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Abstract. The position-dependent power spectrum has been recently proposed as a descrip-
tor of gravitationally induced non-Gaussianity in galaxy clustering, as it is sensitive to the
”soft limit” of the bispectrum (i.e. when one of the wave number tends to zero). We gen-
eralise this concept to higher order and clarify their relationship to other known statistics
such as the skew-spectrum, the kurt-spectra and their real-space counterparts the cumulants
correlators. Using the Hierarchical Ansatz (HA) as a toy model for the higher order correla-
tion hierarchy, we show how in the soft limit, polyspectra at a given order can be identified
with lower order polyspectra with the same geometrical dependence but with renormalised

amplitudes expressed in terms of amplitudes of the original polyspectra. We extend the con-
cept of position-dependent bispectrum to bispectrum of the divergence of the velocity field
Θ and mixed multispectra involving δ and Θ in the 3D perturbative regime. To quantify
the effects of transients in numerical simulations, we also present results for lowest order in
Lagrangian perturbation theory (LPT) or the Zel’dovich approximation (ZA). Finally, we
discuss how to extend the position-dependent spectrum concept to encompass cross-spectra.
And finally study the application of this concept to two dimensions (2D), for projected galaxy
maps, convergence κ maps from weak-lensing surveys or maps of CMB secondaries e.g. the
frequency cleaned y - parameter maps of thermal Sunyaev-Zel’dovich (tSZ) effect from CMB
surveys.
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1 Introduction

Over the last decade advances in astronomical spectroscopy and photometry of large samples
of galaxies have allowed the galaxy distribution to be mapped to unprecedented accuracy and
detail. Analysis of the resulting maps has yielded constraints on the growth rate of structures,
expansion history of the Universe as well as on cosmological parameters. Examples include
BOSS1 [1] Wiggle2 [2] DES3 [3] and (the forthcoming) EUCLID4 [4] In addition, the ongoing

1Baryon Oscillator Spectroscopic Survey: http://www.sdss3.org/surveys/boss.php
2Dark Energy Survey : http://wigglez.swin.edu.au/
3Dark Energy Survey: http://www.darkenergysurvey.org/
4EUCLID: http://www.euclid-ec.org/
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and future Cosmic Microwave Background (CMB) missions such as Planck5, ACT6, and
SPT7 surveys will map the CMB sky with unprecedented resolution.

The successful measurement of cosmological parameters relies on both the accuracy of
the theoretical models as well as the precision of the statistics used. In the past, the precision
of the measurements was poor and a roughly 10% statistical error on the measurement of
the power spectrum and even higher on the bispectrum was the limiting factor for discrim-
inating among models and theories. However, current and forthcoming surveys are rapidly
approaching the 1% statistical precision for two-point statistics, and are constraining higher-
order statistics with similar level of improvement. This level of precision is comparable to
the accuracy of the theoretical models that have been developed. In addition, the CMB sky
at small angular scales is dominated by the secondaries, which are highly non-Gaussian as
they trace the underlying large-scale structure. Consequently, a significant effort has been
put into improving the theoretical development of new estimators for gravity induced non-
Gaussianity. These include the optimal estimators such as the skew-Cℓ estimators [5] or the
kurt-Cℓ estimators [6] as well as various sub-optimal morphological estimators [7].

Analytical understanding of gravitational clustering is generally based on four differ-
ent approaches: (1) Standard petrurbative analysis of Euler-Continuity-Poisson system in
the quasilinear regime [8] in Eulerian framework (SPT) or in Lagrangian space (LPT); (2)
Physically motivated ansatze that capture certain aspects of gravitational clustering in the
non-linear regime [31]; (3) effective field theory (EFT) based approaches [9]; and (4) halo
model and its variants [10].

Gravity-induced higher-order correlation functions or their Fourier representations, the
higher-order polyspectra, can provide important clues to structure formation scenarios (see
Ref.[8] for a review). Measurements of the power spectrum in a sub-volume of the survey is
statistically correlated with the average density contrast in that sub-volume. This correlation
of this position power spectrum and the average density-contrast was recently used to define
an estimator for the bispectrum in the squeezed-limit [11]. We will generalise the concept to
position dependent power spectra to position-dependent angular polyspectra and show how
such constructions can be used as estimators for higher-order polyspectra.

Cumulant correlators (CCs) are natural generalisation of one-point cumulants and pro-
vide an alternative route to study higher order correlation hierarchy and are well studied in
the literature in the perturbative regime [12] and using hierarchical ansatz (HA) [13]. The
Fourier representation of the lower-order CCs i.e. the skew-spectrum (third order)[5] and
kurt-spectrum (fourth-order) [6] was also shown as an important form of data compression
in 2D as well as in 3D. We derive the cumulant correlators in the large separation limit and
study their relationship with the position-dependent multispectra hierarchy in the soft limit.

The organisation of the paper is as follows in §2 we discuss the Fourier transforms of
the CCs; in §3 and §4 we derive the results for quasilinear and highly non-linear regime; the
estimators for integrated bispectrum (IB) and integrated trispectrum (IT) are described in
§5; the analytical expressions for bispectrum and trispectrum in squeezed limit are presented
in §6 in a unified manner; in §7 we discuss the applications of these concepts to 2D (projected)
surveys; the §8 is devoted to discussion of our results. We also present our conclusions and
point out the future prospects in this section. Finally, in Appendices-§A, §B and §C we
extend the idea of IB to IT.

5Planck: http://www.cosmos.esa.int/web/planck/
6ACT: http://www.physics.princeton.edu/act/
7SPT: http://pole.uchicago.edu/
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We will concentrate on theoretical predictions in this paper. Comparison with numerical
simulations and extensions to popular halo model based approach will be presented in future
work. Observational aspects related to modelling of non-Gaussianities in CMB secondary
maps or issues related to galaxy redshift space distortions will also be dealt with elsewhere.

For a discussion of the soft limits of polyspectra in the context of inflationary dynamics
(see [14] and references there in). Certain aspects of the concept of polyspectra in the soft
limit have been studied in the context of large-scale structure formation [15, 16]; comparison
against numerical simulation was done in [17].

A note about our terminology is in order: by polyspectra we will mean the bispectrum,
trispectrum and their higher-order analogs and with multispectra will mean derived statistics
e.g. skew-spectrum, kurt-spectrum or their higher-order versions (optimal or sub-optimal).

2 Multispectra, Cumulant Correlators and the Large-Separation Limit

The use of multispectra has become widespread recently. The lowest order multispectrum
(the skew-spectrum) probes the bispectrum [5]. Its fourth-order analogues are the kurt-
spectra which probe the trispectrum [6]. In the following we will establish the link between
these multispectra and their real-space analogs also known as the cumulant correlators [12].
This will allow us to express the multispectra of all order in the limit of large wavenumber k.
Our aim is to elucidate the connection between the multispectra and the recently introduced
integrated spectra.

The one-point cumulants 〈δps (x)〉c are collapsed multi-point correlation functions when
all the p points are identified or collapsed to a single point; see, e.g., Ref.[8] for a review. The
cumulants are typically employed for study of non-Gaussianity in many areas of cosmology
including that of structure formation. The subscript “s” indicates smoothing of the density
contrast δ(x) = (ρ(x)− ρ̄)/ρ̄; where ρ is the density at a point x and ρ̄ is the average density
ρ̄ ≡ 〈ρ(x)〉 of the Universe smoothed using a suitable smoothing window. The normalised

cumulants Sp = 〈δp(x)〉c/〈δ
2(x)〉p−1

c are also used extensively in the literature; see Ref.[18]
for analytical estimates.

The cumulant correlators (CC) are natural generalisations of the one-point cumulants to
two-point statistics 〈δps (x1)δ

p
s (x2)〉c [12, 19, 20]. They are obtained by collapsing multipoint

correlation functions of arbitrary order to two points. The normalised CCs denoted as Cpq

are related to correlation function of order (p+ q) that are defined as [12]:

〈δps (x1)δ
q
s(x2)〉c ≡ Cpq σ

p+q−2
s (R0)ξ12(x12); (2.1)

ξ12(x12) ≡ 〈δs(x1)δs(x2)〉c; x12 ≡ |x12| = |x1 − x2|. (2.2)

σ2s ≡ 〈δ2s (x)〉c. (2.3)

For a concrete example, consider the lowest order in the hierarchy of CC, i.e. the two-to-one
CC for a smoothed density contrast δi ≡ δs(xi). We will be interested in the large separation
limit x12/R0 ≪ 1. This guarantees that we have ξ12/σ

2
s(R0) ≪ 1; σ2s(R0) is the variance

of the field obtained using a top-hat smoothing window WTH(kR0) (to be defined below) of
radius R0 as:

S21(x12) ≡ 〈δ21δ2〉c = 〈δ2s(x1)δs(x2)〉c = C21 σ
2
s ξ12(x12); x12 = |x12|. (2.4)

Note we will use this form of smoothing throughout this paper. Length scales which are
in the perturbative regime (σ2(R0) ≪ 1 where tree-level results are valid) the normalised
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CCs typically become constant. The CC 〈δ21δ2〉c is obtained by identifying two of the points
involved in a three-point correlation function 〈δ1δ2δ3〉c, i.e x1 ≡ x3. It retains information
regarding the three-point correlation function from which it is derived but only for a collapsed

configuration. The Fourier-transform of Eq.(2.4) also known as skew-spectrum S21(k) in the
large-separation limit:

S21(k
′) =

∫

d3x12

(2π)3
S21(x12) exp[ix12 · k

′]; k′ = |k′|. (2.5)

We will use the wave-number k′ to represent the separation length-scale x12 and k to de-
note the smoothing scale R0 above in the Fourier domain. We use the following expression
S21(x12) = C21σ

2
sξ(x12) valid in the large separation limit x12 → ∞ i.e R0/x12 ≪ 1:

S21(k
′) = C21 σ

2
s(R0)P (k

′). (2.6)

The skew-spectrum in the Fourier domain, S21(k), represents the bispectrum in the squeezed
limit. In general C21 is not a constant but a function of smoothing radius R0, or equivalently
the length scale k. The power spectrum is defined through the Fourier-transform of the
correlation function ξs:

P (k′) =

∫

d3x12

(2π)3
ξs(x12) exp[ix12 · k′]. (2.7)

The higher-order cumulant correlators Spq(x12) are natural generalisations of the two-to-one
cumulant correlator defined above:

Spq(x12) ≡ 〈δp1δ
q
2〉c = 〈δp(x1)δ

q(x2)〉c = Cpq ξ12(x12)σ
p+q−2
s (R0). (2.8)

The corresponding Fourier-transform defines the related collapsed multispectra Spq(k):

Spq(k
′) =

∫

d3k

(2π)3
Spq(x12) exp[ix12 · k′]. (2.9)

Using Eq.(2.8) in Eq.(2.9) we arrive at the following expression:

Spq(k
′) = Cpq σ

p+q−2
s (R0)P (k

′). (2.10)

The expressions for the lower order Cpq are given below in Eq.(3.4). Eq.(2.10) is the one
of the important result of this paper. We will see that the position-dependent spectra we
consider later in this paper have a structural similarity to the expressions for multispectra
derived above in the above limit. We shall show that, for the bispectrum in the squeezed
limit, the results are formally identical to the skew-spectrum at low k limit, though the
mathematical interpretation is different. The normalised CC or Cpq are in general functions
of the smoothing scale R0 (equivalently the wavenumber k). The k dependence manifests
itself as logarithmic slope n dependence of the power spectrum.

The lower-order CCs are plotted in Figure-1 as functions of k (h−1Mpc). We plot C21

(left-panel) C31 and C22 (middle-panel) and C41 and C32 (right-panel). The oscillations
correspond to BAO signature in the underlying power spectrum. These plots depict the
asymptotic value of the multispectra in the limit k′ → 0 as a function of k. In this limit
the normalised CCs or Cpq are independent of k′ and the k′ dependence of Spq is completely
absorbed in P (k′). The Cpq are functions of local slope of the power spectrum.

– 4 –



10-2 10-1

k (h Mpc−1 )

2.0

2.2

2.4

2.6

2.8

3.0

3.2
C
2
1
(k
)

21

10-2 10-1

k (h Mpc−1 )

5

10

15

20

C
3
1
(k
),
C
2
2
(k
)

22

31

10-2 10-1

k (h Mpc−1 )

0

50

100

150

200

250

C
4
1
(k
),
C
3
2
(k
)

41

32

Figure 1: The 3D normalised cumulant corelators [defined in Eq.(3.4)-Eq.(3.5)] are plotted.
The plots show C21(k) (left panel), C31(k) and C22(k) (middle panel) and C41(k) and C32(k)
(right panel) as a function of the k wave number associated with the inverse of the radius of the
top-hat smoothing window R0. The results are derived using Standard Perturbation Theory
(SPT) and the effective spectral index n was computed using the linear power spectrum.

3 Quasilinear Regime: Tree-level Results in the Soft (Squeezed) Limit

The two-point (joint) probability distribution function (PDF) for the smoothed (using a top-
hat window) density field δs can be expressed in terms of the one-point pδ(δ), bias bδ(δ) in
the large separation limit ξ12/σ

2
2 ≪ 1. Such a limiting situation is reached when the two cells

are separated by a distance relatively larger than the smoothing scale.

pδ(δ1, δ2)dδ1dδ2 = pδ(δ1)pδ(δ2)[1 + bδ(δ1) ξ
δδ
12bδ (δ2)]dδ1dδ2 (3.1)

The CCs introduced in §2 are normalised two-point moments 〈δp1δ
q
2〉c and can be expressed

as:

Cδδ
pq ≡

〈δp1δ
q
2〉c

〈δ2〉p+q−2
c 〈δ1δ2〉c

; 〈δp1δ
q
2〉c =

∫ ∞

−1

∫ ∞

−1
δp1 δ

q
2 p(δ1, δ2)dδ1dδ2. (3.2)

Normalisation requires
∫∞
−1 dδ1

∫∞
−1 dδ2 pδ(δ1, δ2) = 1 and

∫∞
−1 dδ pδ(δ) = 1 giving us the

constraint Cδδ
11 = 1. In the large-separation limit the following factorisation property holds:

Cδδ
pq = Cδδ

p1C
δδ
q1. (3.3)

In the quasilinear (perturbative) regime, the leading order terms of the entire hierarchy of
Cpq can be evaluated analytically [12]. We quote here the following lower-order expressions:

Cδδ
21 =

68

21
+
γ1
3
; (3.4)

Cδδ
31 =

11710

441
+

61

7
γ1 +

2

3
γ21 +

γ2
3
; (3.5)
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where the factors γp are defined as follows:

γp =
dplogσ2(R0)

d(logR0)p
. (3.6)

These results ignore contributions from loop diagrams and are thus valid only in the limiting
situation when 〈δ2〉 ≪ 1. For power-law power spectra P (k) ∝ kn we have γ1 = −(n + 3)
and γp = 0 for p > 1. In this limit the coefficients are polynomials in n+ 3, a property they
share with the integrated spectra that we will study later. In case of the skew-spectra, the
lowest order polynomial (i.e. linear) in this family, the coefficients match with those of the
integrated bispectra (to be defined later) but this is not the case for higher order spectra.
This is also true for the divergence of velocity Θ. For n = −3 these results represent statistics
of unsmoothed fields and their values are determined completely by the angular averages of
the tree-level amplitudes νn. In this limit they can be analysed by the HA (see §4).

We will use the concept of Cpq for the case of velocity divergence Θ = −∇ · v/H (to be
introduced and discussed in more detail in §6) and generalise the concept of the integrated
bispectrum to Θ. It is possible to consider mixed cumulant correlators of δ and Θ e.g. 〈δp1Θ

q
2〉.

In this case following similar arguments we can write:

CδΘ
pq =

〈δp1Θ
q
2〉c

〈δ21〉
p−1〈Θ2

2〉
q−1〈δ1Θ2〉

; (3.7)

CδΘ
pq = Cδδ

p1C
ΘΘ
q1 (3.8)

The corresponding joint PDF that generalises Eq.(3.1) is given by:

pδΘ(δ1,Θ2)dδ1dΘ2 = pδ(δ1)pΘ(Θ2)[1 + bδ(δ1) ξ
δΘ
12 bΘ(Θ2)]dδ1dΘ2. (3.9)

Here, pδΘ is the joint PDF for δ1 ≡ δ(x1) and Θ2 ≡ Θ(x2). The one-point PDFs for δ
and Θ are denoted as pδ(δ) and pΘ(Θ). the corresponding bias functions are defined as bδ
and bΘ respectively. The correlation function of δ and Θ is denoted ξδΘ12 ≡ 〈δ1Θ2〉. In the
Fourier domain we can similarly define mixed multispectra and their squeezed limits which
can provide consistency checks on results obtained using δ and Θ fields alone.

4 Highly Non-linear Regime: Hierarchical ansatz (HA) in the Soft Limit

Gravity is scale-free. In the absence of of an externally-imposed length scale, such as might be
set by initial conditions, it is reasonable to assume that gravitational clustering should evolve
towards a scale-invariant form, at least on small scales where gravitational effect dominates
over initial conditions [21–25]. Observations offer support for such an idea, in that the
observed two-point correlation function ξ2(x) of galaxies is reasonably well represented by a

power law over quite a large range of length scales, ξ2(r) ≡
(

r/5h−1Mpc
)−γ

between 100h−1

kpc and 10h−1Mpc. Higher-order correlation functions of galaxies also appear to satisfy a
scale-invariant form, with ξN ∝ ξN−1

2 as expected from the application of a general scaling
ansatz [21, 22, 26]
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For example, the observed lower-order correlation function exhibits a hierarchical form

ξab ≡ ξ2(xa,xb); (4.1)

ξabc ≡ ξ3(xa,xb,xc) ≡ 〈δ(xa)δ(xb)δ(xc)〉c = Q3(ξabξbc + ξbcξca + ξabξac); (4.2)

ξabcd ≡ ξ4(xa,xb,xc,xd) ≡ 〈δ(xa) · · · δ(xd)〉c

= Ra(ξabξbcξcd + cyc.perm.) +Rb(ξabξacξad + cyc.perm.); (4.3)

ξabcde ≡ ξ5(xa, · · · ,xe) ≡ 〈δ(xa) · · · δ(xe)〉c

= Sa(ξabξbcξcdξde + cyc.perm.) + Sb(ξabξbcξbdξde + cyc.perm.)

+Sc(ξabξacξadξae + cyc.perm.). (4.4)

The hierarchy of equations - the Born, Bogolubov, Green, Kirkwood, Yvon (BBGKY) hier-
archy that governs the evolution of the p-body density functions (in the full phase space) has
been established for matter in an expanding universe [27]. Although the exact nature of this
correlation hierarchy can only be obtained by solving the full set of BBGKY equations. The
exact nature of this correlation hierarchy can only be understood by solving the full set of
BBGKY equations, which in general can not be done [21–23].

Useful insights can nevertheless be obtained by investigating the consequences of scaling
properties to general closure [28, 29] schemes based fact that the hierarchy admits self-similar
solutions [21]. The evolution of the power spectrum has also been tackled in a similar way
[30]. In this approach the higher-order correlation functions can be expressed as:

ξN(x1, · · · ,xN) =
∑

α,N−trees

QN,α

∑

labelling

N−1
∏

edges

ξ2(xi,xj). (4.5)

Note that there are no theoretical predictions for the topological amplitudes QN,α in this
approach. Perturbative calculations have shown that gravity can induce a similar hierarchy
starting from Gaussian initial conditions [23–25] in the limit of weak clustering.

This tree-level model of hierarchical clustering however is a particular case of a more
general scaling ansatz proposed by [28], in which the N point correlation functions can be
written in the form

ξN(λx1, · · · , λxN) = λN−1ξN(x1, · · · ,xN) (4.6)

See, e.g., Ref.[31] and the reference therein. We shall work with the minimal hierarchical
models as they distil some very basic features shared by other more complicated models. In
the Fourier domain the equivalent results relate the higher-order polyspectra with the ordi-
nary power sepctrum [20]. The bispectrum can be obtained by taking the Fourier transform
of Eq.(4.2):

〈δ(k1)δ(k2)δ(k3)〉c ≡ (2π)3 δD(k123)B2(k1,k2,k3); (4.7)

B2(k1,k2,k3) = Q3 [P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)] . (4.8)

Throughout we will use k12···p = k1 + k2 + · · · + kp. The trispectrum B3(k1, · · · ,k4) is
expressed in terms of two hierarchical amplitudes, Ra and Rb, introduced in Eq.(4.2):

〈δ(k1) · · · δ(k4)〉c ≡ (2π)3δD(k1234)B3(k1, · · · ,k4) (4.9)

B3(k1, · · · ,k4) = Ra [P (k1)P (|k12|)P (|k123|) + cyc.perm.]

+Rb[P (k1)P (k2)P (k3) + cyc.perm.]. (4.10)
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The next-order multispectrum B4(k1, · · · ,k5) is obtained by taking FT of Eq.(4.3):

〈δ(k1) · · · δ(k5)〉c ≡ (2π)3δD(k1234)B4(k1, · · · ,k5) (4.11)

B4(k1, · · · ,k5) = Sa

[

P (k1)P (|k12|)P (|k123|)P (|k1234|) + cyc.perm.
]

+Sb [P (k1)P (k2)P (|k123|)P (|k1234|) + cyc.perm.]

+Sc [P (k1)P (k2)P (k3)P (k4) + cyc.perm.] . (4.12)

The result presented in Eq.(2.10) is derived using very general arguments. In the rest of this
Section we will work out in detail for few specific models.

In the highly non-linear regime the higher-order correlation functions can be calculated
using a hierarchical ansatz (HA) [13]. The parameters {Q3}, {Ra, Rb} and {Sa, Sb, Sc} are
topological amplitudes of various tree diagrams used to represent the correlation hierarchy
at third fourth and fifth order, respectively. For specific models see Ref.[19, 28, 31, 32]. The
lower-order linear combinations of these amplitudes that produce the one-point cumulants
or SN have been studied using numerical simulations [18].

In our calculation we will take the specific model by Bernardeau & Schaeffer [32] where
we identify Q3 = ν2, Ra = ν22 , Rb = ν3 and Sa = ν4, Sb = ν3ν2, Sc = ν32 . In the model
proposed by Szapudi & Szalay [19] the tree amplitudes of a given order have identical values:
Ra = Rb and Sa = Sb = Sc or in general in Eq.(4.5) QN,α = QN .

In the quasilinear regime the vertices develop angular dependence on the wave vectors
ki. In the tree-level perturbative regime the same tree hierarchy can be used and in the
absence of smoothing the angular averaged biases can replace the corresponding νn s [23, 24].
The power spectrum in the quasilinear regime is replaced by the linear power spectrum PL(k).
This is the regime we will use in this paper. We will omit the subscript L henceforth.

4.1 Bispectrum in the soft limit

The influence of large-scale density fluctuations on structure formation results in the coupling
of small and large-scale modes. At the lowest order such coupling can be described by the
corresponding bispectrum in the so-called “squeezed” configuration. In the squeezed limit one
of the wavenumbers, k1, of the triangle representing the bispectrum in the Fourier domain, is
much smaller than the other two i.e. k1 ≪ k2 ≈ k3, thus, as we will see, effectively reducing
the bispectrum to a power spectrum. In this limit the following parametrization applies:

B2(k− q1,−k+ q12,−q2) = Q3

[

P (|k− q1|)P (|−k + q12|)

+P (|−k+ q12|)P (q2) + P (|k− q2|)P (q2)
]

. (4.13)

In our derivation, we will expand the power spectra in a Taylor-series as follows:

P (|k− q1|) = P (k)

[

1−
k · q1

k2
d lnP (k)

d ln k
+ · · ·

]

; (4.14)

P (|−k+ q12|) = P (k)

[

1−
k · q12

k2
d lnP (k)

d ln k
+ · · ·

]

. (4.15)

Unlike the perturbative bispectrum the hierarchical bispectrum does not display any Infrared
(IR) divergence. In the squeezed limit k ≫ q3, so we ignore the terms of O(qi/k) so that
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Eq.(4.13) takes the following form:

B2(k− q1,−k+ q12,−q2)
squeeze
≈ Q3[2P (q2)P (k) + P 2(k)];

lim
q2→0

B2(k,−k,−q2)
squeeze
≈ 2Q3PL(q2)P (k). (4.16)

The corrections from the Taylor expansion in Eqs.(4.14-4.15) are only of O(qi/k)
2. Notice

that we have also ignored terms of O[P (qi)/P (k)] for CDM-like spectrum for (qi/k) ≪ 1.
The subscript L denotes the linear power spectrum. The power spectrum is effectively in the
linear regime for long wavemodes. This matches with the expression in Eq.(4.17). In the last
term we have assumed for a CDM like spectrum P (k) ≪ P (q2) for k ≫ q3. This is consistent
with the result obtained in real space [20]:

〈δ21δ2〉c = C21ξ12σ
2
L; C21 = 2Q3. (4.17)

The real space result can be obtained by identifying two of the points involved in a three-
points a = b and demanding ξac = ξbc ≪ ξab in Eq.(4.2) to neglect the linear order terms in
ξac/ξaa (ξaa ≡ σ2L).

In the specific model of Bernardeau & Schaeffer Q3 = ν2. In the perturbative regime
the the unsmoothed results can be reproduced by taking n = −3 which gives ν2 = 34/21.
Using this result we reproduce the result by Bernardeau in Ref.[12], i.e. C21 = 68/21.

4.2 Trispectrum in the soft limit

In the soft limit the trispectrum can take either a squeezed or collapsed shape. In the squeezed
case we have a configuration in which the trispectrum has one side much smaller than the
others. In this configuration the trispectrum can be described effectively as a product of the
bispectrum B2(ka,kb,kc) and the power spectrum P (q); here q is the “soft” mode. We will
use the following parametrization:

B3(ka − q1,kb − q2,kc + q123,−q3)
squeeze
=

Ra[P (q3) {P (ka)P (kb) + cyc.perm.}+ P (ka)P (kb)P (kc)]

+Rb[2P (q3){P (ka)P (kb) + cyc.perm.}+ {P (ka)[P
2(kb) + P 2(kc)] + cyc.perm.}]

(4.18)

In the limit ka, kb, kc ≪ q3 we have P (ka), P (kb), P (kc) ≫ P (q3), so the terms that survive
are:

lim
qi→0

B3(ka − q1,kb − q2,kc + q123,−q3)
squeeze
≈ lim

q3→0
B3(ka,kb,kc,−q3)

≈ (Ra + 2Rb)P (q3)[P (ka)P (kb) + cyc.perm.]δD(kabc). (4.19)

Both “snake” and “star” terms contribute to the trispectrum in the squeezed limit. The
effective bispectrum that describes the trispectrum in the squeezed limit has an amplitude
(Ra + 2Rb) rather than Q3. For the other soft configuration we consider the case when one
of the diameter of the quadrilateral representing the trispectrum is much smaller compared
to its sides, also known as the collapsed configuration. In this configuration only the “snake”
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Figure 2: The 3D normalised cumulant corelators [defined in Eq.(3.4)-Eq.(3.5)] are plotted.
The plots show C21(k) (left panel), C31(k) and C22(k) (middle panel) and C41(k) and C32(k)
(right panel) as a function of the k wave number. The results are derived using a standard
perturbation theory (SPT) and power spectrum including one-loop corrections. The results
shown are for z=0 (see text for more details).

terms contribute:

lim
q→0

B3(k1,−k1 − q,k2,−k2 + q)
collapsed

= 2Rb

[

2P (k1)P (k2)P (q) + 2P (k1)P (|k12|)P (k2)

+
[

P 2(k1) + P 2(k2)
]

P (|k12|)
]

; (4.20)

B3(k1,−k1,k2,−k2)
collapsed

≈ 4Rb P (k1)P (k2)P (q). (4.21)

In the collapsed configuration the trispectrum reduces to a product of three power spectra.
The Fourier-space expressions in Eq.(4.18) and Eq.(4.19) correspond respectively to Eq.(4.22)
and Eq.(4.23) in real-space [20]:

〈δ31δ2〉c = C31ξ12σ
4
L; C31 = (3Ra + 6Rb); (4.22)

〈δ21δ
2
2〉c = C22ξ12σ

4
L; C22 = 4Rb. (4.23)

Joint measurements of C31 and C22 can be used to estimate the amplitudes Ra and Rb: if we
use Ra ≡ ν3 = 682/189 and Rb ≡ ν22 = (34/21)2 we recover the result in [12] C31 = 11710/441
and C22 = (68/21)2 .

Previous studies have focused on many different aspects of such theories, including one-
point probability distribution, the void-probability distribution function and joint probability
distribution function [28, 31, 32] which are directly related to the bias of over-dense objects
[33]. Multi-point correlation function, cumulants and cumulant correlators of over-dense
objects to arbitrary order have also been considered [13, 34–36]. The results presented
here extend these results into the Fourier domain. We show how squeezed configurations
of polyspectra of arbitrary order can be studied by using local estimates of lower order
polyspectra.
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5 Estimators for Polyspectra in their Soft Limit

In this Section we will develop a theory of the estimators for the squeezed multispectra. We
will consider a density field δ(r) defined in a simulation box of side Lbox. We will also consider
N3 identical cubic sub-volumes with sides of length L = Lbox/N . The cosmological statistics
measured in a sub-volume centred at the position rL will be denoted L; the volume will be
denoted VL = L3. To compute the squeezed higher-order multispectra we will cross-correlate
the statistics measured in the entire simulation box against those estimated from these sub-
volume. We will consider 3D surveys in this section but a generalisation to projected or 2D
survey will be dealt with in §7. The results we present can be generalised to the case of
observational data with minimal changes.

The local mean-density perturbations relative to the global mean density of the main
volume is denoted as δ̄(rL) and can be expressed through the following convolution:

δ̄(rL) =
1

VL

∫

d3r δ(r)WL(r− rL). (5.1)

The window function defined as WL(x) ≡
∏i=3

i=1 θ(xi). The one-dimensional unit step func-
tions satisfy θ(xi) = 1 for xi ≤ L/2 and zero otherwise. The equivalent expression in the
Fourier domain takes the following form:

δ̄(k, rL) =

∫

d3q

(2π)3
δ(k− q)WL(r− rL) exp(−ir · k). (5.2)

The window WL in the Fourier domain is given by:

WL(q) ≡ VL

3
∏

i

1

qi
sinc(

qi L

2
); (5.3)

where sinc(x) = sin(x)/x. The window has the following property which we will use through-
out in our derivation:

W 2
L(r) =WL(r); WL(q1) =

∫

d3q2

(2π)3
WL(q2)WL(−q12). (5.4)

The position dependent power spectrum P (k; rL) ≡ |δ(k; rL)|
2/VL estimated from a sub-

volume is given by the following expression:

P (k; rL) =
1

VL

∫

d3q1

(2π)3

∫

d3q2

(2π)3
δ(k− q1)δ(−k− q2)WL(q1)WL(q2). (5.5)

This estimate of the local power spectrum can now be used to construct estimators for
bispectrum and trispectrum in the soft limit.

5.1 Estimator of the Squeezed Bispectrum

The squeezed bispectrum can be estimated by cross-correlating the local estimates of the
density contrast and the local power spectrum [11]:

〈P (k)δ̄(rL)〉c =
1

V 2
L

∫

d3q1

(2π)
. . .

∫

d3q3

(2π)
〈δ(k − q1)δ(−k − q2)δ(−q3)〉

×WL(q1)WL(q2)WL(q3)δ3D(q123). (5.6)
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Using Dirac δ3D function to reduce the dimensionality of the above integral gives

〈P (k)δ̄(rL)〉c =
1

V 2
L

∫

d3q1

(2π)3

∫

d3q2

(2π)3
B2[k− q1,−k+ q12,−q2]

×WL(q1)WL(−q12)WL(−q2). (5.7)

〈P (k)δ̄(rL)〉c = 2Q3σ
2
LP (k). (5.8)

The derivation uses the result in Eq.(4.16).
In general the vertex Q3 is defined in the Fourier space and carries an angular depen-

dence. Integrating out this dependence gives the integrated bispectrum B̄21:

B21(k, rL) = 〈P (k, rL)δ̄(rL)〉c; B̄21(k) ≡

∫

dΩ̂k

4π
B21(k, rL). (5.9)

5.2 Estimators of Trispectrum: Squeezed and Collapsed

As we have previously mentioned, in the soft limit the trispectrum B3 exists in squeezed

and collapsed configuration, which we discuss next. We will show that trispectrum in the
squeezed limit can be constructed by correlating the local estimates of the bispectrum B2 and
the local average density contrast δ̄. The collapsed limit of the trispectrum is constructed
using covariance matrix for the local power spectrum.

Squeezed: Local estimates of the bispectrum from a small patch of a survey and the
average density contrast measured from the same patch are correlated. The correlation is a
measure of the trispectrum in the squeezed limit described in Eq.(4.18):

〈B2δ̄(rL)〉c ≡ 〈B2(ka,kb,kc; rL)δ̄(rL)〉c

=
1

V 2
L

∫

d3q1

(2π)
. . .

∫

d3q4

(2π)
〈δ(ka − q1)δ(kb − q2)δ(kc − q3)δ(−q4)〉

×WL(q1)WL(q2)WL(q3)WL(q4) δD(q1234)δD(kabc). (5.10)

Integrating out the variable q4 collapses the above 4D integral to a 3D integral:

〈B2δ̄(rL)〉c =
1

V 2
L

∫

d3q1

(2π)3
· · ·

∫

d3q3

(2π)3
B3[ka − q1,kb − q2,kc + q123,−q3]

WL(q1)WL(q2)WL(−q123)WL(q3). (5.11)

T31(ka,kb,kc) ≡ 〈B2δ̄(rL)〉c = (Ra + 2Rb)σ
2
L[P (ka)P (kb) + cyc.perm.]. (5.12)

We have used the expression in Eq.(4.18) for our derivation.
Collapsed: For the other “soft” configuration the sides of the quadrangle are much

bigger compared to one of its diagonal. We have ignored the terms that are of O(q/ki). This
is the Fourier analogue of the expression in Eq.(4.23):

〈P (ka, rL)P (kb, rL)〉c = δD(k12)
1

V 2
L

∫

d3q1

(2π)3

∫

d2q2

(2π)3
B3(−ka,ka − q1,kb,kb − q2)

×WL(q1)WL(q2) (5.13)

T22(k1,k2) = 〈P (ka)P (kb, rL)〉c = 4Rb P (ka)P (kb)σ
2
LδD(k12). (5.14)

Eq.(5.14) is an estimate of the covariance of the local power spectrum. We have used Eq.(4.21)
in our derivation.
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To define the integrated trispectra we can integrate the angular dependence of the
vertices Ra and Rb in the Fourier space in a way similar to the bispectrum case.

The integrated trispectra T31(ka,kb,kc) and T22(ka,kb) defined in Eq.(5.8) and Eq.(5.14)
are related to the kurt-spectra i.e. S31 and S22 discussed previously.

6 Integrated Bispectra: Quasilinar Regime

In this section we will provide a unifying description of the integrated bispectrum in various
specific cases, e.g. the case of Exact Dynamics (ED), velocity divergence Θ, 2D dynamics
and the Zel’dovich approximation (ZA).

6.1 A Unifying Approach

In general a second-order effective kernel X2 given below can describe both the density field
δ and velocity divergence Θ = ∇ · v/H statistics (H is the Hubble parameter) for different
choices of parameters of α and β:

X2(k1,k2) = α+
1

2
(α+ β)

(

k1
k2

+
k2
k1

)(

k1 · k2

k1k2

)

+ β

(

k1 · k2

k1k2

)2

. (6.1)

The above parametrization satisfies the constraint X2(k,−k) = 0 from momentum conserva-
tion (translational invariance) [37]. We have kept α and β free but all physical models that
we will consider satisfy (α+ β) = 1.

X2(k− q1,−q3) ≈ α+
1

2 (kq3)2
(α+ β)

[

−(k · q3)k
2 + (q1 · q3)k

2
]

+ β

(

k · q3

kq3

)2

;

X2(−k+ q13,−q3) ≈ α+
1

2(kq3)2
(α+ β)

[

k2(k · q3)− k2(q1 · q13)
]

+ β

(

k · q3

kq3

)2

.

(6.2)

Imposing α+ β = 1, the result for the squeezed bispectrum takes the following form:

B2(k− q1,−k+ q13,−k3)

=
{

(3α− β) + 4β

(

k · q3

kq3

)2

− (α+ β)

(

k · q3

kq3

)2 d lnP (k)

d ln k

}

P (k)P (q3); (6.3)

=

[

3α+
β

3
+ 1−

1

3

dln k3P (k)

d ln k

]

P (k)P (q3) (for 3D); (6.4)

=

[

3α+ β + 1−
1

2

dln k2P (k⊥)

d ln k⊥

]

P (k⊥)P (q⊥3) (for 2D). (6.5)

The specific cases so far we have analysed in this paper are examples where the triplets {α, β}
take the following values {5/7, 2/7} for ED {1/2, , 1/2} for ZA and {3/7, 4/7} for velocity
divergence Θ. For projected density fields the angular averages need to be considered in 2D.
The actual bispectrum remains the same as 3D.

More complicated kernel where the parameters α, β are redshift z and mode k dependent
provides better fit to numerical simulations and has also been considered in the literature
which can be incorporated in this framework.
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For a generic cosmology the kernels take the following form Ref.[12] (see Eq.(71) and
Eq.(72) of this review Ref.[12] (Section:2.4.5); we have corrected a typo in Eq.(71)):

F2(k1, k2) =
1

2
(1 + ǫ) +

1

2

(

k1
k2

+
k2
k1

)(

k1 · k2

k1k2

)

+
1

2
(1− ǫ)

(

k1 · k2

k1k2

)2

; (6.6)

G2(k1, k2) = ǫ+
1

2

(

k1
k2

+
k2
k1

)(

k1 · k2

k1k2

)

+ (1− ǫ)

(

k1 · k2

k1k2

)2

. (6.7)

Here ǫ = 3/7Ω
−2/63
M for ΩM ≥ 0.1 Ref.[38]. Using the generic expressions above in Eq.(6.1)

we arrive at the following results for 3D:

B̄δ(k) =
1

3
[(8 + 4ǫ)− (n+ 3)] σ2LPδ(k); (6.8)

B̄θ(k) =
1

3
[(4 + 8ǫ)− (n+ 3)] σ2LPδ(k). (6.9)

For Ω = 1 we recover B̄δ(k) ≡ [68/21 − (n + 3)/3] and B̄Θ(k) ≡ [52/21 − (n + 3)/3]. For all
practical purposed these results are sufficient as the dependence on ΩM is is extremely weak.
For ZA we have B̄ZA,δ(k) ≡ [8/3 − (n + 3)/3] and B̄ZA,Θ(k) ≡ [4/3 − (n + 3)/3]. In case of
n = −3 we recover the unsmoothed values B̄δ(k) = 2ν2 = 68/21 and B̄Θ(k) = 2µ2 = 52/21.
In comparison the skewness parameters are given by Sδ

3 ≡ 3ν2 and SΘ
3 = 3µ2. In 2D we have

the following results:

B̄δ
2D(k) =

[

(2 + ǫ)−
1

2
(n+ 2)

]

σ2LPδ(k⊥); (6.10)

B̄Θ
2D(k) =

[

(2ǫ+ 2)−
1

2
(n + 2)

]

σ2LPδ(k⊥). (6.11)

For Ω = 1 we recover B̄δ(k) = [(24/7) − (n+ 2)/2]σ22D,LPδ(k⊥).
To linear order we have the well known result: Θ = −f(Ω)δ. Using this in Eq.(6.9) we

obtain:

B̄Θ(k) = −
1

3 f(Ω)
[(4 + 8ǫ)− (n+ 3)] σ2ΘLPΘ(k). (6.12)

Here, f(Ω) ≈ Ω3/5. This function is sensitive to any variation of Ω which makes the integrated
bispectrum of Θ sensitive to Ω, in contrast to δ.

6.2 Mixed δ −Θ Integrated Bispectra

In our analysis so far we have cross correlated the δ̄ and Pδ(k) as well as Θ̄ and PΘ(k); these
probe the squeezed pure bispectrum i.e. Bδδδ or BΘΘΘ but it is possible to device consistency
tests by considering the mixed bispectra BδΘΘ or BΘδδ.

Generalising Eq.(5.8) we introduce the following pair of mixed bispectra:

〈Pδδ(k)Θ̄(rL)〉c =
1

V 2
L

∫

d3q1

(2π)3

∫

d3q2

(2π)3
BδδΘ[k− q1,−k+ q12,−q2]

×WL(q1)WL(−q12)WL(−q2); (6.13)

〈PΘΘ(k)Θ̄(rL)〉c =
1

V 2
L

∫

d3q1

(2π)3

∫

d3q2

(2π)3
BΘΘδ[k− q1,−k+ q12,−q2]

×WL(q1)WL(−q12)WL(−q2). (6.14)
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Going through the same algebra we can show:

〈Pδδ(k)Θ̄(rL)〉c = f(Ω)

[

68

21
−
n+ 3

3

]

σ2LP (k); (6.15)

〈PΘΘ(k)δ̄(rL)〉c = −f2(Ω)

[

52

21
−
n+ 3

3

]

σ2LP (k). (6.16)

Both expressions are sensitive to Ω owing to the presence of Θ. Notice that the power spectra
and the variance in these expressions are different compared to that in Eq.(6.12).

Standard (Eulerian) Perturbation Theory (SPT) is known to agree well with numerical
simulations for z ≥ 1 and k ≤ 0.2hMpc−1. They fail to provide accurate results in the
highly non-linear regime e.g. for the Baryon Acoustic Oscillation (BAOs) amplitudes at
k ≥ 0.2hMpc−1. The SPT predictions are redshift-independent, though in simulations BAOs
show smaller amplitudes at lower redshift. More accurate formula for the bispectrum exists
[39, 40] which can be incorporated in our analysis. Alternatively, the recently proposed
separate Universe method can be employed to compute the higher-order integrated spectra
[41–44]. In this approach the effect of long-wavelength density fluctuation on the small-scale
power spectrum is computed by treating each over- and under dense region as a separate
universe with a different background cosmology.

6.3 Integrated Bispectra in Lagrangian Perturbation Theory

The higher-order propagators take a particularly simpler form for the Zeldovich Approima-

tion (ZA) (see e.g. ref.[45] and references therein). The ZA is the first-order solution to
perturbative dynamics formulated in Lagrangian space known as the Lagrangian Pertur-
bation Theory (LPT) [8]. The second order kernel that describes the ZA is given by the
following expression:

FZA
2 (q1,q2) =

1

2
+

1

2
(q1 · q2)

(

1

q21
+

1

q22

)

+
1

2

(

q1 · q2

q1 q2

)2

. (6.17)

This is a special case of the generic bispectrum studied in Eq.(6.1) for {α, β} = {1/2, 1/2}.
Using these expressions we can deduce the expression for the squeezed bispectrum in the
leading order as:

BZA(k − q1,−k + q13,−q3)

=

[

1 + 2

(

k · q3

kq3

)2

−

(

k · q3

kq3

)2 d lnP (k)

d ln k

]

P (k)P (q3) +O(q3/k). (6.18)

The ZA and its higher-order analogues are often used to set-up the initial conditions in
a numerical simulation. The results can be derived using the same steps followed in the
derivation of results from Eulerian perturbative dynamics Eq.(3.4) and Eq.(3.5). We quote
the results here:

CZA
21 =

[

8

3
−

1

3

d ln k3P (k)

d ln k

]

P (k)P (q3) =

[

8

3
−

(n+ 3)

3

]

P (k)P (q3). (6.19)

Eq.(6.19) is a special case of the general result presented in Eq.(6.3) for {α, β} = {1/2, 1/2}.
These can be used to gauge the level of transients arising from the initial conditions often
used in numerical simulations. It is possible to compute the corrections from higher order
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Figure 3: The left panel shows the integrated bispectrum from second-order Eulerian per-
turbation theory and the lowest order Lagrangian perturbation theory, the ZA, following
Eq.(6.19). The middle panel compares the integrated bispectrum for 3D and 2D surveys
Eq.(7.13). Finally, the right panel compares the integrated bispectrum for the density δ and
the divergence of Θ.

LPT following the same procedure (see e.g. [45]). Squeezed configurations of the trispectrum
can also be computed in a similar manner. The higher order kernels for the ZA are given in
Eq.(A.7).

The integrated bispectrum for the ZA is presented in the left panel of Figure 3. The
solid curve shows the prediction from second order SPT and the dashed line represents the
ZA. For the entire range of k, the ZA under predicts the integrated bispectrum. This is
related to the fact that the vertex ν2 = 4/3 for ZA as compared to ν2 = 34/21 for the exact
dynamics. This values are consistent with skewness parameter S3 = 3ν2 = 34/7 for SPT
and S3 = 4 for ZA [45]. For n = −3 we recover the limit C21 = 2ν2 = 8/3. Finally, using
Eq.(5.9), the integrated bispectrum for the ZA takes the following form:

B̄ZA(k) =

[

8

3
−

(n+ 3)

3

]

P (k)σ2L. (6.20)

7 Integrated Bispectrum from Projected (2D) surveys

In this Section, we generalise the expression derived in 3D above to 2D or projected surveys.
We consider 2D weak lensing surveys and 2D projected galaxy surveys. Though we eventually
specialise the results to projected galaxy surveys, the results are equally relevant for studies
of weak lensing and CMB secondaries (e.g. for the thermal Sunyaev Zeldovich (tSZ) effect).
The results derived here can also generalised to cross-correlation of two different surveys or
for tomographic analysis.

We start by defining an arbitrary projected field ψ(γ) defined on the surface of the sky
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obtained through the line-of-sight integration of the 3D field Ψ(r,γ):

ψ(γ) =

∫ rs

0
dr w(r)Ψ(r,γ);

ψ(γ) =

∫ rs

0
dr w(r)

∫

d3k

(2π)3
exp[i( r k‖ + dA(r)γ · k⊥)]Ψ(k). (7.1)

Here r is the comoving radial distance and dA(r) is the comoving angular diameter distance.
ω is a generic radial selection function. k‖ and k⊥ = dA(r)ℓ are the radial and projected
components of the wave-vector k.

We will use small angle approximation (also known as the plane parallel approximation
or the distant observer approximation). The average of a projected field ψ(γ) on the surface
of the sky (γ here represents unit vector along a specific direction) is defined as:

ψ̄(γ0) =
1

Ω

∫

d2γ ψ(γ)W2D(γ − γ0); Ω =

∫

d2γ. (7.2)

Here W2D is the 2D mask that encodes the sky coverage and Ω is the area of the sky
covered. The window function defined as W2D(γ) ≡

∏i=2
i=1 θ(γi). The one-dimensional unit

step functions are the same as the ones defined in the 3D context in the previous section.
The 2D Fourier transform assuming a flat sky takes the following form:

ψ̄(ℓ,γ0) =

∫

d2ℓ′ψ(ℓ− ℓ′)W2D(ℓ
′) exp(−iγ0 · ℓ). (7.3)

The 2D power spectrum in this fraction of sky is given by:

P2D(ℓ,γ0) =
1

Ω

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

ψ(ℓ− ℓ1)ψ(−ℓ− ℓ2)

× exp(−iγ0 · (ℓ1 + ℓ2))W2D(ℓ1)W2D(ℓ2). (7.4)

The resulting integrated bispectrum is defined by cross-correlating the local estimate of the
power spectrum and the local average of the projected field.

B2D(ℓ) ≡ 〈P2D(ℓ,γ0)δ̄(γ0)〉; (7.5)

B2D(ℓ) =
1

Ω2

∫

d2γ

4π

∫

d2ℓ1
(2π)2

∫

d2ℓ2
(2π)2

〈ψ(ℓ− ℓ1)ψ(−ℓ− ℓ2)ψ(−ℓ3)〉

× exp(−iγ0 · (ℓ1 + ℓ2 + ℓ3)). (7.6)

The projected power spectrum P2D(ℓ) and bispectrum B2D(ℓ1, ℓ2, ℓ3) can be expressed in
terms of the 3D power spectrum P3D(k) and bispectrum B3D(k1,k2,k3):

P2D(ℓ) ≡

∫ rs

0
d r
ω2(r)

d4A(r)
P3D

(

ℓ

dA(r)

)

; (7.7)

B2D(ℓ1, ℓ2, ℓ3) ≡

∫ rs

0
d r
ω3(r)

d6A(r)
B3D

(

ℓ1

dA(r)
,

ℓ2

dA(r)
,

ℓ3

dA(r)

)

∑
ℓi=0

; (7.8)

see [46] and reference therein. The expression for B3D is given in Eq.(A.17). The angular
average of the integrated bispectrum in 2D can be defined as follows:

B̄2D(ℓ) =

∫

dθℓ
2π

B2D(ℓ); ℓ = |ℓ|. (7.9)
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The complete expression takes the following form:

B2D(ℓ) ≡

∫

dθℓ
2π

∫

d2ℓ1
(2π)2

∫

d2ℓ3
(2π)2

B2D(ℓ− ℓ1,−ℓ+ ℓ1 + ℓ3,−ℓ3). (7.10)

In the squeezed limit the bispectrum takes following form:

B2D(ℓ− ℓ1,−ℓ+ ℓ1 + ℓ3,−ℓ3)

=

[

13

7
+

8

7

(

ℓ · ℓ3
ℓℓ3

)2

−

(

ℓ · ℓ3
ℓℓ3

)2 d lnP2D(ℓ)

d ln ℓ

]

P (ℓ)P (ℓ3) + · · · (7.11)

The terms of higher order in (ℓ1/ℓ) or (ℓ3/ℓ) are ignored as we take the limiting case when
ℓ ≫ ℓi. Using the fact that the circular average of ℓ̂ · ℓ̂3 is [1/2] we arrive at the following
expression:

B̄2D(ℓ) = K3

[

24

7
−

1

2

d ln ℓ2P (ℓ)

d ln ℓ

]

P2D(ℓ)σ
2(θ0); (7.12)

K3 =

∫ rs

0
dr

w3(r)

d
(6+2n)
A (r)

/

[

∫ rs

0
dr

w2(r)

d
(4+n)
A (r)

]2

. (7.13)

This matches the published results on cumulant correlators quoted below in Eq.(7.14) for
a 3D power spectrum which can be described locally as a power-law with a slope n i.e.
P (k) ∝ kn. The corresponding cumulant correlators are derived in [47]:

C2D
21 =

24

7
−

1

2
(n+ 2); (7.14)

C2D
31 =

1473

49
−

195

14
(n+ 2) +

3

2
(n+ 2)2. (7.15)

Using very similar arguments we can show that if we assume a HA for the underlying 3D
bispectrum Eq.(4.13), the corresponding integrated bispectrum is given by:

B̄2D(ℓ) = 2K3Q3 P2D(ℓ)σ
2
2D(θ0); σ22D(θ0) ≡

∫

dℓ

4π
ℓP (ℓ)W 2

2D(ℓθ0). (7.16)

The integrated bispectrum B̄2D(ℓ) in 2D is plotted in Fig.2 as a function of ℓ (middle panel).
The expression for the multiplicative factor K3 in Eq.(7.16) depends on the survey geometry
and selection function which is not included in the plot.

These results can readily be extended to the case of two different surveys with over-
lapping sky coverage but different radial selection functions or for surveys with tomographic
bins.

8 Results and Discussion

The position-dependent power spectrum, a probe of squeezed configuration of bispectrum,
was recently proposed as a method to probe galaxy clustering. Cumulant correlators and their
Fourier transform, the skew-spectra, are also often used to probe the primary or secondary
non-Gaussianity. In this paper, we have compared these two techniques and elucidated their
relationship to one another.
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First, we have generalised the concept of skew-spectrum and kurt-spectrum defined
at third and fourth-order to arbitrary order. We used known perturbative results to show
[Eq.(2.10)] in the large separation limit, or low k limit (k → 0), the generalisations of
skew-spectra defined in Eq.(2.4) to higher-order, also known as the multispectra Spq(k), are
proportional to the underlying power spectrum with proportionality constants Cpq [see e.g.
Eq.(3.4)] that are known to arbitrary order. The proportionality constants depend on the
local (linear) power-spectral index n at the smoothing scale and can be computed to arbitrary
order. These coefficients, deduced using a top-hat smoothing window, are known in 2D and
3D, and are related to two-point joint PDFs pδ(δ1, δ2) or equivalently the bias b(δ), defined in
Eq.(3.9), of overdense objects. The computation of Spq(k) for the entire range of k requires
numerical evaluation. This has been carried out in for the S21(k) in Ref.[49] for 3D galaxy
surveys. Notice that the skew-spectra and kurt-spectra have also been employed in analysing
primordial non-Gaussianity in CMB temperature maps (ref.[5, 6]). However the mulrispectra
that we consider here are sub-optimal, where as, for CMB studies optimised versions were
considered to improve their sensitivity to primordial non-Gaussianity.

Next, we generalised the concept of a position-dependent power spectrum or integrated
bispectrum (IB) of the density field δ in many directions. We use a unifying approach in
§6 to investigate IB. Using a generic bispectrum Eq.(6.1) we have deduced the IB for δ
and Θ in Eq.(6.9) from a master Eq.(6.3) that can also deal, with the bispectrum from
lowest order of Lagrangian perturbation theory, the ZA. Using Limber’s approximation, we
have also applied this result to projected (2D) surveys in §7. These results can be readily
generalised to tomographic surveys or to cross-correlation of overlapping surveys using two
different tracer fields. Extending the concept of IB for one field we have generalised it
to consider (δ-Θ) mixed bispectrum in §6.2. In Eq.(6.12)-Eq.(6.16) we have pointed out
that such measurements are sensitive to cosmological parameter Ω. The results for ZA will
particularly be useful in assessing magnitude of transients in numerical simulation. Using the
unifying approach, we were able to show that in each of these specific cases the expressions
for C21(k) and R21(k) share the same analytical expression Eq.(6.3). Despite the formal
mathematical similarities, the actual interpretation is quite different. In case of cumulant
correlator C21 a given smoothing scale dictates the spectral index n. To map out the entire
range of k a range of smoothing scales are needed. Similarly, the momentum-dependence of
the integrated bispectrum can be studied using many sub-samples of the survey and taking an
approximate ensemble average. Both methods can be used simultaneously as a consistency
check. The power law n = −3 correspond to the case of no smoothing. In this case we
recover the scale independent HA value of 2Q̄ ≡ 2ν2 = 68/21 using the angular average of Q
i.e. Q̄ = 34/21 [see eq.(4.17)]. Notice that this is true also for 2D and divergence of velocity
Θ. In the case of Θ, the unsmoothed vertex takes the numerical value: Q3 = 2Ḡ = 52/21.

Going beyond second-order in Standard (Eulerian) Perturbation Theory (SPT) we have
extended the concept of IB to integrated trispectrum (IT) in Appendix-§A. We introduced
two ITs at the level of trispectrum: B22(k) and B31(k) respectively in Appendix-§B and Ap-
pendix§C. In the soft limit they correspond to squeezed and collapsed limits of the trispec-
trum. They are analogues of the corresponding cumulant correlators C22 = C2

21 and C31 re-
spectively. The IT B22(k) can be constructed using the expression for the B21(k) [Eq.(B.12)]
and shows a structural similarity with C22. The explicit evaluation of B31(k) was recently
performed in Ref.[50]. However, the functional form for B31(k) [Eq.(C.23)-Eq.(C.24)] is not
same as that of C31(k). We expect the same to be true for higher order integrated spectra.
However, extension of these results to higher orders can be cumbersome owing to the compli-
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cated structure of the higher-order kernels Fn see Eq.(A.3). We conclude that higher-order
multispectra and higher-order integrated spectra can provide complementary information
and much needed consistency checks on probes of non-Gaussianity in diverse cosmological
data sets.

In addition to the SPT and LPT we have used the HA to get insight into soft limits of
higher order polyspectra [Eq.(4.1)-Eq.(4.4)]. In HA the tree perturbative hierarchy is replaced
with a similar hierarchy, but where the kernels Fn and Gn are replaced by vertices νn and µn
which are angular averages of these kernels [Eq.(A.8)-Eq.(A.9)]. Many different models of HA
exist and it is indeed possible also to leave these vertices as unknown parameters. This model
is only valid in the highly non-linear regime and thus strictly speaking not suitable for taking
k → 0. However, it provides very useful insight in higher order where exact SPT results are
prohibitively complicated especially in an idealised situation of n = −3 when smoothing can
be ignored. The squeezed limit for the HA bispectrum is given in Eq.(4.16) and the collapsed
and squeezed limits of the trispectrum are presented in Eq.(4.18) and Eq.(4.19) respectively.

The CCs and higher order integrated spectra both depend only on one wave number
so they are much easier to estimate than the corresponding full polyspectra. It is also much
simpler to compute their covariance.

In this paper we have primarily focused on the theoretical aspects of IB and IT. We have
shown that with other related statistics CCs and integrated spectra can play complementary
rule in probing soft limits of higher order polyspectra in 3D or projection (2D).

However, to use the estimators proposed here it will be important to develop them
further. For example it’s important to include redshift space distortion to analyse galaxy
surveys - which will involve analysing soft limits of polyspectra in redshift space [51]. Our
results here are based on perturbative analysis, but, including results from halo model can
be done in a relatively straightforward manner to extend the range of validity. Similarly, it
is not difficult to extend the results here to include primordial non-Gaussianity, though they
remain highly constrained by recent CMB observations [52] at least at scales probed by CMB
observations.

For weak lensing surveys, going beyond the 2D or tomographic analysis presented here it
is now becoming practical to analyse the data in 3D. Weak lensing probes structure formation
at small scale. Gravity induced non-Gaussianity is known to provide additional information
to constrain the cosmology. Our approach developed here can be generalised to 3D weak
lensing surveys using a spherical Fourier-Bessel transformation [53, 54]. In the field of CMB
research, squeezed configuration of primordial non-Gaussianity and its effect on CMB lensing
have been investigated [55, 56]. Two important secondaries - the lensing of CMB [57], and
the kSZ effect - both have a vanishing bispectrum [58]. They do not have any frequency
information either. Thus the two sets of IT discussed here can be useful in separating these
two secondaries. Results presented here will also be useful in analysing frequency-cleaned
y-parameter maps [59] or to study squeezed limit of bispectrum induced by reionization [60].
These estimators can also generalised to cross-correlate weak-lensing κ maps and y maps [61].
The separate universe approach developed by several authors remain a possibility for such
development [41–44]. Indeed the morphological estimators or the Minkowski Functionals
(MF) are a popular method to study non-Gaussianity in cosmological fields. MFs depend
on the higher order polyspectra and squeezed limit of polyspectra can also be related to the
position dependent MFs. The study of soft limit of polyspectra for CMB secondaries may
provide a method to test the kinematic consistency relations to constrain modified gravity
theories or primordial non-Gaussianity [62].
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Estimation of integrated spectra (IB or IT) is undoubtedly simpler than the correspond-
ing polyspectra, but designing optimal estimators to extract information about higher-order
non-Gaussianities it is not a simple task. A particular difficulty is posed by the need to
estimate the sample variance arising from the survey. The scatter in the IB we deduced in
this paper used a very simple prescription that ignores the very non-Gaussianity we seek to
characterise. In a regime in which the approximation of mild non-Gaussianity breaks down
such a treatment will become inadequate.

Finally, note that the estimators developed here are sub-optimal. Though may not be
too serious a concern for high quality data sets but in any case they are valuable by virtue
of being much easier to implement in practice than optimal estimators.

9 Acknowledgements

DM and PC acknowledge support from the Science and Technology Facilities Council (grant
number ST/L000652/1).

References

[1] SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and
Extra-Solar Planetary Systems Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011, AJ, 142,
72, [arXiv:1101.1529]

[2] The WiggleZ Dark Energy Survey: Survey Design and First Data Release, Drinkwater, M. J.,
Jurek, R. J., Blake, C., et al. 2010, MNRAS, 401, 14, [arXiv:0911.4246]

[3] The Dark Energy Survey, The Dark Energy Survey Collaboration 2005, arXiv:astro-ph/0510346,
[astro-ph/0510346].

[4] Euclid Definition Study Report Laureijs, R., Amiaux, J., Arduini, S., et al. 2011,
arXiv:1110.3193, [arXiv:1110.3193].

[5] A New Approach to Probing Primordial Non-Gaussianity, Munshi D., Heavens A., 2010,
MNRAS, 401, 2406, [arXiv/0904.4478].

[6] New Optimised Estimators for the Primordial Trispectrum, Munshi D., Heavens A., Cooray A.,
Smidt J., Coles P., Serra P., 2011, MNRAS, 412,1993, [arxiv/0910.3693].

[7] From Weak Lensing to non-Gaussianity via Minkowski Functionals Munshi D., van Waerbeke L.,
Smidt J., Coles P., 2012, MNRAS, 419, 536

[8] Large scale structure of the universe and cosmological perturbation theory, Bernardeau F.,
Colombi S., Gaztanaga E., Scoccimarro R., 2002, Phys.Rept. 367, 1, [astro-ph/0112551].

[9] The Effective Field Theory of Cosmological Large Scale Structures Joseph J., Carrasco M.,
Hertzberg M.P., Senatore L. JHEP, Volume 2012, Number 9 (2012), 82, [arXiv:1206.2926]

[10] Halo Models of Large Scale Structure Cooray A., Sheth R. 2002, Phys.Rept.372, 1,
[astro-ph/0206508]

[11] Position-dependent power spectrum of the large-scale structure: a novel method to measure the
squeezed-limit bispectrum, Chiang C-T, Wagner C.,Schmidt F., Komatsu E., [arXiv/1403.3411].

[12] The large-scale Gravitational Bias from the Quasilinear Regime, Bernardeau F., 1996, A&A
312, 11 [arXiv/9602072].

[13] Generalised Cumulant Correlators and Hierarchical Clustering, Munshi D.; Melott A. L., Coles
P., 2000, MNRAS, 311, 149 [arXiv/9812271].

[14] The Separate Universe Approach to Soft Limits, Kenton Z., Mulryne D.J., [arXiv/1605.03435]

– 21 –

http://lanl.arxiv.org/abs/1101.1529
http://lanl.arxiv.org/abs/0911.4246
http://arxiv.org/abs/astro-ph/0510346
http://arxiv.org/abs/arxiv:1110.3193
http://arxiv.org/abs/0904.4478
http://arxiv.org/abs/0910.3693
http://lanl.arxiv.org/abs/astro-ph/0112551
http://arxiv.org/abs/1206.2926
http://arxiv.org/abs/astro-ph/0206508
http://lanl.arxiv.org/abs/1403.3411
http://lanl.arxiv.org/abs/astro-ph/9602072
http://lanl.arxiv.org/abs/astro-ph/9812271
http://arxiv.org/abs/1605.03435


[15] Kinematic consistency relations of large-scale structures, Valageas P., 2014, PRD, 89, 083534
[arXiv/1311.1236]

[16] Angular averaged consistency relations of large-scale structures, Valageas P., 2014, PRD, 89,
123522, [arXiv/1311.4286]

[17] Testing the equal-time angular-averaged consistency relation of the gravitational dynamics in
N-body simulations Nishimichi T., Valageas P., 2014, PRD, 90, 023546, [arXiv/1402.3293]

[18] Hyperextended Cosmological Perturbation Theory: Predicting Non-linear Clustering
Amplitudes, Scoccimarro R., Frieman J.A., 1999, ApJ, 520, 35 [astro-ph/9811184].

[19] Cumulant Correlators from the APM, Szapudi I., Szalay A.S., 1999, Astrophys.J., 515, L43,
[astro-ph/9702015].

[20] Weak lensing from strong clustering, Munshi, D; Coles, P, 2000, MNRAS, 313, 148,
[astro-ph/9911008].

[21] On the integration of the BBGKY equations for the development of strongly nonlinear
clustering in an expanding universe, Davis M., Peebles, P.J.E. 1977, ApJS, 34, 425,
[1977 ApJS 34 425D]

[22] Statistical Analysis Of Catalogs Of Extragalactic Objects. VII -Two- And -Three- Point
Correlation Functions For The High-Resolution Shane-Wirtanen Catalog Of Galaxies, Groth E.,
Peebles, P.J.E., 1977, ApJ, 217, 385, [1977 ApJ 217 385G]

[23] The Galaxy correlation hierarchy in perturbation theory Fry J.N., 1984b, ApJ, 279, 499,
[1984 ApJ 279 499F]

[24] The gravity-induced quasi-Gaussian correlation hierarchy Bernardeau, F. 1992, ApJ, 192, 1,
[1992 ApJ 392 1B]

[25] The Effects of Smoothing on the Statistical Properties of the Large-Scale Cosmic Fileds
Bernardeau, F. 1994, A&A, 291, 697, [astro-ph/9403020].

[26] Statistical analysis of catalogs of extragalactic objects. IX - The four-point galaxy correlation
function Fry J.N., Peebles P.J.E., 1978, ApJ, 221, 19, [1978 ApJ 221 19F]

[27] Peebles, P.J.E. 1980, The Large Scale Structure of the Universe, Princeton University Press,
Princeton, N.J., USA

[28] Scale-invariant matter distribution in the universe. I - Counts in cells, Balian R., Schaeffer R.,
1989, A&A, 220, 1

[29] Hamilton, A.J.S., 1988b, ApJ, 332, 67

[30] Reconstructing the primordial spectrum of fluctuations of the universe from the observed
nonlinear clustering of galaxies. Hamilton, A.J.S., Kumar, P., Lu, E., Mattews, A. 1991, ApJ,
274, 1; Erratum: 1995, ApJ, 442L, 73H, [1991 ApJ 374L 1H]

[31] Halo correlations in nonlinear cosmic density fields. Bernardeau F., Schaeffer R., 1999, A&A,
349, 697B, [astro-ph/990387].

[32] Galaxy correlations, matter correlations and biasing, Bernardeau F., Schaeffer R., 1992, A&A,
255, 1

[33] Bias and Hierarchical Clustering, Coles P., Melott A.L., Munshi D., 1999, ApJ, 521L, 5C,
[astro-ph/9904253]

[34] From Snakes to Stars, the Statistics of Collapsed Objects - I. Lower-order Clustering
Properties, Munshi D., Coles P., Melott A.L. 1999, MNRAS, 307, 387, [astro-ph/9812337]

[35] From Snakes to Stars, the Statistics of Collapsed Objects - II. Lower-order Clustering
Properties, Munshi D., Coles P., Melott A.L., 1999, MNRAS, 310, 892, [astro-ph/9902215]

– 22 –

http://arxiv.org/abs/1311.1236
http://lanl.arxiv.org/abs/1311.4286
http://arxiv.org/abs/1402.3293
http://arxiv.org/abs/astro-ph/9811184
http://arxiv.org/abs/astro-ph/9702015
http://lanl.arxiv.org/abs/astro-ph/9911008
http://adsabs.harvard.edu/cgi-bin/bib_query?1977ApJS...34..425D
http://adsabs.harvard.edu//abs/1977ApJ...217..385G
http://adsabs.harvard.edu/abs/1984ApJ...279..499F
http://adsabs.harvard.edu/abs/1992ApJ...392....1B
http://arxiv.org/abs/astro-ph/9403020
http://adsabs.harvard.edu/abs/1978ApJ...221...19F
http://adsabs.harvard.edu/abs/1991ApJ...374L...1H
http://arxiv.org/abs/9903087
http://lanl.arxiv.org/abs/astro-ph/9904253
http://lanl.arxiv.org/abs/astro-ph/9812337
http://lanl.arxiv.org/abs/astro-ph/9902215


[36] Scaling in Gravitational Clustering, 2D and 3D Dynamics, Munshi D., Bernardeau F., Melott
A.L., Schaeffer R., 1999, MNRAS, 303, 433, [astro-ph/9707009]

[37] The Effect of a Lumpy Matter Distribution on the Growth of Irregularities in an Expanding
Universe, P. J. E. Peebles, 1974, A&A, 32, 391.

[38] Omega from the skewness of the cosmic velocity divergence, Bernardeau F., Juszkiewicz R.,
Dekel A., Bouchet F.R., 1995, MNRAS, 274, 20, [astro-ph/9404052].

[39] Scoccimarro R., Couchman, H.M. 2011, MNRAS, 325, 1312, [astro-ph/009427]

[40] An improved fitting formula for the dark matter bispectrum Gil-Marn H., Wagner C.,
Fragkoudi F., Jimenez R., Verde L., 2012, JCAP, 02, 047 [astro-ph/111.4477]

[41] Galaxy Bias and non-Linear Structure Formation in General Relativity, T. Baldauf, U. Seljak,
L. Senatore, and M. Zaldarriaga, 2011, JCAP, 1110, 031 [arXiv/1106.5507].

[42] Single-Field Consistency Relations of Large Scale Structure Creminelli P, Norea J., Simonovi
M., Vernizzi F. 2013, JCAP, 12, 025C [arxiv/1309.3557]

[43] Super-Sample Covariance in Simulations Li Y., Hu W., Takada M., 2014, PRD, 89, 083519
[arxiv/1401.0385]

[44] The Observed squeezed limit of cosmological three-point functions, E. Pajer, F. Schmidt, and
M. Zaldarriaga, 2013, PRD, 88, 083502, [arXiv/1305.0824].

[45] Munshi, D., Sahni, V., Starobinsky, A. A., Nonlinear approximations to gravitational
instability: A comparison in the quasi-linear regime, 1994, ApJ, 436, 517M [astro-ph/9402065].

[46] Cosmological parameters from lensing power spectrum and bispectrum tomography Takada M,
Jain B., 2004, MNRAS, 348, 897 [arxiv/0310125]

[47] Weak Lensing Statistics as a Probe of Omega and Power Spectrum, F. Bernardeau, L. van
Waerbeke, Y. Mellier, 1997, A&A. 322, 1, [astro-ph/9609122].

[48] The angular correlation hierarchy in the quasilinear regime, Bernardeau F., 1995, A&A, 301,
309 [arXiv/9502089].

[49] Non-Gaussianity in large-scale structure and Minkowski functionals Pratten G., Munshi D.,
2012, MNRAS, 423, 3209, [arxiv/1108.1985]

[50] The angle-averaged squeezed limit of nonlinear matter N-point functions Wagner C, Schmidt
F., Chiang C.-T., Komatsu E., 2015, JCAP, 08, 042, [arxiv/1503.03487]

[51] Galaxy clustering in 3D and modified gravity theories, Munshi D., Pratten G., Valageas P.,
Coles P., Brax Ph., 2016, MNRAS, 456, 1627 [arxiv/1508.00583]

[52] Planck 2015 results. XVII. Constraints on primordial non-Gaussianity Planck Collaboration
[arxiv/1502.01592]

[53] 3D Weak Lensing: Modified Theories of Gravity Pratten G., Munshi D., Valageas P., Brax Ph.,
2016, PRD, 93, 103524, [arxiv/1602.06711]

[54] Higher order statistics for three-dimensional shear and flexion Munshi D., Kitching T., Heavens
A., Coles P., 2011, MNRAS, 416, 1629, [arxiv/1012.3658]

[55] CMB lensing and primordial squeezed non-Gaussianity, Pearson R., Lewis A., Regan D., 2012,
JCAP, 03, 011, [arXiv:1201.1010]

[56] The full squeezed CMB bispectrum from inflation, Lewis A., 2012, JCAP, 06, 023,
[arXiv:1204.5018]

[57] Lensing-induced morphology changes in CMB temperature maps in modified gravity theories,
Munshi D., Hu B., Matsubara T., Coles P., Heavens A., 2016, JCAP, 04, 056 [arxiv/1602.00965]

[58] Extracting the late-time kinetic Sunyaev-Zel’dovich effect, D. Munshi, I. T. Iliev, K. L. Dixon,

– 23 –

http://lanl.arxiv.org/abs/astro-ph/9707009
http://lanl.arxiv.org/abs/astro-ph/9404053
http://lanl.arxiv.org/abs/0009427
http://lanl.arxiv.org/abs/1111.4477
http://lanl.arxiv.org/abs/astro-ph/1106.5507
http://lanl.arxiv.org/abs/1309.3557
http://lanl.arxiv.org/abs/1401.0385
http://lanl.arxiv.org/abs/astro-ph/1305.0824
http://arxiv.org/abs/9402065
http://lanl.arxiv.org/abs/astro-ph/0310125
http://arxiv.org/abs/9609122
http://lanl.arxiv.org/abs/astro-ph/9502089
http://lanl.arxiv.org/abs/1108.1985
http://arxiv.org/abs/1503.03487
http://lanl.arxiv.org/abs/1508.00583
http://lanl.arxiv.org/abs/1502.01592
http://lanl.arxiv.org/abs/1602.06711
http://lanl.arxiv.org/abs/1012.3658
http://arxiv.org/abs/1201.1010
http://arxiv.org/abs/1204.5018
http://lanl.arxiv.org/abs/1602.00965


P. Coles [arxiv/1511.034495]

[59] Cross-correlating Sunyaev-Zel’dovich and weak lensing maps, Munshi D., Joudaki S., Coles P.,
Smidt J., Kay S. T., 2014, MNRAS, 442, 69 [arxiv/1111.5010]

[60] Reionization and CMB non-Gaussianity Munshi D., Corasaniti P. S., Coles P., Heavens A.,
Pandolfi S. [arXiv/1403.1531]

[61] Statistical Properties of Thermal Sunyaev-Zel’dovich Maps, Munshi D., Joudaki S., Smidt J.,
Coles P., Kay S. T., 2013, MNRAS, 429, 1564 [arxiv/1106.0706]

[62] Redshift-space equal-time angular-averaged consistency relations of the gravitational dynamics,
Nishimichi T., Valageas P., 2015, PhRvD,92, 123510, [arxiv/1503.06036]

A Beyond the Integrated Bispectrum (IB): the Integrated Trispectrum
(IT)

We will briefly quote some results from Standard (Eulerian) Perturbation Theory (SPT) that
are relevant in our context. The perturbative expansions of the density field δ and Θ can be
expressed in terms of kernels Fn and Gn:

δ(k) = δ(1)(k) + δ(2)(k) + · · · ;

δ(n)(k) =

∫

d3q1 · · ·

∫

d3qnFn(q1, · · · ,qn)δ(q1) · · · δ(qn). (A.1)

Θ(k) = Θ(1)(k) + Θ(2)(k) + · · · ;

Θ(n)(k) =

∫

d3q1 · · ·

∫

d3qnGn(q1, · · · ,qn)δ(q1) · · · δ(qn). (A.2)

The expressions for the nth order kernels Fn and Gn for δ and Θ respectively are Ref.[8]:

Fn(q1, · · · ,qn) =
n−1
∑

m=1

Gm(q1, · · · ,qm)

(2n+ 3)(n − 1)
[(2n + 1)α(k1,k2)Fn−m(qm+1, · · · ,qn)

+2β(k1,k2)Gn−m(qm+1, · · · ,qn)]. (A.3)

Gn(q1, · · · ,qn) =
n−1
∑

m=1

Gm(q1, · · · ,qm)

(2n + 3)(n − 1)
[3α(k1,k2)Fn−m(qm+1, · · · ,qn)

+2nβ(k1,k2)Gn−m(qm+1, · · · ,qn)]. (A.4)

Here F1 = 1 and G1 = 1 and the functions α and β are defined as:

α(k1,k2) ≡
k12 · k1

k21
; β(k1,k2) ≡ k212

k1 · k2

2k21k
2
2

. (A.5)

We have defined the following quantities above:

k1 = q1 + · · · + qm; k2 = qm+1 + · · ·+ qn; k = k1 + k2. (A.6)

The vertices Fn for the lowest order Lagrangian Perturbation Theory (LPT) or ZA take the
following form:

Fn(q1, · · · ,qn) =
1

n!

k · q1

q21
· · ·

k · qn

q2n
; k ≡ q1 + · · · + qn. (A.7)
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The angular averages of the kernels are the tree-levels amplitudes or the vertices as defined
below:

νn ≡ n!

∫

dΩ̂1

4π
· · ·

∫

dΩ̂n

4π
Fn(k1, · · · kn); (A.8)

µn ≡ n!

∫

dΩ̂1

4π
· · ·

∫

dΩ̂n

4π
Gn(k1, · · · kn). (A.9)

Using Eq.(A.3) and Eq.(A.4) the second and third order kernels are defined as follows:

F2(k1,k2) ≡
5

7
+

1

2

(

1

k21
+

1

k22

)

(k1 · k2) +
2

7

(k1 · k2)
2

k21k
2
2

; (A.10)

F3(k1,k2,k3) =
7

18

k12 · k1

k21
[F2(k2,k3) +G2(k1,k2)]

+
2

18

k2
12(k1 · k2)

k21k
2
2

[G2(k2,k3) +G2(k1,k2)] . (A.11)

G2(k1,k2) ≡
3

7
+

1

2

(

1

k21
+

1

k22

)

(k1 · k2) +
4

7

(k1 · k2)
2

k21k
2
2

. (A.12)

Using the fact that in 3D the angular averages of α and β are respectively ᾱ = 1 and β̄ = 1
3

we obtain:

ν2 ≡ 2F̄2 = 2

[

5

7
+

2

7

1

3

]

=
34

21
; µ2 ≡ 2Ḡ2 = 2

[

3

7
+

4

7

1

3

]

=
26

21
; (A.13)

ν3 ≡ 6F̄3 = 6

[

7

18

(

17

21
+

13

21

)

+
4

18
·
1

3
·
13

21

]

=
682

189
. (A.14)

For 2D we use ᾱ = 1 and β̄ = 1
2 ; in this case we have ν2 ≡ 2F̄2 = 12

7 , µ2 ≡ 2Ḡ2 = 10
7 ,

Following recursion relation can be derived using Eq.(A.3) and Eq.(A.4) that is useful
in evaluation of νn and µn results quoted above:

νn =
n−1
∑

m=1

(

n

m

)

µm
(2n+ 3)(n − 1)

[

(2n+ 1)νn−m +
2

3
µn−m

]

; (A.15)

µn =

n−1
∑

m=1

(

n

m

)

µm
(2n + 3)(n − 1)

[

3νn−m +
2

3
nµn−m

]

. (A.16)

The perturbative bispectrum BPT(k1,k2,k3) and trispectrum TPT(k1,k2,k3,k4) take the
following forms:

BPT(k1,k2,k3) = 2F2(k1,k2)P (k1)P (k2) + 2 perm.; (A.17)

TPT(k1,k2,k3,k4) = 4 [F2(k13,−k1)F2(k13,k2)P (k13)P (k2)P (k2) + 11 perm.]

+6 [F3(k1,k2,k3)P (k1)P (k2)P (k3) + 3perm.] (A.18)

B Perturbative Computation of the Collapsed Trispectrum

The aim in this section is to deduce the normalisation coefficient for the collapsed trispectrum
and show it is same as given in Eq.(3.4). In the collapsed configuration the trispectrum
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includes contributions only from snake diagrams.

B3(k1,k2,k3,k4) = 〈δ(k1)δ
(2)(k2)δ

(2)(k3)δ(k4)〉c + 〈δ(k2)δ
(1)(k2)δ

(2)(k3)δ(k4)〉c

+〈δ(k1)δ
(2)(k2)δ

(2)(k4)δ(k3)〉c + 〈δ(k2)δ
(1)(k2)δ

(2)(k4)δ(k3)〉c. (B.1)

Following Eq.(A.3) we express the second-order correction δ(2)(k):

δ(2)(k) = δ3D(k− kab)

∫ ∫

F2(ka,kb)δ
(1)(ka)δ

(1)(kb)d
3ka d

3kb; kab = ka + kb (B.2)

Here δ3D is the 3D Dirac delta-function. Taking an ensemble average leads us to the following
expression:

〈δ(k1)δ
(2)(k2)δ

(2)(k3)δ(k4)〉c = F2(−k2,k12)F2(−k4,−k12)P (k1)P (k12)P (k4). (B.3)

Combining the contributions from all four terms in Eq.(B.1):

B3(k1,k2,k3,k4) = P (k12) [F2(−k1,k12)P (k1) + F2(−k2,k12)P (k2)]

× [F2(−k3,k34)P (k3) + F2(−k4,k34)P (k4)] . (B.4)

We derive the expression for the collapsed trispectrum in this section. The results will be of
practical use in estimation of covariance of local power spectrum estimates from survey sub-
volumes. We start with definition of the local power spectrum in a sub-volume in Eq.(5.5).
Next, we compute the covariance between the power spectrum at different mode k and k′:

〈P̂ (k, rL)P̂ (k
′, rL)〉c =

1

V 2
L

∫

d3q1

(2π)3

∫

d3q2

(2π)3

∫

d3q′
1

(2π)3

∫

d3q′
2

(2π)3

×〈δ(k − q1)δ(−k− q2)δ(k
′ − q′

1)δ(−k′ − q′
2)〉

×WL(q1)WL(q2)WL(q
′
1)WL(q

′
2) exp[−irL · (q12 + q′

12)]. (B.5)

We use the following definition of collapsed trispectrum:

〈δ(k − q1)δ(−k− q2)δ(k − q1)δ(−k − q)〉c

= (2π)3δD(q12 + q′
12)B3[k− q1,−k+ q1 + q2,k

′ − q′
1,−k′ + q′

1 + q′
2]. (B.6)

In the collapsed limit the trispectrum takes the following form:

lim
qi→0

B3[k− q1,−k+ q1 + q2,k
′ − q′

1,−k′ + q′ + q′
3]

collapsed
≈ B3[k,−k,k′,−k′]. (B.7)

To simplify further, we express the 3D delta function δ3D in Eq.(B.6) as a convolution of two
3D delta function:

δ3D(q12 + q′
12) =

∫

d3q3 δ3D(q12 + q3) δ3D(q
′
12 − q3). (B.8)

We use these δ3D functions to collapse the q2 and q′
2 integrals:

〈P̂ (k, rL)P̂ (k
′, rL)〉c =

1

V 2
L

∫

d3q1

(2π)3

∫

d3q′
1

(2π)3

∫

d3q3

(2π)3

×B3[k− q1,−k− q1 − q3,k
′,−k′ − q′

1 + q3]

×WL(q1)WL(−q1 − q3)WL(q
′
1)WL(q1 − q). (B.9)
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After tedious but straightforward simplification, we get:

Bcoll
3 (k1,k2) ≡ B3[k− q1,−k+ q1 + q3,k

′ − q′
1,−k′ + q′

1 − q3]

= P (k)P (k′)P (q3)

[

13

7
+

8

7

(

k · q3

k q3

)2

−

(

k · q3

k q3

)2 d lnP (k)

d ln k

]

[k → k′]. (B.10)

The expression in the second bracket is obtained by replacing k with k′. Next, we perform
the angular integrals in the Fourier space.

Bcoll
3 (k, k′) ≡

∫

d2Ω̂k

4π

∫

d2Ω̂k′

4π
Bcoll

3 (k,k′)

= P (k)P (k′)σ2L

[

68

21
−

1

3

d ln k3P (k)

d ln k

]

[k → k′]. (B.11)

In our derivation, we have taken advantage of the Eq.(5.4). The factorisation of the expression
in terms of products of two factors that depend either on k or k′ allows us to perform the
respective angular integration independently. Finally, assuming a local power-law for the
power spectrum P (k) ∝ kn, we get:

Bcoll
3 (k, k′) ≡ P (k)P (k′)σ2L

[

2ν2 −
1

3
(n+ 3)

] [

2ν2 −
1

3
(n′ + 3)

]

;

d ln k3P (k)

d ln k
= (n + 3); σ2L =

1

V 2
L

∫

d3qP(k)W 2
L(q). (B.12)

The amplitude ν2 = 34/21 is defined in Eq.(A.14). As expected this numerical coefficient is
identical to what was quoted for cumulant correlator in Eq.(3.4). The factorization C22 = C2

21

is a result of tree-level perturbation theory. Higher order contributions will be O(σ4L). For a
reasonable big sub-volume such contribution will be negligible.

To recover the results derived in for HA valid in the non-linear regime §(A) we have to
set n = −3 and identify Ra = ν22 eq.(5.14). The results derived here assumes a Ω = 1 EdS
cosmology. To probe residual dependence on cosmology we can follow the procedure outlined
in §6.1. A similar derivations using X2(k1,k2) defined in Eq.(6.1) can be carried out which
will replace the square bracket in Eq.(B.12) with appropriate Ω dependence of Eq.(6.4) or
Eq.(6.5) (in case of 2D). This will also generalise the above result also to the case of Θ or for
the case of ZA.

C Perturbative Computation of Squeezed Trispectrum

The aim of this section is to show that in the squeezed limit the normalisation coefficient
takes same the form as Eq.(3.5). However in the squeezed configuration both star and snake
diagrams contribute, thus making the calculations more involved.
Contributions From Snake Diagrams: The following six snake terms of the total twelve
terms contribute in the leading order in the squeezed configuration:

lim
q→0

B3(q,k2,k3,k4)
snake
= lim

q→0
P (q)

{

P (k2)P (k4)F2(−k2,−k4) [F2(−q,k2) + k2 → k4]

+P (k3)P (k4)F2(−k3,−k4) [F2(−q,k3) + k3 → k4]
}

+P (k2)P (k3)F2(−k3,−k2) [F2(−q,k2) + k2 → k3]
}

δ3D(k234). (C.1)
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B2(k2,k3,k4) = Fsq
2 (k1,k2)P (k2)P (k3) + cyc.perm.; (C.2)

Fsq(k2,k4) = F2(k2,k4) [F2(−q,k2) + k2 → k4] (C.3)

Thus the configuration from snake diagrams in the squeezed trispectrum takes the form of
a bispectrum with a different vertex amplitude Fsq

2 . For the hierarchical model the vertices
are constant F2(k1,k2) = ν2. In this limit the squeezed trispectrum takes simpler form and
can be expressed in terms of the hierarchical bispectrum:

lim
q→0

B3(q,k2,k3,k4) = 2ν2 P (q)B2(k2,k3,k4) (C.4)

In the limit {q,q′} → 0 in Eq.(C.1):

lim
q,q′→0

B3(q,q
′,k,−k)

snake
= P (q)P (q′)P (k){F2(q1,k)F2(−k,q2) + q1 ↔ q2}. (C.5)

Contributions From Star Diagrams: The following four terms represent the star contri-
butions to trispectrum:

B3(k1,k2,k3,k4)
star
= 〈δ(3)(k1)δ(k2)δ(k3)δ(k4)〉c + cyc.perm. (C.6)

The expression for δ(3) is expressed in terms of the kernel F3 defined in Eq.(3.4):

δ(3)(k) = δ3D(k− kabc)

∫

d3ka δ(ka)

∫

d3kb δ(kb)

∫

d3kc δ(kc) F3(ka,kb,kc);

kabc = ka + kb + kc. (C.7)

We need to consider the following configuration in the squeezed limit:

lim
qi→0

B3(k1 − q1,k2 − q2,k3 − q3,−q4)δ3D(k123)δ3D(q1234);

≈ lim
q4→0

B3(k1,k2,k3,−q4)δ3D(k123). (C.8)

The momentum-conserving Dirac’s δ3D function in the Fourier domain δ3D(k123) reduced
to δ3D(k123) in the squeezed limit q4 → 0. Thus effectively reducing the trispectrum to a
bispectrum. The terms that contribute are:

B3(k1,k2,k3,−q4)
star
= P (q4) [F3(k1,k2,−q4)P (k1)P (k2) + cyc.perm.] . (C.9)

Of the four terms listed in Eq.(C.6) only three survive as the contribution from the term
F3(k1,k2,k3) vanishes due to the presence of the factor δ3D(k123). In the limit {q,q′} → 0
in Eq.(C.6):

lim
q,q′→0

B3(q,q
′,k,−k)

star
= P (q)P (q′)P (k)

[

F3(q,q
′,k) + F3(q,q

′,−k)
]

. (C.10)

Total Contribution: Combining contributions from both star and snake topologies we
arrive at the following expression:

B3(q,k1,k2,k3) = P (q4) [F2(k1,k2)P (k1)P (k2) + cyc.perm.] ; (C.11)

F2(k1,k2) ≡ F3(k1,k2,q) + F2(k1,k2) [F2(−q,k1) + k1 → k2] . (C.12)
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Figure 4: The 3D normalised cumulant correlators [defined in Eq.(3.4)-Eq.(3.5)] are com-
pared with the coefficients R2 and R3 in Eq.(C.23)-Eq.(C.24) respectively. The left panel
shows R2 and the right panel depicts R3 and RE

3 respectively along with C31. Tree level
perturbation theory is used in modelling of this quantities. The quantities R2 and C21 are
identical. However at third order the coefficients R3(or its Eulerian counterpart RE

3 ) and C31

are different.

For the hierarchical anasatz 〈F2〉 = ν2 and 〈F3〉 = ν3 and we get:

B3(q,k1,k2,k3) = P (q)(ν3 + 2ν22) [P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)] . (C.13)

It thus takes an effective configuration of a bispectrum but with an amplitude determined
by coefficients that determine the trispectrum.

Combining expressions from Eq.(C.5) and Eq.(C.10) we get in the limit {q,q′} → 0

lim
q,q′→0

B3(q,q
′,k,−k) = P (q)P (q′)P (k)

[

F3(q,q
′,k) + F3(q,q

′,−k)

+{F2(q1,k)F2(−k,q2) + q1 ↔ q2}
]

. (C.14)

C.1 Squeezed-limit Trispectrum

The integrated trispectrum (IT) R2(k) was derived in Ref.[50] [see Eq.(A.19)]:

R3(k)
tree
=

8420

1323
−

100

63

d lnP (k)

d ln k
+

1

9

k2

P(k)

d2(k)

dk2
. (C.15)

To arrive at this result we have used the following expressions 〈µ21〉 = 〈µ22〉 = 1/3 and
〈µ212〉 = 1/3, 〈µ1µ2µ12〉 = 1/9. We will next use the following expression:

k2

P(k)

d2P(k)

dk2
=

[

d2 lnP(k)

d(ln k)2
−
d lnP(k)

d ln k
+

(

d lnP(k)

d ln k

)2
]

. (C.16)

To convert to Eulerian frame we use the following transformation in Eq.(4.1) of Ref.[50] :

RE
3 (k) = R3(k)− 2 f2R2(k); f2 =

17

21
. (C.17)
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RE
3 (k) =

8420

1323
−

107

63

[

d ln k3P(k)

d ln k
− 3

]

+
1

9

[

d ln k3P(k)

d ln k
− 3

]2

+
1

9

d2 ln k3P(k)

d(ln k)2

−2
17

21

(

68

21
−

1

3

d ln k3P(k)

d ln k

)

. (C.18)

For a power law power spectra we have P (k) ∝ kn and we have d ln k3P (k)
d ln k = (n + 3) and the

term involving the second derivative vanishes.
For n = −3 we have for R3 and RE

3 we have:

R3
n=-3
=

8420

1323
+

107

21
+ 1 =

16484

1323
; (C.19)

RE
3

n=-3
= R3 − 2 ·

17

21
·
68

21
=
1364

189
. (C.20)

Using HA we recover:

lim
q,q′→0

B3[q,q
′,k,−k]

HA
= (4ν22 + 2ν3)P (q)P (q

′)P (k). (C.21)

This is consistent with Eq.(3.5) that defines the cumulant correlator C31.
However, using PT kernels the results in Ref.[50] are equivalent to (for n = −3 in 3D):

lim
q,q′→0

B3[q,q
′,k,−k]

PT
= (2ν22 + 2ν3)P (q)P (q

′)P (k). (C.22)

We get Eq.(C.19) if we use the squeezed limit in Eq.(C.22).
In case of a locally power-law spectrum with arbitrary index n we have:

R3(k)
tree
=

16484

1323
−

3129

1323
(n + 3) +

147

1323
(n+ 3)2. (C.23)

The Eulerican counterpart takes the following the expression:

RE
3 (k)

tree
=

1364

189
−

345

189
(n+ 3) +

1

9
(n+ 3)2. (C.24)

These expressions are plotted in Figure-4 along with their kurt-spectra counterpart defined
in Eq.(3.5).
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