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a b s t r a c t

This paper considers a cyber-physical system (CPS) under denial-of-service (DoS) attacks. The
measurements of a sensor are transmitted to a remote estimator over a multi-channel network, which
may be congested by a malicious attacker. Among these multiple communication paths with different
characteristics and properties at each time step, the sensor needs to choose a single channel for sending
data packets while reducing the probability of being attacked. In the meanwhile, the attacker needs to
decide the target channel to jam under an energy budget constraint. To model this interactive decision-
making process between the two sides, we formulate a two-player zero-sum stochastic game framework.
A Nash Q-learning algorithm is proposed to tackle the computation complexity when solving the optimal
strategies for both players. Numerical examples are provided to illustrate the obtained results.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In order to enrich human–machine interactions in the phys-
ical/virtual world, various areas, such as aerospace, healthcare,
transportation, civil infrastructure and smart grids, have increas-
ingly adopted cyber-physical systems (CPSs) during recent years.
A CPS is a system connecting the cyber world (e.g., information,
communication) with the physical world by integrating computa-
tion, communication and control. In a CPS, multiple static/mobile
sensors and actuators, which communicate with each other, inter-
actwith physical processes under the control of an intelligent deci-
sion system (Hespanha, Naghshtabrizi, & Xu, 2007). Traditionally,
the sensing data is transmitted to the control centers through a sin-
gle channel. However, this technique cannot provide reliable and
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timely communication in the competitive communication envi-
ronment brought by distributed wireless sensor networks (WSNs)
in CPSs as a result of limited bandwidth. A multi-channel network
is an efficient technology to alleviate bursty communication traf-
fic by transmitting the signals over several channels (Incel, 2011).
Besides this, multi-channel networks can increase the resilience
ability of a system under some rare events, e.g., severe weather or
natural disasters (Proakis, 2001). Consequently, current MAC pro-
tocols, WSN hardware and commercially available radios for sen-
sors support multi-channel communication. Hence, it is natural
and important to consider multi-channel networks in the study of
CPSs.

Although multi-channel techniques improve the throughput
and capacity of the network, they cannot alleviate severe security
challenges brought by the cyber components of the CPSs, especially
vulnerabilities of wireless connection among sensors, estimators
and actuators. Since CPSs are connected to many safety-critical
infrastructure systems, attacks can lead to severe damage, as
in the reported incident of the advanced computer worm
Stuxnet infecting industrial control systems (Zhu & Bacsar, 2015).
Therefore, careful defense-strategy design is essential for assuring
the safe operation of CPSs in the face of adversarial attacks.
In the present work, we mainly deal with DoS attacks (Li, Shi,
Cheng, Chen, & Quevedo, 2015), which block the information flow
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Fig. 1. Multi-channel remote estimation with an attacker.
between the sender (sensor) and the receiver to increase the
packet-drop rate, andpropose a defense-strategy design underDoS
attacks for the multi-channel CPSs.

Energy limitation is inevitable (Shi, Cheng, & Chen, 2011) as
sensing, computation and transmission power are restricted for
sensor nodes and, moreover, replacing or recharging batteriesmay
not always be possible in someWSNs. Consequently, a complicated
security issue in CPSs (see Fig. 1) arises. To be more specific,
facing DoS attacks launched by an intelligent attacker, the receiver
(estimator) should choose a channel which is not just energy-
efficient, but also dodges the attacks. Simultaneously, the smart
attacker may notice the evasive actions taken by the sensor, and
then modify its attack mode. Thus, an interaction between the
sensor and the attacker occurs incessantly. The interaction can
be captured by a game-theoretical approach, under which several
recent studies about CPS security have been carried out, see Agah,
Das, and Basu (2004), Li, Quevedo, Dey, and Shi (in press-a), Li,
Quevedo, Dey, and Shi (in press-b), Liu, Liu, and El Saddik (2014),
Song, Willett, Zhou, and Luh (2012) and Zhu and Bacsar (2015).

Based on cooperative game theory, the survey conducted by
Agah et al. (2004) has proposed a new method for clustering
sensors to provide a higher level of security. Instead of adopting
model-based attacks to networks, in the formulation of Liu et al.
(2014), an intelligent attacker with a dynamic and random attack
strategy was considered in developing a two-player zero-sum
stochastic game. Our recent work (Li et al., 2015) studied an
interactive power scheduling between a sensor and a jammer,
and used Markov chain theory to obtain the equilibrium solution.
The recent work by Zhu and Bacsar (2015) introduced a cross-
layer system design problem which results in solving a zero-sum
differential game for robust control, coupled with a zero-sum
stochastic game for a security policy in the absent of power
constraints. In Li, Lai, and Qiu (2011), Li et al. used an ideal multi-
channel system between a sensor and a remote estimator to avoid
DoS attacks in a smart grid.

Compared with previous works, the main contributions of our
current work are summarized as follows:
(1) With few studies undertaking an analysis ofmulti-channel net-

works for the secure state estimation problem in CPSs, this
work sheds new light on the practical multi-channel-based es-
timation issue under malicious DoS attacks. In communication
theory, the transmitted signal is typically assumed to be inde-
pendent and identically distributed or at least stationary and
ergodic; however, in this paper we consider a dynamical pro-
cess and focus on improving estimation quality in an effective
and defensive way.
(2) We investigate the iterative process between the sensor and
the attacker by developing a two-player zero-sum stochastic
game. By involving an elastic data arrival rate matrix to
mathematically represent the relationship between the mixed
strategies and the average packet loss rate, we obtain the
reward function of the game. Moreover, by developing a
Nash Q-learning algorithm, we acquire the optimal rational
strategies for the sensor and the attacker.

(3) The stochastic game presented can be extended to include the
channel choices and the power level selections, providing an
important opportunity for the analysis of power allocation in
multi-channel networks.

The remainder of the paper is organized as follows. Section 2
contains the mathematical models of the system. Section 3
demonstrates the framework of the stochastic game between the
sensor and the attacker, while an algorithm is provided to obtain
the rational strategies in Section 4. Some examples and concluding
remarks are presented in Section 5 and Section 6.
Notations: Sn

+
(or Sn

++
) is the set of n by n positive semi-definite

matrices (or positive definite matrices). When X ∈ Sn
+

(or X ∈

Sn
++

),wewriteX ≥ 0 (orX > 0). Tr(·)denotes the trace of amatrix.
For functions h, g , h ◦ g is defined as the function composition
h(g(·)).E[·] is the expectation of a random variable and Pr(·) refers
to the probability. The notation−→

· is the representation of vectors.
The superscripts ′ and ⋆ stand for the transposition and the optimal
solution. The subscripts s and a refer to the sensor and the attacker,
respectively.

2. Problem setup

In this section, we will introduce the mathematical models of
the multi-channel structure depicted in Fig. 1, which is comprised
of sensing, communication and estimation parts.

2.1. Process and sensor model

Consider the following linear time-invariant system:

xk+1 = Axk + wk, yk = Cxk + vk, (1)

where xk ∈ Rn is the system state vector, yk ∈ Rm is the mea-
surement taken by the sensor at time k, wk ∈ Rn and vk ∈ Rm

are zero-mean i.i.d. Gaussian random noises with E[wkwj
′
] = δkjQ

(Q ≥ 0), E[vkvj
′
] = δkjR (R > 0), and E[wkvj

′
] = 0 ∀j, k. The initial

state x0 is a zero-mean Gaussian random vector with covariance
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Π0 ≥ 0, and which is uncorrelated with wk and vk. The pair (A, C)
is assumed to be detectable and (A,

√
Q ) is stabilizable.

In current CPSs, sensors are usually designed to be ‘‘smart’’ (Ho-
vareshti, Gupta, & Baras, 2007) to improve the estimation/control
performance of the system. Advanced embedded systems-on-chip
render the improvement possible as they equip sensors with stor-
age and computing capabilities, and they also allow sensors to pro-
cess the collected information by executing some simple recursive
algorithms. Thus, the sensor in Fig. 1, after taking measurements
at time step k, runs a Kalman filter to estimate the state xk of the
process locally based on the overall collected measurements, in-
stead of transmitting them to the remote estimator directly. The
local minimum mean-squared error (MMSE) estimate of the pro-
cess xk is denoted by x̂sk = E[xk|y0, . . . , yk]. The corresponding es-
timation error esk and the error covariance matrix P s

k are defined as
esk , xk − x̂sk and P s

k , E[(esk)(e
s
k)

′
|y0, . . . , yk]. These terms are com-

puted via the Kalman filter and the iteration starts from x̂s0 = 0
and P s

0 = Π0. For convenience, we define the Lyapunov and Ric-
cati operators h and g̃ : Sn

+
→ Sn

+
as h(X) , AXA′

+ Q and
g̃(X) , X − XC ′

[CXC ′
+ R]−1CX . The error covariance P s

k converges
exponentially to a unique fixed point P of h◦ g̃ (Anderson &Moore,
1979). For simplicity, we ignore the transient periods and assume
that the Kalman filter at the sensor has entered steady state; i.e., we
assume that:

P s
k = P, k ≥ 1. (2)

2.2. Multi-channel communication and attack model

After obtaining the state estimate x̂sk, the sensor transmits
this value as a data packet to the remote estimator through an
N-channel communication network. We assume that all N
channels have independent Additive White Gaussian Noise. In
practice, the data packets may arrive unsuccessfully to the remote
estimator because of noise, signal fading, etc. The packet arrival
reliability measured in packet-error-rate (PER) is closely related
to the signal-to-noise ratio (SNR) and the intrinsic channel
characteristics (such as the channel coding method, the design
of the receiver, etc.). Considering a DoS attack for a channel (in
which an adversary can congest the communication network),
the corresponding SNRi =

ps
σi

is revised to be SINR (signal-to-
interference-and-noise-ratio):

SINRi =
ps

pa + σi
, if interfered, (3)

where the notations ps and pa correspond to the transmission
power of the sensor and the interference power of the attacker,
respectively, and σi is the additive white noise power of the ith
channel. We assume that the channel gains are taken to be unity,
therefore the definition of received SINR can be defined based on
transmission powers instead of the actual received power.

In practice, different channel coding methods (such as cyclic
redundancy check) will be used to detect the symbol error of
the data before the decoder uploads the data to the receiver. As
a result, some packets will be dropped if they contain errors.
Furthermore, packet dropouts can also be caused by network
congestion, timeout and other channel characteristics. This leads
to the general form:

PERi ,


F(SINRi), if the ith channel is attacked,
F(SNRi), otherwise.

βi = 1 − PERi, (4)

where βi represents the packet arrival rate for the ith channel, and
F(·) is a non-increasing function.
2.3. Remote state estimation

Let x̂k be the MMSE estimate of the process xk at the remote
estimator, with corresponding error covariance Pk. The remote
estimator obtains the state estimate as follows (Wu, Yuan,
Zhang, & Shi, 2013): once receiving x̂sk successfully, the estimator
synchronizes its estimate x̂k with it; otherwise, the estimator
simply predicts the estimate based on its previous estimate using
the system model (1). To be precise,

x̂k =


x̂sk, if data is received successfully,
Ax̂k−1, otherwise. (5)

As a result, the error covariance Pk at time k obeys

Pk , E[(xk − x̂k)(xk − x̂k)′]

=


P, if data is received successfully,
h(Pk−1), otherwise. (6)

Assume that the initial value of the error covariance at the remote
estimator also starts from P , that is, P0 = P . This corresponds to
receiving a local state estimate (with estimation error covariance
P) at time k = 0. According to (6), Pk can only take values in the
finite set {P, h(P), h2(P), . . . , hk(P)} at a given time k.

2.4. Problem of interest

Given a tight budget of transmission and congestion power,
the strategy design of the sensor or the attacker is important for
efficient operation. In general, the task of the sensor is to make
sure that its end user (i.e., the remote estimator) is sufficiently
informed of the process, without wasting energy; and as for the
attacker, it tends to disrupt the reliable communication between
the sensor and the user, also without expending more effort than
required. With opposite goals, the decision-making procedures of
the sensor and the attacker are interactively linked. In Section 3,we
will investigate the decision-making procedures for the defending
sensor and themalicious attacker in amulti-channel networkwith
power constraints and develop a game played over time to model
this interactive process.

3. Stochastic game framework

Depending on the targets of the attacker, the information
available to the defending sensor and the security mechanism, the
adopted game may take different forms, such as a static game,
Bayesian game, etc. (Leyton-Brown & Shoham, 2008). In order to
improve their performance, it is more meaningful for both players
to adopt dynamic cost-effective strategies based on the real-time
information of the process rather than adopting static ‘‘offline’’
schemes. Motivated by this, we introduce a two-player stochastic
game in this section to design the defense-attack strategies.

3.1. Stochastic game formulation

Define a stochastic game as G = ⟨I, S, M, P , J⟩, where I is
the set of two players; S = (S1, S2) represents the action set for
each player in I; the term M denotes the state space of the game;
the transition probability p(mk+1|mk, s) ∈ P : Mk × S → Mk+1
represents the probability of the next state being mk+1 given the
current state mk and the current action profile s; and the function
J : M × S → RI denotes the payoff of each player i ∈ I. At
time k, an action pair s = (s1, s2) is chosen by the attacker and
the sensor according to a mixed strategy pair (Leyton-Brown &
Shoham, 2008). The joint actions affect the transition probability
p(mk+1|mk, s) for the next states and also incur a cost. In our
problem setup, we have the following specifications.
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Player The sensor Is and the attacker Ia are assumed to be
rational players; i.e., each of them makes the best choice
in terms of their own preference among all available
actions for them.

Strategy The game is played over time; namely, at every time k,
the sensor needs to choose through which channel to
send the data packets; the attacker faces the same situ-
ation, except with the hostile motivation to block a chan-
nel. Hence, the strategies of the sensor and the attacker,
denoted by (−→γk ,

−→
λk ) ∈ S, are composed of different

probabilities of choosing corresponding channels. That is,
−→γk = [Pr0, Pr1, . . . , PrN ]

′ and
−→
λk = [Pr0,Pr1, . . . , PrN ]

′.
Note that the extra term Pr0 describes the likelihood of
choosing the inactive state (no data is sent) by the sensor
for energy saving; similarly for the attacker,Pr0 stands for
launching no attack with some probability. The two col-
lections of strategies are denoted by θs , {

−→γ 1,
−→γ 2, . . .}

and θa , {
−→
λ 1,

−→
λ 2, . . . , } for the sensor and the attacker,

respectively.

Remark 3.1. The representation of the probability for
channel selection consists of pure/deterministic strate-
gies (a pure strategy specifies a choice of action) and
mixed/randomized strategies (a probability distribution
over pure strategies). We are interested in the design of
the strategies −→γ k,

−→
λk (i.e., the probability distribution)

for the two players following from the action history.

State Define the state as the error covariance, i.e.,mk , Pk. Gen-
erally, the network uses acknowledgment (ACK) mech-
anisms for reliable data transfer; i.e., a feedback loop
containing the control message from the receiver to the
sender (see Fig. 1). The estimator explicitly informs the
sensor whether the data packet is received successfully
or not in an ACK. Thus, the sensor has full knowledge of
the state. In the current work, the attacker is assumed to
infer the state sk as well by eavesdropping the ACKs.

Transition probability Note that the transition probability de-
pends on the packet arrival rate in (4). To analyze this
relationship under the multi-channel network, we intro-
duce a matrix describing the packet arrival rate under
different actions for each player and then link the game
concept with the communicationmode. Consider a time-
varying matrix

Mk =


0 0 · · · 0

β ′

10 β ′

11 · · · β ′

N1
...

...
. . . · · ·

β ′

N0 β ′

N1 · · · β ′

NN

 ∈ R(N+1)×(N+1), (7)

where the element β ′
nm, n,m ∈ {0, 1, . . . ,N} denotes

the successful packet arrival rate when the sensor trans-
mits data through the n-channel, and the attacker inter-
feres them-channel. Note that if the sensor decides not to
send data, then the arrival rate β ′

0m = 0. Moreover, based
on (4), only the diagonal elements of the matrix Mk are
functions of the SINR, that is,

β ′

nm =


βn(SINRn), ifm = n,
βn(SNRn), ifm ≠ n, (8)

where n,m ∈ {1, . . . ,N}. We can obtain the expected
packet arrival rate at time k via:

Rk(Mk,
−→
λk ,

−→γk ) =
−→γk

′Mk
−→
λk . (9)
Last, we can derive the transition probability as follows:

p(Pk+1 | Pk,
−→
λk ,

−→γk ,Mk)

=

Rk, if Pk+1 = P,
1 − Rk, if Pk+1 = h(Pk),
0, otherwise.

(10)

Energy constraints One of the most important goals of network
design is to have effective operations with limited en-
ergy. For simplicity, we fix the transmission power level
(i.e.,

−→
Es ) and attack power level (i.e.,

−→
Ea ) with respect

to different channels:
−→
Es = [e0, e1, . . . , eN ] and

−→
Ea =

[ẽ0, ẽ1, . . . , ẽN ] (an extended form can be found in Sec-
tion 3.3). Then, the expected transmission energy is de-
noted by Es =

−→
Es ·

−→γk for the sensor, and Ea =
−→
Ea ·

−→
λk

applied by the attacker.
Payoff According to Section 2.3, the stochastic game starts at the

initial state P0 = P . Consequently, the game flow is de-
fined as g = {P0, s0, P1, s1, . . .}. A one-stage reward can
be defined for each player based on the tradeoff between
the average performance of the system at the next state
and the consumed energy. The average performance is
quantified by the expectation E(Pk+1). This formulation
depends on historical states and needs additional math-
ematical tools, which will be provided later.

With the sensor aiming to maximize the system per-
formancewithout toomuch energy expenditure, the one-
stage reward function for the sensor is given by

rk(Pk+1,
−→γk ,

−→
λk ) , −Tr [E(Pk+1)]

− δs
Es
Rk

+ δa
Ea

1 − Rk
, (11)

where the function rk : Mk+1 × S → R is in an aver-
age sense and the parameters δa, δs represent the propor-
tions of the energy term in the reward. Similarly, the re-
ward function for the attacker here is taken as −rk. Note
that the reward depends on the energy efficiency (i.e., the
terms δs

Es
Rk

and δa
Ea

1−Rk
for the sensor and the attacker)

rather than the actual energy, as often used in commu-
nication systems (Incel, 2011).

After obtaining a stream of reward functions {r0, r1,
. . .}, the payoff function for the sensor is obtained
through a generalization from a Markov decision pro-
cesses (MDP) to the infinite horizon stochastic game:

JS(θs, θa, P0) =

+∞
k=0

ρkrk(Pk, θs, θa), (12)

where the parameter ρ ∈ [0, 1) stands for the discount
factor. The payoff function of the attacker is opposite to
that of the sensor. Thus, we have derived a two-player
zero-sum stochastic game to interpret the interactive
process between the sensor and the attacker.

Assumption 3.2. The sensor and the attacker adopt sta-
tionary strategies. Moreover, the transition probability
and the reward function are stationary; i.e., independent
of time k.

Remark 3.3. In other words, the probabilities over ac-
tions for the stationary strategies only depend on the
state, i.e., −→γ k , −→γ k(sk) and

−→
λ k ,

−→
λ k(sk). With the

evolution of the system state, the strategies are different
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in every stage and the rational actions determined by the
strategies may likewise be time-varying.

3.2. Markov chain model

To explain the intrinsic properties of the dynamics of the
receiver state Pk, we introduce a Markov decision process, which
enables us to characterize E(Pk+1). To be precise, we define the
chain state of theMDP to be exactly the error covariance Pk. Hence,
at time k, the possible values of the error covariance Pk denoted by
the state set Zk are represented as Zk = {Pk : P, h(P), . . . , hk(P)}.
From (10), we describe the transitions from elements in the state
set Zk to values in Zk+1 via the matrix Tk with elements:

Tk(i, j) , P[Zk+1 | Zk] =

Rk if j = 1,
1 − Rk if j = i + 1,
0 otherwise,

where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , k + 1} stand for the
index of the possible values of the states in Zk and Zk+1. Define
a matrix Π , in which Π(i, j) measures the probability with the
state Pj at time j equals the possible values hi(P), and based on
Π(·, j) = Π(·, j − 1)′Tj, we have

Π =


R1 · · · Rk

1 − R1 · · · (1 − Rk)Rk−1
0 · · · (1 − Rk)(1 − Rk−1)Rk−2
...

. . .
...

0 · · · (1 − Rk)(1 − Rk−1) . . . (1 − R1)

 (13)

where i ∈ {0, 1, . . . , k} and j ∈ {1, 2, . . . , k}. Considering the
probability distribution of Pk, i.e., the kth column of the matrix Π ,
we can evaluate the expected error covariance at time k as follows:

Tr [E(Pk)] = Tr


k+1
i=1

Π(i, k)hi−1(P)


, ∀k ∈ Z+. (14)

By now, we have an explicit expression for all the game elements.
The solution of the optimal strategies for each player will be given
in Section 4.2.

3.3. Extension to power-level selection

In our original formulation, only one power level was utilized
for each channel. The above strategies for the sensor and the at-
tacker can be easily extended to the case of multiple power lev-
els. For example, if there are li, i ∈ 1, . . . ,N transmission power
levels eji for each channel, then the whole power level set is de-
noted by

−→
Es = 0 ∪ {eji : j ∈ {1, 2, . . . , li}, i ∈ {1, 2,

. . . ,N}}, covering the no-data-transmission mode. Respectively,
we have −→γk = [Pr0, Pr11 , . . . , Pr

j
i , . . . , Pr

lN
N ]

′ and
−→
λk = [Pr0, Pr11 ,

. . . ,
Pr ji ,, . . . ,Pr lNN ]

′, where Pr ji represents the probability for the
sensor to choose channel i and transmit data packetswith power eji.
Hence, the pure strategy s for the sensor considers the 1 +

N
i=1 li

power-level choices, which covers the 1 + N channel selections. A
simple example for this setting will be illustrated in Section 5.2.

4. Design of rational strategies

In this section, we analyze the Nash equilibrium (NE) (i.e., a pair
of optimal strategies) of the stochastic game derived in Section 3
and design the NE through a Nash Q-learning algorithm.

4.1. Equilibrium analysis

To solve the strategy-design problem, we first introduce the
equilibria of the stochastic game. Then, we prove the existence
of the optimal strategies in Theorem 4.2. Eventually, the strategy-
design problem is equivalent to finding the NE of the stochastic
game.

Definition 4.1 (Nash EquilibriumLeyton-Brown&Shoham, 2008). In
the two-player zero-sum stochastic game with the initial state P0
between the sensor and the attacker, a strategy profile π ⋆

s (or π ⋆
a )

for the sensor (or attacker) is a Nash equilibrium if no player can
benefit from changing strategies while the other keeps its own un-
changed, i.e., J⋆

S (P0)
.
= JS(P0, π ⋆

s , π
⋆
a ) ≥ JS(P0, πs, π

⋆
a ), ∀πs and

J⋆
A(P0)

.
= JA(P0, π ⋆

s , π
⋆
a ) ≥ JA(P0, π ⋆

s , πa), ∀πa.

Theorem 4.2. This sensor–attacker stochastic game between the
sensor and the attacker has at least one NE.

Proof. This game with discounted rewards has two players and
N + 1 pure strategies for each player. Moreover, from Assump-
tion 3.2, players all deploy stationary strategies. The result follows
from Leyton-Brown and Shoham (2008, Theorem 6.3.5). �

4.2. Learning methodology

We now present a method to obtain the NE of the two-player
zero-sum stochastic game. Denote the expected future payoffs (in
which the players adopt theNE strategies from time k+1 onwards)
for the sensor and the attacker as J⋆

S (m
′) and J⋆

A(m
′), where the

notation ⋆ represents the payoff derivation using the NE strategies
and the termm′ stands for the next state. Then, based on (12), each
player will play the following zero-sum single-decision game at
every time k:

Problem 4.3. For the sensor,

J⋆
S (m) = max

−→γk∈S
(rk(m, −→γk ,

−→
λ⋆
k )

+ ρ

m∈M

p(m′
|m, −→γk ,

−→
λ⋆
k ) × J⋆

S (m
′))

s.t.
N+1
j=1

γk,j = 1,
N+1
j=1

λk,j = 1, γk,j > 0, λk,j > 0.

Problem 4.4. For the attacker,

J⋆
A(m) = max

−→γk∈S
−


rk(m,

−→
γ ⋆
k ,

−→
λk )

+ ρ

m∈M

p(m′
|m,

−→
γ ⋆
k ,

−→
λk ) × J⋆

S (m
′)



s.t.
N+1
j=1

γk,j = 1,
N+1
j=1

λk,j = 1,

γk,j > 0, λk,j > 0.

In the above, notations
−→
γ ⋆
k ,

−→
λ⋆
k represent the actions determined

by the NE action rules π ⋆
s , π

⋆
a and can be obtained by solving

the joint optimization problems. Unfortunately, there is no
straightforward method for solving these problems in general
because of the tight coupling between Problems 4.3 and 4.4.
Classic algorithmic techniques for solving the stochastic game
include value iteration and strategy improvement (Bertsekas, 2005),
quadratic programming, etc. However, these algorithms require
information of the reward for all states, which may be inaccessible
for the sensor and the attacker. In order to overcome these
disadvantages, we use the following Nash Q-learning algorithm
(Hu & Wellman, 2003) to obtain the NE solution. Executing this
algorithm just requires knowledge of the system parameters.
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First, based on the objective function in Problems 4.3 and 4.4,
we define Q-values for each player and denote the Q-value for the
sensor as follows (the Q-value of the attacker is negative to that of
the sensor):

Q⋆(m, −→γ ,
−→
λ ) = r(m, −→γ ,

−→
λ ) + ρ[R(m, π ⋆

s , π
⋆
a ) × J⋆

S (P)

+ (1 − R(m, π ⋆
s , π

⋆
a )) × J⋆

S (h(m))], (15)

where r is the one-stage reward defined in (11) with the
initial state m and the joint actions (−→γ ,

−→
λ ). Note that from

Assumption 3.2, the subscript k of the reward and strategies can
be omitted. The value Q⋆ combines the current reward and future
rewardwhen the twoplayers play specified rational actions−→γ and
−→
λ according to the NE strategies from the next period onwards.
Comparing (15) with Problem 4.3, we have

J⋆
S (m) = Nash

−→γ ,
−→
λ

Q⋆(m, −→γ ,
−→
λ ), (16)

where the notation Nash represents the process of finding the
NE of the one-stage game with reward Q⋆. Therefore, searching
the NE of the stochastic game is translated from solving the joint
optimization problem defined in Problems 4.3 and 4.4 to finding
the NE of a single stage game with reward Q⋆.

Next, we develop a learning process to calculate Q⋆ through
repeated plays, in which each player updates its Q-value by using
theQ-value information of itself and its opponent froman arbitrary
guess at the beginning. The updated equation of the Q-value for the
sensor is thus defined as follows:

Qk+1(m,
−→
λk ,

−→γk ) = (1 − αk)Qk(m,
−→
λk ,

−→γk )

+ αk(rk + ρNash Qk(m′)), (17)

where Nash Qk(m′) is as in (16), αk (or αk(m, −→γk ,
−→
λk )) is the

learning rate to be designed and it is related to the statem and the
actions. From the standard formulation of a two-player zero-sum
single stage game,NashQk(m′) can be represented in the following
min–max form and can be easily solved using linear programming:

Nash Qk(m′) , J⋆
S (m

′)

= max
πs

min
πa


−→γk ,

−→
λk

Qk(m′, −→γk ,
−→
λk )πs(m′, −→γk )πa(m′,

−→
λk ). (18)

Finally, with a large number of repeated plays and given the
randomness of adopted actions in every step, the Q-value
Qk(m, −→γk ,

−→
λk )may converge toQ⋆ (see Theorem 4.5). The optimal

strategies for the stochastic game can be obtained by (16). The
generalized version of the Nash Q-learning algorithm is given in
Algorithm 1. Note that ∥ · ∥ represents the matrix norm and δ is
the accuracy requirement.

Algorithm 1 Nash Q-learning algorithm
1: Initialization:
2: k = 0 and set the initial statem ∈ M
3: Initialize the Q-value Qi

k(m,
−→
λk ,

−→γk ) for all states m and
arbitrary

−→
λk ,

−→γk , where i = 1, 2 represents the two players
respectively

4: While ||Qk+1 − Qk|| < δ
5: Find the NE Q-value Nash Q(m′) based on (18) and the

corresponding optimal mixed strategies
6: Randomly select actions for the two players based on the

optimal mixed strategy profiles
7: Observe the next statem′ and update the Q-value in (17)
8: k := k + 1
9: End
Theorem 4.5 (Convergence Conditions). The Nash Q-learning pro-
cess (i.e., the iteration defined in (17)) will converge to Q⋆ with prob-
ability 1, if

(1) Every state m ∈ M with different actions (−→γk ,
−→
λk ) ∈ S is visited

infinitely often during the learning process.
(2) The learning rate αk satisfies: αk ∈ [0, 1),


∞

k=0 αk = ∞ and
∞

k=0 α2
k < ∞; αk(m, −→γ ,

−→
λ ) ≠ 0 if (m, −→γ ,

−→
λ ).

(3) A saddle point exists in every stage game for all times k and states
m, and each player uses the NE payoffs to update their Q-values.

The proof of Theorem 4.5 is similar to those in Hu and Wellman
(2003). The two former conditions can be satisfied according to
Remark 4.6. Due to the existence of a saddle point in any two-
player zero-sum stage game, condition (3) is always satisfied.

Remark 4.6. Condition (1) indicates that as long as every state
and action is successfully traversed, the convergence result is
independent of the random actions of each player during the
learning process. Through a large number of iterations and random
actions in the learning process, Condition (1) can be satisfied.
In Condition (2), the first term restricts the convergence of the
learning rate, whereas the second states that the players only
update the Q-values corresponding to the current time and state.
To satisfy these conditions, we design the learning rate as a non-
zero decreasing function of time k and the current state and
actions, which is illustrated in the simulation part (see Section 5).
It is reasonable to decrease the learning rate because the learning
process starts with little information, while after many steps,
sufficient information is available for the sensor. This consequently
reduces the proportion of the learning term in the updated
equation (17).

We nowoutline stability issues of the estimation process (when
the game is in equilibrium) in terms of the asymptotic state
estimation error covariance. Based on (6) and the stationarity as-
sumption of the error covariance (which was proved in Kar, Si-
nopoli, & Moura, 2012), we have limT→∞ sup 1

T

T
k=1 Tr[E(Pk)] =

limk→∞ sup Tr[E(Pk)] =


+∞

i=1 πiTr[hi−1(P)],


+∞

i=1 πi = 1 where

πi , Pr(P+∞ = hi(P)) =
i−1

j=0(1 − ϵj)ϵi and ϵi = 1 −
−→
γ ⋆
k

′

(m =

hi(P))Mk
−→
λ⋆
k (m = hi(P)) represents the arrival rate when the NE

strategies are adopted. Based on properties of the Lyapunov oper-
ator h(X) = AXA′

+ Q (Quevedo, Ahlén, Leong, & Dey, 2012), a
sufficient condition for the estimation stability is mini=0,...,K ϵi >
ρ(A)−2, where ρ(A) stands for the spectral radius of A. Note that
we only consider the first K + 1 rates ϵi since there is a final state
hK (P)2 which represents hi(P) with i ≥ K during the learning pro-
cess and the strategies used for these states are the same as those
of the state hK (P).

5. Simulations

In this section, we will illustrate the results using some exam-
ples. We consider the following vector system with parameters
A =


1 0.5
0 1.05


, C =


1 0


,Q =


0.5 0
0 0.5


and R = 0.5, where

the steady-state error covariance is P =


0.38 0.28
0.28 1.69


. Assuming

that the channels in the examples are wireless fast-fading chan-
nels, we adopt the general form of F(·) in (4), i.e., F(x) = cx−Li ,
where c, Li are constants related to the channel characteristics. In
the examples, we have two channels with different characteristics,
L1 = 2, L2 = 1, but with the same noise parameters, σi = 0.1, i =

1, 2.

2 Asymptotically, this finite state approximation is valid as the probabilities of
the remaining states decay exponentially fast from (13).
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Fig. 2. Q-value in state P for all joint channel choices.

Fig. 3. Strategy learning process for the sensor in state P .

5.1. Multi-channel strategies

For these two channels, we design the transmission energy
levels ps = (0.5 0.6)′ for the sensor and the attack energy
levels pa = (0.3 0.3)′ for the attacker, respectively. The other
parameter settings for the reward function and the learning
process are δs = 1, δa = 1, ρ = 0.96 and αt = 10/[15 +

count(m, −→γt ,
−→
λt )], where count is a function to calculate the

occurrence of the pair (m, −→γt ,
−→
λt ). Before the learning process,

to reduce the computational burden, we impose the restriction
that the states set M is finite and equals {P̄, . . . , h4(P)}. We apply
the Nash Q-learning algorithm 100000 times (about 10 min using
MATLAB) and obtain the following results (see Fig. 2):

• Result 1 After 100000 learning steps, we can see that the
Q-values in different states all converge. Moreover, state P is
more likely to be achieved. We take state P as an example, in
which the converged Q-values are concluded in Fig. 2.

• Result 2Weobserve that not only do theQ-values converge, but
the channel-choice probabilities also tend to be stable for each
player under different states (for example, see Fig. 3). Hence,
we can obtain the stationary strategies for the sensor and the
attacker under different states. We summarize the optimal
strategies of each player under states P and h(P) in Table 1.

• Result 3 Based on the NE strategies shown in Table 1, we
compare Tr(Pk) and its averaged form 1

k

k
l=0 Tr(Pl) under

the defensive and the non-defensive case (in the latter the
players choose channels following a uniform distribution). The
corresponding simulation result is given in Fig. 4. It is easy to
conclude that the defensive strategy provides a more accurate
state estimate.
Fig. 4. Comparison between the defense and no-defense case.

Table 1
Optimal strategies in states P and h(P).

State Channel
0th 1th 2th

P
Sensor 0 0.42 0.58
Attacker 0 0.71 0.29

h(P)
Sensor 0 0.44 0.56
Attacker 0 0.63 0.37

Table 2
Settings and the optimal strategies.

Channel 0-ch 1-ch 2-ch

Sensor Energy 0 0.2 0.5 0.2 0.6
Probability 0 0.48 0.37 0.15 0

Attacker Energy 0 0.1 0.3 0.05 0.3
Probability 0.76 0.06 0.17 0 0.01

5.2. Multi-channel strategies and power-level selection

Weconsider a systemwith the sameparameters as the previous
one, but as foreshadowed in Section 3.3, add new energy levels
for the two channels; i.e., the total transmission power levels
deployed by the sensor are [0.3 0.5]′ and [0.3 0.6]′, respectively,
and the attacker power levels are [0.15 0.3]′ and [0.1 0.2]′.
With extra energy levels, the pure strategy set for each player
becomes the combination of the channel choice and power
assignment. Applying the Nash Q-learning algorithm, we have
similar conclusions as in the previous example. The Q-values also
converge and the optimal strategies for each player are illustrated
in Table 2 (also taking state P as an example).

6. Conclusion

This work has investigated security issues in CPSs with a multi-
channel network, where a malicious agent can launch DoS attacks
by jamming communication channels between the sensor and the
remote estimator. Taking energy limitations into consideration,
a two-player zero-sum stochastic game model was formulated
and a Nash Q-learning method was proposed to solve the Nash
equilibrium. As this work is limited to the case of a game between
one sensor and one attacker, more research involving multiple
sensors or multiple attackers can be done.
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