
linear combination of the control cost and expected energy
usage of the sensor. We have shown a separation in the
design of the event-based transmission scheduler and con-
troller, and presented the solutions for the optimal policies.
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