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Abstract This study develops a coherent framework to detect those catchment types associated with a
high risk of maladaptation to future flood risk. Using the “scenario‐neutral” approach to impact
assessment the sensitivity of Irish catchments to fluvial flooding is examined in the context of national
climate change allowances. A predefined sensitivity domain is used to quantify flood responses to +2 °C
mean annual temperature with incremental changes in the seasonality andmean of the annual precipitation
cycle. The magnitude of the 20‐year flood is simulated at each increment using two rainfall‐runoff models
(GR4J, NAM), then concatenated as response surfaces for 35 sample catchments. A typology of catchment
sensitivity is developed using clustering and discriminant analysis of physical attributes. The same attributes
are used to classify 215 ungauged/data‐sparse catchments. To address possible redundancies, the exposure of
different catchment types to projected climate is established using an objectively selected subset of the
Coupled Model Intercomparison Project Phase 5 ensemble. Hydrological model uncertainty is shown to
significantly influence sensitivity and have a greater effect than ensemble bias. A national flood risk
allowance of 20%, considering all 215 catchments is shown to afford protection against ~48% to 98% of the
uncertainty in the Coupled Model Intercomparison Project Phase 5 subset (Representative Concentration
Pathway 8.5; 2070–2099), irrespective of hydrological model and catchment type. However, results indicate
that assuming a standard national or regional allowance could lead to local over/under adaptation. Herein,
catchments with relatively less storage are sensitive to seasonal amplification in the annual cycle of
precipitation and warrant special attention.

Plain Language Summary Climate change presents a significant challenge for flood managers.
Their decisions regarding the designation of vulnerable areas and investment in large‐scale flood prevention
and relief schemes have long‐term implications for the attendant risk to human life and infrastructure. In
some jurisdictions authorities have proposed a universal allowance on existing design measures that would
offer protection against a set (e.g., 20%) increase in flood magnitude. However, this “one size fits all”
approach ignores that river catchments have very different physical attributes that affect their sensitivity to
change. We develop a framework that groups catchments based on their physical characteristics into distinct
sensitivity types. The method follows the “scenario‐neutral” approach to impact assessment. Here
two‐dimensional response surfaces showing flood sensitivity to incremental changes in rainfall and
temperature are used in conjunction with the latest climate projections to tailor climate plans for individual
catchments. The response surfaces are a valuable tool for identifying critical thresholds when proposed
allowances fail to accommodate projected flood risk. For managers this helps to allocate resources where
risk is greatest and balance the costs of increased protection against climate uncertainty. The study is
conducted using 215 Irish catchments; however, we highlight its potential to aid adaptation efforts globally.

1. Introduction

Climate change presents significant challenges for decisionmakers. Uncertainty about the exact trajectory of
future change coupled with the complexity of hydrological processes means these difficulties are particularly
acute in flood management, where robust decisions regarding the designation of at risk areas and
investment in long‐lived infrastructure are required. Some national authorities are designating flood risk
allowances to factor climate change impacts and attendant analytical uncertainties into engineering
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designs (DCLG, 2012; Löschner et al., 2017; Reynard et al., 2017). Authorities are also using allowances to
investigate community vulnerability and to inform adaptive approaches to risk management (OPW, 2015).
“Scenario‐neutral” (SN) approaches are increasingly employed to evaluate these potential climate change
impacts on water and environmental systems (Brown & Wilby, 2012; Bussi, Dadson, et al., 2016; Bussi,
Whitehead, et al., 2016; Culley et al., 2016; Guo et al., 2017; Prudhomme et al., 2010, 2015; Vormoor et al.,
2017; Whateley et al., 2014). SN approaches involve testing the responsiveness of a local indicator (e.g., reser-
voir levels) to incremental adjustments in key driving climate variables (e.g., temperature, rainfall), across a
plausible range of changes in variable intensity and seasonality. This study uses a SN approach to assess the
sensitivity of flood regimes and hence fitness of national design allowances to climate change. We demon-
strate the analytical framework using a large set of Irish catchments that represent a range of hydrological
conditions.

Although the amount of impact modeling required for a comprehensive sensitivity assessment may be sub-
stantial, the SN approach provides deep insight to a system's response to a wide range of climatic changes.
Moreover, SN approaches overcome a key limitation of “scenario‐led” (SL) analyses, which are typically con-
strained by available climate model projections and thereby may fail to test sensitivity to more extreme sce-
narios, even so‐called “black swan” events. Nonlinearity in hydrological responses to climate variability and
change (particularly for extreme events) further justifies the exploration of a wider spectrum of plausible
conditions. In addition, by relying directly on GCM (Global Climate Model) projections to quantify local
impacts, the SL approach is subject to biases/errors (e.g., climate model and system uncertainties) inherited
through the modeling chain—thus requiring additional postprocessing and bias correction (Lin et al., 2017;
Maraun et al., 2017; Smith et al., 2018; Wang et al., 2014). In contrast, within the SN approach GCM simula-
tions are only used to provide guidance on the possible future risks.

The SN approach has several additional benefits. Similar to measures of elasticity it is shown to capture the
complex nonlinear relationship between various indices of flow and climate (Andréassian et al., 2016;
Chiew, 2006; Dooge et al., 1999; Fu et al., 2007; Sankarasubramanian et al., 2001; Singh et al., 2014).
Furthermore, it can reveal which hydroclimatological variables most impact local systems and how antece-
dent conditions can influence sensitivity. Such information can help to refine management options (Guo
et al., 2017; Prudhomme et al., 2010). The framework can also be adapted to examine the effect of different
climate and hydrological model uncertainties (Kay, Crooks, & Reynard, 2014; Steinschneider, McCrary,
et al., 2015; Steinschneider, Wi, et al., 2015) as well as other exogenous factors such as climate‐related land
cover changes (Yates et al., 2015).

The SN framework is a flexible decision‐making tool (Brown et al., 2011; Poff et al., 2016; Turner et al., 2014;
Weiß, 2011; Weiß & Alcamo, 2011; Yates et al., 2015). The method can pinpoint important tipping points or
climatic thresholds at which the risk of system failure or impairment becomes significant. Similarly, it can
highlight existing resilience; knowledge that is important for cost‐effective adaptation (Brown et al., 2012,
2011). By mapping climate model projections onto the sensitivity domain, exposure to climate risk (as
defined by current climate ensembles) can be established. Management plans can thus be updated using suc-
cessive generations of model projections without undertaking additional impact modeling. Brown et al.
(2012) and Ekström et al. (2018) emphasize that indicator(s) and/or threshold(s) used to assess system per-
formance under climate stress should be specified with local stakeholders. Risk assessment can then be tai-
lored to meet community/management needs. This approach has already been applied to water
management (Brown et al., 2012), flood risk (Steinschneider, McCrary, et al., 2015; Steinschneider, Wi,
et al., 2015), cost–benefit analysis (Ghile et al., 2014), and for various hydrologic indices (Singh et al.,
2014). The framework can (in theory) also be extended to include additional nonclimatic drivers (e.g., popu-
lation growth, economic trends) (Brown, 2011).

Although the general principles of the SN approach are now well established (Brown &Wilby, 2012; Chiew,
2006; Prudhomme et al., 2010), there have been a limited number of practical applications in regional‐ to
national‐scale management, particularly in data‐sparse jurisdictions (Kay, Crooks, Davies, Prudhomme,
et al., 2014; Prudhomme, Crooks, et al., 2013). In a relatively data‐rich study Prudhomme, Crooks, et al.
(2013) demonstrated the framework's utility for flood risk assessment using 154 UK catchments.
Catchments were grouped into distinct sensitivity types and used to classify ungauged sites based on their
shared physical attributes (Prudhomme, Kay, et al., 2013). Similarly, Köplin et al. (2012) clustered 186
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Swiss catchments based on their sensitivity and used results to identify which physiographic features discri-
minate response type. In an exploratory study Bastola et al. (2012) examined flood sensitivity for four Irish
catchments for which the risk of design allowances being exceeded were assessed using the IPCC AR4 cli-
mate scenarios. Wilby et al. (2014) applied a similar approach to assess sensitivity of peak flows in the
Boyne catchment (Eastern Ireland).

An estimated 0.8 billion people and 50 trillion USD are exposed to a significant (1 in 100 year) river flood
event (Scussolini et al., 2016). Given the diversity of hydroclimatological conditions across scales, adopting
a national (or regional) allowance for the realization of future climate may fail to address the true emergent
risk locally. Hence, critical to avoiding maladaptation is developing tools capable of identifying specific vul-
nerabilities under uncertain and often data‐poor conditions.

The present study develops a coherent framework that can detect those catchment types that carry a high
risk of maladaptation. Maladaptation refers to an action that fails to address a viable threat with an appro-
priate andmeasured response (Juhola et al., 2016). It reflects a failure to plan without utilizing available facts
and applies equally to underadaptation and overadaptation—wherein unnecessary measures may divert
resources from higher‐risk areas. While it can lead to poor use of resources (e.g., financial, human), badly
conceived plans have potentially far‐reaching societal, ecological, and environmental consequences and
may inadvertently increase risk exposure.

The study focuses on the Republic of Ireland. Herein, a nationally based classification is developed for which
catchments are grouped into distinct flood sensitivity types according to their shared physical attributes.
Given an expected rise in the frequency and intensity of Atlantic storms, Ireland is particularly vulnerable
to increases in fluvial flooding (Matthews et al., 2018). The impact of recent flood events, in combination
with a comprehensive flood risk assessment has led to a 10‐year €1bn capital program to implement relief
schemes (Government of Ireland, 2018; OPW, 2012). As with other jurisdictions, to avoid maladaptation,
such infrastructural upgrades will need stress testing against future changes. Here we examine present expo-
sure to climate changes and identify those conditions under which proposed climate change allowances may
be inadequate. Thus, while we contribute key information to Irish flood planning and infrastructure
standards for a vulnerable sector, in a broader context we outline a framework for risk assessment which
has global application. From a hydroclimatological perspective we also identify those processes and land‐
surface attributes that influence catchment sensitivity—thereby deepening knowledge of flood generating
mechanisms. Finally, we advance the SN framework by proposing amethod for selecting climate projections
that is more equitable with respect to issues of ensemble bias and model interdependence; we also highlight
a more robust machine learning technique for regionalization of catchment types.

2. Methods and Data

We apply a SN approach to flood assessment using an initial sample of 35 Irish catchments. Flood responses
are evaluated given incremental changes in the annual mean and seasonal distribution of catchment average
precipitation. For each increment the precipitation series is altered and input to two different rainfall‐runoff
models. A weather generator (WGEN) is employed to extend the observed precipitation series and the
simulated 20‐year flood peak is used to quantify sensitivity to precipitation changes relative to a
(1976–2005) baseline. This impact metric is chosen as it represents a standard exceedance threshold used
in flood design and can be more reliably estimated given the observed series length (30 years). To account
for changes in potential evaporation (PE), a single temperature scenario (+2 °C relative to a baseline) is used.
Changes in simulated flood peaks across the sensitivity domain are then used to construct two‐dimensional
(2‐D) response surfaces. To establish a classification, catchments are clustered according to similarities in
their response surfaces. Using a random forest (RF) classifier those physical attributes, which are most
important in determining group membership, are identified. The model is used to infer the likely sensitivity
of an additional 215 sites nationally. These sites are either unmonitored or lack flow data of sufficient quality
to undertake robust hydrological model calibration. Exposure to climate risk and the efficacy of design
allowances are established using GCM simulations from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) ensemble (Taylor et al., 2012). A schematic of the overall analytical framework is given in
Figure 1. Details of the key steps are provided in the following paragraphs, followed by an overview of
observed data and the CMIP5 ensemble.
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2.1. Weather Generator

To generate a longer annual maximum series than is available from observed data, response surfaces were
developed from climatological series stochastically simulated using a WGEN. Using an extended peak flow
series allows greater confidence in the fitted generalized extreme value (GEV) parameters and provides a
more robust estimate of flood magnitude. The present study employs the Weather Generator École de
Technologie Supérieure (WeaGets) multivariable single‐site stochasticWGEN (Chen et al., 2012). Themodel
is fitted (over 14‐day periods) to observed precipitation (1976–2005) and temperature in each catchment.
Precipitation occurrence is simulated using a third‐order Markov chain, while amounts are generated from
a two‐parameter Gamma distribution. This distribution has been fitted to rainfall amounts across diverse cli-
mates for a range of applications (Stephenson et al., 1999; Yang et al., 2005). Additionally, this model config-
uration is shown to perform well for Irish conditions (Figure S1 in the supporting information). Following
the Richardson model, WeaGETS incorporates a smoothing function for the precipitation parameters
applied using Fourier harmonics (Richardson, 1981). This reduces the sharp parameter transitions between
fitting periods which result from outliers—particularly when using shorter time series. Additionally
WeaGETS incorporates an adjustment for the underestimation of low‐frequency variability (Chen et al.,
2010). Temperature is modeled dependent on precipitation occurrence. Daily precipitation and temperature
for a 400‐year period are generated. This period length ensures that the key descriptive statistics (monthly
mean, variance, percentiles, etc.) of the stochastic series are stationary and match the observations without
unduly increasing the computational overheads of using a longer (relative to the 30‐year baseline)
climate series.

2.2. Rainfall‐Runoff Models: Structural and Parameter Uncertainty

To address hydrological model uncertainty, two conceptual rainfall‐runoff models were applied. Models dif-
fer according to their number of calibration parameters and numeric formulation. Our criteria for selection
includes the following: (i) previous application to Irish hydroclimatological conditions; (ii) proven perfor-
mance for the catchment sample; (iii) computational efficiency; and (iv) representation of alternative model
structures (Bastola et al., 2011a, 2011b, 2012; Broderick et al., 2016; Mockler et al., 2016). Based on these cri-
teria, the following two models are selected:

NAM (Madsen, 2000) is a lumped conceptual model, with nine calibration parameters, which simulates the
transformation of precipitation to runoff by continuously updating the water content of three coupled stores.
Stocks are diminished through evaporative losses and interflow. Overland flow is generated when surface

Figure 1. Scenario‐neutral methodology used to examine the changing flood response to alterations in precipitation and
PET forcing for Irish catchments. WGEN = weather generator; PET=Potential Evapotranspiration.
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zone capacity is exceeded; a proportion of this excess is transferred through infiltration to the root zone and
groundwater storage. Surface and interflow contributions are routed through two linear reservoirs; baseflow
is routed through a single linear reservoir.

GR4J (Perrin et al., 2003) is a lumped model with four calibration parameters. Effective precipitation and
soil moisture are estimated from net rainfall. Fluxes from the soil moisture zone along with effective
precipitation are partitioned as a fixed 10:90 division between two routing channels. The first channel
applies a single‐unit hydrograph; the second a unit hydrograph and nonlinear storage function. A
gain/loss function is used to simulate groundwater exchanges with deeper aquifers and/or
adjoining watersheds.

To ensure transferability between wet and dry conditions, models are calibrated using the first, third, and
fifth ranked noncontinuous wettest and driest years, respectively, (Broderick et al., 2016). These years are
identified based on catchment average rainfall. For validation the second, fourth, and sixth wettest and
driest years, respectively, are used. By simulating the complete time series and examining nonsequential
6‐year periods for calibration/validation the internal dynamics and consistency of catchment stores
is preserved.

The generalized likelihood uncertainty estimation (GLUE) method is used to investigate flood response
across the sensitivity domain (Beven & Binley, 1992). For each rainfall‐runoff model 10,000 simulations
are conducted for the period 1970–2010 using parameter sets randomly sampled using a Latin Hypercube
scheme from uniform distributions (McKay et al., 1979). Following the GLUE procedure, parameter sets
are weighted according to calibration performance. Three efficiency criteria are used consisting of the
Nash Sutcliffe Efficiency criterion (NSE; equation (2); Nash & Sutcliffe, 1970) applied to the nontransformed
(NSE), squared (NSE2), and square root (NSE0.5)‐transformed series, respectively. This application ensures
consideration of model performance across the hydrograph including those for variability in low (square
root) and high (squared) flows. The aggregate efficiency score for each parameter set is estimated as the pro-
duct of the three individual NSE values. In this respect, each NSE criterion is given an equal weighting.
However, by multiplying values parameters must perform well according to each (transformed and non-
transformed) to achieve a high overall score. In addition, parameter sets are omitted if they overestimated
or underestimated flow volume by more than 15% estimated according to percent bias. This measure does
not contribute to the final weighting.

Parameter sets are ranked according to their aggregate efficiency scores. The top 50 performing sets are iden-
tified as behavioral and retained. Using simulations from the behavioral parameter sets, the prediction quan-
tiles for each time step are empirically derived according to

P bZt<z
h i

¼ ∑
NB

i¼1
RL f θið ÞjbZt;i; z

h i
(1)

where P is the selected quantile, θi is the ith parameter set, and NB is the number of behavioral parameters.
Rescaled Likelihoods (RL) are estimated by scaling the aggregate efficiency scores of the behavioral sets so
that they sum to unity. The value of the predicted variable (flow) at time step t by model f(θi) is represented
by bZ . For each model, the 50th percentile is taken as the most likely estimate. It is acknowledged that
GLUE necessitates certain assumptions (e.g., use and combination of informal likelihoods, behavioral
threshold sample size, and parameter bounds), which, it is argued, affect its statistical validity—
particularly in the estimation of prediction intervals (Beven & Binley, 1992; Clark et al., 2011; Mantovan
& Todini, 2006; Stedinger et al., 2008). However, as employed here the method is not explicitly intended
to provide an estimate of parameter uncertainty in the rainfall response, but rather to provide a robust flow
estimate which assumes equifinality in the parameter space (Beven, 2006). Additionally, despite its
limitations the method has been applied successfully in numerous environmental and hydrological studies
(Beven & Binley, 2014).

2.3. Sensitivity Domain

The present study adopts the sensitivity domain (Kay, Crooks, Davies, Prudhomme, et al., 2014; Kay,
Crooks, Davies, & Reynard, 2014; Prudhomme et al., 2010; Prudhomme, Crooks, et al., 2013) used to develop
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flood response surface typologies for UK catchments. For this the y intercept and amplitude of a single‐phase
harmonic function representing the baseline annual cycle are fitted to monthly mean values:

Xt ¼ X0 þ A cos
2π
12

t−Φð Þ
� �

(2)

where Xt is the fitted value for each calendar month, A and Φ represent the amplitude and phase, respec-
tively, and X0 is the arithmetic mean. In this case, the phase (denoting the month with the greatest mean
rainfall) is assumed to be December (Φ = 12). Previous studies highlight the causal effect which changes
in these harmonic parameters have on future flood risk (Kay, Crooks, Davies, Prudhomme, et al., 2014;
Kay, Crooks, Davies, & Reynard, 2014; Prudhomme et al., 2010; Prudhomme, Crooks, et al., 2013;
Prudhomme, Kay, et al., 2013). To traverse the domain, the amplitude and intercept parameters are itera-
tively adjusted relative to the reference period (1976–2005) by 5% increments. Changes in mean annual pre-
cipitation are reflected in alterations to the intercept, which is adjusted between −40% and +60%, while the
amplitude, representing changes in seasonality is increased from 0% to 120%, for a total number of 525 com-
bined permutations. These are regarded as plausible given the range of changes suggested by the CMIP5
ensemble and allows for more extreme (possibly as yet unrealized) projections. For each of the 525 perturba-
tions, the annual mean and seasonal amplitude of the stochastically generated 400‐year precipitation series
is adjusted using multiplicative scaling applied to daily values. To ensure that the annual cycle of the
adjusted series matches the perturbed harmonic, scaling is undertaken at a monthly resolution. Hence, with
respect to extreme values, changes are reflected in the statistical distribution of daily precipitation, with
increases (decreases) in monthly precipitation being reflected in greater (reduced) precipitation intensities.
Generated daily temperature values are adjusted using additive scaling. For all 525 climate perturbations,
each behavioral rainfall‐runoff parameter set is used to simulate the 400‐year flow series using the rescaled
WGEN series as input. From this the median flow series for each model is calculated according to
equation (1) and used to estimate changes in flood magnitude across the sensitivity domain (Figure 1).
Two dimensional (2‐D) response surfaces are developed for each catchment by plotting the percent change
in 20‐year flood peak magnitude relative to reference conditions (i.e., zero change) against incremental per-
cent changes in mean annual precipitation amount and seasonality, respectively.

Response surfaces developed for UK catchments show the flood regime to be more sensitive to precipitation
than evaporation changes (Prudhomme et al., 2003; Prudhomme, Crooks, et al., 2013; Prudhomme, Kay,
et al., 2013). This is also supported by Bastola et al. (2011b), who examined flood sensitivity using the SN fra-
mework applied to four Irish catchments. They found that changes in PE associated with temperature
increases had a negligible effect on flood magnitude. Thus, our assessment is restricted to a single scenario
representing an absolute increase in mean annual temperature of 2 °C relative to 1976–2005.

2.4. Flood Frequency Analysis

The magnitude of the 20‐year return period flow event is estimated using the GEV distribution fitted to the
400‐year simulated annual maximum series. This is estimated from themedian flow series derived according
to the GLUE procedure using the identified behavioral parameter sets (Ahilan et al., 2012; Cameron et al.,
1999). The cumulative distribution function of the GEV distribution is inverted and evaluated for the 20‐year
return period/percentile (rp) according to

F−1 rpð Þ ¼ ζ
β
κ

− ln rpð Þ½ �−γ−1f g (3)

where ζ, β, and γ represent the location, shape, and scale parameters of the GEV distribution, respectively.
Parameters are estimated using the method of maximum likelihood.

2.5. Clustering

To identify catchments with similar responses, the 2‐D surfaces for each rainfall‐runoff model and catch-
ment are first converted to a single vector and horizontally concatenated. All vectors are arranged into a
matrix of size 35 × 1,050—representing the number of observations (catchments) and variables (points on
the response surface), respectively—and input to a k‐means clustering procedure (Lloyd, 1982).
Accordingly, the algorithm partitions the input matrix into k clusters for which each catchment response
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surface is assigned to the cluster with the nearest centroid based on Euclidean distance. The centroid is esti-
mated as the arithmetic mean of assigned cluster members. As clusters are influenced by the initial position,
100 random initialization points are used. That seed point which minimizes the cost function is retained.
The error function used is expressed as

J ¼ ∑
k

j¼1
∑
n

i¼1
x jð Þ
i −cj

��� ��� (4)

where k and n represent the number of clusters and observations, respectively; x jð Þ
i denotes the ith member of

the jth cluster, the centroid of which is given by cj. This algorithm is used in conjunction with the Calinski‐
Harabasz (CH) efficiency criterion (Calinski & Harabasz, 1974) to optimize the number of clusters. The cri-
terion seeks a value for k, which simultaneously minimizes/maximizes the within/between cluster variance:

CH ¼ Bk

Wk
×
N−k
k−1

(5)

where N represents the number of data points. Wk and Bk denote the within and between cluster sum of
squares, respectively, calculated using the squared Euclidean distance. Convergence to a local optimum is
achieved when group membership is stable over successive iterations. An individual 2‐D centroid response
surface is derived for each model and cluster. This is calculated as the arithmetic mean of the individual
(1,050) grid points averaged across cluster members. This vector is split according to each model and
reshaped into the original response surface dimensions (21 × 25).

2.6. Response Surface Characteristics

Differences in sensitivity between the response surface centroids for each cluster are quantified based on the
mean rate of change (gradient) along the x (horizontal) and y (vertical) axes, respectively. This demonstrates
the degree of sensitivity to unit changes in each harmonic parameter independently, without explicitly con-
sidering interactive effects. It is calculated based on the maximum difference in the percent flood peak
response between each neighboring vector element or grid point on the 5% interval along the x and y
axes, respectively.

Also calculated is the maximum slope for each centroid. Here slope is estimated as the change in magnitude
per unit distance along the path of steepest ascent/descent from a grid point to one of its eight nearest neigh-
bors according to (O'Callaghan & David, 1984):

SD8 ¼ max
gp¼1;8

v9−vgp
h∅ gpð Þ (6)

where∅(gp) = 1 for gp= 2, 4, 6, and 8 (E, S, N, andW neighbors) and∅ gpð Þ ¼ ffiffiffi
2

p
for gp= 1, 2, 5, and 7 (NE,

NW, SW, and SE neighbors). This measures the rate of change across the surface in the x and y directions
simultaneously and is indicative of overall sensitivity.

2.7. Random Forest Classifier

Classification Trees (CTs) are predictive models which use a set of decision rules inferred from features (pre-
dictor) of the input data to determine group membership of the predictand. The model constitutes a hier-
archical tree with root, decision, and leaf nodes. While having powerful analytical capabilities, it is
recognized that CTs are prone to overfitting (Hastie et al., 2009). By aggregating predictions from an ensem-
ble of CTs, wherein the influence of individual biases are offset by other ensemble members (EMs), a RF can
generalize more successfully (Breiman, 1996, 2001). RFs are suitable for mixed data types and can handle
collinear/interactive predictors. The ensemble is composed of multiple CTs, each developed using a boot-
strapped sample of the original data. In addition, at each decision node a random subset of predictors is
selected from which the most important split features are retained. This reduces correlation between indivi-
dual trees and lessens the influence of noise/outliers. While the RF does not produce an explicit model
revealing the decision process and relationship between predictors (as in the cases of CTs) it does return a
measure of predictor importance.
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Here a RF is developed using the physical attributes (physical catchment descriptors; PCDs) of the catch-
ment sample as predictors. Catchment type, identified using the k‐means procedure applied to the response
surfaces, is used as the (categorical) predictand. Based on its contribution to model accuracy the relative
importance of each PCD in differentiating catchment types is examined. Features are interpreted to deter-
mine which processes and land‐surface attributes influence sensitivity. The RF is also employed to predict
the sensitivity class of ungauged or data‐sparse catchments (Booker & Woods, 2014; Snelder et al., 2013).
The RF used constitutes 10,000 CTs, each grown using a subset (80%; with replacement) of cases. The
remaining “out‐of‐bag” (OOB) cases (20%) are retained to independently estimate predictor importance
and ensemble error. The RF algorithm thus facilitates a type of cross validation which is robust in cases
where the number of observations is limited. At each decision node the algorithm selects the best split from
a random subset (15) of all available (19) predictors according to Gini's diversity index. The OOB error is cal-
culated as the proportion of cases which are misclassified (MR), estimated as

MR≈MROOB ¼ c−1 ∑
c

i¼1
I bY Jið Þ≠Yi

� �
(7)

Where I(·) denotes the indicator function, Y the observed class labels, and c is the number of cases. Finally, bY
represents the OOB prediction and J the vector of descriptors. Each tree is grown to a maximum depth thus
avoiding uncertainty issues related to predictor selection and pruningmethod. Duringmodel training the RF
algorithm identifies the most important predictors. Importance is quantified by observing the effect that ran-
domly permuting each predictor has on the OOB error. A standardized measure of importance is returned—
estimated as the average difference in prediction error across the ensemble divided by the standard devia-
tion. Ensemble predictions are made by aggregating the classification predicted by EMs. For a given case that
class with the majority vote is considered the most likely. To investigate uncertainty, the RF algorithm also
returns the probability of the predicted class. For each CT the posterior probability at a particular node is the
number of cases assigned to that node, which have the same observed class, divided by the total number of
cases assigned to that node. The posterior probabilities returned by individual CTs are averaged across the
ensemble.

2.8. Catchment Selection and Observed Data

Catchments were selected on the basis that they (i) have good quality, long‐term observational data; (ii) are
minimally impacted by human activity; (iii) constitute a representative sample of different catchment types;
and (iv) have associated PCDs. In all, 35 catchments (Murphy et al., 2013; Figure 2) meet these criteria with
flow data that variously cover the years 1973–2001. Daily flow series were obtained from the Office of Public
Works (OPW; http://waterlevel.ie/) and Environmental Protection Agency (http://www.epa.ie/hydronet/).
The physical attributes of each catchment are obtained from the OPW's Flood Studies Update (FSU; http://
opw.hydronet.com; Mills et al., 2014). PCDs provide information about the climatological, soil and morpho-
metric properties of each catchment (see Tables 1, S1, and S2). Relative to a larger sample, the catchments
used are representative of hydroclimatological conditions across the island, but with a recognized underin-
clusion of smaller upland catchments located along coastal margins. Urban extent is low overall. For the 215
catchment sample the majority (~95%) have <6% urban extent, with only seven having coverage >6%. The
greatest urban coverage by a considerable margin (68%) is for the river Slang (ID: 9011). To calibrate hydro-
logical models we use gridded (1 × 1 km) daily precipitation and temperature data (Walsh, 2012) area aver-
aged to provide a single representative baseline for each catchment. Daily potential evapotranspiration is
estimated from air temperature and radiation following the method of Oudin et al. (2005). This is favored
over less parsimonious but more physically based methods (e.g., Penman‐Monteith), which have greater
data requirements (e.g., wind speed, humidity) not available for all study catchments (Kay et al., 2013).

2.9. CMIP5 Ensemble

CMIP5 simulations of monthly precipitation covering the period 1850–2100 and relating to one of four dif-
ferent Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6, and RCP8.5) are used to examine
the flood risk exposure of individual catchments (Table S3). For each EM and all 215 catchments, Change
Factors (CFs; Anandhi et al., 2011; Diaz‐Nieto &Wilby, 2005) are calculated based on the percent difference
in mean monthly precipitation between the 1976–2005 baseline and three separate 30‐year horizons (2010–
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2039; 2040–2069; 2070–2099). Precipitation series are extracted for the GCM grid point directly overlying
each catchment centroid. Following Prudhomme et al. (2010), CFs are calculated by differencing all
continuous 20‐year blocks within the 30‐year window. This reduces potential sampling uncertainty
introduced by relying on a single (30‐year) value of baseline and future climate (Kendon et al., 2008;
Räisänen & Ruokolainen, 2006). To estimate changes in amplitude and mean annual precipitation, a
harmonic function (equation (2)) is fitted to the median of the block‐sampled CFs. This is applied to each
30‐year horizon, EM and 215 catchments. Extracting changes in parameters of the sensitivity domain
allows the CMIP5 projections to be overlain on the 2‐D response surfaces, from which the corresponding
change in flood magnitude can be derived. Also estimated from the CMIP5 ensemble are absolute
changes in mean annual temperature for the same RCPs and time horizons.

2.10. CMIP5: Ensemble Member Subselection

Their computational cost mean experiments like CMIP5 rely on autonomous modeling groups. However,
groups differ with respect to the number of simulations they contribute, the specific model(s) used, and
which uncertainty component(s) they consider (e.g., parameter perturbation, initial conditions, structural
differences, and emission scenario). Moreover, GCMs developed by different groups can share a similar for-
mulation and hence many of the same assumptions/errors—an issue also affecting successive model

Figure 2. The location, boundaries, and identification number of the catchment sample.
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generations (Knutti et al., 2013; Masson & Knutti, 2011). Here biased sampling leads to a disproportionate
weighting of the respective model sensitivities, resulting in a skewed interpretation of likely changes.
Providing statistically robust descriptors of future climate is conditional on the independence of EMs
(Déqué & Somot, 2010; Greene et al., 2006; Masson & Knutti, 2011; Mendlik & Gobiet, 2016), with several
studies highlighting the effect which redundancies have on the effective ensemble size (Cannon, 2015;
Pennell & Reichler, 2011; Pirtle et al., 2010).

Dependent on horizon and RCP up to 22% (#10) of CMIP5 EMs are produced by the same GCM (CSIRO‐
Mk3–6‐0). To address possible redundancies, the partitioning around medoids procedure (Kaufman &
Rousseeuw, 2005) is used to identify a representative ensemble subset (herein referred to as CMIP5_sub).
The k‐medoid algorithm differs from k‐means in that the point used to quantify within/between cluster dif-
ferences is not the centroid but a member of the subset (medoid). As the objective is to identify that EM
which is most representative of a given subspace, this constitutes a more appropriate approach.
Subselection is conducted using the GCM grid box precipitation scenarios for each (215) catchment, 30‐year
horizon, and RCP, respectively. To correspond with the sensitivity domain, EMs are clustered according to
similarity in their intercept and amplitude. Parameters are standardized (z score) prior to clustering and
similarity is measured in squared Euclidean distance. It is highlighted that clustering algorithms are biased
toward regions of higher density, which has implications for excluding EMs located at the extremities ‐
potentially underestimating risk (Cannon, 2015). To address this, the KKZ (Katsavounidis‐Kuo‐Zhang) initi-
alization procedure is used to identify seed points which maximize ensemble diversity (Katsavounidis et al.,
1994). In addition, the number of clusters is selected as the minimum required for the subset to span the ori-
ginal ensemble range.

2.11. Harmonic Function: Phase Assumption

In this study a single‐phase harmonic (equation (2)) is used to (i) scale the WGEN series so as to traverse the
sensitivity domain according to changes in the precipitation cycle, (ii) to estimate percent changes in the
amplitude and mean of individual CMIP5 projections. As visual presentation of response surfaces is limited
to two dimensions, the phase is held constant and set to December. This represents the median month for
which the annual precipitation cycle peaks across the catchment sample. The assumption of a December
phase is also commensurate with the CMIP5 ensemble, for which the majority (65% considering all 215

Table 1
Physical Catchment Descriptors (PCDs) Derived for the Flood Studies Update (FSU; Mills et al., 2014)

PCD abbreviation Descriptors explained
Minimum

(215)
Maximum

(215)
Minimum

(35)
Maximum

(35)

ALLUV (Prop) Proportional extent of floodplain alluvial deposit 0.00 0.11 0.01 0.10
AREA (km^2) Catchment area (km2) 5.46 7980.41 88.82 2460.27
ARTDRAIN (Prop) Proportion of catchment area mapped as benefitting

from arterial drainage schemes
0.00 0.37 0.00 0.28

ARTDRAIN2 (Prop) Proportion of river network length included in Arterial Drainage Schemes 0.00 0.85 0.00 0.78
BFIsoil (index) Soil baseflow index (estimate of BFI derived from soils, geology and climate data) 0.26 0.91 0.28 0.83
DRAIND (km/km^2) Drainage density (km/km2) 0.04 2.64 0.54 2.37
FAI (Prop) Flood Attenuation Index 0.01 0.52 0.06 0.27
FARL (index) Flood attenuation by reservoirs and lakes 0.63 1.00 0.81 1.00
FLATWET (index) PCD summarizing proportion of time soils expected to be typically quite wet 0.54 0.73 0.54 0.73
FOREST (Prop) Proportional extent of forest cover 0.00 0.56 0.24 0.35
MSL (km) Mainstream length (km) 2.84 214.61 17.47 129.08
NETLEN (km) Total length of river network above gauge (km) 2.94 6428.92 64.67 2669.46
PEAT (Prop) Proportional extent of catchment area classified as peat bog 0.00 0.80 0.00 0.53
S1085 (m/km) Slope of main stream excluding the bottom 10% and top 15% of its length (m/km) 0.10 31.16 0.20 13.26
SAAPE (mm) Standard period average annual potential evapotranspiration (mm) 448.28 562.64 459.60 532.60
SAAR (mm) Standard period average annual rainfall (mm) 710.76 2464.73 814.07 1784.36
STMFRQ (no.) Number of segments in river network above gauge 1 5490 35 3523
TAYSLO Taylor‐Schwartz measure of mainstream slope (m/km) 0.11 8.32 0.13 1.05
URBEXT Index of Urban Extent (% coverage) 0 68.1 0 2.1

Note: Also shown is the range in values for 215 catchments included in the FSU and values for the 35 catchments used in this study. BFI = baseflow index.
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catchments, RCPs, and time horizons) of model runs indicate a more pronounced winter peak. This signal
generally strengthens through each consecutive time horizon and is most distinct for 2070–2099 under
RCP8.5, wherein 95% of EMs indicate a winter phase. Kay, Crooks, and Reynard (2014) explored the influ-
ence which a fixed phase may have on flood response across the sensitivity domain for nine typical response
types found in the United Kingdom. Results show that this assumption is more/less impactful depending on
the catchment and climate ensemble considered. In some cases catchments revealed increased sensitivity to
alternative phases. However, the authors highlight that this simplification is supported by the majority of
climate projections indicating a winter phase.

3. Results
3.1. Rainfall‐Runoff Model Development

Figure 3 illustrates hydrological model performance in reproducing a series of hydrological indices esti-
mated using the period for which all observed flow data are available; also shown are the NSE validation
scores. In both cases model performance is examined using the median GLUE simulation. Given the domain
used for sensitivity testing, indices relating to catchment memory (autocorrelation) and interseasonal varia-
bility (seasonal elasticity: i.e., link between summer/winter rainfall and winter/summer flow response);
(Visessri & McIntyre, 2016) as well as peak flows (high pulse count) are employed (Hrachowitz et al.,
2014; McMillan et al., 2017; Westerberg et al., 2016). Differences between models, as well as validation per-
iods, are most evident for NSE2. The highest validation scores (0.96; NSE0.5) are returned for the river Glyde
(ID: 6014) by GR4J. In contrast, NAM returns the lowest score (0.64; NSE2) for the river Bandon (ID: 20002).
Generally, GR4J performs better than NAM for the majority of catchments, particularly those with a lower
baseflow index (BFI), which is indicative of runoff—as opposed to groundwater—dominated systems. In
addition, both models reproduce variations in the hydrological signatures between catchments. Each cap-
tures the runoff coefficient, BFI, annual runoff, and coefficient of variation. However, for catchments with
a low BFI, models tend to underestimate the high flow variability and pulse count. Moreover, both consis-
tently underestimate the autocorrelation coefficient of the observed mean monthly series for lags of 1, 3,
and 6 months.

3.2. CMIP Projected Climate Changes

Changes in the harmonic mean and amplitude of the annual precipitation regime projected by CMIP5_Sub
and CMIP5 for the combined 215 catchments are shown in Figures 4 and S2, respectively. Mean annual pre-
cipitation totals are expected to increase marginally (<10% based on the ensemble median). However, this
conceals marked changes in the seasonal distribution: projections generally suggest an increase in the ampli-
tude of the annual regime consistent with a narrative of wetter winters and drier summers. This trend is most
pronounced for 2070–2099 under RCP8.5. Figure 4 illustrates the level of uncertainty associated with preci-
pitation wherein changes in the harmonic mean span a sign change irrespective of the time period and RCP
considered. By the end of the 21st century mean annual precipitation is projected to decrease/increase by up
to ~25% relative to baseline conditions. Changes in seasonality are equally uncertain. However, the signal
does notably strengthen over progressive horizons for the high emissions RCP6 and RCP8.5 scenarios.
Figure S2 shows changes in mean annual temperature projected for the 215 catchments by CMIP5 for each
horizon and RCP scenario. This confirms that the majority of EMs are within the +2 °C scenario (relative to
1976–2005) used for sensitivity testing (Figure S2).

Figure 4 presents results of the ensemble subselection process for a single catchment. Herein, the selected
members are shown to capture regions of high density and span the original ensemble space. Dependent
on the RCP, catchment, and time horizon clustering leads to a reduction in ensemble size of between 0%
and 87%, with amedian reduction of 56% across all permutations (i.e., RCPs, 30‐year horizons and 215 catch-
ments). Over successive horizons and RCPs there is a similar variation in the proportion of projections
retained. However, considering only those models which contribute multiple runs (>1), up to 41% of EMs
are assigned to a cluster containing a simulation from the same GCM. This varies dependent on the horizon
and RCP, with greater redundancies for 2070–2099 and RCP8.5, reflecting the lesser significance of natural
variability and the more pronounced effect of individual climate model sensitivities.
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Figure 3. Observed and rainfall‐runoff model (GR4J and NAM) simulated hydrological signatures estimated for each catchment using the period for which
observed flow data are available. Also shown (lower panel) are the Nash Sutcliffe Efficiency (NSE) validation scores for each catchment and rainfall‐runoff model.
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Given the complexity of the global climate system establishing the credibility of GCMs—considering the
multitude of variables, physical processes, metrics, and spatiotemporal scales involved (Harrison et al.,
2015; Perez et al., 2014; Vaze et al., 2011)—is beyond the present study's scope; however, the performance
of each EM in reproducing the parameters of a single‐phase harmonic (equation (2)) fitted to the annual
cycle of precipitation and temperature for the 215 study catchments is provided in Figures S3 and
S4, respectively.

3.3. A Catchment Typology of Flood Sensitivity
3.3.1. Individual Catchments
Figures 5 and 6 display 2‐D response surfaces developed for 35 catchments using the median simulation
from NAM and GR4J, respectively. Overlain on each plot are percent changes in the harmonic mean and
amplitude of the precipitation regime projected for 2070–2099 for each RCP by individual CMIP5_Sub
EMs. Also shown are indicative (10%, 20%, and 30%) climate change allowances which would provide addi-
tional capacity in the design of new flood infrastructure to accommodate future climate change (OPW,
2015). Response surfaces relating to the earlier 30‐year horizons are given in Figures S5–S8. Generally, peaks
are shown to increase incrementally in line with iterative growth in the applied precipitation mean and
amplitude, respectively. This reflects their singular and interactive effects on the catchment water balance
and flood processes. Sensitivity to each parameter independently is expressed as their maximum gradient
along each axis (Table S2). The maximum RS slope (SD8) is indicative of interactive effects (equation (6)).

Differences in the magnitude and shape of the response pattern reflect the extent to which catchments
dampen or amplify seasonal/annual scale precipitation changes. It also highlights the role played by local
rainfall‐runoff processes in determining the hydrological response and ultimately flood generation across
the sensitivity domain. All catchments are more sensitive to changes in mean amounts as opposed to
seasonality; however, relative to one another, some are more responsive to increases in seasonal
amplitude—indicated by their greater rate of change along the x axis (Blackwater; ID: 18002; GR4J;
maximum x axis gradient: 0.41). Alternatively, as in the case of the river Barrow (ID: 14019; GR4J; maximum
y axis gradient: 2.53), some catchments are relatively more sensitive to changes in mean annual receipts, as is
shown by their gradient along the y axis. The influence which interactive effects have is illustrated by the
response surface for the river Slaney (ID: 12001), which is relatively sensitive to changes along both axis
and has a high maximum SD8 value (67.3°; GR4J).

Figure 4. Ensemble members (k‐medoids) for the Boyne (ID: 7012; 2070–2099; RCP 8.5) subselected using the partitioning around medoids algorithm (a). Also
shown are percent changes in the mean annual amount (harmonic mean; b) and seasonality (harmonic amplitude; c) of the precipitation cycle described using
a single‐phase harmonic function (equation (2)). Changes are examined for three future time horizons relative to the 1976–2005 baseline and for four different
RCP scenarios and three future time horizons: 2010–2036 (2020s), 2040–2069 (2050s), and 2070–2099 (2080s). Plots are developed using the subselected Global
Climate Model simulations (CMIP5_Sub) from the CMIP5 archive stored at a monthly resolution for all 215 catchments (Table S3). Boxplots show the median
(central mark; q2) along with the 25th (bottom; q1) and 75th (top edges; q3) percentiles. Whiskers extend to q2 ± 1.57(q3 − q1)/sqrt (ens), where ens
is the number of ensemble members. RCP = Representative Concentration Pathways; CMIP5 = Coupled Model Intercomparison Project Phase 5.
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When combined with the CMIP5_Sub simulations, the response surfaces (Figures 5 and 6) highlight the con-
trasting sensitivity of individual catchments to precipitation changes. Most cases reveal that a 10% climate
change allowance would be insufficient to counter projected flooding. Conversely, a 20% allowance would
be sufficient to cover the majority of CMIP5_Sub projections across catchments. For example, most simula-
tions for the river Owenbeg (ID: 35002) are within the 20% boundary. However, this is not the case for all
catchments—as demonstrated by the Boyne (ID: 7009; Figure 6) which has a large proportion of GCM pro-
jections lying beyond the frontier of this allowance.

Figure 5. Changes (%) in the magnitude of a 20‐year return period flood event for incremental changes (5%) in harmonic parameters representing the mean
amount (−10% to +40%; x axis) and seasonality (0% to 50%; y axis) of the annual precipitation cycle. Surfaces are developed for each of the 35 catchments using
the median Generalized Likelihood Uncertainty Estimation simulation from the NAM model. Overlain on each plot are changes (%) in the harmonic mean and
amplitude projected for the 2070–2099 relative to 1976–2005 under RCP8.5 by each member of the CMIP5_sub ensemble. For plotting the range is constrained
between 0% and 90%. Also shown is the 10%, 20%, and 30% climate change allowance. Lines are interpolated using the technique of nearest neighbor. Also given in
brackets is the maximum slope (SD8) of the surface calculated according to equation (6). RCP = Representative Concentration Pathways; CMIP5 = Coupled Model
Intercomparison Project Phase 5.
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Figures 5 and 6 also show the extent to which rainfall‐runoff model structural uncertainty have on the
response surfaces. In most cases, both GR4J and NAM produce surfaces with a similar pattern. However,
simulated changes in the flood peak magnitude under the same forcing scenario differ noticeably.
Typically, GR4J is shown to have a more sensitive peak response than NAM. In the case of both models a
30% allowance (based on the period 2070–2099 and RCP8.5) would be sufficient to cover between 80 and
100% of CMIP5_Sub projections, with the Boyne (ID: 7012) remaining most exposed.
3.3.2. Response Surface Typologies
Response surfaces developed using themedian simulation from both models for each of the 35 sample catch-
ments were classified using a k‐means clustering algorithm. Based on (dis)similarities in their surfaces the
CH evaluation criterion returns five clusters with membership ranging between 4 and 12 catchments
(Table 2). Figure 7 shows each cluster centroid, the maximum surface slope (SD8; equation (6)), and the loca-
tion of catchment members. Centroids represent the arithmetic mean of the response surfaces assigned to

Figure 6. As in Figure 5 but for GR4J.
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each cluster. Differences between centroids with respect to gradient along the x (horizontal) and y (vertical)
axis, respectively, are given, also listed is their mean slope (SD8). By considering changes along the x and y
axes simultaneously, SD8 provides a measure of the overall sensitivity. Hence, centroids are arranged
(Figures 7a–7e) from most to least sensitive according to this metric.

Cluster (a) is most sensitive to changes in the harmonic mean. In contrast, the greatest proportional
increases in flood magnitude associated with changes in seasonal amplitude are returned by clusters (d)
and (e), with the degree of differentiation between each, dependent on rainfall‐runoff model used. GR4J
shows a clearer distinction between clusters. Cluster (a) is noted as being the least sensitive to changes in
the seasonal distribution.

As shown in Figure 7 there is a spatial aspect to the distribution of cluster members, reflected by an east‐west
gradient. Generally, catchments from cluster (a) are situated on the east coast and encompass the Boyne (ID:

Table 2
Mean Gradient (y and x Axes, Respectively) and Mean Slope (SD8) of the +2 °C Centroid Response Surface for Each Rainfall‐Runoff Model

Mean gradient
Mean slope (°)

Harmonic mean (y axis) Harmonic amplitude (x axis)

Cluster Catchment members GR4J NAM GR4J NAM GR4J NAM

(a) 7009, 7012, 12001, 14007, 14019 2.05 1.23 0.22 0.14 64.0 51.1
(b) 6013, 15001, 15006, 18002, 25001, 25006, 30007 1.69 1.09 0.26 0.17 59.6 47.7
(c) 6014, 15003, 16008, 16009, 18005, 25002, 25030,

26009, 26010, 26021, 35005, 36010
1.44 0.98 0.24 0.16 55.4 44.9

(d) 18003, 18006, 20002, 27002, 30005, 32012, 34001 1.29 0.88 0.33 0.22 53.1 42.2
(e) 18050, 23002, 35002, 38001 0.97 0.85 0.23 0.21 44.9 41.2

Note. Also listed is the ID number of catchments assigned to each cluster.

Figure 7. The centroid of five clusters for each rainfall‐runoff model (GR4J and NAM) showing the centroid response surface relating to a 2 °C temperature
increase. Centroids are derived as the arithmetic average of the grid points from the response surfaces of each cluster member and hydrological model.
Response surfaces show change (%) in the magnitude of a 20‐year return flood event for corresponding changes (%) in the mean amount (−40% to +60%; x axis) and
seasonality (0% to 120%; y axis) of the annual precipitation cycle. Clusters are arranged (a–e) based on the mean slope (equation (6)) of their centroid. For
plotting the range is constrained between 0% and 90%. Also given in brackets is the maximum slope (SD8) of the surface calculated according to equation (6). The
lower row shows the location of each cluster member.
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7009, 7012), Slaney (12001), and Barrow (ID: 14007, 14019). Catchments from clusters (b) and (c) are located
in the Midlands (ID: 26021, 25006, and 26009), [ID: Inny (26021), Brosna (ID: 25006), and Rinn (ID: 26009)],
as well as in the south/southeast [Nore (ID: 15003, 15006), Suir (ID: 16008, 16009)], northwest [Mulkear (ID:
25001, 25002), Owenmore (ID: 35002, 35005), Erne (ID: 36010)] and northeast [Glyde and Dee (ID: 3016,
6014)]. Members of cluster (d) are found further west (ID: 34001) and in the south (ID: 18002 to 18006
and 20002). Members of cluster (d) are found further west (Moy and adjoining catchments (ID: 34001))
and in the south (Blackwater subcatchments (ID: 18002–18006) and Bandon (ID: 20002)). Finally, catch-
ments [Feale (ID: 23002), Owenmore (ID: 35002, 35005), and Owenea (ID: 38001)] from group (e) are situ-
ated along the furthermost south/north‐western margins of the catchment sample.
3.3.3. Typology of Catchments
Several hydrological features help to differentiate between sensitivity types. Generally, by altering the
dynamics of longer‐term storage and release, changes in the mean and amplitude of precipitation are likely
to influence regime change to a greater degree in catchments which have a longer ‘memory’ (i.e., predomi-
nantly lowland type systems with permeable geology and greater storage capacity). In contrast, as they have
less storage capacity, catchments with a shorter memory (i.e., upland systems with impermeable geology and
thin peaty soils) are less sensitive to the effects of interannual and interseasonal precipitation changes. The
influence of memory is also reported by Prudhomme, Crooks, et al. (2013), Prudhomme, Kay, et al. (2013) for
the UK where catchments with greater storage potential were also found to be more sensitive to the types of
interseasonal changes in precipitation investigated.

For Ireland, catchments from cluster (a) are classified as being the most sensitive (Table 2). However, these
catchments are generally less responsive to increases in precipitation amplitude as opposed to the harmonic
mean. This indicates that, due to decreases in summer precipitation, these catchments are better able to off-
set—through greater available storage and/or more favorable antecedent conditions (such as lower soil
moisture) – corresponding increases in winter associated with an amplified regime. Conversely, as they
are more linearly responsive to increases in autumn/winter rainfall, and less influenced by interseasonal sto-
rage dynamics, systems characterized as runoff‐dominated (lower BFI) are more sensitive to wetter winters
(i.e., increased amplitude). In these catchments baseflow makes a lesser contribution to total outflow, and
precipitation events are more likely to generate direct/quick overland and shallow subsurface flow.

This is compounded by the fact that many peak flows occur during January and December in Ireland (~20–
30% of all peaks annually). Consequently, in cases where total annual precipitation decreases but an increase
in seasonality is experienced, catchments in clusters (d) and (e) are more likely to return an increase in
flood magnitude.

Information on the hydrological signatures associated with each catchment is given in Figure 3 and Table S2.
The BFI quantifies the long‐term ratio of baseflow to total flow and is an important attribute when charac-
terizing flood regime type. The index is a measure of the attenuated contribution to total discharge and is
indicative of storage effects. Clusters (a) and (e) sit at opposing ends of the sensitivity spectrum and have
BFI values (a: <0.4; e: >0.6) that characterize them (in relative terms) as groundwater and runoff‐dominated
systems, respectively. The greater baseflow influence in cluster (a) suggests these catchments have a longer
memory. The greater influence of memory is also demonstrated by the higher correlation in month to month
variations (1‐month lag range: 0.14–0.55; 3‐month lag range: 0–0.27) for cluster (a). Further assessment of
the hydrological signatures shows that cluster (e) catchments have a higher RC and greater mean annual dis-
charge (mm/year). In relation to high flow signatures this cluster is also associated with more frequent (high
pulse count) and variable flow peaks (coefficient of variation and high flow variability). The significance of
the annual water balance in influencing catchment response to a climate signal is highlighted by the promi-
nence of the RC in differentiating sensitivity, ranging from 0.52 to 0.75 for clusters (a) and (e), respectively.
RC is considered a measure of annual evaporative losses. Catchments with a lower RC also tend to be those
with the lowest precipitation totals. This suggests that in dry catchments, summer soil moisture and storage
deficits influence recharge capacity during wetter seasons, leading to reduced sensitivity to an increasingly
seasonal precipitation regime.
3.3.4. Random Forest: Catchment Classification
Effective precipitation (variability, seasonality, and frequency/magnitude of extremes) and catchment prop-
erties (morphology, geology, soil cover, and land use type) interact to shape hydrological processes and func-
tion at different scales and ultimately influence flood sensitivity. Hence, using ensemble modeling to
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establish a link between class membership of distinct sensitivity types and PCDs allows inferences to be
made about the expected response of ungauged or data‐sparse catchments.

Figure 8 displays the outcome of applying the RF (section 2.7) classifier in predictive mode using all (215)
catchments for which PCDs (Table 1) are available. Figure 9 shows the misclassification probability for
the OOB samples across the ensemble. It indicates the extent to which the model error stabilizes as the num-
ber of trees grown increases. The RF classifier is also used to investigate which attributes contribute most to
prediction accuracy, and thus have the greatest explanatory power in differentiating sensitivity type. Figure 9
displays the PCDs according to their standardized importance score. The six most important predictors
include: SAAR, BFIsoil, TAYSLO, PEAT, FLATWET, and MSL. Their values for the 215 catchments, discre-
tized according to the predicted sensitivity type, are also shown in Figure 9.

Generally, the spatial pattern of the reduced sample (Figure 7) is reproduced, with west‐east and upland‐
lowland gradients. The most important predictor is SAAR, which distinguishes between clusters based on
annual precipitation total. Wetter/drier catchments are classified as more/less sensitive. Sensitivity class
reflects the southwest to north/northeast gradient in precipitation totals across the Island. Generally, clus-
ters (d–e) are located in upland and/or westerly locations with greater rainfall. Clusters (b and c) are repre-
sentative of drier catchments in the Midlands. Finally, catchments from cluster (a) are the driest and are
situated along the east coast. However, precipitation zones are correlated with a number of other features
which may also influence sensitivity, including elevation, proximity to the coast, aspect, and soil type, none
of which are represented by the PCDs or captured more distinctly by the catchment sample.

The importance of the BFI means a distinction is made between runoff and groundwater‐dominated sys-
tems. Generally, catchments in clusters (a) and (e) sit at opposing ends of the BFI spectrum, with the
former/latter having a higher/lower baseflow contribution. Clusters (d) and (e) have the highest proportion
of peat (PEAT) coverage. They also have the largest values for FLATWET, indicating that soil moisture
remains high for prolonged periods. This reflects the greater coverage of poorly draining soils in upland
areas, the effect of which is to heighten flood sensitivity to heavy rainfall events. Mainstream length
(MSL) is generally greatest for type (a) reflecting the more slowly draining nature of larger catchments
located in the northeast. A distinction between the lowland‐ and upland‐type systems is reiterated by
TAYSLO. Here slope is generally greatest for catchment type (e) underlining their upland characteristics.
Of the remaining predictors, potential evapotranspiration (SAAPE), stream frequency (STMFRQ), arterial
drainage (ARTDRAIN2), and forest (FOREST) coverage are among the least important. Figure S9 shows
the posterior probability of the sensitivity type assigned to each of the 215 catchments by the RF classifier.
It demonstrates RF's utility for associating a measure of uncertainty with the classification.

3.4. Catchment Exposure to Future Climate

Figure 10 shows the combined exposure of all 215 catchments to future climate based on the CMIP5 ensem-
ble. Catchments are classified into one of five sensitivity types according to their PCDs. The percent of EMs
that exceed climate change allowances of 0% to 40% relative to baseline conditions are estimated using the
centroid response surface for each cluster or corresponding sensitivity type (Figure 7). Hence, the mean
response surface for clusters identified from the catchment sample (35) are assumed representative of catch-
ments with similar characteristics within the larger (215) set.

Figure 8. Classification of 215 catchments from the Flood Studies Update into one of five response types (a–e) using the random forest classifier.
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The upper row in Figure 10 highlights exposure when projected changes for all RCPs and middle to late cen-
tury horizons are considered. The 20% allowance is shown to offer protection against ~57% to 92% (~55% to
100%) of uncertainty in the CMIP5_Sub (CMIP5) ensemble. Results highlight the extent to which exposure
varies for the same threshold across the five types and illustrates, as in the case of cluster (e), instances where
a universally applied allowance of 20% may lead to overadaptation. Conversely, as illustrated by type (a),
adoption of a 30% allowance may be necessary to provide an equivalent level of protection against future risk
(as measured by the percent of ensemble accommodated). Variations in the level of exposure between types

Figure 9. The “out‐of‐bag” misclassification probability plotted against the number of ensemble Classification Trees
(lower left panel). Physical catchment descriptors ranked according to their standardized measure of importance (y axis;
lower right panel). Boxplots showing the six most important physical catchment descriptors (SAAR, BFIsoil, TAYSLO,
PEAT, FLATWET, and MSL) for the 215 catchments discretized into sensitivity type (a–e) using the random forest clas-
sifier. Boxplots show the median (central mark; q2) along with the 25th (bottom; q1) and 75th (top edges; q3) percentiles.
Whiskers extend to q2 ± 1.57(q3 − q1)/sqrt(o) where o is the number of observations. Please refer to Table 1 for
descriptions/definitions of SAAR, BFIsoil, TAYSLO, PEAT, FLATWET, and MSL.
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generally follow the ranking of centroids from most to least sensitive (Table 2). Irrespective of the time
horizon and RCP considered, results indicate that type (a)/(e) is most/least exposed. This can be
attributed to the greater sensitivity of type (a) particularly to changes in mean annual precipitation. Given
the marked response of type (d) to increases in seasonality, its exposure generally increases relative to
types (b) and (c), particularly as changes in amplitude become more pronounced over successive time
horizons and RCPs.

The subselected CMIP5 ensemble indicates similar exposure levels to those derived using the full ensemble
—albeit that exposure for CMIP5_Sub is generally greater. This is despite the ensemble being notably

Figure 10. Percent of CMIP5 and CMIP5_Sub ensemble members (y axis) which exceed climate change allowances of 0–40% (relative to baseline conditions; x axis)
calculated for each sensitivity type and hydrological model. The percent flood response and associated exposure is estimated using projections for all 215
catchments and the corresponding centroid relating to their sensitivity type. Plots show the exposure of each to projected climate and the adequacy of different
adaptive capacity thresholds. The indicative 20% allowance is highlighted using the vertical black line. Combined threshold exceedances calculated for RCP4.5,
RCP6, and RCP8.5 over the 2050s (2040–2069) and 2080s (2070–2099) are shown in the upper row. The second, third, and fourth rows show exceedances for the
2080s relating to RCP4.5, RCP6, and RCP8.5, respectively. The percent of the original CMIP5 ensemble members included in the CMIP5_Sub set is shown in
brackets. RCP = Representative Concentration Pathways; CMIP5 = Coupled Model Intercomparison Project Phase 5.
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reduced in size. For example, dependent on RCP, sensitivity class and horizon, Figure 10 indicates a reduc-
tion of between 73% and 48% in ensemble size. The similarity in exposure, despite such reductions in size, is
indicative of the scale of data redundancy. It is also noted that uncertainty from the hydrological models far
exceeds uncertainty related to the use of CMIP5_Sub versus the full ensemble.

Figure 10 shows the extent of uncertainty due to hydrological model structure. Generally, there is close
agreement between models for catchment type (e). In this case, each has a similar centroid response surface
(Figure 7) and level of exposure across exceedance thresholds (Figure 10). However, for types (a)–(d) GR4J
shows greater exposure relative to NAM. This is most pronounced for type (a) where differences in protec-
tion afforded by a 20% allowance differs by ~25% to 50% dependent on the RCP and time horizon.
Although models disagree about the exact percentage exposure within individual types, each agrees as to
the relative exposure between groups, with type (a)/(e) being the most/least exposed according to the 20%
threshold. Given that the study examines changes in the seasonal amplitude of precipitation, along with
the various dissimilarities in rainfall‐runoff model structure, differences in the representation of antecedent
conditions are (in part) causal to the models returning such different estimates of risk exposure.

4. Discussion

Although the chosen catchments provide good coverage of hydroclimatological variability across the island,
the sample is limited in size with underrepresentation of small “flashy” systems, particularly along the wes-
tern seaboard and uplands. By focusing on rivers with minimal artificial influences, heavily modified catch-
ments such as those with regulated flows or large urban areas are excluded. This has important implications
for study robustness, particularly relating to the clustering and discriminant analysis, wherein a larger sam-
ple would facilitate additional testing and may reduce noise allowing clearer identification of more distinct
sensitivity types. The strength of the inferences drawn from both the importance of underlying physical pro-
cesses and the extent to which results can be robustly generalized is also related to sample size and diversity.
Similarly, the constraints posed by the list of available PCDs must be considered. It is possible that descrip-
tors that better distinguish catchment type or provide a clearer indication of the hydrological processes at
work are not included. Despite shortcomings the FSU provides an ideal starting point for developing a
national set of PCDs (Mills et al., 2014). With the aim of improving regionalization, it is recommended that
this data set is developed to include additional descriptors.

Using minimally affected catchments means that it is easier to elucidate the physical catchment controls
(e.g., land cover, soil type, and morphometric attributes) on flood response, the absence of urbanized catch-
ments (>10%) is also due to a lack of monitoring in these areas and their uniqueness in the Irish case. With
respect to urban extent ~91% of the FSU (215) catchments have a similar urban coverage as the reduced
catchment sample (~2% extent). Hence, results from our “natural” catchment sample are considered trans-
ferable to catchments with a small proportion (<5%) of urban extent.

Response surfaces are a powerful visual aid but they are limited to studying sensitivity along two (or maybe
three) axes. This hinders graphical representation of changes for a larger set of climate parameters. The pre-
sent analysis examined monthly scale changes, with results pointing to catchment memory and longer‐term
storage dynamics influencing sensitivity and risk exposure. However, small, catchments with a shorter
memory and more linear rainfall‐runoff response are also likely to be affected by changing patterns at
(sub)daily scales, particularly for extreme events. Consequently, given a wider range of possible climate
changes, the resultant classification reflects only one component in the overall picture of flood sensitivity
for Ireland.

On the other hand, monthly precipitation changes are more confidently represented by GCMs given their
coarse spatial resolution. Although GCMs are capable of capturing changes in slowly responding and spa-
tially homogenous elements of the regime, such as the seasonal cycle, their resolution constrains their ability
to resolve finer‐scale processes and topographical features required to capture extremes. Hence, the study
focuses on exploring sensitivity to those aspects of the regime (total amount and seasonality) for which we
have greater confidence in the likely direction of change. Similarly, there is an implicit assumption that
the rainfall‐runoff models provide an accurate proxy of catchment behavior even when applied to climate
conditions which differ greatly from the observations available for model development (Broderick
et al., 2016).
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Despite the pattern of response being similar between models, the study highlights the notable effect that
structural differences in hydrological model have on flood estimates. This uncertainty has important impli-
cations for how response surfaces are interpreted and used for adaptation planning. Furthermore, it under-
lines the importance of addressing this aspect of uncertainty, particularly given the potential to
underestimate true risk. It is shown, for example, that exposure across various thresholds within sensitivity
types is greater for GR4J than NAM. Design decisions based on GR4J would require greater climate change
allowances than those associated with NAM.We also focused on changes in the 20‐year return period event.
Rainfall‐runoff model uncertainty would be expected to increase for more extreme floods, yet information
on these rarer events may be needed in high‐risk situations. Managers must, therefore, consider hydrological
model uncertainty when specifying climate change allowances for a given catchment type, return period,
RCP scenario, and time in the future.

By allowing exploration of key uncertainties, multimodel and perturbed physics ensembles are essential for
avoidingmaladaptations (Clark et al., 2016). However, CMIP5 essentially constitutes an “ensemble of oppor-
tunity”—derived from imperfect sampling of available climate projections, with implications for the
overrepresentation/underrepresentation of constituent GCM sensitivities and biases. This study highlighted
the extent of redundancy in the ensemble, wherein using k‐medoids clustering the number of members are
reduced (>50%) in some cases considerably. This redundancy was greatest for simulations from the same
GCM, wherein within‐model dependencies increase as the climate change signal strengthens. However,
results highlight that subsampling the ensemble had little effect on the exposure estimates—albeit that a
slight increase in risk is associated with the subselected set. Despite this, to provide amore statistically robust
estimate of risk, we argue that selection of EMs should be on an objective basis, designed to address data
redundancies and model interdependence. In comparing sources of uncertainty, the choice of hydrological
model structure has a much greater effect on exposure estimates than uncertainty relating to whether the
subselected or complete CMIP5 ensemble is used.

With the above issues in mind, this study represents a first step toward national climate change allowan-
ces for infrastructure that could accommodate expected climate‐driven changes in flood risk across
Ireland. By highlighting how catchments are differentially affected by specified precipitation changes,
these climate change allowances could be tailored to meet regional/local vulnerabilities. In places of
heightened exposure this avoids underestimation of risk; conversely, in catchments with greater natural
resilience, unnecessary investments may be avoided. For example, the greatest exposure is associated with
sensitivity types (a) and (b) which relates to ~22% of the 215 catchments. These catchments are generally
low‐lying drier catchments located in the midlands and east. They are associated with greater storage and
longer catchment “memory” and thus are more greatly affected by interseasonal and interannual variabil-
ity. Here exposure varies between ~20% (NAM; b) and 52% (GR4J; a) for the end of the century under
RCP8.5 CMIP5 and CMIP5_Sub. While 20% generally provides a good level of protection, for these catch-
ment types a marginal shift in allowances to 30% could accommodate a larger proportion of uncertainty.
Conversely, our results also highlight that applying a universal 20% allowance could in some cases lead to
costly overadaptation. This is particularly relevant for sensitivity type (e) which encompasses ~15% of the
215 catchments. Type (e) generally has a “flashier” flow regime and is located in more exposed relatively
wetter upland areas. Overall, our results support Bastola et al. (2011b), who identified the Boyne catch-
ment (ID: 7012; Eastern Ireland) as the most sensitive to changes in flood magnitude. In this specific case,
an allowance of greater than 40% is necessary to reduce exposure (~7% exposure based on RCP8.5
CMIP5_Sub for 2070–2099) to a level comparable with less sensitive catchments. It is noted that, although
all catchments are relatively more sensitive to changes in mean annual precipitation as opposed to ampli-
tude, when considered in its entirety, the CMIP5 ensembles suggest that significant changes in seasonality
are more likely. Hence, it cannot be assumed that greater sensitivity in one parameter is necessarily indi-
cative of exposure to climate risk. This highlights the value of using climate ensemble alongside
response surfaces.

Our results relating to the physical controls on flood response are commensurate with previous studies
which highlight that, while rainfall quantities immediately preceding or during a flood event contribute
to its magnitude, given the nonlinear nature of generating processes, the magnitude of antecedent storage
(e.g., groundwater and soil moisture levels) is critical in preconditioning the catchment, and thus affect
the frequency and scale of flood events across different time scales (Sivapalan et al., 2005; Ye et al., 2017).
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Hence, a physically sensible relationship exists between the harmonic (mean and amplitude) parameters of
annual precipitation explored here and changes in flood regimes.

5. Conclusions

This study implements a scenario‐neutral framework as part of a national assessment of climate change
allowances for flood risk under prescribed changes in the mean and seasonality of annual precipitation
for Ireland. A typology of catchment sensitivities was established from which inferences can be made about
the hydroclimatologcial properties that influence sensitivity to climate change. A set of decision rules (based
on easily derived physical catchment descriptors) was then used to regionalize sensitivity type to a wider
catchment sample, including ungauged or data‐sparse catchments. The study identified five sensitivity types,
each associated with a distinct response pattern. Discriminant analysis revealed that (among the variables
tested) annual precipitation, river channel slope, drainage density, and alluvial deposits are key predictors
of sensitivity to climate‐driven flood responses. Our results also highlight the notable effect of hydrological
model structure on flood magnitude and hence the evaluation of catchment sensitivity to climate changes.

Our findings demonstrate the valuable insights into climate sensitivity that can be achieved for individual or
regionalized catchment types using a scenario‐neutral framework. Our approach provides a rigorous
method for stress‐testing adaptation decisions—in this case implementation of national or catchment‐type
climate change allowances for flood design or scenario definition. By exploring the sensitivity of additional
design allowances to uncertainty within the CMIP5 climate model ensemble and two hydrological models,
we show that for all five catchment types identified, a national climate change allowance of 20% caters for
~64% of the CMIP5_Sub ensemble spread (RCP8.5; 2070–2099). Conversely, a 10% allowance covers only
~27% of the same ensemble. In some instances, marginal increases of design allowances to 30% would offer
greater protection, particularly given the uncertainties inherent to future flood risk estimation. Further
research is needed to more thoroughly characterize these uncertainties. This applies especially in the case
of hydrological model parametric uncertainty. Given its potential effects (particularly in simulating high
flows), integrating this component of model uncertainty in the SN framework would provide a more robust
estimate of risk exposure (Bastola et al., 2011b). In this respect, results should be treated with a degree of cau-
tion. Further research is also required to examine catchment sensitivity and exposure to short‐duration (sub-
daily) extreme rainfall events alongside seasonal/annual changes.

Given variations in exposure and sensitivity between catchment types, we assert that a national allowance
could lead to overadaptation and potential misdirection of flood defense funds in some cases. This is because
some catchments have greater natural resilience and, according to the CMIP5 ensemble, are less exposed to
future flood risk. Under these circumstances, a 20% allowance may be too precautionary. Hence, we advo-
cate a more targeted, risk‐based approach whereby the sensitivity of individual catchment types is used to
prioritize investment. The study highlights the importance of managing climate change risk on the basis
of catchment type rather than region or administrative boundary. It is recognized that spatial proximity can-
not always be assumed the best predictor of hydrological similarity (Merz & Blöschl, 2005). Hence, any
future “lookup” table of allowances should really be structured by catchment type rather than region
(Reynard et al., 2017). Our framework is applicable to other national contexts where authorities are also
seeking to establish allowances for climate change that balance the costs of increased standards of protection
versus the amount of uncertainty in future flood risk that can be accommodated.
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