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We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of

O(1)-deep
K

, O(1)-deep
C

, order-deep
K

and order-deep
C

sequences. Our main results are that Martin-Löf random

sets are not order-deep
C

, that every many-one degree contains a set which is not O(1)-deep
C

, that O(1)-deep
C

sets

and order-deep
K

sets have high or DNR Turing degree and that no K-trival set is O(1)-deep
K

.

Keywords: Bennett logical depth, Kolmogorov complexity, algorithmic randomness theory, computability and ran-

domness.

1 Introduction

The concept of logical depth was introduced by C. Bennett [6] to differentiate useful information (such

as DNA) from the rest, with the key observation that non-useful information pertains in both very simple

structures (for example, a crystal) and completely unstructured data (for example, a random sequence, a

gas). Bennett calls data containing useful information logically deep data, whereas both trivial structures

and fully random data are called shallow.

The notion of useful information (as defined by logical depth) strongly contrasts with classical infor-

mation theory, which views random data as having high information content. I.e., according to classical

information theory, a random noise signal contains maximal information, whereas from the logical depth

point of view, such a signal contains very little useful information.

Bennett’s logical depth notion is based on Kolmogorov complexity. Intuitively a logically deep se-

quence (or equivalently a set) is one for which the more time a compressor is given, the better it can

compress the sequence. For example, both on trivial and random sequences, even when given more time,

a compressor cannot achieve a better compression ratio. Hence trivial and random sequences are not

logically deep.

Several variants of logical depth have been studied in the past [2, 9, 16, 18, 21]. As shown in [21], all

depth notions proposed so far can be interpreted in the compression framework which says a sequence

is deep if given (arbitrarily) more than t(n) time steps, a compressor can compress the sequence r(n)
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more bits than if given at most t(n) time steps only. By considering different time bound families for t(n)
(e.g. recursive, polynomial time etc.) and the magnitude of compression improvement r(n) - for short:

the depth magnitude - (e.g. O(1), O(log n)) one can capture all existing depth notions [2, 9, 16, 18, 21]

in the compression framework [21]. E.g. Bennett’s notion is obtained by considering all recursive time

bounds t and a constant depth magnitude, i.e., r(n) = O(1). Several authors studied variants of Bennett’s

notion, by considering different time bounds and/or different depth magnitude from Bennett’s original

notion [2, 3, 9, 16, 21].

In this paper, we study the consequences these changes of different parameters in Bennett’s depth notion

entail, by investigating the computational power of the deep sets yielded by each of these depth variants.

• We found out that the choice of the depth magnitude has consequences on the computational power

of the corresponding deep sets. The fact that computational power implies Bennett depth was

noticed in [16], where it was shown that every high degree contains a Bennett deep set (a set is high

if, when given as an oracle, its halting problem is at least as powerful as the halting problem relative

to the halting problem: A is high iff A′ ≥T ∅′′). We show that the converse also holds, i.e., that

depth implies computational power, by proving that if the depth magnitude is chosen to be “large”

(i.e., r(n) = εn), then depth coincides with highness (on the Turing degrees), i.e., a Turing degree

is high iff it contains a deep set of magnitude r(n) = εn.

• For smaller choices of r, for example, if r is any recursive order function, depth still retains some

computational power: we show that depth implies either highness or diagonally-non-recursiveness,

denoted DNR (a total function is DNR if its image on input e is different from the output of the

e-th Turing machine on input e). This implies that if we restrict ourselves to left-r.e. sets, recursive

order depth already implies highness. We also show that highness is not necessary by constructing

a low order-deep set (a set is low if it is not powerful when given as an oracle).

• As a corollary, our results imply that weakly-useful sets introduced in [16] are either high or DNR

(set S is weakly-useful if the class of sets reducible to it within a fixed time bound s does not have

measure zero within the class of recursive sets).

• Bennett’s depth [6] is defined using prefix-free Kolmogorov complexity. Two key properties of

Bennett’s notion are the so-called slow growth law, which stipulates that no shallow set can quickly

(truth-table) compute a deep set, and the fact that neither Martin-Löf random nor recursive sets are

deep. It is natural to ask whether replacing prefix-free with plain complexity in Bennett’s formula-

tion yields a meaningful depth notion. We call this notion plain-depth. We show that the random is

not deep paradigm also holds in the setting of plain-depth. On the other hand we show that the slow

growth law fails for plain-depth: every many-one degree contains a set which is not plain-deep of

magnitudeO(1).

• A key property of depth is that “easy” sets should not be deep. Bennett [6] showed that no recursive

set is deep. We give an improvement to this result by observing that noK-trivial set is deep (a set is

K-trivial if the complexity of its prefixes is as low as possible). Our result is close to optimal, since

there exist deep ultracompressible sets [18].

• In most depth notions, the depth magnitude has to be achieved almost everywhere on the set. Some

feasible depth notions also considered an infinitely often version [9]. Bennett noticed in [6] that
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infinitely often depth is meaningless because every recursive set is infinitely often deep. We propose

an alternative infinitely often depth notion that doesn’t suffer this limitation (called i.o. depth). We

show that little computational power is needed to compute i.o. depth, i.e., every hyperimmune

degree contains an i.o. deep set of magnitude εn (a degree is hyperimmune if it computes a function

that is not bounded almost everywhere by any recursive function), and construct a Π0
1-class where

every member is an i.o. deep set of magnitude εn. For hyperimmune-free sets we prove that every

non-recursive, non-DNR hyperimmune-free set is i.o. deep of constant magnitude, and that every

nonrecursive many-one degree contains such a set.

In summary, our results show that the choice of the magnitude for logical depth has consequences on

the computational power of the corresponding deep sets, and that larger depth magnitude is not neces-

sarily preferable over smaller magnitude. We conclude with a few open questions regarding the constant

magnitude case.

2 Preliminaries

We use standard computability/algorithmic randomness theory notations see [11, 22, 24]. We use ≤+ to

denote less or equal up to a constant term. We fix a recursive 1-1 pairing function 〈·〉 : N × N → N.

We use sets and their characteristic sequences interchangeably, we denote the binary strings of length n
by {0, 1}n and {0, 1}ω denotes the set of all infinite binary sequences. The join of two sets A,B is the

set A ⊕ B whose characteristic sequence is A(0)B(0)A(1)B(1) . . ., that is, (A ⊕ B)(2n) = A(n) and

(A ⊕ B)(2n + 1) = B(n) for all n. An order function is an unbounded non-decreasing function from

N to N. A time bound function is a recursive order t such that there exists a Turing machine Φ such

that for every n, Φ(n)[t(n)]↓= t(n), i.e., Φ(n) outputs the value t(n) within t(n) steps of computation.

Set A is left-r.e. iff the set of dyadic rationals strictly below the real number 0.A (a.k.a. the left-cut of

A denoted L(A)) is recursively enumerable (r.e.), i.e., there is a recursive sequence of non-decreasing

rationals whose limit is 0.A. All r.e. sets are left-r.e., but the converse fails.

We consider standard Turing reductions ≤T , truth-table reductions ≤tt (where all queries are made in

advance and the reduction is total on all oracles) and many-one reductions ≤m. Two sets A,B are Turing

equivalent (A ≡T B) if A ≤T B and B ≤T A. The Turing degree of a set A is the set of sets Turing

equivalent to A. We fix a standard enumeration of all oracle Turing machines Φ1,Φ2, . . .; the jump A′ of

a set A is the halting problem relative to A, i.e., A′ = {e : ΦA
e (e) ↓ }. The halting problem is denoted

∅′. A set A is high (that is, has high Turing degree) if its halting problem is as powerful as the halting

problem of the halting problem, i.e., ∅′′ ≤T A′. High sets are equivalent to sets that compute dominating

functions (i.e., sets A such that there is a function f with f ≤T A such that for every computable function

g and for almost every n, f(n) ≥ g(n)), i.e., a set is high iff it computes a dominating function [24]. A

set A is low if its halting problem is not more powerful than the halting problem of a recursive set, i.e.,

A′ ≤T ∅′. Note that ∅′ is high relative to every low set.

If one weakens the dominating property of high sets to an infinitely often condition, one obtains hyper-

immune degrees. A set is of hyperimmune degree if it computes a function that dominates every recursive

function on infinitely many inputs. Otherwise the set is called of hyperimmune-free degree.

Another characterization of computational power used in computability theory is the concept of diag-

onally non-recursive function (DNR). A total function g is DNR if for every e, g(e) 6= Φe(e), i.e., g can

avoid the output of every Turing machine on at least one specified input. A set is of DNR degree, if it
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computes a DNR function. It is known that every r.e. DNR degree is high, actually even Turing equivalent

to ∅′ [1].

If one requires a DNR function to be Boolean, one obtains the PA-complete degrees: A degree is PA-

complete iff it computes a Boolean DNR function. It is known that there exists low PA-complete degrees

[24].

Fix a universal prefix free Turing machine U , i.e., such that no halting program of U is a prefix of

another halting program. The prefix-free Kolmogorov complexity of string x, denotedK(x), is the length

of the length-lexicographically first program x∗ such that U on input x∗ outputs x. It can be shown

that the value of K(x) does not depend on the choice of U up to an additive constant. K(x, y) is the

length of a shortest program that outputs the pair 〈x, y〉, and K(x|y) is the length of a shortest program

such that U outputs x when given y as an advice. We also consider standard time bounded Kolmogorov

complexity. Given time bound t (resp. s ∈ N), Kt(x) (resp. Ks(x)) denotes the length of the shortest

prefix free program p such that U(p) outputs x within t(|x|) (resp. s) steps. Replacing U above with a

plain (i.e., non prefix-free) universal Turing machine yields the notion of plain Kolmogorov complexity,

and is denoted C(x). We need the following counting theorem.

Theorem 2.1 (Chaitin [7]) There exists c ∈ N such that for every r, n ∈ N, |{σ ∈ {0, 1}n : K(σ) ≤
n+K(n)− r}| ≤ 2n−r+c.

A set A is Martin-Löf random (MLR) if none of its prefixes are compressible by more than a constant

term, i.e., ∀n K(A ↾ n) ≥ n − c for some constant c, where A ↾ n denotes the first n bits of the

characteristic function of A. A set A is K-trivial if its complexity is as low as possible, i.e., ∀n K(A ↾

n) ≤ K(n) + O(1). See the books of Downey and Hirschfeldt [11] and Nies [22] for more on C and

K-complexity, MLR and trivial sets.

Effective closed sets are captured by Π0
1-classes. A Π0

1-class P is a class of sequences such that there

is a computable relation R such that P = {S ∈ {0, 1}ω| ∀n R(S ↾ n)}.

Definition 1 (Bennett [6]) Let g(n) ≤ n be an order. A set S is g-deepK if for every recursive time

bound t and for almost all n ∈ N, Kt(S ↾ n)−K(S ↾ n) ≥ g(n).

A set S isO(1)-deepK (resp. order-deepK) if it is c-deepK (resp. g-deepK) for every c ∈ N (resp. for some

recursive order g). A set is said Bennett deep if it isO(1)-deepK . We denote by g-deepC the above notions

with K replaced with C. It is easy to see that for every two orders f, g such that ∀n ∈ N f(n) ≤ g(n),
every g-deepK set is also f -deepK .

Bennett’s slow growth law (SGL) states that creating depth requires time beyond a “recursive amount”,

i.e., no shallow set quickly computes a deep one.

Lemma 2 (Bennett [6]; Juedes, Lathrop and Lutz [16]) Let h be a recursive order, and A ≤tt B be

two sets. If A is h-deepK (resp. O(1)-deepK) then B is h′-deepK (resp. O(1)-deepK) for some recursive

order h′. Furthermore given indices for the truth-table reduction and for h, one can effectively compute

an index for h′.

The symmetry of information holds in the resource bounded case.

Lemma 3 (Li and Vitányi [19]) For every time bound t, there is a time bound t′ such that for all strings

x, y with |y| ≤ t(|x|), we have Ct(x, y) ≥ Ct′(x) + Ct′(y | x) − O(logCt′(x, y)). Furthermore given

an index for t one can effectively compute an index for t′.
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Corollary 4 Let t be a time bound and x, a be strings. Then there exists a time bound t′ such that for

every prefix y of x we have Ct(y | a) ≥+ Ct′(x | a) − |x| + |y| − O(logCt(y | a)). Furthermore given

an index for t one can effectively compute an index for t′.

Proof: Given p a Ct-minimal program with advice a for y, |x| − |y| remaining bits, and a delimiter

after p, one can reconstruct x in time t′(·) = t(·) + O(n) steps given a. Thus Ct(y | a) + |x| − |y| +
O(logCt(y | a)) ≥+ Ct′(x | a). ⊓⊔

3 C-Depth

Bennett’s original formulation [6] is based on K-complexity. In this section we investigate the depth

notion obtained by replacing K with C, which we call plain depth. We study the interactions of plain

depth with the notions of Martin-Löf random sets, many-one degrees and the Turing degrees of deep sets.

3.1 MLR is not order-deep
C

The following result is the plain complexity version of Bennett’s result that no MLR sets are Bennett deep.

Theorem 3.1 For every MLR set A and for every recursive order h, A is not h-deepC .

Proof: Suppose by contradiction that set A is MLR and h-deepC , for some h as above. We claim that

∃∞n C(A ↾ n) ≥ n − h(n)/2. To prove the claim, let N = {n ∈ N : h(n) 6= h(n − 1)}. Then given

a = h(n) with n ∈ N , the program p: “Print the smallest i such that h(i) = a.” is a program for n of size

K(a) +O(1), i.e.,

K(n) ≤ K(a) +O(1) ≤ 2 log h(n) +O(1) < h(n)/4.

Suppose q is a C-minimal program for A ↾ n of size n −m, then appending 2 logm + K(n) bits to q
yields a prefix free program q′ for A ↾ n of size 2 logm+K(n) + n−m.

Since A is MLR we have |q′| ≥ n− O(1), i.e., 2 logm+K(n) + n−m > n− O(1) which implies

K(n) > m−2 logm−O(1) > 2/3m (form sufficiently large). If n ∈ N , then 2/3m < K(n) < h(n)/4,

thus m < h(n)/2, i.e., C(A ↾ n) > n− h(n)/2, which proves the claim.

Since for all n ∈ N we have Cn2

(A ↾ n) ≤ n+O(1) (via a “print” program), it follows that for every

n ∈ N ,

Cn2

(A ↾ n)− C(A ↾ n) ≤ n+O(1)− n+ h(n)/2 ≤+ h(n)/2

which contradicts that A is h-deepC . ⊓⊔

Sequences that are MLR relative to the halting problem are called 2-random. Equivalently a sequence A
is 2-random iff there is a constant c such that C(A ↾ n) ≥ n − c for infinitely many n [20, 23]. Since

there is a constant c′ such that n+ c′ is a trivial upper bound on the plain Kolmogorov complexity of any

string of length n, it is clear that no 2-random sequence can be O(1)-deepC . Thus most MLR sequences

are not O(1)-deepC .
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3.2 The SGL fails for C-depth

The following result shows that the Slow Growth Law fails for plain depth.

Theorem 3.2 Every many-one degree contains a set which is not O(1)-deepC .

Proof: The recursive many-one degrees consist only of sets which are not O(1)-deepC . So consider any

set A different from both ∅ and N and let B = {22
p

: p ∈ A}. Given any k, choosem = A(0)+ 2A(1)+
. . . + 2kA(k) and let n be any number between 2m and 2m+1 which has C-complexity m. Now on one

hand C(B ↾ n) ≥+ C(n) ≥ m and on the other hand, one can compute m from the m-digit binary

number representing n and one can compute A(0), A(1), . . . , A(k) from m and using B(22
p

) = A(p)
one can compute B ↾ n from the binary representation of n and its length m so that Ct(B ↾ n) ≤ m+ c
for some time bound t and some constant c independent of n andm. This shows thatA is notO(1)-deepC .

Clearly A ≤m B. Furthermore,B ≤m A by mapping all values of form 22
p

to p and all other values to a

fixed non-element of A. ⊓⊔

Note that this result shows that order-deepK does not imply order-deepC : all the sets in the truth-table de-

gree of any order-deepK set are all order-deepK (by the SGL), but this degree contains a non order-deepC
set by the previous result.

3.3 Depth implies highness or DNR

The following result shows that being constant deep for C implies computational power.

Theorem 3.3 Let A be an O(1)-deepC set. Then A is high or DNR.

Proof: We prove the contrapositive. Suppose that A is neither DNR nor high. Let f(m) be (a coding of)

A ↾ 2m+1. Because f ≤tt A, there are infinitely many m where Φm(m) is defined and equal to f(m).
Hence there is anA-recursive increasing function g such that, for almost everym, g(m) is the time to find

an m′ ≥ m with A(0)A(1) . . . A(2m
′+1) = Φm′(m′) and to evaluate the expression Φm′(m′) to verify

the finding. As A is not high, there is a recursive increasing function h with h(m) ≥ g(m) for infinitely

many m. Now consider any m where h(m) ≥ g(m). Then for the m′ found for this m, it holds that

h(m′) ≥ h(m) and h(m′) is also larger than the time to evaluate Φm′(m′). Hence h(m) is larger than

the time to evaluate Φm(m) for infinitely many m where Φm(m) codes A ↾ 2m+1.

For each such m, let n be a number with 2m ≤ n ≤ 2m+1 and C(n) ≥ m. Starting with a binary

description of such an n, one can compute m from n and run Φm(m) for h(m) steps and, in the case that

this terminates with a string σ of length 2m+1, output σ ↾ n. It follows from this algorithm that there

is a resource-bounded approximation to C such that there exist infinitely many n such that, on one hand

C(A ↾ n) ≥ log(n) while on the other hand A ↾ n can be described in log(n) + c bits using this resource

bounded description. Hence A is not O(1)-deepC . ⊓⊔

Since there are incomplete r.e. Turing degrees which are high, these are also not DNR and, by Theo-

rem 4.1, they contain sets which are 0.9-deepC . Thus the preceeding theorem cannot be improved to

show that “O(1)-deepC sets are DNR”.

Theorem 3.4 There exists a set A such that A is (1 − ε)n-deepC (for any ε > 0) but A is not DNR.
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Proof: There is a degree which is high but not DNR [24]. Thus we can, by Theorem 4.1, select a set A in

this degree which is (1 − ε)n-deepC for every ε < 1. ⊓⊔

4 K-Depth

Bennett’s original depth notion is based on prefix free complexity. He made important connections be-

tween depth and truth-table degrees; In particular he proved that the O(1)-deepK sets are closed upward

under truth-table reducibility, which he called the slow growth law. In the following section we pursue

Bennett’s investigation by studying the Turing degrees of deep sets. In the first subsection, we investi-

gate the connections between linear depth and high Turing degrees. We then look at the opposite end by

studying the interactions of various lowness notions with logical depth.

4.1 Highness and depth coincide

The following result shows that at depth magnitude εn, depth and highness coincide on the Turing degrees.

The result holds for both K and C depth.

Theorem 4.1 For every set A the following statements are equivalent:

1. The degree of A is εn-deepC for some ε > 0.

2. The degree of A is (1− ε)n-deepC for every ε > 0.

3. A is high.

Proof: We prove (1) ⇒ (3) using the contrapositive: Let ε > 0 and l ∈ N such that δ < ε/3 with

δ := 1/l. Let k be the limit inferior of the set {0, 1, . . . , l} such that there are infinitely many n with

C(A ↾ n) ≤ n · k · δ. Now one can define, relative to A, an A-recursive function g such that for each n
there is an m with n ≤ m ≤ g(n) and Cg(n)(A ↾ m) ≤ m · k · δ. As A is not high, there is a recursive

function h with h(n) > g(n) for infinitely many n; furthermore, h(n) ≤ h(n + 1) for all n. It follows

that there are infinitely many n with Ch(n)(A ↾ n) ≤ n · k · δ which is also at most n · δ away from the

optimal value, hence A is not ε · n deep, which ends this direction’s proof.

Let us show (3) ⇒ (2). Let ε > 0, A be high, and let g ≤T A be dominating. We construct B ≡T A
such that B is (1 − ε)n-deepC .

By definition, if t is a time bound and i an index of t then for every m ∈ N Φi(m)[t(m)] ↓= t(m).
Since g is dominating, we have for almost every m ∈ N, t(m) = Φi(m)[g(m)]↓.

We can thus use g to encode all time bounds that are total on all strings of length less than a certain

bound into a set H , where

H(〈i, j〉) = 1 iff Φi(m)[g(2j)]↓ for all m ∈ {1, 2, . . . , 2j}.

Thus t is a (total) time bound iff for almost every j, H(〈i, j〉) = 1 (where i is an index for t).
We have H ≤T A and we choose the pairing function 〈·〉 such that H ↾ n2 + 1 encodes the values

{H(〈i, j〉) : i, j ≤ n}.
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Let n ∈ N and suppose B ↾ 2n is already constructed. Given A ↾ n + 1 and H ↾ n2 + 1, we construct

B ↾ 2n+1. FromH ↾ n2+1, we can compute the set Ln = {i ≤ n : H(〈i, n〉) = 1}, i.e., a list eventually

containing all time bounds that are total on strings of lengths less or equal to 2n. Let

Tn := max{Φi(m) : i ∈ Ln,m ≤ 2n}.

Find the lex first string xn of length 2n − 1 such that

CTn
(xn | (B ↾ 2n)A(n)) ≥ 2n.

Let B ↾ [2n, 2n+1 − 1] := A(n)xn. By construction we have B ≡T A. Also, C(B ↾ 2n+1 | H ↾

n2 + 1, A ↾ n+ 1) ≤+ C(n), i.e., C(B ↾ 2n+1) ≤ 2n2.

Let us prove B is 2
3n-deepC ; we then extend the argument to show B is (1 − ε)n-deepC . Let t be a

time bound. Let n be large enough such that t1, t2, t3 ∈ Ln−2 and t′1, t
′
2, t

′
3, t

′
4 ∈ Ln where the ti’s are

derived from t as described below.

Let j be such that 2n < j ≤ 2n+1 and j′ = j − (2n − 1), i.e., B ↾ j ends with the first j′ − 2 bits of

xn (One bit is “lost” due to the first bit used to encode A(n)).
We consider two cases, first suppose j′ < logn. Let t1 be a time bound (obtained from t) such that

Ct(B ↾ j) ≥+ Ct1(xn−1, B ↾ 2n−1), where neither the constant nor t1 depends on j, n. Let t2 be derived

from t1 using Lemma 3. We have

Ct1(xn−1, B ↾ 2n−1)

≥ Ct2(B ↾ 2n−1) + Ct2(xn−1 | B ↾ 2n−1)−O(log 2n)

≥ Ct2(B ↾ 2n−1) + CTn−1
(xn−1 | B ↾ 2n−1)−O(n) because t2 ∈ Ln−1

≥ Ct2(B ↾ 2n−1) + 2n−1 −O(n) by definition of xn−1

≥ 2n−1 + 2n−2 + Ct3(B ↾ 2n−2)−O(n) reapplying the argument above

≥
3

4
2n −O(n) >

2

3
(2n + j′ + 1) =

2

3
j.

For the second case, suppose j′ > logn. We have

Ct(B ↾ j) ≥ Ct′
1(xn ↾ j′, B ↾ 2n)

≥ Ct′
2(xn ↾ j′ | B ↾ 2n) + Ct′

2(B ↾ 2n)−O(n) By Lemma 3

≥ Ct′
3(xn| B ↾ 2n)− 2n + j′ + Ct′

2(B ↾ 2n)−O(n) by Corollary 4

≥ CTn
(xn | B ↾ 2n)− 2n + j′ + Ct′

2(B ↾ 2n)−O(n) because t′3 ∈ Ln

≥ 2n − 2n + j′ + Ct′
2(B ↾ 2n)−O(n) by definition of xn

≥ j′ + Ct′
4(xn−1, B ↾ 2n−1)−O(n) same as in the first case

≥ j′ +
3

4
2n −O(n) same as in the first case

>
2

3
j
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Note that each iteration of the argument above yields a 2n−k term (k = 1, 2, 3, . . .), therefore for any

ε > 0, there is a number I of iterations, such that B can be shown (1− ε)n-deepC , for all n large enough

such that t1, t2, . . . , t3I ∈ Ln. ⊓⊔

Corollary 5 Theorem 4.1 also holds for K-depth.

Proof: Because every set A is εn-deepC (for some ε > 0) iff it is ε′n-deepK for some ε′ > 0, since for

every x, C(x) ≤ K(x) ≤ C(x) +O(log |x|). ⊓⊔

4.2 Depth implies highness or DNR

An analogue of Theorem 3.3 holds for K .

Theorem 4.2 Let A be a h-deepK set for some recursive order h. Then A is high or DNR.

Proof: We prove the contrapositive. Suppose that A is neither DNR nor high. Let f(m) be (a coding of)

A ↾ h−1(m), where h−1(m) = minn{h(n) = m}. The rest of the proof follows the proof of Theorem

3.3, with 2m replaced with h−1(m). ⊓⊔

As a corollary, we show that in the left-r.e. case, depth always implies highness.

Corollary 6 If A is left-r.e. and h-deepK (for some recursive order h) then A is high.

Proof: LetA be as above. By definition ofA being left-r.e., the left cutL(A) ofA is r.e. and L(A) ≡tt A.

By Lemma 2, L(A) is h′-deepK (for some recursive order h′). By Theorem 4.2, L(A) is high or DNR.

Since every r.e. DNR set is high, A is high. ⊓⊔

As a second corollary, we prove that every weakly-useful set is either high or DNR. A set A is weakly-

useful if there is a time-bound s such that the class of all sets truth-table reducible to A with this time

bound s is not small, i.e., does not have measure zero within the class of recursive sets; see [16] for a

precise definition. In [16], it was shown that every weakly-useful set is O(1)-deepK (even order-deepK
as observed in [3]) thus generalising the fact that ∅′ is O(1)-deepK , since ∅′ is weakly-useful.

Theorem 4.3 (Antunes, Matos, Souto and Vitányi[3]; Juedes, Lathrop and Lutz [16]) Every weakly-

useful set is order-deepK .

It is shown in [16] that every high degree contains a weakly-useful set. Our results show some type of

converse to this fact.

Theorem 4.4 Every weakly-useful set is either high or DNR.

Proof: This follows from Theorem 4.2, since every weakly-useful set is order-deepK by Theorem 4.3.

⊓⊔
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4.3 A low deep set

We showed in Theorem 4.1 that every εn-deepK set is high. Also Theorem 4.2 shows that every order-deepK
set is either high or DNR. Thus one might wonder whether there exists any non-high order-deepK set. We

answer this question affirmatively by showing there exist low order-deepK sets.

Theorem 4.5 If A has PA-complete degree, then there exists a weakly-useful set B ≡T A.

Proof: Let f ≤T A be a Boolean DNR function and let g(n) := 1−f(n). It follows that if Φe is Boolean

and total, then g(e) = Φe(e). One can thus encode g into a set B ≤T A such that for every e such that

Φe is Boolean and total and for every x, B(〈e + 1, x〉) = Φe(x). One can also encode A into B (for

example, B(〈0, x〉) = A(x)) so that A ≡T B. Thus for every recursive set L there exists e such that for

every string x, we have L(x) = B(re(x)), where re(x) = 〈e, x〉 is computable within s(n) = n2 steps

(by using a lookup table on small inputs). It follows that every recursive set is truth-table reducible to B
within time s(n) = n2. Because the class of recursive sets does not have measure zero within the class of

recursive sets [16], it follows that B is weakly-useful. ⊓⊔

Corollary 7 If A has PA-complete degree, then there exists an order-deepK set B ≡T A. Furthermore,

there is a Π0
1-class only consisting of order-deepK sets.

This corollary follows from Theorems 4.3 and 4.5. Recall that a set A is said low for Ω iff Chaitin’s Ω is

Martin-Löf random relative to A; a set A has superlow degree if its jump A′ is truth-table reducible to the

halting problem. Well-known basis theorems [10, 15] yield the following corollary.

Corollary 8 For each of the properties low, superlow, low for Ω and hyperimmune-free, there exists an

order-deepK set which also has this respective property.

Proof: There exists low sets A of PA-complete degree [24]. By Theorem 7 there exists an order-deepK
set B ≡T A . Since A is low it follows that B is low. ⊓⊔

The reason one uses PA-complete sets instead of merely Martin-Löf random sets (which also satisfy all

basis theorems), is that Martin-Löf random sets are not weakly-useful; indeed, it is known that they are

not even O(1)-deepK . This stands in contrast to the following result.

Corollary 9 There are two Martin-Löf random sets A and B such that A⊕B is order-deepK .

Proof: Barmpalias, Lewis and Ng [5] showed that every PA-complete degree is the join of two Martin-Löf

random degrees; hence there are Martin-Löf random sets A,B such that A ⊕ B is a hyperimmune-free

PA-complete set. Thus, by Theorem 4.5 there is a weakly-useful set Turing reducible to A ⊕ B which,

due to the hyperimmune-freeness, is indeed truth-table reducible to A⊕B. It follows that A⊕B is itself

weakly-useful and therefore order-deepK by Theorem 4.3. ⊓⊔
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4.4 No K-trivial is O(1)-deep
K

A key property of depth is that “easy” sets should not be deep. Bennett [6] showed that no recursive set

is deep. Here we improve this result by observing that no K-trivial set is deep. It follows easily from

equivalent characterisations of K-triviality (see [11, 22]), but our proof is self-contained. As we will see

this result is close to optimal.

Theorem 4.6 No K-trivial set is O(1)-deepK .

Proof: Let A be K-trivial and c ∈ N such that ∀n ∈ N, K(A ↾ n) ≤ K(n) + c. Let d be such that

for every string x, K(x) ≥ K(|x|) − d and let g(n) = n2. There exists a constant d′ such that the set

M = {n ∈ N : Kg(n) ≤ K(n)+ d′} is infinite (see [11] p. 139). Note that M is co-r.e., i.e., there exists

uniformly recursive approximations M1 ⊇ M2 ⊇ . . . ⊇ M of M . Let c′ = lim infn∈M |{σ ∈ {0, 1}n :
K(σ) ≤ Kg(n)+c}|. By Theorem 2.1 (with r = n+K(n)−Kg(n)−c), c′ <∞. Consider the function

f(n) = min
s

{n 6∈Ms or there exist c′ strings σ ∈ {0, 1}n with Ks(σ) ≤ Kg(n) + c}.

By modifying f on the finitely many values before the liminf is reached, f is recursive. Wlog f is bounded

by a time bound which we also denote f . We have ∃∞n ∈M such thatKf (A ↾ n) ≤ K(n)+ c+d′ thus

for each of these infinitely many n’s we have Kf (A ↾ n)−K(A ↾ n) ≤ K(n) + c+ d′ −K(n) + d =
c+ d+ d′, i.e., A is not O(1)-deepK . ⊓⊔

Call a set A ultracompressible if for every recursive order g and all n, K(A ↾ n) ≤+ K(n) + g(n). The

following theorem shows that our result is close to optimal.

Theorem 4.7 (Lathrop and Lutz [18]) There is an ultracompressible set A which is O(1)-deepK .

Theorem 4.8 (Herbert [13]) There is a set A which is not K-trivial but which satisfies that for every ∆0
2

order g and all n, K(A ↾ n) ≤+ K(n) + g(n).

It would be interesting to know whether such sets as found by Herbert can be O(1)-deepK . The result of

Herbert is optimal, Csima and Montalbán [8] showed that such sets do not exist when using ∆0
4 orders and

Baartse and Barmpalias [4] improved this non-existence to the level ∆0
3. We also point to related work of

Hirschfeldt and Weber [14].

Theorem 4.9 (Baartse and Barmpalias [4]) There is a ∆0
3 order g such that a set A is K-trivial iff

K(A ↾ n) ≤+ K(n) + g(n) for all n.

5 Infinitely Often Depth and Conditional Depth

Bennett observed in [6] that being infinitely often Bennett deep is meaningless, because all recursive sets

are infinitely often deep. A possibility for a more meaningful notion of infinitely often depth, is to consider

a depth notion where the length of the input is given as an advice. We call this notion i.o. depth.

Definition 10 A set A is i.o.O(1)-deepK if for every c ∈ N and for every time bound t there are infinitely

many n satisfying Kt(A ↾ n | n)−K(A ↾ n | n) ≥ c.
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If we replace K with C in the above definition, we call the corresponding notion i.o. O(1)-deepC . The

fact that all recursive sets are infinitely often deep in Bennett’s approach does no longer hold for i.o. depth

as defined above.

Lemma 11 Let A be recursive. Then A is neither i.o. O(1)-deepC nor i.o. O(1)-deepK .

Proof: Let A be recursive and t be a time bound. Wlog A is recursive in time t, i.e., for every n ∈ N we

have Ct(A ↾ n | n) ≤ c for some constant c, thus ∀n Ct(A ↾ n | n)− C(A ↾ n | n) < c. The K case is

similar. ⊓⊔

The following shows that very little computational power is needed to compute an i.o. deep set.

Theorem 5.1 1. There is a Π0
1-class such that every member is i.o. εn-deepC for all ε < 1. In

particular there is such a set of hyperimmune-free degree. Furthermore, every hyperimmune Turing

degree contains such a set.

2. Every nonrecursive many-one degree contains an i.o. O(1)-deepC set.

3. If A is neither recursive nor DNR, then A is i.o. O(1)-deepC .

Proof: This result is obtained by splitting the natural numbers recursively into intervals In = {an, . . . , bn}
such that bn = (2+an)

2. Now one defines the Π0
1-class such that for each n = 〈e, k〉 where t = Φe is de-

fined up to bn, a string τ ∈ {0, 1}bn−an+1 is selected such that for all σ ∈ {0, 1}an ,Ct(στ) ≥ bn−2an−2
and then it is fixed that all members A of the Π0

1-class have to satisfy A(x) = τ(x − an) for all x ∈ In.

Since there are 2bn−an+1 strings τ and for each program of size below bn − 2an − 2 can witness that

only 2an many τ are violating Ct(στ) ≥ |τ | − |σ| for some σ ∈ {0, 1}an , there will be less than

2bn−an+1 − 2bn−an many τ that get disqualified and so the search finds such a τ whenever Φe is defined

up to bn. Hence, for every total t = Φe, there are infinitely many intervals In with n of the form 〈e, k〉
such that on these In, Ct(A(0)A(1) . . . A(bn) |n) ≥ Ct(A(0)A(1) . . . A(bn))− log(n) ≥ bn − 3an and

C(A(0)A(1) . . . A(bn)|n) ≤ an + c for a constant c, as the program only needs to know how A behaves

below an and can fill in the values of τ on In. So the complexity improves after time t(bn) from bn− 3an
to an and, to absorb constants, one can conservatively estimate the improvement by bn − 5an. By the

choice of an, bn, the ratio (bn − 5an)/bn tends to 1 and therefore everyA in the Π0
1-class is εn-deepC for

every ε < 1. Note that there are hyperimmune-free sets inside this Π0
1-class, as it has only nonrecursive

members.

Furthermore, one can see that the proof also can be adjusted to constructing a single set in a hyperim-

mune Turing degree rather than constructing a full Π0
1-class. In that case one takes some function f in

this degree which is not dominated by any recursive function and then one permits for each n = 〈e, k〉 the

time Φe(bn) in the case that Φe(bn) < f(k) and chooses τ accordingly and one takes τ = 0bn−an+1 in

the case that Φe does not converge on all values below bn within time f(k) otherwise. This construction

is recursive in the given degree and a slight modification of this construction would permit to code the

degree into the set A.

For the second item, consider a set A ⊆ {4n : n ∈ N}. Every many-one degree contains such a set. For

each binary string σ, let
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Sσ = {τ ∈ {0, 1}∗ : 4|σ|−1 < |τ | ≤ 4|σ| and τ(4n) = σ(n) for all n < |σ| and τ(n) = 0 for

all n < |τ | which are not a power of 4}.

In other word, for every A ⊆ {4n : n ∈ N}, SA(1)A(4)A(16)...A(4n) contains those τ which are a prefix of

A and for which τ(4n) is defined but not τ(4n+1). For each e, k, n where Φe is a total function t, we now

try to find inductively for m = 4n + 1, 4n + 2, . . . , 4n+1 strings σm ∈ {0, 1}n+1 such that whenever σm
is found then it is different from all those σm′ which have been found for some m′ < m and the unique

τ ∈ Sσm
∩ {0, 1}m satisfies Ct(τ |m) ≥ e+ 3k. Note that due to the resource-bound on Ct one can for

each m′ < m check whether σm′ exists and take this information into account when trying to find σm.

Therefore, for those m where σm exists, the τ ∈ Sσm
∩ {0, 1}m can be computed from m, e and k and

hence C(τ |m) ≤ e+ k + c for some constant c independent of e, k, n,m.

Now assume that A is not infinitely often O(1)-deepC . Then there is a total function t = Φe and a

k > c such that C(τ | |τ |) ≥ Ct(τ | |τ |)− k for all prefixes τ of A. It follows that in particular never a σm
with Sσm

consisting of prefixes of A is selected in the above algorithm using e, k. This then implies that

for almost all n and the majority of the m in the interval from 4n to 4n+1 (which are those for which σm
does not get defined) it holds thatCt(τ |m) ≤ e+3k for the unique τ ∈ SA(1)A(4)A(16)...A(4n)∩{0, 1}m.

There are at most 2e+3k+2 many strings σ ∈ {0, 1}n+1 such that at least half of the members τ of Sσ

satisfy that C(τ | |τ |) ≤ e + 3k and there is a constant c′ such that for almost all n the corresponding σ
satisfy C(σ|n) ≤ e + 3k + c′. It follows that C(τ | |τ |) ≤ e + 3k + c′′ for some constant c′′ and almost

all n and all τ ∈ SA(1)A(4)A(16)...A(4n); in other words, C(τ | |τ |) ≤ e + 3k + c′′ for some constant c′′

and almost all prefixes τ of A. Hence A is recursive [19, Exercise 2.3.4 on page 131].

For the third item, note that Merkle, Kjos-Hanssen and Stephan [17, Theorem 2.7] showed that a set A
has DNR Turing degree iff there is a function f ≤T A such that C(f(n)) ≥ n for all n. It will be shown

that sets which are neither recursive nor i.o. O(1)-deepC will permit to construct such a function f ≤T A
and are thus DNR.

Assume now that there is a time bound t and a constant c such that, for all n, C(A ↾ n | n) + c ≥
Ct(A ↾ n | n). Now, for input n, one searches relative to A for an m such that Ct(A ↾ m | m) ≥ n + c
and lets f(n) = A ↾ m for the so found m. As A is not recursive this search terminates for every n and

obviously f ≤T A. By assumption, C(A ↾ m | m) + c ≥ n + c and, assuming a suitable compatibility

between conditional and normal Kolmogorov complexity, C(A ↾ m) ≥ n, that is, C(f(n)) ≥ n. ⊓⊔

Due to these connections, non-recursive and non-high r.e. sets are a natural example of sets where all

members of the Turing degree satisfy that they are i.o. O(1)-deepC but not O(1)-deepC .

Results of Franklin and Stephan [12] imply that for every Schnorr trivial set and every order h it holds

that A is not i.o. h-deepC , as for every order h there is a time bound t such that the function n 7→ Ct(A ↾

n |n) grows slower than h. Thus, the second and third points cannot be generalised to i.o. order-deepC .

It also follows that there are high truth-table degrees and hyperimmune-free Turing degrees which do

not contain any i.o. order-deepC set. These are obtained by considering examples for Schnorr trivial sets

such as the following ones: all maximal sets and, for every partial recursive {0, 1}-valued function ψ
whose domain is a maximal set, all sets A satisfying ∀xψ(x)↓⇒ A(x) = ψ(x).

6 Conclusion
We conclude that the choice of the depth magnitude has consequences on the computational power of the

corresponding deep sets, and that larger magnitudes is not necessarily preferable over smaller magnitudes.
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Therefore choosing the appropriate depth magnitude for one’s purpose is delicate, as the corresponding

depth notions might be very different. When the depth magnitude is large, we proved that depth and

highness coincide. We showed that this is not the case for smaller depth magnitude by constructing a low

order deep set, but the set is not r.e. We therefore ask whether there is a low O(1)-deepK r.e. set.

From our results, for magnitudes of order O(1), K-depth behaves better than C-depth. To further

strengthen that observation we ask whether there is an MLR O(1)-deepC set.
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