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1. INTRODUCTION

The integral role played by cyber-physical systems (CPS)
in the modern era cannot be underestimated. Its scope
of applications in communication, transportation, utilities,
etc., has motivated extensive research in the area of remote
estimation over communication networks. The estimation
quality is crucial to the estimator and is therefore an ideal
target for potential cyber or physical attacks.

The remote, wireless aspect of the system exposes CPS to
external malicious attackers. The study of CPS security
is a never ending war between the system designers and
attackers. The security problems such as the case of the
Maroochy Water Breach [Slay,Miller (2007)] and the SQL
Slammer worm attack on the nuclear plant [Kuvshinkova
(2003)] are testaments to the damage an attack on CPS
can inflict. Therefore, one must study the devastating
effects of attacks and at the same time develop counter-
measures.

A control system comprises of a plant, sensors, an estima-
tor, and actuators existing in constant communication. An
attacker targets this communication in a variety of forms
depending on its purpose. For example, a denial-of-service
attack [Amin et al. (2009)] interrupts the communication
between sensors and the estimator and simply prevents a
packet of information from being successfully transmitted.
An attacker may also replace the transmitted packet with
malicious information [Liu et al. (2009)] further leading
the system astray.

1 The work by E. Kung and L. Shi is supported by an HKUST
Caltech Partnership FP009.

Estimators may attempt to detect an attack by setting
a detection policy based on incoming data. It performs a
hypothesis test to decide whether the data is corrupted or
not. For instance, with a false data injection attack with
multiple sensors, a sensors data can be cross-checked with
those of its neighboring sensors [Ye et al. (2004)] [Shukla
and Qiao (2007)]. Under a detection policy, the attacker
must trade the magnitude of damage with stealth.

One metric used to define stealthiness in many papers
involves the KL divergence. In the numerous ways the
attacker can corrupt the system communication, the only
requirement is that the corrupted measurement should not
differ from the correct measurement by too much in terms
of the KL divergence. In [Bai et al. (2015)] and [Kung et al.
(2016)], the attack is implemented on the control.

Our work will explore a vector system where the attacker
corrupts the measurement transmitted from the sensors.
The tradeoff between stealthiness and estimation quality
can be clearly described. On the other hand, the attacker’s
desire to remain undetected is taken advantage of by the
estimator. We propose a method in which an attack of
any power will have a nonzero probability of being non-
stealthy. Our two main contributions are summarized as
follows:

1. The estimation error covariance under a stealthy
attack is shown to be bounded above and an optimal
Gaussian attack achieves this bound.

2. We study the use of randomizing the threshold to
further limit the estimation error and increase the
probability of discovering the attacker. As far as we
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know, this is the first proposed countermeasure to
such attacks.

The paper is organized as follows. In Section 2, the
problem background and set up are introduced. Section 3
presents the main contributions of this paper. We provide
simulations and comparisons to previous work in Section
4. Section 5 concludes the paper with a few comments on
future directions. Notations: Mm×n denotes the space of
m × n matrices. S+m denotes the set of m × m positive
definite matrices. A Gaussian variable z with mean µ and
covariance P is written as z ∼ N (µ, P ). For a matrix A,
Aᵀ denotes its transpose. For a positive definite matrix X,
X1/2 is the positive definite square root of X. For a row
or column vector v, (v)j denotes the j−th entry of v.

2. PRELIMINARIES

2.1 System Model

We first set up the scenario in which the problem
is considered. The state and output variables will follow
the equations

xk+1 =Axk + wk

yk =Cxk + vk;

A ∈ Mn×n, C ∈ Mm×n, wk ∼ N (0, Q), vk ∼ N (0, R),
where Q ∈ S+n and R ∈ S+m.

As is well known, the estimate of the state variable comes
in the form of update equations of the conditional state
mean and covariance. To elaborate, let Ik = {y1, . . . , yk}
be the history of received signals and define

x̂k = E[xk

∣∣ Ik], x̂k|k−1 = E[xk

∣∣ Ik−1]

Pk = E[(xk − x̂k)(xk − x̂k)
ᵀ
∣∣ Ik]

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
ᵀ
∣∣ Ik−1].

The Kalman filter gives us the optimal update equations

x̂k|k−1 = Ax̂k−1

x̂k = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

Pk|k−1 = APk−1A
ᵀ +Q

Pk = (I −KkC)Pk|k−1

Kk = Pk|k−1C
ᵀ(CPk|k−1C

ᵀ +R)−1.

It is also proven that if (A,C) is observable and (A,
√
Q)

is controllable, then the sequence {Kk} and {Pk|k−1}
converges to a steady state K and P . The steady state
error covariance P is the solution of h ◦ g(X) = X where

g(X) = X −XCᵀ(CXCᵀ +R)−1CX

h(X) = AXAᵀ +Q.

The steady state Kalman gain K is calculated by
PCᵀ(CPCᵀ+R)−1. The covariance of the output yk would
then be written as Σ = CPCᵀ + R. We will assume that
the system is already in steady state.

2.2 Attack

In our set up, we assume that the sensor transmits yk
to the estimator and that the attacker intercepts yk and
replaces it with a corrupted signal ỹk. The corrupted signal
will affect the state estimation equation, given by

ˆ̃xk = Aˆ̃xk−1 +K(ỹk − CAˆ̃xk−1) = (I −KC)Aˆ̃xk−1 +Kỹk.

The objective for the attacker is to design ỹk that max-
imizes the Frobenius norm of the difference between the
accurate state and the corrupt estimate at each time step
k, that is, the attacker aims to maximize

tr E[(xk − ˆ̃xk)(xk − ˆ̃xk)
ᵀ
∣∣ Ĩk].

Here the history Ik is the correct measurements up to time
k and the corrupted measurements up to time k − 1, i.e.,

Ĩk = {y1, . . . , yk} ∪ {ỹ1, . . . , ỹk−1}.

2.3 Stealthiness

The estimator performs a hypothesis test based on the
incoming corrupted signals to decide whether or not the
system is under attack. An alarm will be sounded if the
estimator decides it is under attack.

We follow the works of [Bai et al. (2015)], [Kung et al.
(2016)] and consider the KL divergence between the two
distributions P0 and P1.

Definition 1. Let P0 and P1 be two distributions. The
Kullback-Leibler (KL) Divergence between them is given
by the expression

D(P0||P1) =

∫ ∞

−∞
P0(z) log

P0(z)

P1(z)
dz.

This value denotes the “difference” between the two prob-
ability distributions.

Here the attacker wishes to generate a vector ỹk following
P0 given the history Ĩk such that its difference between
P0 and the predicted distribution P1 of the uncorrupted
yk based on {y1, . . . , yk−1} is bounded, say by a threshold
ε. This gives rise to the following definition of stealthiness.

Definition 2. Given Ĩk = {y1, . . . , yk} ∪ {ỹ1, . . . , ỹk−1},
an attacker {yi}k1 −→ ỹk is stealthy if ỹk ∼ P0,
P1 = N (Cx̂k|k−1,Σ) is the conditional probability on
{y1, . . . , yk−1}, and D(P0||P1) ≤ ε.

To summarize, the attacker’s objective is to solve at each
time k

max
ỹk

tr E[(xk − ˆ̃xk)(xk − ˆ̃xk)
ᵀ
∣∣ Ĩk] with D(P0||P1) ≤ ε.

Taking P1 = N (Cx̂k|k−1,Σ), D(P0||P1) is given by

D(P0||P1)

=
1

2
log((2π)m|Σ|)

+
1

2
tr Σ−1E[(ỹk − Cx̂k|k−1)(ỹk − Cx̂k|k−1)

ᵀ
∣∣ Ĩk]

−
(
−
∫ ∞

−∞
P0(z) logP0(z)dz

)
.

The final term is known as the differential entropy and it
satisfies the inequality

−
∫ ∞

−∞
P0(z) logP0(z)dz ≤ 1

2
log

(
(2πe)m|Σ̃k|

)

with equality when P0 is a Gaussian distribution.

The constraint ε ≥ D(P0||P1) implies

ε ≥1

2
tr Σ−1E[(ỹk − Cx̂k|k−1)(ỹk − Cx̂k|k−1)

ᵀ
∣∣ Ĩk]

− 1

2
log

(
|Σ−1Σ̃k|

)
− m

2
. (1)
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must trade the magnitude of damage with stealth.
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involves the KL divergence. In the numerous ways the
attacker can corrupt the system communication, the only
requirement is that the corrupted measurement should not
differ from the correct measurement by too much in terms
of the KL divergence. In [Bai et al. (2015)] and [Kung et al.
(2016)], the attack is implemented on the control.

Our work will explore a vector system where the attacker
corrupts the measurement transmitted from the sensors.
The tradeoff between stealthiness and estimation quality
can be clearly described. On the other hand, the attacker’s
desire to remain undetected is taken advantage of by the
estimator. We propose a method in which an attack of
any power will have a nonzero probability of being non-
stealthy. Our two main contributions are summarized as
follows:

1. The estimation error covariance under a stealthy
attack is shown to be bounded above and an optimal
Gaussian attack achieves this bound.

2. We study the use of randomizing the threshold to
further limit the estimation error and increase the
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(2016)], the attack is implemented on the control.
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desire to remain undetected is taken advantage of by the
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any power will have a nonzero probability of being non-
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Gaussian attack achieves this bound.
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not. For instance, with a false data injection attack with
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those of its neighboring sensors [Ye et al. (2004)] [Shukla
and Qiao (2007)]. Under a detection policy, the attacker
must trade the magnitude of damage with stealth.
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involves the KL divergence. In the numerous ways the
attacker can corrupt the system communication, the only
requirement is that the corrupted measurement should not
differ from the correct measurement by too much in terms
of the KL divergence. In [Bai et al. (2015)] and [Kung et al.
(2016)], the attack is implemented on the control.

Our work will explore a vector system where the attacker
corrupts the measurement transmitted from the sensors.
The tradeoff between stealthiness and estimation quality
can be clearly described. On the other hand, the attacker’s
desire to remain undetected is taken advantage of by the
estimator. We propose a method in which an attack of
any power will have a nonzero probability of being non-
stealthy. Our two main contributions are summarized as
follows:

1. The estimation error covariance under a stealthy
attack is shown to be bounded above and an optimal
Gaussian attack achieves this bound.

2. We study the use of randomizing the threshold to
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quality is crucial to the estimator and is therefore an ideal
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The remote, wireless aspect of the system exposes CPS to
external malicious attackers. The study of CPS security
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(2003)] are testaments to the damage an attack on CPS
can inflict. Therefore, one must study the devastating
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depending on its purpose. For example, a denial-of-service
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An attacker may also replace the transmitted packet with
malicious information [Liu et al. (2009)] further leading
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a detection policy based on incoming data. It performs a
hypothesis test to decide whether the data is corrupted or
not. For instance, with a false data injection attack with
multiple sensors, a sensors data can be cross-checked with
those of its neighboring sensors [Ye et al. (2004)] [Shukla
and Qiao (2007)]. Under a detection policy, the attacker
must trade the magnitude of damage with stealth.

One metric used to define stealthiness in many papers
involves the KL divergence. In the numerous ways the
attacker can corrupt the system communication, the only
requirement is that the corrupted measurement should not
differ from the correct measurement by too much in terms
of the KL divergence. In [Bai et al. (2015)] and [Kung et al.
(2016)], the attack is implemented on the control.

Our work will explore a vector system where the attacker
corrupts the measurement transmitted from the sensors.
The tradeoff between stealthiness and estimation quality
can be clearly described. On the other hand, the attacker’s
desire to remain undetected is taken advantage of by the
estimator. We propose a method in which an attack of
any power will have a nonzero probability of being non-
stealthy. Our two main contributions are summarized as
follows:

1. The estimation error covariance under a stealthy
attack is shown to be bounded above and an optimal
Gaussian attack achieves this bound.

2. We study the use of randomizing the threshold to
further limit the estimation error and increase the
probability of discovering the attacker. As far as we

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 9904

know, this is the first proposed countermeasure to
such attacks.

The paper is organized as follows. In Section 2, the
problem background and set up are introduced. Section 3
presents the main contributions of this paper. We provide
simulations and comparisons to previous work in Section
4. Section 5 concludes the paper with a few comments on
future directions. Notations: Mm×n denotes the space of
m × n matrices. S+m denotes the set of m × m positive
definite matrices. A Gaussian variable z with mean µ and
covariance P is written as z ∼ N (µ, P ). For a matrix A,
Aᵀ denotes its transpose. For a positive definite matrix X,
X1/2 is the positive definite square root of X. For a row
or column vector v, (v)j denotes the j−th entry of v.

2. PRELIMINARIES

2.1 System Model

We first set up the scenario in which the problem
is considered. The state and output variables will follow
the equations

xk+1 =Axk + wk

yk =Cxk + vk;

A ∈ Mn×n, C ∈ Mm×n, wk ∼ N (0, Q), vk ∼ N (0, R),
where Q ∈ S+n and R ∈ S+m.

As is well known, the estimate of the state variable comes
in the form of update equations of the conditional state
mean and covariance. To elaborate, let Ik = {y1, . . . , yk}
be the history of received signals and define

x̂k = E[xk

∣∣ Ik], x̂k|k−1 = E[xk

∣∣ Ik−1]

Pk = E[(xk − x̂k)(xk − x̂k)
ᵀ
∣∣ Ik]

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
ᵀ
∣∣ Ik−1].

The Kalman filter gives us the optimal update equations

x̂k|k−1 = Ax̂k−1

x̂k = x̂k|k−1 +Kk(yk − Cx̂k|k−1)

Pk|k−1 = APk−1A
ᵀ +Q

Pk = (I −KkC)Pk|k−1

Kk = Pk|k−1C
ᵀ(CPk|k−1C

ᵀ +R)−1.

It is also proven that if (A,C) is observable and (A,
√
Q)

is controllable, then the sequence {Kk} and {Pk|k−1}
converges to a steady state K and P . The steady state
error covariance P is the solution of h ◦ g(X) = X where

g(X) = X −XCᵀ(CXCᵀ +R)−1CX

h(X) = AXAᵀ +Q.

The steady state Kalman gain K is calculated by
PCᵀ(CPCᵀ+R)−1. The covariance of the output yk would
then be written as Σ = CPCᵀ + R. We will assume that
the system is already in steady state.

2.2 Attack

In our set up, we assume that the sensor transmits yk
to the estimator and that the attacker intercepts yk and
replaces it with a corrupted signal ỹk. The corrupted signal
will affect the state estimation equation, given by

ˆ̃xk = Aˆ̃xk−1 +K(ỹk − CAˆ̃xk−1) = (I −KC)Aˆ̃xk−1 +Kỹk.

The objective for the attacker is to design ỹk that max-
imizes the Frobenius norm of the difference between the
accurate state and the corrupt estimate at each time step
k, that is, the attacker aims to maximize

tr E[(xk − ˆ̃xk)(xk − ˆ̃xk)
ᵀ
∣∣ Ĩk].

Here the history Ik is the correct measurements up to time
k and the corrupted measurements up to time k − 1, i.e.,

Ĩk = {y1, . . . , yk} ∪ {ỹ1, . . . , ỹk−1}.

2.3 Stealthiness

The estimator performs a hypothesis test based on the
incoming corrupted signals to decide whether or not the
system is under attack. An alarm will be sounded if the
estimator decides it is under attack.

We follow the works of [Bai et al. (2015)], [Kung et al.
(2016)] and consider the KL divergence between the two
distributions P0 and P1.

Definition 1. Let P0 and P1 be two distributions. The
Kullback-Leibler (KL) Divergence between them is given
by the expression

D(P0||P1) =

∫ ∞

−∞
P0(z) log

P0(z)

P1(z)
dz.

This value denotes the “difference” between the two prob-
ability distributions.

Here the attacker wishes to generate a vector ỹk following
P0 given the history Ĩk such that its difference between
P0 and the predicted distribution P1 of the uncorrupted
yk based on {y1, . . . , yk−1} is bounded, say by a threshold
ε. This gives rise to the following definition of stealthiness.

Definition 2. Given Ĩk = {y1, . . . , yk} ∪ {ỹ1, . . . , ỹk−1},
an attacker {yi}k1 −→ ỹk is stealthy if ỹk ∼ P0,
P1 = N (Cx̂k|k−1,Σ) is the conditional probability on
{y1, . . . , yk−1}, and D(P0||P1) ≤ ε.

To summarize, the attacker’s objective is to solve at each
time k

max
ỹk

tr E[(xk − ˆ̃xk)(xk − ˆ̃xk)
ᵀ
∣∣ Ĩk] with D(P0||P1) ≤ ε.

Taking P1 = N (Cx̂k|k−1,Σ), D(P0||P1) is given by

D(P0||P1)

=
1

2
log((2π)m|Σ|)

+
1

2
tr Σ−1E[(ỹk − Cx̂k|k−1)(ỹk − Cx̂k|k−1)

ᵀ
∣∣ Ĩk]

−
(
−
∫ ∞

−∞
P0(z) logP0(z)dz

)
.

The final term is known as the differential entropy and it
satisfies the inequality

−
∫ ∞

−∞
P0(z) logP0(z)dz ≤ 1

2
log

(
(2πe)m|Σ̃k|

)

with equality when P0 is a Gaussian distribution.

The constraint ε ≥ D(P0||P1) implies

ε ≥1

2
tr Σ−1E[(ỹk − Cx̂k|k−1)(ỹk − Cx̂k|k−1)

ᵀ
∣∣ Ĩk]

− 1

2
log

(
|Σ−1Σ̃k|

)
− m

2
. (1)
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All stealthy attacks will also satisfy this inequality, so
for now, we consider all attacks that satisfy (1). We will
perform optimization over all attacks in this enlarged set
and show that it is stealthy.

Be mindful that the expectation in (1) is the expectation
over P0.

Remark 1: Stealthiness can also be defined by setting
P1 to be the predicted distribution of the measurement
using corrupted state estimate, i.e., P1 ∼ N (C ˆ̃xk|k−1,Σ).
The stealthy attacks under this definition strictly includes
those defined by Definition 1.

3. MAIN RESULT

3.1 Optimal Attack

This section deals with the optimal attack on the measure-
ment. The attacker intercepts the measurement and, based
on its knowledge of past measurements and attacks, alters
this measurement. We provide an explicit construction.

First we expand the error covariance term

E[(xk − ˆ̃xk)(xk − ˆ̃xk)
ᵀ
∣∣ Ĩk]

=E[(xk − x̂k + x̂k − ˆ̃xk)(xk − x̂k + x̂k − ˆ̃xk)
ᵀ
∣∣ Ĩk]

=P + E[(xk − x̂k)](x̂k − ˆ̃xk)
ᵀ]

+ (x̂k − ˆ̃xk)E[(xk − x̂k)]
ᵀ + (x̂k − ˆ̃xk)(x̂k − ˆ̃xk)

ᵀ.

Since E[xk] = x̂k, the term above becomes

P + E[(x̂k − ˆ̃xk)(x̂k − ˆ̃xk)
ᵀ
∣∣ Ĩk].

Defining ek = x̂k − ˆ̃xk, we have

ek = (I −KC)Aek−1 +K(yk − ỹk).

After considerable algebra,

E[ekeᵀk
∣∣ Ĩk] =�−KE[ỹk

∣∣ Ĩk]((I −KC)Aek−1 +Kyk)
ᵀ

− ((I −KC)Aek−1 +Kyk)E[ỹk
∣∣ Ĩk]ᵀKᵀ

+KE[(ỹk − E[ỹk])(ỹk − E[ỹk])ᵀ
∣∣ Ĩk]Kᵀ

+KE[ỹk
∣∣ Ĩk]E[ỹk

∣∣ Ĩk]ᵀKᵀ,

where � represents a group of terms determined by the
history Ĩk. For simplicity, let (I−KC)Aek−1+Kyk = ek,
which is also deterministic under the given history.

It is obvious that maximizing the estimation error is equiv-
alent to maximizing tr E[ ekeᵀk

∣∣ Ĩk] and thus maximizing

− 2ēᵀkKµk + tr
[
KΣ̃kK

ᵀ
]
+ tr

[
Kµkµ

ᵀ
kK

ᵀ
]

where

µk = E[ỹk
∣∣ Ĩk] and Σ̃k = E[(ỹk − µk)(ỹk − µk)

ᵀ
∣∣ Ĩk].

The main result of the section is given in the following
two theorems.

Theorem 3. Let Q be the orthogonal matrix that diago-
nalizes Σ1/2KᵀKΣ1/2, that is, QᵀΣ1/2KᵀKΣ1/2Q = K =
diag(k1, . . . , km). Then

− 2ēᵀkKµk + tr
[
KΣ̃kK

ᵀ
]
+ tr

[
Kµkµ

ᵀ
kK

ᵀ
]

≤−
m∑
j=1

(2ēᵀkKΣ1/2Q)jsk,j(η
∗) + kjλk,j(η

∗) + kjsk,j(η
∗)2

such that the following are satisfied:

sk,j(η
∗) =

−
(
ēᵀkKΣ1/2Q

)
j

η∗ − kj
, λ̃k,j(η

∗) =
1

1− kj

η∗

2ε =

m∑
j=1

λ̃k,j(η
∗) +

m∑
j=1

sk,j(η
∗)2 −m−

m∑
j=1

log λ̃k,j(η
∗).

Theorem 4. Let sk =
[
sk,1 . . . sk,m

]
and let

(λ̃k,1, . . . , λ̃k,m) be the eigenvalues of the matrix Λ̃k. The
attack given by

ỹk ∼ N (Σ1/2Qsk + Cx̂k|k−1,Σ
1/2QΛ̃kQ

ᵀΣ1/2)

achieves the upper bound and is stealthy.

Proof. [Theorem 3] First we perform a change of variables
to facilitate the calculations,

sk =QᵀΣ−1/2(µk − Cx̂k|k−1)

Λ̃k =QᵀΣ−1/2Σ̃kΣ
−1/2Q. (2)

Once the optimal sk and Λ̃k are determined, these equa-
tions give us the optimal mean µk and Σ̃k. The following
expression

−2ēᵀkKµk + tr
[
KΣ̃kK

ᵀ
]
+ tr

[
Kµkµ

ᵀ
kK

ᵀ
]

(3)

is written, in new variables after eliminating all constant
terms (which plays no part in the optimization), as

m∑
j=1

−2qk,jsk,j + tr KΛ̃k + tr Ksks
ᵀ
k

≤
m∑
j=1

−2qk,jsk,j + kjλk,j + kjs
2
k,j . (4)

Here, qk,j is the j− th entry of the vector eᵀkKΣ1/2Q. The
inequality is a simple result of matrix theory. Similarly the
constraint on the KL divergence can be rewritten from (1)
to

2ε ≥tr Σ−1Σ̃k + tr Σ−1(µk − Cx̂k|k−1)(µk − Cx̂k|k−1)
ᵀ

− log(|Σ−1Σ̃k|)−m

≥
m∑
j=1

λ̃k,j + s2k,j − 1− log λ̃k,j (5)

From (4) we see that over all matrices Λ̃k with a given set

of eigenvalues (λ̃k,1, . . . , λ̃k,m), Λ̃k = diag(λ̃k,1, . . . , λ̃k,m)
maximizes our objective function. Therefore, we narrow
our consideration to diagonal Λ̃k. Furthermore, both the
right hand expression in (5) and the objective function (3)

is increasing on at least one eigenvalue λ̃k,j (because if not,

then Σ̃k ≤ Σ, which improves estimation quality). If any
attack satisfies the strict inequality in (5), one can always

increase that eigenvalue λ̃k,j , consequently increasing (3)
while continuing to satisfy (5).

The maximization problem is now reduced to

max
sk,Λ̃k

m∑
j=1

−2qk,jsk,j + kj λ̃k,j + kjs
2
k,j subject to

2ε =
m∑
j=1

λ̃k,j + s2k,j − 1− log λ̃k,j .

The equations obtained from Lagrange multipliers are
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2sk,jη = −2qk,j + 2kjsk,j , kj = η

(
1− 1

λ̃k,j

)
.

Solving this yields

sk,j(η) =
−qk,j
η − kj

, λ̃k,j(η) =
1

1− kj

η

.

To satisfy the constraint, we require the η∗ to satisfy
m∑
j=1

λ̃k,j(η
∗) + sk,j(η

∗)2 − 1− log λ̃k,j(η
∗) = 2ε (6)

and η∗ can be calculated by root-finding algorithms such
as Bisection Algorithm or Newton’s method.

There are two solutions η possible, lying in the branches
(−∞, 0) ∪ (maxj kj ,∞) and we choose the η that yields
the larger value for the objective function.

The theorem is thus proved.

Proof. [Theorem 4] The previous proof constructs sk and

Λ̃k and by (2) we obtain µk and Σ̃k. Take ỹk ∼ P0 =

N (µk, Σ̃k). This achieves the upper bound. It remains to
prove its stealthiness.

Because P0 is Gaussian, the differential entropy is equiva-

lent to 1
2 log

(
(2πe)m|Σ̃k|

)
and D(P0||P1) equals

1

2

[
tr Σ−1Σ̃k + tr Σ−1µkµ

ᵀ
k −m− log

(
|Σ−1Σ̃k|

)]

=
1

2

[
tr QΛ̃kQ

ᵀ + tr Qsks
ᵀ
kQ

ᵀ −m− log
(
|QΛ̃kQ

ᵀ|
)

=
1

2

m∑
j=1

[
λ̃k,j + s2k,j −m− log λ̃k,j

]
= ε.

The final equality is the result of the previous theorem.
This proves that this attack is stealthy.

Remark 2: The line of analysis performed here can be
easily done to our alternative definition of stealthy, where
the mean of P1 is calculated by corrupted state estimate.
In that case, we simply take

sk = QᵀΣ1/2(µk − C ˆ̃xk|k−1).

The Lagrange multipliers approach produces the optimal
attack with ease.

We can consider more generally the system

xk = Axk−1 +Buk−1 +Kzk.

All results remain the same because the term ek does not
contain any control terms. This allows a common set up
in which we can compare the effects of attack only on
measurement compared to the attack only on control. This
is done numerically in Section 4.

3.2 Randomized Threshold

Now that the relationship between the threshold and the
damage to estimation performance has been established,
we propose that the threshold may be randomly generated
so as to achieve the effect of limiting the attacker’s damage
while raising the possibility of detection.

The design parameters in this problem is g(ε′), the dis-
tribution of the threshold over [0, ε], as well as β(D, ε′),

the probability that an attack ỹk will be considered non-
stealthy given its KL divergence value D. The attacker
then chooses a factor of risk γ(D) =

∫∞
0

β(D, ε′)g(ε′)dε′,
which is the probability that its attack ỹk is non-stealthy.

In this probabilistic approach, we seek the optimal design
of β for a certain g. Optimality of β is given as follows.

Definition 5. β∗ : (0,∞)× [0, ε] −→ [0, 1] is optimal if

1. β∗(D, ε′) = 0 if D < ε′

2. β∗(D, ε′) should be increasing with D
3.

∫∞
0

β∗(D, ε′)g(ε′)dε′ =
∫∞
0

β(D′, ε′)g(ε′)dε′ ⇒ D ≤ D′.

We briefly explain the intuition behind these conditions.
The first simply states that any attack with KL divergence
of D is stealthy if it does not exceed the threshold. The
second condition means that a larger D value yields a
larger probability of being non-stealthy. The final condi-
tion states that because β gives a relation between D and
the risk factor γ(D), the optimal β∗ matches a given risk
factor γ with the smallest D possible over all choices of
β, and hence yields the slightest damage to the estimation
quality.

The main result is that β∗ is the same regardless of g
chosen.

Theorem 6. For any given distribution g : [0, ε] → [0, 1],

β∗(D, ε′) =

{
1 D ≥ ε′

0 otherwise

Proof. Let β be another viable function such that

γ =

∫ ∞

0

β∗(D, ε′)g(ε′)dε′ =

∫ ∞

0

β(D′, ε)g(ε)dε.

By condition 1, we can reduce this to∫ D

0

dε′ =

∫ D′

0

β(D′, ε′)dε′ =⇒
∫ D

0

(1− β(D′, ε′))dε′ =

∫ D′

D

β(D′, ε′)dε′.

The left hand term is positive since the integrand is
positive. The right hand term has a positive integrand,
hence it is positive only if D ≤ D′.

As a result, we have the function

γ(D) =

∫ D

0

g(ε′)dε′.

Example: Suppose we take g(ε) to be the uniform distri-
bution between (0,∆). Then

γ(D) =





D

∆
D ∈ (0,∆)

1 D ∈ [∆,∞)
.

We can see that if we choose D = ε, the corresponding risk
factor remains non-zero. Even when the attacker chooses
to attack with KL divergence value of ε, there is a chance
that the attack is non-stealthy. This is a better result
compared with setting a strict threshold at ε in which the
attack is fully stealthy.

3.3 Alternate formulation

Another formulation of the problem in the previous section
is to have the attacker consider a linear tradeoff between
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2sk,jη = −2qk,j + 2kjsk,j , kj = η

(
1− 1

λ̃k,j

)
.

Solving this yields

sk,j(η) =
−qk,j
η − kj

, λ̃k,j(η) =
1

1− kj

η

.

To satisfy the constraint, we require the η∗ to satisfy
m∑
j=1

λ̃k,j(η
∗) + sk,j(η

∗)2 − 1− log λ̃k,j(η
∗) = 2ε (6)

and η∗ can be calculated by root-finding algorithms such
as Bisection Algorithm or Newton’s method.

There are two solutions η possible, lying in the branches
(−∞, 0) ∪ (maxj kj ,∞) and we choose the η that yields
the larger value for the objective function.

The theorem is thus proved.

Proof. [Theorem 4] The previous proof constructs sk and

Λ̃k and by (2) we obtain µk and Σ̃k. Take ỹk ∼ P0 =

N (µk, Σ̃k). This achieves the upper bound. It remains to
prove its stealthiness.

Because P0 is Gaussian, the differential entropy is equiva-

lent to 1
2 log

(
(2πe)m|Σ̃k|

)
and D(P0||P1) equals

1

2

[
tr Σ−1Σ̃k + tr Σ−1µkµ

ᵀ
k −m− log

(
|Σ−1Σ̃k|

)]

=
1

2

[
tr QΛ̃kQ

ᵀ + tr Qsks
ᵀ
kQ

ᵀ −m− log
(
|QΛ̃kQ

ᵀ|
)

=
1

2

m∑
j=1

[
λ̃k,j + s2k,j −m− log λ̃k,j

]
= ε.

The final equality is the result of the previous theorem.
This proves that this attack is stealthy.

Remark 2: The line of analysis performed here can be
easily done to our alternative definition of stealthy, where
the mean of P1 is calculated by corrupted state estimate.
In that case, we simply take

sk = QᵀΣ1/2(µk − C ˆ̃xk|k−1).

The Lagrange multipliers approach produces the optimal
attack with ease.

We can consider more generally the system

xk = Axk−1 +Buk−1 +Kzk.

All results remain the same because the term ek does not
contain any control terms. This allows a common set up
in which we can compare the effects of attack only on
measurement compared to the attack only on control. This
is done numerically in Section 4.

3.2 Randomized Threshold

Now that the relationship between the threshold and the
damage to estimation performance has been established,
we propose that the threshold may be randomly generated
so as to achieve the effect of limiting the attacker’s damage
while raising the possibility of detection.

The design parameters in this problem is g(ε′), the dis-
tribution of the threshold over [0, ε], as well as β(D, ε′),

the probability that an attack ỹk will be considered non-
stealthy given its KL divergence value D. The attacker
then chooses a factor of risk γ(D) =

∫∞
0

β(D, ε′)g(ε′)dε′,
which is the probability that its attack ỹk is non-stealthy.

In this probabilistic approach, we seek the optimal design
of β for a certain g. Optimality of β is given as follows.

Definition 5. β∗ : (0,∞)× [0, ε] −→ [0, 1] is optimal if

1. β∗(D, ε′) = 0 if D < ε′

2. β∗(D, ε′) should be increasing with D
3.

∫∞
0

β∗(D, ε′)g(ε′)dε′ =
∫∞
0

β(D′, ε′)g(ε′)dε′ ⇒ D ≤ D′.

We briefly explain the intuition behind these conditions.
The first simply states that any attack with KL divergence
of D is stealthy if it does not exceed the threshold. The
second condition means that a larger D value yields a
larger probability of being non-stealthy. The final condi-
tion states that because β gives a relation between D and
the risk factor γ(D), the optimal β∗ matches a given risk
factor γ with the smallest D possible over all choices of
β, and hence yields the slightest damage to the estimation
quality.

The main result is that β∗ is the same regardless of g
chosen.

Theorem 6. For any given distribution g : [0, ε] → [0, 1],

β∗(D, ε′) =

{
1 D ≥ ε′

0 otherwise

Proof. Let β be another viable function such that

γ =

∫ ∞

0

β∗(D, ε′)g(ε′)dε′ =

∫ ∞

0

β(D′, ε)g(ε)dε.

By condition 1, we can reduce this to∫ D

0

dε′ =

∫ D′

0

β(D′, ε′)dε′ =⇒
∫ D

0

(1− β(D′, ε′))dε′ =

∫ D′

D

β(D′, ε′)dε′.

The left hand term is positive since the integrand is
positive. The right hand term has a positive integrand,
hence it is positive only if D ≤ D′.

As a result, we have the function

γ(D) =

∫ D

0

g(ε′)dε′.

Example: Suppose we take g(ε) to be the uniform distri-
bution between (0,∆). Then

γ(D) =




D

∆
D ∈ (0,∆)

1 D ∈ [∆,∞)
.

We can see that if we choose D = ε, the corresponding risk
factor remains non-zero. Even when the attacker chooses
to attack with KL divergence value of ε, there is a chance
that the attack is non-stealthy. This is a better result
compared with setting a strict threshold at ε in which the
attack is fully stealthy.

3.3 Alternate formulation

Another formulation of the problem in the previous section
is to have the attacker consider a linear tradeoff between
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risk of detection and attacking power. In this new scenario,
we describe the optimal distribution of the threshold ε,
which turns out to be either a uniform distribution or a
combination of uniform distributions.

We set this up by considering the objective function

γ(β, g,D) =

∫
β(D, ε′)g(ε′)dε′ − λL(D),

L(D) being the estimation error. λ acts as a conversion
factor so that L(D) and P [Alarm

∣∣ D] can be compared.
Note that L(D) is unbounded hence its minimum will be
achieved for D → ∞, so we add an upper bound D to
possible values of D. This can be a result of the attacker’s
power constraints. It is only required that it has the power
to achieve ε, that is, [0, ε] ⊂ [0, D].

For now, we simplify the integral
∫D

0
β(D, ε′)g(ε′)dε′ to a

function F (D). This function is increasing with F (0) = 0
and F (D) = 1 for D ≥ ε. Then by abuse of notation,
γ(β, g,D) = γ(F,D).

For a given F , λ, and D̄, the attacker would minimize the
function γ(F,D). This corresponds F to a D(F ) such that

γ(F,D(F )) = min
D′

γ(F,D′).

The objective for the estimator is to design F such that the
following optimality criterion is achieved: F ∗ is optimal
iff D(F ∗) = min

F
D(F ). The solution to this problem is

constructive and will be split into cases. The following
lemma shows that constructing an optimal β and g is
equivalent to constructing F .

Lemma 7. If F (D) is continuous and piecewise linear, then
there exists β and g such that

F (D) =

∫ D

0

β(D, ε′)g(ε′)dε′. (7)

Proof. The interval [0, D] is divided into partitions
[di, di+1] on which F is linear, i.e., of the form F (D) =
aiD + bi, where by continuity, aidi + bi = ai−1di + bi−1

starting with b0 = 0. We may take β = 0 for D < ε′ and 1
otherwise, yielding

F (D) =

∫ D

0

g(ε′)dε′.

Define g(ε′) = ai for ε′ ∈ [di, di+1]. The viability of these
designs can be checked simply.

Now onto our construction of F . First observe that L
decreases with η convexly. η decreases with D convexly
also, so the composition of this, L(D), is concave and
increasing. This tells us that dL

dD is positive and decreasing.

Case 1:-λL(0) < 1− λL(D̄)
In this case, ideally F should be designed such that

γ(F,D) have no local minima, which will result in the
attacker having no desire to attack, i.e., D(F ) = 0. This
can be done by setting

F (D) = min{ �D, 1 } where � = max{ λ
dL
dD

(0),
1

ε
}.

It can easily be seen that it satisfies the boundary
conditions. It suffices to show there are no local minima.
For D ∈ (0, 1

� ),
dF
dD > λ dL

dD , hence γ is increasing. As

a consequence γ(F,D) > γ(F, 0) for D ∈ (0, 1
� ]. Then

for D ∈ ( 1� , D̄), dF
dD = 0 < λ dL

dD . γ would decrease the

second half to γ(F, D̄). We can conclude that γ(F,D) ≥
γ(F, D̄) > γ(F, 0). Hence γ(F, 0) is the global minimum.

Case 2:−λL(0) ≥ 1− λL(D̄)
Since L increases with D, there must be a unique

E ∈ (0, D̄) such that −λL(E) = 1 − λL(D̄). The global
minimum in this scenario would either be at D = D̄ or is
a local minimum. We hope to design F such that the local
minimum is located at the smallest D possible. Because
−λL(D) > 1 − λL(D̄) for D < E, the global minimum
cannot be located in the interval (0, E). The next best
thing would be if the global minimum is achieved at a
point D as close to E as possible.
The analysis can be split into two subcases.

Subcase 1: E ∈ (0, ε)
Construct F (D) in the following way. Set F (D) = 0 for

D ∈ (0, E]. Then for a sufficiently small dE, let

F (D) = min{ λ
dL
dD

(E + dE)(D − E), 1 }

for D ∈ (E, D̄) if λ
dL
dD

(E + dE) >
1

ε− E

and otherwise let




λ
dL
dD

(E + dE)(D − E) if D ∈ (E,E + 2dE]

1− F (E + 2dE)

ε− E − 2dE
(D − E − 2dE)

if D ∈ (E + 2dE, ε)

0 otherwise

.

The design is chosen so that γ has negatives slope in
(E,E + dE) but positive slope in (E + dE, ε) and have
F (D) = 1 for D > ε.
This gives a global minimum at E + dE since by design

it is the location of the only local minimum and γ(E +
dE) has a lesser value than −λL(E) = 1 − λL(D̄). With
this design of F , the attacker will choose to attack with
D = E + dE rather than D̄.

Since dE can be selected arbitrarily small, we can design
g using the lemma to get the global minimum to be arbi-
trarily close to E. However taking limit of dE −→ 0 would
lead to the global minimum being −λL(E) = 1− λL(D̄).
Therefore, the best result that can be achieved is having
the global minimum located arbitrarily close to such E.

Subcase 2: E ∈ [ε, D̄)
In this case, for any design of F that satisfies our

requirements will not be able to keep the global minimum
located in the interval (0, ε). The only scenario is that the
attacker plays D ∈ (ε, D̄) and the estimator raises the
alarm.

Here we find the relation between ε and D̄. For a given D̄
and its corresponding E such that λL(E) = 1 − λL(D̄),
the estimator needs to choose a threshold ε that includes
E and employ the given design of β and g. This leads the
attacker to choose an attack that achieves KL divergence
value arbitrarily close to E.
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Figure 1. Measurement Attack 1, Measurement Attack 2,
Control Attack with ε = 0.3

Figure 2. Error Covariance with ∆ = 0.1, ∆ = 0.4,
and ∆ = 0.7

4. NUMERICAL SIMULATION

All of the following Monte Carlo simulations are calculated
over 100 time steps, averaging over 1000 realizations.

In Figure 1. we assume the parameters

A = 0.9, Q = 0.3, C = 1, R = 0.6.

We compare three attacks. The first is the attack, la-
belled Measurement Attack 1, that is stealthy with respect
to Definition 1. The second, Measurement Attack 2, is
stealthy according to our alternate definition, where the
mean of P1 is calculated by corrupted state estimate (see
Remark 1). The third is the attack on control in the work
of [Kung et al. (2016)].

It can be seen that the attack on measurements proposed
in this paper are comparatively more damaging than the
control attack. Also, note that the control attack yields a
relatively constant error covariance because it, too, does
not depend on the previous history.

Comparing the two measurement attacks, the attack based
on our alternate definition is more damaging. This is intu-
itive since the set of attacks stealthy under this alternate
definition strictly includes all attacks stealthy with respect
to Definition 1.

Finally, Figure 2. plots the error covariance as a result
of choosing g to be uniform distributions over different
intervals (0,∆i) under the risk factor γ = 0.5. The
parameters are set at

A =

[
1 1
0 1

]
, Q =

[
0.01 0
0 0.04

]

C = [1 1] , R = 0.2.

It can be seen that as ∆i is closer to zero, the error
covariance also decreases. That is because if gi is the
uniform distribution over [0,∆i],

0.5 =
D

∆i
=⇒ D = 0.5∆i.

A smaller ∆i corresponds to a smaller D.

5. CONCLUSION & FUTURE WORK

In this paper, we follow several previous works consider-
ing system attacks using KL divergence as a constraint.
The recurring conclusion is that one may always find a
Gaussian attack that is optimal. We further observe that
there are ways for the estimator to manipulate the attacker
into reducing its attack on the estimator quality by taking
advantage of its necessity to remain stealthy.

There are two lines of research from this problem. One
may look at optimal attacks, not only at each time k,
but over a finite or infinite time horizon that minimizes
average error covariance. Also, now that the attack has
been characterized for both control and measurement,
the attacker may consider an interplay between the two
attacks in a game environment.
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