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ABSTRACT 21 

Antifungal proteins from molds have been proposed as a valuable tool against unwanted molds, but the 22 

resistance of some fungi limits their use. Resistance to antimicrobial peptides has been suggested to be 23 

due to lack of interaction with the mold or to a successful response. The antifungal protein PgAFP 24 

produced by Penicillium chrysogenum inhibits the growth of various ascomycetes, but not Penicillium 25 

polonicum. To study the basis for resistance to this antifungal protein, localization of PgAFP and 26 

metabolic, structural, and morphological changes were investigated in P. polonicum. PgAFP bound the 27 

outer layer of P. polonicum but not regenerated chitin, suggesting an interaction with specific molecules. 28 

Comparative two-dimensional gel electrophoresis (2D-PAGE) and comparative quantitative proteomics 29 

revealed changes in the relative abundance of several proteins from ribosome, spliceosome, metabolic, 30 

and biosynthesis of secondary metabolite pathways. The proteome changes and an altered permeability 31 

reveal an active reaction of P. polonicum to PgAFP. The successful response of the resistant mold seems 32 

to be based on the higher abundance of protein Rho GTPase Rho1 that would lead to the increased chitin 33 

deposition via cell wall integrity (CWI) signaling pathway. Thus, combined treatment with chitinases 34 

could provide a complementary means to combat resistance to antifungal proteins. 35 

KEYWORDS 36 

Antifungal proteins, proteomics, resistance, Penicillium polonicum, chitin, cell-wall integrity pathway 37 

INTRODUCTION 38 

The antifungal protein PgAFP produced by the strain Penicillium chrysogenum CECT 20922 (formerly 39 

RP42C) is within a group of small, highly basic and low molecular mass proteins (Rodríguez-Martín et al. 40 

2010). PgAFP inhibits various pathogenic and spoilage ascomycetes of interest in foods, including strains 41 

of various Aspergillus spp., such as A. carbonarius, A. flavus, A. ochraceus, A. fumigatus, and A. 42 

tubingensis, as well as Penicillium spp., such as P. commune, P. restrictum, P. nalgiovense, and P. 43 

chrysogenum (Delgado et al. 2015a). However, Penicillium polonicum and the PgAFP-producer strain of 44 

P. chrysogenum were not inhibited by PgAFP.  45 

Other antifungal proteins produced by ascomycetes are PAF from P. chrysogenum Q176 (Marx et al. 46 

1995), Pc-Arctin from P. chrysogenum A096 (Chen et al. 2013), BP from Penicillium brevicompactum 47 

(Seibold et al. 2011) AFP and AFPNN5353 from Aspergillus giganteus (Nakaya et al. 1990; Binder et al. 48 

2011), Anafp from Aspergillus niger (Gun Lee et al. 1999), AcAFP and AcAMP from Aspergillus 49 

clavatus (Skouri-Gargouri and Gargouri 2008; Hajji et al. 2010), FPAP from Fusarium polyphialidicum 50 

(Galgóczy et al. 2013b) and NFAP from Neosartorya fischeri (Kovács et al. 2011). Mechanisms of action 51 

of antifungal proteins from molds have been described as multifactorial, where membrane 52 

permeabilization, changes in actin distribution, chitin biosynthesis inhibition, destabilization of cell wall, 53 

and oxidative stress lead to apoptosis (Leiter et al. 2005; Moreno et al. 2006; Hagen et al. 2007; Binder et 54 

al. 2010; Virágh et al. 2015; Delgado et al. 2015b). AFP binds chitin, inhibits chitin biosynthesis, 55 

permeabilizes the cell membrane, and penetrates into the cell and binds nucleic acids (Liu et al. 2002; 56 
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Moreno et al. 2006; Hagen et al. 2007) and AcAFP also binds chitin altering cell wall (Skouri-Gargouri et 57 

al. 2009), whereas PAF, NFAP, and PgAFP lead to apoptosis mediated by G-protein signaling (Binder et 58 

al. 2010; Binder et al. 2015; Virágh et al. 2015; Delgado et al. 2015b). Both PAF and NFAP activate the 59 

cAMP/Protein kinase A pathway via G-protein signaling (Leiter et al. 2005; Virágh et al. 2015) and 60 

PgAFP provoked a lower amount G-protein subunit β CpcB (Delgado et al. 2015b). 61 

However, the defensive strategies of resistant molds are poorly described. The lack of electrostatic 62 

affinity or receptors in cell surfaces has been suggested as the cause of the resistance to antimicrobial 63 

peptides (Yeaman and Yount 2003). PgAFP does not bind to the producer strain P. chrysogenum CECT 64 

20922 that withstands at least 312 g/ml (Delgado et al. 2015a, b). The lack of interaction between 65 

antifungal proteins and mold surface results in the absence of major metabolic responses in the resistant 66 

fungi. Another successful strategy of resistant fungi to counteract AFP is chitin synthesis stimulation 67 

(Ouedraogo et al. 2011). The latter strategy implies interaction with the resistant fungus and active 68 

metabolic response to the antifungal protein. Thus, studying the mechanisms involved in the resistance 69 

requires in depth investigation of the metabolic response of resistant fungi to antifungal proteins. 70 

Comparative proteomic analysis is a powerful tool to study metabolic changes at the molecular level 71 

(Kim et al. 2007). 2D-PAGE has the ability to separate complete proteins including those with post-72 

translational modifications, but only a small percentage of the whole proteome is revealed (Görg et al. 73 

2009). On the other hand, comparative quantitative proteomics is able to identify proteins not detectable 74 

by 2D-PAGE. These two techniques have been used to complementarily evaluate the effect of PgAFP on 75 

the proteins involved in signaling pathways and selecting adequate tests to study the metabolic response 76 

in molds (Delgado et al. 2015b). In addition, localization of the antifungal protein in non-sensitive molds 77 

can give valuable information on the possible interaction at the surface or inside the cell. Given that 78 

antifungal proteins provoke oxidative stress leading to apoptosis in sensitive mold, knowing the extent of 79 

these two phenomena in resistant molds would contribute to clarify the defence mechanism. 80 

To study the effect of PgAFP on resistant molds, P. polonicum was chosen because it was the only 81 

resistant ascomycete known, apart from the PgAFP-producer P. crhysogenum CECT 20922 (Delgado et 82 

al. 2015a). A. niger has been used as sensitive control with various antifungal proteins (Kaiserer et al. 83 

2003; Hagen et al. 2007; Kovács et al. 2011). A. tubingensis CECT 20932, formerly A. niger An261, has 84 

been used in the present work as sensitive control because it is the closest species to A. niger known to be 85 

sensitive to PgAFP (Delgado et al. 2015a). 86 

The aim of this work was to investigate the effect of PgAFP on the proteome profile and selected 87 

characteristics to disclose the resistance response of P. polonicum. Localization of PgAFP was studied for 88 

a better understanding of the interaction with P. polonicum. This knowledge would allow designing new 89 

strategies to maximize the inhibition effect and spectra of PgAFP in molds. 90 

MATERIAL AND METHODS 91 
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Strains 92 

In vitro tests were carried out with three molds isolated from dry-cured ham available from the Spanish 93 

Type Culture Collection (CECT, Valencia, Spain): P. chrysogenum CECT 20922, P. polonicum CECT 94 

20933 and A. tubingensis CECT 20932. 95 

Purification of PgAFP 96 

PgAFP was obtained from P. chrysogenum CECT 20922 grown in potato dextrose broth (PDB, Scharlab, 97 

Barcelona, Spain) pH 4.5, at 25 °C for 21 days, as described previously (Acosta et al. 2009). To get cell-98 

free medium, mycelium was removed by filtering through Miracloth (Calbiochem, Darmstadt, Germany) 99 

and the culture medium was filtered through a nitrocellulose 0.22 µm-pore-size (Sartorius, Goettingen, 100 

Germany). Cell-free media were applied to an ÄKTA FPLC with a cationic exchange column HiTrap SP 101 

HP (Amersham Biosciences, Uppsala, Sweden) with 20 mM sodium acetate, pH 4.5. Adsorbed proteins 102 

were eluted with 20 mM sodium acetate buffer (pH 4.5) containing 1 M NaCl and detected at 214 nm. 103 

The fraction containing PgAFP protein was then gel filtered on a HiLoad 26/60 Superdex 75 column for 104 

FPLC (Amersham Biosciences, Uppsala, Sweden) using 50 mM sodium phosphate buffer, pH 7 105 

containing 0.15 M NaCl as elution buffer. PgAFP concentration in a pooled stock solution was measured 106 

by Lowry method (Lowry et al. 1951), sterilised through 0.22 µm acetate cellulose filters (Fisher 107 

Scientific) and stored at -20 °C until use.  108 

Effect of PgAFP on mold growth 109 

As a preliminary test, to confirm the known effect of PgAFP on growth of both sensitive and resistant 110 

molds in malt extract broth (Delgado et al. 2015a), P. polonicum and A. tubingensis were grown in PDB 111 

treated with PgAFP in the whole range of concentrations used in this work (0 to 75 g/ml) for 96 h. 112 

Proteomics 113 

To obtain the protein extracts, P. polonicum CECT 20933 was cultured in triplicate in 50 ml of PDB, at 114 

25 °C with continuous shaking at 200 rpm in either presence (10µg/ml) or absence of PgAFP. Mycelia 115 

were harvested, filtered, washed, and lysed as previously described (Carberry et al. 2006). Mycelial 116 

lysates were centrifuged to remove cell debris and the subsequent supernatant precipitated with 117 

TCA/acetone (Carpentier et al. 2005). The following two proteomic analysis were carried out from these 118 

precipitated lysates, similar to the procedure described by Delgado et al. (2015b).  119 

Two-dimensional electrophoresis. For protein separation by 2D-PAGE, resuspended extracts containing 120 

250 µg of protein were loaded onto Immobiline Dry strips (IPG strip; Amersham Biosciences) in the pH 121 

range 4–7, followed by electrofocusing, and electrophoresis as described previously (Carberry et al. 122 

2006). Gels obtained from 3 biological replicates and 2 technical replicates per treatment were stained 123 

and analyzed using ProgenesisTM SameSpot software (TotalLab, Newcastle, UK) as previously described 124 

(O’Keeffe et al. 2013; Collins et al. 2013; Owens et al. 2014). Spot intensities were normalised in 125 

Progenesis SameSpots software (Delgado et al. 2015b). Protein spots showing differences (p < 0.05, fold 126 

change ≥ 1.5) were excised, destained, in-gel trypsin-digested (Shevchenko et al. 2007). Then, samples 127 

were sonicated and the digested supernatant was dried, resuspended in 0.1% formic acid, and filtered 128 

through 0.22 µm cellulose spin-filters according to Delgado et al. (2015b). 129 
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The samples were loaded onto a Zorbax 300 SB C-18 Nano-HPLC Chip and analysed by a 6340 Model 130 

Ion Trap LC-Mass Spectrometer (Agilent Technologies, Dublin, Ireland) using electrospray ionisation. 131 

The eluted peptides were ionized and analysed by mass spectrometry. MSn analysis was carried out on the 132 

three most abundant peptide precursor ions at each time point, as selected automatically by the mass 133 

spectrometer. MASCOT MS/MS Ion search, NCBI (National Centre for Biotechnology Information, 134 

www.ncbi.nlm.nih.gov/guide/proteins/) database and KEGG (Kioto Encyclopedia of Genes and Genome, 135 

www.genome.jp/kegg/) were used for protein identification and function, also BLAST® protein was 136 

employed to find orthologous proteins. 137 

Label-free proteomics. Proteins precipitated from three biological replicates were resuspended in 8 M 138 

urea, dithiothreitol reduced and iodoacetic acid alkylated (Collins et al. 2013), and trypsin digested. 139 

Digested samples were desalted using C18 ZipTips® (Millipore, Darmstadt, Germany). One microgram 140 

from each digest was analysed via a Thermo Scientific Q-Exactive mass spectrometer coupled to a 141 

Dionex RSLCnano (Thermo Scientific, Waltham, MA, USA). Data was collected using a Top15 method 142 

for MS/MS scans (Dolan et al. 2014; O’Keeffe et al. 2014). Comparative proteome abundance and data 143 

analysis was performed using MaxQuant software (Version 1.3.0.5; www.maxquant.org/downloads.htm) 144 

(Cox and Mann 2008), with Andromeda used for database searching and Perseus (Version 1.4.1.3) used 145 

to organise the data, as per Delgado et al. (2015b). Data were searched against a P. chrysogenum database 146 

from Uniprot (www.uniprot.org; March 2014). In the absence of sequenced P. polonicum or any other 147 

species from Section Fasciculata (Houbraken and Samson 2011), P. chrysogenum also from subgenus 148 

Penicillium, was chosen for comparison. Quantitative analysis was performed using a t-test. Due to the 149 

high sensitivity and larger dynamic range of the gel-free proteomics analyses only proteins with a p value 150 

< 0.05 and fold change ≥ 2 were included in the quantitative results ( Dolan et al. 2014; O’Keeffe et al. 151 

2014). Qualitative analysis was also performed, to detect proteins that were found in at least 2 replicates 152 

of a particular sample, but undetectable in the comparison sample. Blast2GO analysis was utilized to 153 

further elucidate putative functions of proteins identified with abundance changes (Conesa et al. 2005). 154 

Hyphal morphology 155 

P. polonicum and A. tubingensis were grown on tubes containing 300 µl of PDB at 25 °C for 24 h in 156 

either the presence (75 µg/ml) or absence of PgAFP. Mycelia were collected by centrifugation and 157 

observed on a microscope Eclipse E200 equipped with a digital camera DS-Fi2 (Nikon, Tokyo, Japan). 158 

Metabolic tests 159 

To study the response to PgAFP, various metabolic tests were performed as described previously 160 

(Delgado et al. 2015b). For this, the resistant P. polonicum (c.a. 5 x 105 conidia per ml) was cultured in 161 

PDB at 25 C for 24 h in static conditions with and without PgAFP. To rule out even potential weak 162 

effects, the highest concentration of 75 g/ml PgAFP was used. Additionally, to study the effect on 163 

membrane permeability throughout a wide concentration range of PgAFP (i.e. 75, 37.5, 18.75, 9.38, 4.69, 164 

2.34, 1.17, and 0 µg/ml) were assayed. 165 

To test membrane permeability, cultures in microtiter plates were supplemented with SYTOX Green 166 

(Molecular Probes, Eugene, OR, USA) at final concentration of 0.2 µM. The fluorescence emitted was 167 

measured at 10, 30, and 210 min. 168 
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Metabolic activity was assessed by FUN-1 staining. Grown mycelia was washed with 10 mM HEPES 169 

(pH 7.5) before staining with 100 µl FUN-1 (Molecular Probes, Eugene, OR, USA) for 30 min at 25 °C 170 

as described previously (Kaiserer et al. 2003). Stained hyphae were visualized and photographed by 171 

fluorescence microscopy. Induction of reactive oxygen species (ROS) production was evaluated using 20 172 

µM 2’, 7’ dichlorofluorescein diacetate (Molecular Probes, Eugene, OR, USA) according to Kaiserer et 173 

al. (2003), and observed by fluorescence microscopy. 174 

Membrane integrity was assessed by the acridine orange/ethidium bromide (AO/EB) double staining. 175 

Hyphae were stained with 4 µg/ml of AO/EB (Sigma-Aldrich, St. Louis, MO, USA), incubated for 30 176 

min, washed, and observed by fluorescence microscopy. 177 

To distinguish between necrotic, late apoptotic, and viable cells, the Apoptosis Detection Kit (Sigma-178 

Aldrich, St. Louis, MO, USA), composed by Annexin V-fluorescein isothiocyanate/propidium iodide 179 

(AnV-FITC/PI), was used according to manufacturer’s instructions.  180 

For each of these metabolic tests, the sensitive A. tubingensis was used as a positive control to confirm 181 

the effect of PgAFP in the various assays.  182 

Chitin staining 183 

 Conidia of P. polonicum were inoculated on 10 ml PDB in Petri dish containing a coverglass and 184 

incubated in presence (75µg/ml) and absence of PgAFP at 25 °C for 24 h. Mycelium was fixed, stained 185 

for 5 min with fluorescent brightener 28 (Sigma-Aldrich, St. Louis, MO, USA), and then washed, to 186 

visualize chitin (Harris et al. 1994) in a fluorescence microscope with an excitation wavelength of 387/11 187 

nm. 188 

Effect of PgAFP combined with chitinase on P. polonicum growth 189 

Four different batches were prepared by pouring the reagents onto 15 ml potato dextrose agar plates made 190 

with PDB (Scharlab, Barcelona, Spain) and 20 g/l bacteriological agar (Scharlab, Barcelona), as follows: 191 

a) 2.5 ml of 600 µg/ml PgAFP in phosphate elution buffer and 0.1 ml PBS, b) 2.5 ml of phosphate elution192 

buffer and 0.1 ml of  60 units/ml chitinase from Streptomyces griseus (Sigma-Aldrich, St. Louis, MO, 193 

USA) in PBS, c) and 2.5 ml of 600 µg/ml PgAFP in phosphate elution buffer and 0.1 ml of  60 units/ml 194 

chitinase from S. griseus (Sigma-Aldrich, St. Louis, MO, USA) in PBS, and d) 2.5 ml of phosphate 195 

elution buffer and 0.1 ml PBS as a control samples. Every plate was surface three-point inoculated with 196 

10 µl of a suspension containing 104 conidia and incubated at 25 C for 168 h. The diameter of the 197 

colonies were measured every 24 h. To elucidate whether the combined treatment of PgAFP and chitinase 198 

has an additive or synergistic effect, the expected efficacy of this combination was determined by the 199 

Abbott formula and the interaction ratio as described by Moreno et al. (2003). Interaction ratios between 200 

0.5 and 1.5 are considered to be additive interactions and ratios over 1.5 are considered to be synergistic 201 

interactions. 202 

Chitin binding ability of PgAFP 203 

Regenerated chitin was prepared as previously described (Souza et al. 2009), using chitin powder from 204 

crab shells (Sigma-Aldrich, St. Louis, MO, USA) added to concentrated HCl with vigorous stirring, 205 

filtered, and precipitated with ethanol 95%. The precipitate was filtered and washed with water until 206 
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 7 

neutral pH. Chitin-PgAFP binding assay was carried out as described Liu et al. (2002). Briefly, three 207 

different amounts of PgAFP were mixed with 4 mg of regenerated chitin in a 0.5 ml 0.1 M Tris-HCl pH 208 

7.4, 0.15 M NaCl buffer, incubated in ice for 1 h with stirring every 15 min. After incubation, samples 209 

were centrifuged and the quantity of protein contained in the supernatant was measured by the method 210 

described by Lowry (Lowry et al. 1951). 211 

PgAFP localization 212 

PgAFP was labelled by DareBio S.L. (Elche, Spain) as described previously (Delgado et al. 2015b). For 213 

this, 100 µl of 20 mM fluorescein isothiocyanate (FITC; Anaspec, Fremont, CA, USA) in 214 

dimethylsulphoxide was added to 4 ml of PgAFP (369 µg/ml), and left for 8 h at room temperature in the 215 

dark. Then, 100 µl of 0.8 M Tris-HCl pH 8 were added and dialyzed against PBS. 216 

P. polonicum and A. tubingensis were grown in PDB in presence of 20 g/ml PgAFP-FITC for 24 h at 25 217 

°C. Hyphae were washed twice with PBS and visualized by fluorescence microscopy with excitation 218 

wavelength of 482/35 nm. 219 

Statistical analysis  220 

Statistical analyses were performed with the IBM SPSS v.22 (www-221 

03.ibm.com/software/products/es/spss-stats-standard). Growth inhibition and membrane permeability data 222 

were tested for normality (Kolmogorov-Smirnov with Lilliefors correction) and homoscedasticity 223 

(Levene’s test). Given that these data were non-normally distributed, mean values were compared using 224 

nonparametric Kruskal–Wallis test. To compare treatments in pairs, Mann-Withney U test was applied (p 225 

< 0.05). 226 

RESULTS  227 

As expected, PgAFP showed no effect (p > 0.05) on P. polonicum grown in PDB in the whole range of 228 

concentrations tested. A. tubingensis growth was affected (p < 0.05) from 4.7 g/ml PgAFP at 48 h (data 229 

not shown). 230 

Effect on proteome 231 

2D-PAGE comparative proteomic analysis, in presence or absence of 10 µg/ml of PgAFP, showed 37 232 

spots with differences (p < 0.05) over 1.5 fold change in relative abundance between treated and untreated 233 

P. polonicum. The abundance in treated samples was higher (1.5-3 fold) in 9 spots and lower (1.5-4.1 234 

fold) in the remaining 27 proteins, including 2 spots from separate isoforms (Table S1 in the 235 

Supplementary Material).  236 

Comparative label-free quantitative proteomic analysis showed a total of 918 proteins from P. polonicum, 237 

93 of them displayed altered relative abundance (p < 0.05) over two-fold change with PgAFP treatment 238 

(Table S2 in the Supplementary Material). Thirty eight proteins were found in higher amounts (2-12.4 239 

fold) in treated samples, 19 were only detected in treated samples, 25 were obtained in lower amounts (2-240 

663 fold) following treatment, and 11 were only detected in non-treated samples (Table S2 in the 241 

Supplementary Material). 242 
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Eight of the nine proteins found in higher amounts in treated samples by 2D-PAGE were also detected by 243 

label-free proteomic analyses, with six of them showing similar increases in both methods (Tables S1 and 244 

S2 in the Supplementary Material). Also 26 of the 27 proteins found in lower relative abundance in 245 

treated P. polonicum by 2D-PAGE were also detected by label-free proteomics. However, only 16 of 246 

them were also detected at a lower relative abundance in the latter. 247 

According to KEGG pathway analysis, most of the 57 proteins from label-free proteomics with higher 248 

relative abundance or only detected in treated P. polonicum were ribosomal and spliceosomal proteins 249 

(39%), or involved in biosynthesis of secondary metabolites and metabolic pathways (14%), such as 250 

pyruvate decarboxylase, pyrimidine biosynthesis, glycerol kinase, and asparagine synthetase (Table 1). 251 

The remaining proteins with higher relative abundance or only detected in treated samples were 252 

distributed across various pathways, such as Rho GTPase Rho1 involved in MAPK signaling pathway 253 

and, interestingly, glucosamine-6-phosphate N-acetyltransferase involved in chitin biosynthesis. 254 

Additionally, the antifungal protein PgAFP was detected in each of the triplicate treated sample, but not 255 

in any non-treated sample. Most of the proteins found in lower quantity or only detected in non-treated 256 

samples were related to biosynthesis of secondary metabolites and metabolic pathways (33%), including 257 

phosphoglucomutase, and glucose 6-phosphate isomerase related to glycolysis and gluconeogenesis 258 

(Table 1). Only limited changes in stress-related proteins, including glyceraldehyde-3-phosphate 259 

dehydrogenase (GAPDH) and heat shock proteins, were found in treated P. polonicum (Table S1 and S2 260 

in the Supplementary Material). 261 

SYTOX Green uptake 262 

Upon PgAFP exposure up to 4.7 g/ml, a 7 (± 3.4) % increase (± standard error) in fluorescence was 263 

observed in P. polonicum (p < 0.05) at 210 min after SYTOX Green addition (Fig. 1). Fluorescence at 264 

intermediate PgAFP concentrations (9.37-18.75 µg/ml) did not differ from untreated control (p > 0.05), 265 

whilst concentrations higher than 18.75 µg/ml decreased (p < 0.05) permeability below the levels of 266 

untreated samples, being the fluorescence values up to 21 (± 7.1) % lower at 210 min after SYTOX Green 267 

addition. On the other hand, the sensitive A. tubingensis showed a high increase of permeability (p < 268 

0.05) at all PgAFP concentrations assayed (Fig. 1), reaching with 9.37-18.75 g/ml over 110 ± (9.8-15) % 269 

fluorescence higher than in the untreated control.  270 

 Hyphal morphology and FUN-1 staining 271 

PgAFP exposure provoked no morphological change on either P. polonicum or the sensitive A. 272 

tubingensis (data not shown). To know whether PgAFP affects the metabolic activity, the viability was 273 

evaluated with FUN-1 using A. tubingensis as sensitive control. The FUN-1 metabolic staining showed 274 

red intravacuolar stains in both treated and untreated P. polonicum revealing no reduction in the 275 

metabolic activity (Fig. 2). Conversely, intravacuolar red stains were not observed in PgAFP-treated A. 276 

tubingensis, revealing a lower metabolic activity. 277 
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Chitin staining 278 

To study the effect of PgAFP on chitin deposition on the resistant mold, the quantity of chitin was 279 

estimated by staining with fluorescent brightener 28. The observed fluorescence indicated a higher chitin 280 

deposition in the cell wall of treated than in non-treated P. polonicum (Fig. 3).  281 

Effect of PgAFP-chitinase combined treatment on P. polonicum growth 282 

For the whole incubation time, no statistically significant difference was found among growth of the 283 

untreated control and P. polonicum treated only with PgAFP (Fig 4). Chitinase treatment reduced growth 284 

compared to control batch. Growth of P. polonicum treated with combined PgAFP and chitinase was the 285 

lowest (p < 0.05). The interaction ratios between these antifungal compounds at 96 and 120 h incubation 286 

were 1.93 and 1.70, respectively. Thus, the slower growth in the combined treatment is attributed to a 287 

synergistic effect of chitinase and PgAFP.  288 

PgAFP localization 289 

PgAFP localization was investigated in P. polonicum by incubation with FITC-labelled PgAFP. P. 290 

polonicum showed green fluorescence only bound to the outer layer (Fig 5). However, the labelled protein 291 

was found both inside the hyphae and bound to the outer layer in A. tubingensis, revealing that PgAFP 292 

had entered A. tubingensis. 293 

Chitin-PgAFP binding assay 294 

Given that PgAFP was located at the outer layer of P. polonicum, a chitin-binding assay was performed. 295 

When PgAFP was added to a solution of regenerated chitin, over 91% of the antifungal protein was 296 

recovered from the supernatant after incubation, even at the lowest concentration tested (146 g/ml). 297 

Thus, PgAFP does not specifically bind to regenerated chitin.  298 

Effect on oxidative status and viability 299 

To test the influence of PgAFP on ROS production, staining with 2’, 7’ dichlorofluorescein diacetate was 300 

used. Both treated and untreated P. polonicum showed similar levels of emitted fluorescence (data not 301 

shown), revealing that PgAFP does not increase ROS in the resistant P. polonicum. The effect of PgAFP 302 

on membrane integrity was evaluated by AO/EB double staining. EB was taken only by PgAFP-treated A. 303 

tubingensis, showing orange hyphae, whilst non-treated A. tubingensis and both treated and non-treated P. 304 

polonicum only showed green hyphae due to AO uptake (Fig. 6). These results reveal that P. polonicum 305 

membrane was not compromised by PgAFP, which is the opposite to A. tubingensis. The evaluation of 306 

apoptosis or necrosis confirmed the above reported effects on viability. A. tubingensis treated hyphae 307 

showed orange color as a consequence of AnV-FITC and PI staining, meaning a necrotic stage. Non-308 

treated A. tubingensis and both treated and untreated P. polonicum were not dyed, showing no sign of 309 

apoptosis or necrosis (Fig 7). 310 

DISCUSSION 311 

Both proteomic methods used in this work revealed differences in the relative abundance of proteins after 312 

treatment of P. polonicum with PgAFP (Tables S1 and S2 in the Supplementary Material). Discrepancies 313 
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were detected in the fold change estimated by each method. Such discrepancies can be explained by the 314 

fact that 2D-PAGE compares one isoform of a protein at a time, whereas label-free proteomics combines 315 

every isoform together and gives the final total abundance of that protein (Delgado et al. 2015b). 316 

Therefore, changes in the relative quantity of each isoform could be detected using 2D-PAGE, while in 317 

the label-free proteomics only a measure of total abundance of all isoforms of a given protein is carried 318 

out.  319 

Label-free proteomics showed an increased abundance of 22 proteins related to ribosomes and 320 

spliceosomes in PgAFP-treated P. polonicum, according to KEGG. However, only two ribosomal 321 

proteins were found in higher amount by 2D-PAGE analysis. This fact can be explained by the narrow 322 

range of pH chosen for 2D-PAGE analysis (Görg et al. 2009). In particular, the analysis carried out is 323 

suitable for proteins with pI between 4-7, whilst proteins involved in ribosome structure or function are 324 

generally out of this range (Görg et al. 2004). Therefore, the combinatorial deployment of proteomic tools 325 

used in this study works complementarily to obtain further information about the effect of PgAFP on the 326 

proteome. 327 

The higher relative abundance of proteins from ribosomal and spliceosomal pathways in PgAFP-treated 328 

P. polonicum could be regarded as a response of the mold to counteract the protein's antifungal activity. A 329 

higher relative abundance of a substantial number of ribosomal and spliceosomal proteins has also been 330 

described in a recent work on the effect of PgAFP on the sensitive A. flavus (Delgado et al. 2015b). 331 

Twelve of the 22 proteins from this group that increased with PgAFP in P. polonicum also increased in A. 332 

flavus. Thus, the increase in proteins from ribosomal and spliceosomal pathways solely would not explain 333 

the resistance mechanism in P. polonicum. 334 

The changes observed in the proteins related to metabolic pathways and biosynthesis of secondary 335 

metabolites were heterogeneous, with 8 proteins increasing and 12 decreasing in PgAFP-treated P. 336 

polonicum (Table 1). From these proteins, only pyruvate decarboxylase, aldehyde dehydrogenase, and 337 

phosphatidylglycerol specific phospholipase showed similar changes in PgAFP-treated A. flavus (Delgado 338 

et al. 2015b). However, these enzymes are scattered among various metabolic routes, including glycolysis 339 

gluconeogenesis, purine metabolism, and aminoacyl-tRNA biosynthesis, making it unlikely that any of 340 

them explain the ability of P. polonicum to withstand PgAFP. 341 

All the above changes in the abundance of the metabolic-related proteins did not entail dramatic changes 342 

in the metabolic activity, which in turn is consistent with the resistance of P. polonicum to PgAFP. The 343 

abundance of intracellular red spots in FUN-1 staining (Fig. 2) revealed that the metabolic activity in P. 344 

polonicum remained substantially unaffected by PgAFP, whereas it was greatly reduced in the sensitive 345 

A. tubingensis used as a control (Fig 2), as well as in PgAFP-treated A. flavus (Delgado et al. 2015b). 346 

Other effects reported for antifungal proteins, including PAF, NFAP, and PgAFP, are increased ROS 347 

levels leading to programmed cell death in sensitive molds (Leiter et al. 2005; Galgóczy et al. 2013a; 348 

Delgado et al. 2015b). Increased ROS levels have been linked to higher relative abundance of proteins 349 

involved in the glutathione pathway and heat shock proteins in PgAFP-treated A. flavus (Delgado et al. 350 

2015b). The limited changes in such stress-related proteins in treated P. polonicum do not reveal a strong 351 

response to oxidative stress. In addition, none of the negative effects related to oxidative stress was 352 
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observed in PgAFP-treated P. polonicum, including increased ROS levels, loss of cell membrane 353 

integrity, and necrotic signs.  354 

All the changes in the proteome discussed so far reveal that PgAFP interacts with the non-sensitive P. 355 

polonicum, but do not seem to explain the successful defence response. As discussed later, proteins from 356 

the cell wall integrity (CWI) pathway seem to be involved in the successful defence response. 357 

Membrane permeabilization is a main effect described for other antifungal proteins (Thevissen et al. 358 

1999; Hagen et al. 2007). Increased permeability also contributes to PgAFP inhibition on A. flavus 359 

(Delgado et al. 2015b). Similarly, the permeability of the sensitive A. tubingensis to SYTOX Green 360 

increased at all PgAFP concentrations tested (Fig. 1). However, membrane permeabilization in P. 361 

polonicum exhibited a two-step pattern: first increasing slowly at low PgAFP concentrations, then slowly 362 

declining even below the level of untreated controls with the two highest concentrations tested (Fig. 1). A 363 

similar two-step pattern in membrane permeabilization was also described for Neurospora crassa treated 364 

with plant defensins (Thevissen et al. 1999). The lower permeability at the highest concentrations of 365 

defensins has been explained by the apparent dependency of permeabilization on membrane polarization. 366 

The higher permeability of fungal membranes treated with defensins causes depolarization, which may 367 

ultimately decrease membrane permeability (Thevissen et al. 1996, 1999). The decline in P. polonicum 368 

membrane permeability at high PgAFP concentrations might be partially explained by membrane 369 

depolarization. As discussed later, other changes in membrane and cell wall can contribute to reach 370 

permeability levels well below that in untreated controls.  371 

Growth inhibition by AFP, PAF, and PgAFP has been related to the ability to interact with specific 372 

molecules or anionic phospholipids in the cell wall and/or plasma membrane (Lacadena et al. 1998; Theis 373 

et al. 2003; Marx et al. 2008; Delgado et al. 2015b). Similarly NFAP might bind to a G-protein coupled 374 

receptor in a sensitive mold (Virágh et al. 2015) and AFPNN5353 does not bind to insensitive Mucor 375 

circinelloides (Binder et al. 2011). Interestingly, PgAFP was located at the outer layer in the resistant P. 376 

polonicum (Fig. 5). This binding may be due just to adherence to chitin or to specific receptors, but 377 

PgAFP did not bind to regenerated chitin in vitro. Given that PgAFP was not internalized by the resistant 378 

mold, no internal receptor can be detected. In addition, the proteome changes observed in PgAFP-treated 379 

P. polonicum can only be due to transduction signals derived from the interaction with outer layer 380 

receptors. Therefore, PgAFP may interact with specific molecules in the outer layer of P. polonicum, 381 

similarly to PAF (Marx et al. 2008; Batta et al. 2009). As a consequence, PgAFP-resistance could be 382 

related with the ability of P. polonicum to produce structural changes that prevent the interaction with the 383 

specific receptors or the negatively charged phospholipids.  384 

The fungal cell wall acts as an initial barrier in contact with hostile environments (Latgé 2007). The main 385 

components of the cell wall that may act as a barrier against antifungal proteins are polysaccharides, 386 

including glucans, glucomannans and chitin. A lower chitin content in the fungal cell wall has been 387 

related to a higher permeability (Mellado et al. 2003; Rementeria et al. 2005), suggesting a barrier role of 388 

chitin. The higher amount of chitin observed in the cell wall of P. polonicum treated with the highest 389 

PgAFP concentration (Fig. 3) can be responsible for the lower permeability observed, being a key factor 390 

in the successful response to this antifungal protein. Chitin synthesis is also stimulated by AFP in 391 

resistant fungi (Ouedraogo et al. 2011), but not by AFP, PAF, and PgAFP in sensitive molds (Hagen et al. 392 
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2007; Binder et al. 2010; Delgado et al. 2015b). In addition, PAF and NFAP provoke delocalized chitin 393 

deposition at the hyphal tips (Binder et al. 2010; Virágh et al. 2015). Therefore, the altered chitin 394 

deposition can be related to sensitivity to antifungal proteins in contrast to our findings in P. polonicum.  395 

To confirm if the increased chitin deposition itself is enough to explain the resistance to PgAFP, a joint 396 

treatment of PgAFP and chitinase was applied to P. polonicum. The slowest growth obtained with the 397 

combined treatment strongly infers that the increased chitin content plays a key role in the resistance of P. 398 

polonicum to PgAFP. Therefore, we propose that chitin cell wall reinforcement is responsible for the 399 

successful response of P. polonicum, due to a hampered interaction of PgAFP with specific receptors or 400 

the negatively charged phospholipids. 401 

From the proteins involved in chitin biosynthesis, glucosamine-6-phosphate N-acetyl transferase was only 402 

found in treated P. polonicum (Table 1). The gene coding for this protein, as well as the gene encoding an 403 

-1,3-glucan synthase, is upregulated in A. niger treated with sublethal doses of caspofungin (Meyer et al. 404 

2007). Given that an increase of glucan but not chitin synthesis results in an ineffective survival response 405 

(Hagen et al. 2007), the increase in glucosamine-6-phosphate N-acetyl transferase could be important for 406 

P. polonicum to counteract PgAFP. The increased chitin content can also be related with CWI signaling 407 

activation. The stress signals sensed by the receptor protein Wsc are transmitted to Rho1, which has been 408 

considered the master regulator of cell wall integrity signaling pathway in yeasts (Levin 2005). Then, 409 

Rho1 binds and activates Pkc (Nonaka et al. 1995; Kamada et al. 1996; Lodder et al. 1999), and the 410 

signals channeled through the Mpk signaling lead to activation of genes involved in cell wall synthesis 411 

(Igual et al. 1996; Jung and Levin 1999), resulting in an elevated chitin content (Munro et al. 2007). Rho1 412 

and Pkc1 have been suggested as the only proteins of CWI pathway that could be involved in the survival 413 

response of AFP-resistant Saccharomyces cerevisiae, but its relevance has not been established 414 

(Ouedraogo et al. 2011).  415 

In sensitive molds, chitin synthesis is not increased by antifungal proteins, as for A. nidulans treated with 416 

PAF (Binder et al. 2010) or A. niger treated with AFP (Hagen et al. 2007). The resistant P. polonicum 417 

showed an increased abundance of Rho1 and in chitin synthesis when treated with PgAFP (Table 1 and 418 

Fig. 3). Conversely, the sensitive A. flavus showed a lower relative abundance of Rho1 and a lower chitin 419 

deposition when treated with PgAFP (Delgado et al. 2015b). Therefore, it seems that the efficient 420 

response of CWI pathway activation by Rho1 could be a key role in the resistance to PgAFP, in contrast 421 

to the basal ineffective compensatory response of this pathway in sensitive molds.  422 

In conclusion, the proteome changes and the altered permeability imply an active reaction of P. 423 

polonicum to PgAFP, where the increased chitin content can be related with a higher abundance of 424 

glucosamine-6-phosphate N-acetyltransferase and Rho1. Moreover, the combined treatment with 425 

chitinase could provide a complementary means to combat resistance to antifungal proteins.  426 
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FIGURE CAPTIONS 612 

Fig. 1 SYTOX Green uptake with different concentrations of PgAFP on P. polonicum and A. tubingensis 613 

at 24 h (bars represent standard deviation of the mean). 614 

615 

Fig.2 Metabolic activity of P. polonicum (panel A) and A. tubingensis (panel B) tested with FUN-1 616 

staining. Non-treated hyphae (left) showed intravacuolar activity as red spots. Hyphae treated with 75 617 

μg/ml PgAFP for 24 h (right) showed intravacuolar activity in P. polonicum, but very low metabolic 618 

activity in A. tubingensis. 619 

620 

Fig. 3 Chitin distribution on P. polonicum stained with fluorescent brightener 28. Left: non-treated 621 

hyphae; right: hyphae treated with 75 μg/ml PgAFP for 24 h. 622 

623 

Fig. 4 Effect of PgAFP and chitinase combined treatment on P. polonicum growth. Untreated control: 624 

added with 2.5 ml of phosphate elution buffer and 100 l PBS; PgAFP: added with 2.5 ml of 600 µg/ml 625 

PgAFP in phosphate elution buffer and 100 l PBS. Chitinase: added with 2.5 ml of phosphate elution 626 

buffer and 100 l of  60 units/ml chitinase from Streptomyces griseus; PgAFP + Chitinase: added with 627 

2.5 ml of 600 µg/ml PgAFP in phosphate elution buffer and 100 l PBS. 628 

629 

 Fig. 5 PgAFP localization in P. polonicum (left) and A. tubingensis (right) treated with 20 g/ml FITC-630 

labelled PgAFP for 24 h. PgAFP was found solely bound to the outer layer in P. polonicum but mainly 631 

inside A. tubingensis. 632 

633 

Fig. 6 Effect of 75 g/ml PgAFP on membrane integrity of P. polonicum (left) and A. tubingensis (right) 634 

evaluated with vital acridine orange (AO) / ethidium bromide (EB) staining. P. polonicum hyphae showed 635 

intense green color due to only AO penetration through non-compromised membrane. A. tubingensis 636 

hyphae showed intense orange color due to both AO and EB penetration through compromised cell 637 

membrane. 638 

639 

Fig. 7 Effect of 75 g/ml PgAFP on P. polonicum and A. tubingensis hyphae viability evaluated with 640 

apoptosis detection kit at 24 h of incubation. A: Non-treated P. polonicum. B: PgAFP-treated P. 641 

polonicum. C: Non-treated A. tubingensis. D: PgAFP-treated A. tubingensis. Left: Annexin V/FITC-642 

Propidium Iodide (An/FITC-PI) staining. Right: The corresponding bright field view. No intense green or 643 

orange color due to apoptosis or necrosis was observed in PgAFP-treated P. polonicum. Only PgAFP-644 

treated A. tubingensis showed intense orange color due to necrosis. 645 
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Table 1. Selected proteins whose relative abundance was affected by PgAFP in Penicillium 

polonicum reaching over 2.0 fold change in Label-Free Proteomics (LFP) analysis or 1.5 

fold change in 2D-PAGE. Data are given according to four groups of metabolic pathways. 

Proteins involved in pathways Fold change Detection 

method 

Ribosomal and spliceosomal proteins 

Pc12g05940 40s ribosomal protein s13  

Pc13g01870 60s ribosomal protein l16  

Pc16g04770 formin binding protein  

Pc20g10480 small nuclear ribonucleoprotein  

Pc22g08360 pre-mrna branch site protein p14 

Pc20g00680 60s ribosomal protein l23 

Pc20g13260 ribosomal protein l14 

Pc13g02890 60s ribosomal protein l27 

Pc13g05540 60s ribosomal protein l18 

Pc18g04110 60s ribosomal protein l34 

Pc22g02060 60s ribosomal protein l8  

Pc21g16520 60s ribosomal protein l4 

Pc16g14740 40s ribosomal protein s22  

Pc16g09160 60s ribosomal protein l15 

Pc22g00880 40s ribosomal protein s18 

Pc21g18200 60s ribosomal protein 

Pc16g12990 60s ribosomal protein l17  

Pc13g07190 60s ribosomal protein l11 

Pc13g05920 60s ribosomal protein l7 

Pc20g03340 60s ribosomal protein l33 

Pc13g06740 60s ribosomal protein l13 

Pc20g02900 40s ribosomal protein s4 

T a 

T 

T 

T 

T 

+11.16 

+6.32 

+5.32 

+4.17 

+4.05 

+3.88 

+3.83 

+3.21 

+3.14 

+2.73 

+2.51 

+2.47 

+2.32 

+2.21 

+2.19 

+2.06 

+2.02 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

Biosynthesis of secondary metabolites and metabolic pathway 

Pc21g21940 bifunctional pyrimidine biosynthesis protein  

Pc22g06070 glycerol kinase  

Pc22g17940 asparagine synthetase  

Pc22g23800 glucosamine 6-phosphate N-acetyl transferase b  

Pc21g15760 glutamyl-trna synthetase  

Pc20g07710 sulfate adenylyltransferase  

Pc22g07020 nitrilase 

Pc18g01490 pyruvate decarboxylase 

Phosphoglucomutase 

Pc16g05080 adenosylhomocysteinase  

Pc12g05750 d-xylulose kinase  

Pc21g04710 phospho-2-dehydro-3-deoxyheptonate aldolase  

Pc22g19440 aspartate aminotransferase  

Pc21g03190 glycerate dehydrogenase  

Pc22g02810 methylmalonate-semialdehyde dehydrogenase  

Pc22g19730 glucose-6-phosphate isomerase  

Pc15g01900 putative oligo-glucosidase  

Pc15g01880 phosphatidylglycerol specific phospholipase  

Pc13g03600 thiamine biosynthetic bifunctional  

Pc14g00170 phosphatidylglycerol specific  

Pc22g24860 aldehyde dehydrogenase 

T 

T 

T 

T 

+12.44 

+6.9 

+3.49 

+2.01 

-2 

-2 

-2.31 

-2.52 

-2.58 

-2.66 

-3.05 

-3.49 

-6.9 

-633 

NT c 

NT 

NT

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

2D-PAGE 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

LFP 

CWI pathway 

Pc22g23800 glucosamine-6-phosphate N-acetyl transferase b 

Pc14g01930 protein Rho gtpase rho1 

Pc21g11950 UDP-N-acetylglucosamine pyrophosphorylase 

UDP-glucose 4-epimerase 

Gamma-actin act 

NT 

+9.04 

-2 

-1.5 

-1.6 

LFP 

LFP 

2D-PAGE 

2D-PAGE 

2D-PAGE 

Table



a T: Protein only detected in treated samples.  

b Protein involved in more than one pathway. 

c  NT: Protein only detected in non-treated samples. 
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