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Abstract: The implementation of the majority of energy maximising control strategies requires
the knowledge of the wave excitation force experienced by the wave energy converter (WEC). In
addition, many optimal numerical control strategies also require future knowledge, or a forecast,
of future values of the excitation force. This paper examines both the excitation force estimation
and forecasting problem for a heaving buoy wave energy device. In particular, a Kalman filter is
used to estimate excitation force, where the wave force model is comprised of a set of oscillators
at discrete frequencies. The forecasting algorithm consists of an autoregressive model, where
the value of prefiltering, in terms of forecasting performance, is evaluated. The paper provides
a level of sensitivity analysis of the estimation and forecasting performance to variations in
sampling period, sea spectral shape factor and prediction horizon. Results demonstrate that the
achievable performance of the estimator/forecaster is consistent with the broad requirements of
numerical optimal WEC control strategies (Fusco and Ringwood (2012)), which depends on the
characteristics of the radiation impulse response.
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1. INTRODUCTION

During recent decades, new types of energy extraction
methods have been developed in order to supply the
increasing energy demand of human activities. One of
the natural resources with a higher technical potential is
wave energy, being the renewable energy with the highest
energy density per unit area (Kerrigan and Ge (2008)).
Wave energy is converted in mechanical or electrical energy
through Wave Energy Converters (WECs).

In the wave energy scenario, several control strategies have
been developed to maximize the power extracted by a
WEC. However, most of the control strategies requires
the knowledge of the wave excitation force acting upon
the wet surface of the device. It has been proved that
the effectiveness of different real-time control strategies
depends on the prediction of the future wave elevation or
wave excitation force acting on the device (Falnes (2007),
Fusco and Ringwood (2011), Fusco and Ringwood (2013),
Bacelli et al. (2013), Ringwood et al. (2014)). Some others
developed sub-optimal control schemes that minimize or
eliminate the need of knowing excitation forces (Falcao
(2008)). Nevertheless, for the vast majority of the future
knowledge of the wave excitation force is an essential
requirement to maximize the energy extraction from the
WEC. The optimal energy extraction is mandatory in
order to reach the economic viability of wave energy (Fusco
and Ringwood (2012), Peñalba Retes et al. (2015)).

The wave excitation force can be directly measured by
using pressure sensors displaced on the wet surface of
the device (Abdelkhalik et al. (2016)). However, a more
practical solution can be to estimate the excitation force
through a Kalman filter which takes the motion of the
device as the input. The information on the motion of the
device is easier to obtain than the pressure acting upon the
device. Motion sensors are easy and cheap to install (Nord
et al. (2015)). Furthermore, in order to implement the real-
time control of a WEC, both the motion of the device
and the knowledge of the excitation force are required.
Therefore, the estimation of the excitation force through a
Kalman filter allows to realize a real-time control strategy
which is based only on the motion of the device, yielding
to a more cost effective solution than using additional
pressure sensors.

In the literature, works on the estimation of the excitation
force experienced by the WEC can be found in Ling and
Batten (2015), Abdelrahman et al. (2016). For the predic-
tion of the excitation force, an autoregressive model can
be applied (Fusco and Ringwood (2010b)). The forecasting
horizon required by the real-time control depends on the
characteristics of the impulse response of the radiation
damping of the device (Fusco and Ringwood (2012)).

In this paper, an algorithm for the excitation force esti-
mation based on the Kalman filter has been developed.
Furthermore, an autoregressive model is fitted to the es-
timated excitation force and used to predict its future
values.
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This work is differentiated from others by:

• Consideration of the WEC’s motion as the measure-
ments.

• Prediction of the excitation force instead of the water
surface elevation.

• Inclusion of white noise in the WEC’s dynamics and
in the measurements.

• Optimisation of the forecaster model for sampling
time, peak shape factor and horizon time.

In this paper, the estimation of the excitation force is based
on motion sensors only, as it provides a more economical
and simpler solution than the direct measurement of the
excitation force with pressure sensors. The white noise is
included in the dynamics of the WEC in order to take
into account the uncertainty associated with the modeling
errors of the excitation force. Furthermore, the problem of
forecasting of the excitation force is considered instead of
the forecasting of the wave elevation (Fusco and Ringwood
(2013), Hwang et al. (2009)), as the real-time control of
a WEC requires the future excitation force in order to
maximize the extracted energy. Also the influence of the
sampling time and the peak-shape factor of the spectrum
of the wave on the accuracy of the forecasting model is
considered.

In Section 2, a specific geometry for the WEC is considered
and its hydrodynamic model is derived in order to simulate
the device for different waves conditions. In Section 3, the
estimator for the excitation force is introduced while, in
Section 4, the prediction model is presented. In Section 5,
the performances of the predictor for different sea states
and forecasting horizons are considered. Finally, in Section
6, conclusions are drawn for the device considered.

2. WAVE ENERGY CONVERTER MODEL

A cylindrical buoy has been considered as an example of
WEC in this paper. The device is axisymmetric and it
has a uniform cross-sectional area, so that linear potential
theory can be applied to derive the hydrodynamic model of
the device. It is assumed that the device only moves in the
heave (vertical) direction. Device dimensions are shown in
Table 1:

Table 1. Parameters of WEC model

Radius, r 5.0 m
Length, L 10.0 m
Draft, h 5.0 m
Mass, m 4 x 105 kg

The hydrodynamic model is based on linear potential
theory, the fluid to be inviscid, and the flow to be ir-
rotational and incompressible. Under these assumptions
the hydrodynamic forces acting on the body consist of the
hydrostatic force KHz, the excitation force Fe, the added
mass inertial force A∞z̈ and the radiation force Frad. The
dynamic model of the device is given as follows:

mz̈ = −KHz + Fe −A∞z̈ − FRad + FPTO (1)

where the excitation force has been defined as it follows:

Fe =

∫ +∞

−∞
KEx(t− τ)η(τ)dτ (2)

and the radiation force:

Frad = żb (3)

Fig. 1. Frequency response of the WEC

Fig. 2. Radiation impulse response.

The parameters used in eqs, (1)-(3) represents: the mass
of the device (m), the vertical motion (z), the damping
coefficients (KH) and the added mass (A∞).

Some previous works had used the convolution integral in
order to obtain the radiation force Ling and Batten (2015).
It can be shown that the estimator performance are not
affected by the use of a simplified model as in eq. (3) rather
than the convolution integral for the radiation force.

In this work, no Power Take-Off (PTO) force is considered
in the dynamic model of the device, since the aim of the
paper is to provide an algorithm for the estimation the
excitation force which does not depend on the type of
PTO used to extract energy from the device. Nevertheless,
as the PTO force represents an input to the WEC, the
PTO force can be easily included in the dynamics of the
estimator model, without affecting the performances of
the estimator. The hydrodynamic parameters are obtained
with the software WAMIT (Tobergte and Curtis (2013)).

In Fig. 1 the frequency response of the WEC is shown: this
plot is exclusively dependent on the device geometry and
provides the natural frequency response of the WEC.

The added-mass and the radiation damping coefficients
are frequency-dependent and they are shown in Fig. 2 and
Fig. 3, respectively.

3. EXCITATION FORCE ESTIMATION

The excitation force can be measured directly or esti-
mated. In the first case, pressure sensors would be placed
on the WEC wet-surface to monitor the excitation force:
this could be expensive and cumbersome. In the second
case, the excitation force is estimated from the measure-
ment of other variables that are affected by the excitation
force, e.g. position and velocity of the WEC. During the
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1. INTRODUCTION

During recent decades, new types of energy extraction
methods have been developed in order to supply the
increasing energy demand of human activities. One of
the natural resources with a higher technical potential is
wave energy, being the renewable energy with the highest
energy density per unit area (Kerrigan and Ge (2008)).
Wave energy is converted in mechanical or electrical energy
through Wave Energy Converters (WECs).

In the wave energy scenario, several control strategies have
been developed to maximize the power extracted by a
WEC. However, most of the control strategies requires
the knowledge of the wave excitation force acting upon
the wet surface of the device. It has been proved that
the effectiveness of different real-time control strategies
depends on the prediction of the future wave elevation or
wave excitation force acting on the device (Falnes (2007),
Fusco and Ringwood (2011), Fusco and Ringwood (2013),
Bacelli et al. (2013), Ringwood et al. (2014)). Some others
developed sub-optimal control schemes that minimize or
eliminate the need of knowing excitation forces (Falcao
(2008)). Nevertheless, for the vast majority of the future
knowledge of the wave excitation force is an essential
requirement to maximize the energy extraction from the
WEC. The optimal energy extraction is mandatory in
order to reach the economic viability of wave energy (Fusco
and Ringwood (2012), Peñalba Retes et al. (2015)).

The wave excitation force can be directly measured by
using pressure sensors displaced on the wet surface of
the device (Abdelkhalik et al. (2016)). However, a more
practical solution can be to estimate the excitation force
through a Kalman filter which takes the motion of the
device as the input. The information on the motion of the
device is easier to obtain than the pressure acting upon the
device. Motion sensors are easy and cheap to install (Nord
et al. (2015)). Furthermore, in order to implement the real-
time control of a WEC, both the motion of the device
and the knowledge of the excitation force are required.
Therefore, the estimation of the excitation force through a
Kalman filter allows to realize a real-time control strategy
which is based only on the motion of the device, yielding
to a more cost effective solution than using additional
pressure sensors.

In the literature, works on the estimation of the excitation
force experienced by the WEC can be found in Ling and
Batten (2015), Abdelrahman et al. (2016). For the predic-
tion of the excitation force, an autoregressive model can
be applied (Fusco and Ringwood (2010b)). The forecasting
horizon required by the real-time control depends on the
characteristics of the impulse response of the radiation
damping of the device (Fusco and Ringwood (2012)).

In this paper, an algorithm for the excitation force esti-
mation based on the Kalman filter has been developed.
Furthermore, an autoregressive model is fitted to the es-
timated excitation force and used to predict its future
values.
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Therefore, the estimation of the excitation force through a
Kalman filter allows to realize a real-time control strategy
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to a more cost effective solution than using additional
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In the literature, works on the estimation of the excitation
force experienced by the WEC can be found in Ling and
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tion of the excitation force, an autoregressive model can
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horizon required by the real-time control depends on the
characteristics of the impulse response of the radiation
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through a Kalman filter which takes the motion of the
device as the input. The information on the motion of the
device is easier to obtain than the pressure acting upon the
device. Motion sensors are easy and cheap to install (Nord
et al. (2015)). Furthermore, in order to implement the real-
time control of a WEC, both the motion of the device
and the knowledge of the excitation force are required.
Therefore, the estimation of the excitation force through a
Kalman filter allows to realize a real-time control strategy
which is based only on the motion of the device, yielding
to a more cost effective solution than using additional
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force experienced by the WEC can be found in Ling and
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tion of the excitation force, an autoregressive model can
be applied (Fusco and Ringwood (2010b)). The forecasting
horizon required by the real-time control depends on the
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This work is differentiated from others by:

• Consideration of the WEC’s motion as the measure-
ments.

• Prediction of the excitation force instead of the water
surface elevation.

• Inclusion of white noise in the WEC’s dynamics and
in the measurements.

• Optimisation of the forecaster model for sampling
time, peak shape factor and horizon time.

In this paper, the estimation of the excitation force is based
on motion sensors only, as it provides a more economical
and simpler solution than the direct measurement of the
excitation force with pressure sensors. The white noise is
included in the dynamics of the WEC in order to take
into account the uncertainty associated with the modeling
errors of the excitation force. Furthermore, the problem of
forecasting of the excitation force is considered instead of
the forecasting of the wave elevation (Fusco and Ringwood
(2013), Hwang et al. (2009)), as the real-time control of
a WEC requires the future excitation force in order to
maximize the extracted energy. Also the influence of the
sampling time and the peak-shape factor of the spectrum
of the wave on the accuracy of the forecasting model is
considered.

In Section 2, a specific geometry for the WEC is considered
and its hydrodynamic model is derived in order to simulate
the device for different waves conditions. In Section 3, the
estimator for the excitation force is introduced while, in
Section 4, the prediction model is presented. In Section 5,
the performances of the predictor for different sea states
and forecasting horizons are considered. Finally, in Section
6, conclusions are drawn for the device considered.

2. WAVE ENERGY CONVERTER MODEL

A cylindrical buoy has been considered as an example of
WEC in this paper. The device is axisymmetric and it
has a uniform cross-sectional area, so that linear potential
theory can be applied to derive the hydrodynamic model of
the device. It is assumed that the device only moves in the
heave (vertical) direction. Device dimensions are shown in
Table 1:

Table 1. Parameters of WEC model

Radius, r 5.0 m
Length, L 10.0 m
Draft, h 5.0 m
Mass, m 4 x 105 kg

The hydrodynamic model is based on linear potential
theory, the fluid to be inviscid, and the flow to be ir-
rotational and incompressible. Under these assumptions
the hydrodynamic forces acting on the body consist of the
hydrostatic force KHz, the excitation force Fe, the added
mass inertial force A∞z̈ and the radiation force Frad. The
dynamic model of the device is given as follows:

mz̈ = −KHz + Fe −A∞z̈ − FRad + FPTO (1)

where the excitation force has been defined as it follows:

Fe =

∫ +∞

−∞
KEx(t− τ)η(τ)dτ (2)

and the radiation force:

Frad = żb (3)

Fig. 1. Frequency response of the WEC

Fig. 2. Radiation impulse response.

The parameters used in eqs, (1)-(3) represents: the mass
of the device (m), the vertical motion (z), the damping
coefficients (KH) and the added mass (A∞).

Some previous works had used the convolution integral in
order to obtain the radiation force Ling and Batten (2015).
It can be shown that the estimator performance are not
affected by the use of a simplified model as in eq. (3) rather
than the convolution integral for the radiation force.

In this work, no Power Take-Off (PTO) force is considered
in the dynamic model of the device, since the aim of the
paper is to provide an algorithm for the estimation the
excitation force which does not depend on the type of
PTO used to extract energy from the device. Nevertheless,
as the PTO force represents an input to the WEC, the
PTO force can be easily included in the dynamics of the
estimator model, without affecting the performances of
the estimator. The hydrodynamic parameters are obtained
with the software WAMIT (Tobergte and Curtis (2013)).

In Fig. 1 the frequency response of the WEC is shown: this
plot is exclusively dependent on the device geometry and
provides the natural frequency response of the WEC.

The added-mass and the radiation damping coefficients
are frequency-dependent and they are shown in Fig. 2 and
Fig. 3, respectively.

3. EXCITATION FORCE ESTIMATION

The excitation force can be measured directly or esti-
mated. In the first case, pressure sensors would be placed
on the WEC wet-surface to monitor the excitation force:
this could be expensive and cumbersome. In the second
case, the excitation force is estimated from the measure-
ment of other variables that are affected by the excitation
force, e.g. position and velocity of the WEC. During the
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Fig. 3. Frequency response of the excitation force.

following section a Kalman Filter (KF) is presented, mak-
ing use of measurements of position and velocity of the
device, for estimating the real-time excitation forces acting
on the wet-surface of the WEC.

The KF is an optimal linear estimator. The formulation
used in this work is based on Lewis et al. (2008), so a
dynamical system is described as it follows, considering
white noise in the process and in the measurements:

ŝk+1 = Aŝk +Buk +Gwk (4a)

zk = Hŝk + vk (4b)

wk (0, Q) (4c)

vk (0, R) (4d)

where ŝk represents the systems estimated states (position,
velocity, excitation force and derivative of the excitation
force), zk the measurements obtained from the simulation
(position and velocity of the vertical WEC motion), wk

and vk are the white noise present in the process and
in the measurement, respectively, and both are assumed
to be stationary. In this work, there is no control input,
denoted by uk, so the second term of the eq. (4a) is
zero. The capital letters represent the constant matrices
of appropriate dimension: A defines the dynamic of the
system, H is the measurements matrix, G is the weighting
matrix for the state errors, whereas Q and R represents
the covariance matrices of the white noise considered in
the process and the measurements, respectively. The Q
and R matrix are chosen in order to provide a trade-off
between the accuracy and the noise level of the estimation
of the excitation force. While Q represents the variance of
the noise on the measurements of position and velocity,
R values are appropriately tuned so that the noise level
in the estimation of the excitation force is acceptable and
the estimation rapidly converges to the real value of the
excitation force.

The KF process has two steps Lewis et al. (2008): the
prediction or time update (TU) and the correction or
measurement-update (MU). In the first step, the algorithm
estimates the variables with some uncertainty P, which
is the effect of the system dynamics. Then, the sensors
provide the next real measurement (also with some error),
so that the previous estimate is improved by the direct
observation.

KF a priori recursive formulation (TU):

P−
k+1 = APkA

T +GQGT (5a)

ŝ−k+1 = Aŝk (5b)

KF a posteriori estimation (MU):

Kk+1 = P−
k+1H

T (HP−
k+1H

T +R)−1 (6a)

Pk+1 = (I −Kk+1H)P−
k+1 (6b)

ŝk+1 = ŝ−k+1 +Kk+1(zk+1 −Hŝ−k+1) (6c)

In equations (6), the Kalman gain Kk+1 is the residual
weighting coefficient, which provides an optimal weighting
between the model and the measurements. The TU gen-
erally increases the covariance error due to the injection
of uncertainty by the process noise wk, whereas the MU
decreases the error covariance by adding the measurement
information.

The excitation force has an oscillating nature, so an har-
monic oscillator model with an assumed wave frequencies
ωi is used to describe the excitation force. For the KF
developed in this paper, the representative frequencies ωi

are assumed to be constant:



ṡ
s̈
˙̂
Fe
¨̂
Fe


 =




0 1 0 0
−KH

m+A∞

−b

m+A∞

1

m+A∞
0

0 0 0 I
0 0 −Ω2 0







s
ṡ

F̂e
˙̂
Fe


+

+



0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


w (7a)

[
z
ż

]
=

[
1 0 0 0
0 1 0 0

]



s
ṡ

F̂e
˙̂
Fe


+ v (7b)

where I corresponds to the identity matrix and Ω is a
diagonal matrix with the fixed frequencies:

Ω =




ω1 0 0
0 ω2 0
...

. . .
...

0 0 ωi


 (8)

Considering more frequencies gives a more accurate result,
but it also increases the problem complexity. The number
of frequencies is related to the nature of the JONSWAP
spectrum. A narrow spectrum requires a smaller number
of fixed frequencies than a broad spectrum.

Eq. (7) must be discretised in order to implement eqs. (5)
to (6). The covariance matrix of the state P in equation
(5a) is initialized with rather large values since the initial
estimate for the excitation force is characterized by a high
degree of uncertainty. In particular, in the matrix P, the
initial value for the covariance of the excitation force is
1105 N2.

In case the frequencies of the excitation force are not
assumed to be fixed, but rather they change with time,
the estimation problem become nonlinear and an EKF
can be applied (Fusco and Ringwood (2010b)). The main
differences between the regular KF and the EKF is that
the frequencies considered in the KF are fixed, whereas, in
the EKF, the frequencies are variables and can adapt to
irregular waves.

While the KF correctly estimates the excitation force for
both regular and irregular waves, the EKF provides an
accurate estimation of the excitation force for regular
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Fig. 4. Real and estimated excitation force.

waves only for an initial guess of the variable frequency
sufficiently close to the real frequency of the wave. For
irregular waves, the estimation of the excitation force
provided by the EKF quickly diverges from the real
excitation forces, regardless of the values for the Q and
R matrices. However, the EKF is going to be further
investigated and included in future works.

In Figure 4, the comparison between the real and esti-
mated excitation force is made in the time domain.

4. PREDICTION MODEL

The prediction model is fitted to the estimation of the ex-
citation force obtain in Section 3 and is used to predict its
future values. The prediction model is an AutoRegressive
(AR) model which is given as follows:

x∗
k = [F̂e(k)F̂e(k − 1)...F̂e(k − n+ 1)] (9a)

âk = [â1â2...ân]
T (9b)

F̄e(k + 1|k) = x∗
kâk (9c)

The prediction accuracy can be measured by using the
goodness-of-fit (GoF), which is a quality criteria linked to
the standard deviation (Laurent (2016)), where n repre-
sents step-prediction for obtaining the horizon length and
the intervals k are identical to the sampling time.

F(n) = (1−

√∑
k [Fe(k + n)− F̄e(k + n|k)]2

√∑
k F̄e(k)2

)100% (10)

Obtaining a value of F(n) = 100% means that the
excitation force has been perfectly predicted in n steps into
the future. The accuracy of the prediction is higher when
the system bandwidth is narrow (Fusco and Ringwood
(2010a)). Note that, the real values of the excitation force
are obtained using the linear wave theory and no PTO
taken into account.

In Figure 5, the comparison between the real and predicted
excitation force is made in the time domain.

5. RESULTS & DISCUSSION

In this section, the performances of the estimation and
prediction models are shown for different sea state and
forecasting horizon.

The JONSWAP spectrum EJONSWAP (f) is used to re-
produce the waves conditions. The spectrum of the wave

Fig. 5. Real and predicted excitation force.

Fig. 6. JONSWAP spectrum

can be obtained from measurements of the wave elevation
time series. The JONSWAP spectrum is obtained by mul-
tiplying the Pierson-Moskowitz EPM (f) spectrum with a
‘peak enhancement’ factor (Hasselmann et al. (1973)):

EJONSWAP (f) = EPM (f)γ
exp[− (f−fp)2

2σ2f2
p

]
(11)

For realistic sea-states the peak shape parameter γ = 3.3,
σa = 0.07 (f ≤ fm) and σb = 0.09 (f > fm) (as referenced
in Monk et al. (2013), Paparella et al. (2015) for Pico
Island, which has a narrow-banded frequency spectrum).
The peak shape parameters characterize the properties of
the narrow spectral peak and they accept some variability
on their values (in Hasselmann et al. (1973) is shown
that γ could reach values of 103 even if they are usually
compressed between 1 and 7, as related in Ochi (1998)).

When modifying the characteristics of the considered spec-
trum, changes apply for the simulation and the estimation
processes. The simulation describes the sea-state of the
selected region and the estimation adapts its procedure to
the wave spectrum of the location.

It is correct to see that when the JONSWAP spectrum
has a narrower peak, the frequencies taken into account
will be reduced. Dealing with less frequencies decreases
the complexity of the problem, so the goodness-of-fit for
narrow spectra is higher. In the actual work, four represen-
tative frequencies of the spectrum has been chosen. The
differences between the typical spectrum for γ = 3.3 and
the narrowest for γ = 250 are shown in Fig. 6.

The present results have been computed for a selected sea-
state of significant wave height of HS = 1.5m and peak
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Fig. 7. GoF for different prediction orders along the
required horizon

Fig. 8. GoF for different horizon times when γ=250.

period of TP = 8s. Also the required forecast horizon has
been set at 10s in Fig. 2. The impulse response caused by
a punctual velocity input will produce a force acting on
the wet surface of the device: this force will tend to zero
with time.

5.1 Order selection for prediction model

The prediction is computed by an autoregressive model,
which has a certain order: the higher the order, the more
accurate the predictions will be (note that the aliasing
problem will appear for higher orders, so a compromise
should be reached). In the present work, the degree which
provides the best result is n =6, as shown in Fig. 7.

5.2 Optimal selection of sampling time

The sampling time must be defined adequately to avoid
aliasing problems (due to too a large sampling time) and
excessive computational time (due to too a small sampling
time). In Fig. 8, the GoF has been plotted for a determined
set of constrained parameters, a certain number of horizon
times and a JONSWAP spectrum with peak-shape defined
by γ. It can be seen that the goodness-of-fit diminishes
when the horizon time increases.

In Fig. 7 the horizon time has been defined, whereas γ gets
different values. Increasing γ means reducing the number
of frequencies considered, so the GoF of the prediction
model increases.

Both parameters, horizon time and peak factor γ, strongly
drive the performance of the excitation force prediction
model. These factors have been plotted in Fig. 10.

Even if the best GoF is given for an horizon time around
6 s, as seen in Fig. 10. From Fig. 8 and Fig. 9, it can be

Fig. 9. GoF for different γ when the horizon forecast is 10
s.

Fig. 10. GoF for variable horizon time and peak-shape
factor γ

Fig. 11. GoF for different low-pass filters.

derived that the optimal prediction model has a sampling
time of 0.1 s, as long as the maximum GoF is around this
value for most of the variables.

5.3 Low-pass filtering

Low-pass filtering of the estimated excitation force has
been applied (Laurent (2016)). The low-pass filter neglects
the high frequencies in the spectrum of the excitation force
and, therefore, improves the performance of the prediction
model. In Fig. 1 it can be seen that the magnitude of the
motion is negligible for frequencies larger than 1.2 rad/s. In
Fig. 11 the goodness-of-fit has been shown for different cut-
off frequencies of the low-pass filter for a sampling period of
0.1 s and peak shape factor γ = 3.3. The Chebyshev filter
has been applied to filter the excitation force estimate; f
represents the filters applied.

A non-casual Chebyshev filter that does not introduce
a phase delay has been applied to the estimation of the
excitation force in order to eliminate the high frequency
components in the signal. A non-casual filter is used
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in our paper since the prediction is carried out offline.
However, for an online implementation of the prediction
of the excitation force, low-pass filtering of the signal will
introduce a phase delay which will decrease the accuracy
of the prediction.

6. CONCLUSION

This paper attempts to construct the methodology needed
to build an excitation force estimator and forecaster.
Accurate future excitation force is required in order to
implement this knowledge into control strategies, which
optimize the energy capture for the WEC.

Along the actual project has been confirmed that several
factors could be revised in order to increase the goodness-
of-fit between the real and the predicted excitation force:
order of the prediction method, sampling time, required
forecast horizon and application of a potential low-pass
filter.

Note that the methodology shown in the present paper
can be applied to new situations, considering extra forces
(PTO, moorings systems), different WEC geometries and
to an array of WECs.

Further work will focus on the implementation of new
optimized parameters: the choices of the number of fre-
quencies, which drives the definition of the wave spectrum
and the white noise.
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Fig. 7. GoF for different prediction orders along the
required horizon

Fig. 8. GoF for different horizon times when γ=250.

period of TP = 8s. Also the required forecast horizon has
been set at 10s in Fig. 2. The impulse response caused by
a punctual velocity input will produce a force acting on
the wet surface of the device: this force will tend to zero
with time.

5.1 Order selection for prediction model

The prediction is computed by an autoregressive model,
which has a certain order: the higher the order, the more
accurate the predictions will be (note that the aliasing
problem will appear for higher orders, so a compromise
should be reached). In the present work, the degree which
provides the best result is n =6, as shown in Fig. 7.

5.2 Optimal selection of sampling time

The sampling time must be defined adequately to avoid
aliasing problems (due to too a large sampling time) and
excessive computational time (due to too a small sampling
time). In Fig. 8, the GoF has been plotted for a determined
set of constrained parameters, a certain number of horizon
times and a JONSWAP spectrum with peak-shape defined
by γ. It can be seen that the goodness-of-fit diminishes
when the horizon time increases.

In Fig. 7 the horizon time has been defined, whereas γ gets
different values. Increasing γ means reducing the number
of frequencies considered, so the GoF of the prediction
model increases.

Both parameters, horizon time and peak factor γ, strongly
drive the performance of the excitation force prediction
model. These factors have been plotted in Fig. 10.

Even if the best GoF is given for an horizon time around
6 s, as seen in Fig. 10. From Fig. 8 and Fig. 9, it can be

Fig. 9. GoF for different γ when the horizon forecast is 10
s.

Fig. 10. GoF for variable horizon time and peak-shape
factor γ

Fig. 11. GoF for different low-pass filters.

derived that the optimal prediction model has a sampling
time of 0.1 s, as long as the maximum GoF is around this
value for most of the variables.

5.3 Low-pass filtering

Low-pass filtering of the estimated excitation force has
been applied (Laurent (2016)). The low-pass filter neglects
the high frequencies in the spectrum of the excitation force
and, therefore, improves the performance of the prediction
model. In Fig. 1 it can be seen that the magnitude of the
motion is negligible for frequencies larger than 1.2 rad/s. In
Fig. 11 the goodness-of-fit has been shown for different cut-
off frequencies of the low-pass filter for a sampling period of
0.1 s and peak shape factor γ = 3.3. The Chebyshev filter
has been applied to filter the excitation force estimate; f
represents the filters applied.

A non-casual Chebyshev filter that does not introduce
a phase delay has been applied to the estimation of the
excitation force in order to eliminate the high frequency
components in the signal. A non-casual filter is used
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in our paper since the prediction is carried out offline.
However, for an online implementation of the prediction
of the excitation force, low-pass filtering of the signal will
introduce a phase delay which will decrease the accuracy
of the prediction.

6. CONCLUSION

This paper attempts to construct the methodology needed
to build an excitation force estimator and forecaster.
Accurate future excitation force is required in order to
implement this knowledge into control strategies, which
optimize the energy capture for the WEC.

Along the actual project has been confirmed that several
factors could be revised in order to increase the goodness-
of-fit between the real and the predicted excitation force:
order of the prediction method, sampling time, required
forecast horizon and application of a potential low-pass
filter.

Note that the methodology shown in the present paper
can be applied to new situations, considering extra forces
(PTO, moorings systems), different WEC geometries and
to an array of WECs.

Further work will focus on the implementation of new
optimized parameters: the choices of the number of fre-
quencies, which drives the definition of the wave spectrum
and the white noise.
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