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A covariant approach to Ashtekar’s canonical gravity

Brian P Dolarf and Kevin P Haugh
Department of Mathematical Physics, St Patrick’s College, Maynooth, Ireland

Received 16 August 1996, in final form 16 October 1996

Abstract. A Lorentz and general coordinate covariant form of canonical gravity, using
Ashtekar’s variables, is investigated. A covariant treatment due to Crnkovic and Witten is
used, in which a point in phase space represents a solution of the equations of motion and a
symplectic functional 2-form is constructed, which is Lorentz and general coordinate invariant.
The subtleties and difficulties due to the complex nature of Ashtekar’s variables are addressed
and resolved.

PACS numbers: 0420C, 0420F

1. Introduction

In 1986, Abhay Ashtekar [1] discovered a set of canonical variables for the gravitational
field as described by the general theory of relativity. Ashtekar found that they led to a
considerable simplification of the constraints associated with the Hamiltonian formulation of
Einstein’s theory. Indeed, Ashtekar’s constraints are polynomials in the canonical variables.
Ashtekar’s canonical gravity is definite progress in the direction of a quantum theory of
gravity since it gives rise to a closed constraint algebra [2].

Hamiltonian models of physical phenomena have always distinguished between time
and space. The Hamiltonian of a dynamical system generates time translations, that is to
say it determines the time evolution of the dynamical variables. Relativity regards time and
space as being components of a single entity: spacetime. An equation, describing the way
a physical quantity changes with time, does not look the same to all relativistic observers.
In other words, an equation of this kind is not covariant. It is usual to develop the Hamilton
mechanics of a relativistic field by specifying a spacetime foliated by spacelike hypersurfaces
of constant time, and a Hamiltonian functional on this spacetime. However, this approach
spoils covariance from the beginning because a time coordinate must be singled out, in
order for the required foliation to make sense [3].

One way of viewing the role of canonical variables is that their initial values determine
a solution of the Hamilton equations. In other words, there is a one-to-one correspondence
between the canonical variables at any timand the initial canonical variables [4]. Thus
we can describe the phase space as the set of solutions of the Hamilton equations of motion.
For a field theory, a knowledge of the initial canonical variables requires a knowledge of
the field configuration and its time derivatives on a spacelike hypersurface, and a point in
phase space is a solution of the Hamilton equations at a given time. The object of this
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paper is to describe Ashtekar’s gravity in a manifestly covariant way. One possible way of
achieving this goal is to use a simple construction due to Crnkovic and Witten.

The essence of the Crnkovic—Witten construction is the observation that a covariant
theory must have an invariant symplectic form, and that each point in phase space represents
a solution of the equations of motion. One can thus dispense with the Hamiltonian, and focus
on the symplectic structure and the points of phase space as providing a covariant description
of the dynamics in phase space. This idea has been successfully applied by Crnkovic and
Witten [5] to the Yang—Mills field and to general relativity (using the 3-metric and the
extrinsic curvature as canonical variables) where there is an additional complication due to
gauge invariance. It has also been applied to general relativity in the Palatini formalism,
using the metric and real connection as configuration space variables, in [6].

It is not immediately obvious how to implement the Crnkovic—Witten construction in
the framework of Ashtekar’'s canonical gravity. In particular, the complex nature of the
canonical variables leads to difficulties which will be addressed here. It will be shown that
these difficulties can be overcome, and the Crnkovic—Witten construction can be applied
successfully to give a covariant version of Ashtekar’s theory.

2. Ashtekar’s canonical gravity

In this section, we shall review Ashtekar's Hamiltonian formulation with a view to
establishing our notation and conventions. Ashtekar’s canonical variables are the inverse
densitized triads£ and the Ashtekar connectiofy,;, defined on a spacelike hypersurface

3, of constant timer. (Ashtekar’s canonical variables can also be defined on a null
hypersurface [7].) Here and: are orthonormal and coordinate indices, respectively, ranging
from 1 to 3. The metric signature is+++, and the completely anti-symmetric Levi-Civita
tensor is taken to bey;23 = 1. For a spacelike foliation, a set of orthonormal 1-forms is
given by

= Ndr, e’ =h*;N'dr + h%; dx’, (1)
whereN and N are the lapse and shift functions, respectively. The dual basis vectors are
1/0 -0 .0
=—(——-N =mhh, . 2
.BO N(Bt N Bxi>’ ,Ba ( )a axi ( )
Eachp, is spacelike, and the normg} is timelike. Thedensitized triadsare defined by

1
(E_l)ai = Ehai’ (3)

whereh is the determinant of the matrix/J;]. The densitized triads are real valued on any
coordinate patch provided thaf; = 0 [8]. This is thetime gaugecondition, which can

be relaxed by allowing the densitized triads to become complex valued (see the appendix).
The local group of local tangent space rotations, which preserves the time gauge condition,
is the rotation grougs O(3). Theinverse densitized triad€“’ satisfy

E“(E™, =8, @)
Let E be the determinant of the matrix{’]. Now
E“ = h(h~H“, E = h?. (5)

We record the useful relations:
) Eai
hai = VE(E D4, (h™H" = JE (6)
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The torsion-free, metric-compatible connection 1-foms are given by
Wy = %[(iAiB de)e® —i,de, + i, deA], )

whereA, B, ... range from 0 to 3i, is the interior derivative along,, and d is the exterior
derivative. TheAshtekar connectianAd,;, can then be defined in terms of the components
of the connection 1-formsy,,:

Aui = Woui — 3i€apc0”;. (8)
The curvature 2-formsR,;, are given by

Rz = dw,s + @uc A 0, Ry = —R,;. 9)
They satisfy the Hodge duality relations:

*Rup = 384sco R, # Ry = =Ry (10)
The self-dual curvature 2-forms,R,,, are then given by

TR, = Ry — i %R, TR, =1 TR,,. (11)

In the absence of torsion, we have the identity:

Ry ANe® =0. (12)

Thus, for a vacuum gravitational field, the action density 4-form can be written as:

Ld*x = %RAB A xe?

= % * R, Ae't + %iRM Aet

= %i+RABAeA”, (13)

wheree*? stands fore* A e”. Now (11) tells us that

+RbC — jgabe + Ry (14)
and therefore,

Ld*x =iTRo, A (eoa + %is“bcebc). (15)

Writing

F, =% Ro,, A =% + Ligteey,, (16)
we have

Ld*% =iF, A A“. (17)

It is straightforward to obtain the important relations:
F, = 1 Fu " Adx”

= (Aai — 0;Au0 — i8abCAb()ACi) dr A dxi + %(aiAaj — ajAa,- — iEabC-AbiACj) dxi A dxj,
(18)

A = IA,, dx Adx

= %(8ahCNEbjEck + 2iEaij)8ijk dr A dxi + %iBi.ikEai dxj A dxk, (19)
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with the help of (1), (6), (8), and (11). Here, we have used the symvbédr N/+/E, and
the Greek letterge, v, ... for coordinate indices, ranging from 0 to 3. It follows that

Ld* = [AGE“ — Awo(d EY — i Ay E.')
+ JINe Fu; E) EJ + N'Fo; EY ] dt A dx. (20)

Thus we see that the Ashtekar connectign are the momenta conjugate to the inverse
densitized triadsz% and that Ashtekar’'s Hamiltonian is
H= | &x[Aw(dE" —ie" Ay E’) — JINe Fyij Ey' E/ — N'Foi; EY], (21)

A
for a spacelike hypersurface,. This is the form of the Hamiltonian given in [9].

The general theory of relativity has a phase space structure analogous to that of the
SU(2) Yang—-Mills field, where localSO(3) tangent space rotations or, more generally,
Lorentz transformations play the role of gauge transformations in Yang—Mills theory.
General coordinate invariance and Lorentz invariance require the introduction of redundant
canonical variables. This leads to constraints expressing the resulting interdependence of

the canonical variables.
In Ashtekar’s formulation, the constraints take the polynomial form:

6H S )
SA = 8,«E”” — |8abCAbiEcl =0,
a0
oH . b S
W = _:,2L|861b( FaiijlEcJ = 07 (22)
0H :
sni = ~FasEY =0,

everywhere on the hypersurfads.

Ashtekar [10] has shown that these secondary constraints are first class. We see that the
Hamiltonian is a linear combination of the constraints. It is therefore first class and weakly
zero. It is important to recall that the Yang—Mills Hamiltonian is not weakly zero in general.
This reflects a dynamical difference between the Yang—Mills field and the gravitational field.

3. Crnkovic—Witten theory

Let us review the Crnkovic—Witten construction in the case of the scalar field. We begin
with the action of the scalar field in flat spacetime:

S = [ d*x L,
M (23)

L= 3(3,00"p — V().
Crnkovic and Witten's idea involves the introduction ofsgmplectic currentat each
spacetime poink:

8L
Ju(x) = (S(W) A 8p(x) = 83,¢(x) AP (x), (24)

whereé stands for the functional exterior derivative of forms on the phase space of the
scalar field [5]. Now

8J,(x) = 8(80,p(x)) A Sp(x) — 89, (x) NS5 (x))
= 9,8(8¢(x)) =0. (25)
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This means that/, is closed as a functional 2-form. Furthermore,
" T (x) = 8(0"0,9(x)) AS(x) + 83,0 (x) A8 P (x)

= —V"(#)3¢(x) Adp(x) + 83,9 (x) A 33" (x)

= —380,¢(x) A8 p(x) =0, (26)
with the help of the equation of motion
9,0"¢p + V'(¢) =0. (27)
Stokes’ theorem then implies that
/ d*x9"J,(x) = [ do™(x)J.(x) =0, (28)
N aN

where N is a submanifold of¥f with boundarydN. SupposeédN = X, U X, U =, where
.. X, are spacelike hypersurfaces of constant time, antl/d vanishes everywhere on
the hypersurfac&. Then

/ do’(x) J,(x) =/ do’(x) J,(x), (29)
Zy ,

where &*# is chosen to point in the same temporal direction on othand ,,. This
means that the closed functional 2-form

Q= do”(x) J,(x)

P

= do”(x) 83,0 (x) Adp(x) (30)
b
is independent of the choice &f,. When we perform a Lorentz transformatiah — =,
andQ — ', where

Q = do”(x") J,(x") = | do*(x) J,(x) = Q. (31)
s %

We conclude thag2 is a Lorentz invariant symplectic form on the phase space of the
scalar field, and that it is possible to formulate the Hamiltonian theory of the scalar field
in a manifestly covariant way. The Lorentz invariance of the symplectic form allows us to
choose a spacelike hypersurfagg such that

do%(x) = dx, doi(x) =0 (32)
for all x € ¥, and, hence, we obtain the standard symplectic form
. 1)
Q= [ &txsp(x) Adp(x) = / d®x 5<£> A 8¢ (x), (33)
% . 3¢ (x)

where¢ is the momentum canonically conjugatedo

Next we consider the construction of a Lorentz invariant and gauge invariant symplectic
form on the phase space of t§&(2) Yang—Mills field, A, in flat spacetime. In this case,
the action is

S = _211/ d*x tr(F,, F*"),
M

where
F;w = a[l.A\) - auA;,L + [A;u Av] (34)
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The symplectic current is taken to be
3L ) ;
Jy =t ——— | ASA” =1tréF,, ASA", (35)
8(0,A)

wheres is the functional exterior derivative of forms on the Yang—Mills phase space [5].
This symplectic current is closed, since

8(8F,,) =0, §(8AM) =0, (36)
and therefore,

8, =tr8(8F,,) ASA” —tr8F,, AS(SAY) =0. (37)

On introducing a basis, sgy'“}, for the SU(2) Lie algebra, we have
V//.Aav = a/LA(l\) + [A/l,a Av]a

= 0, Au — EapcAY L A, (38)

Thus

0Fauy = Vy8As — Vi8A,,,
or

8F,, = V,8A, — V,84A,. (39)
As a result of a gauge transformatiofy,, — A;,,, with

ALy = Agu + 0pha +[Aus M (40)
for some infinitesimal real-valued functionon spacetime. We have

8Ay, = 8Auu + 84 Ma, (41)

SFL:W = 8F, 0 + [6Fu, Ma. (42)

The symplectic current transforms according to
J, =8F,, NSA™

apy

=y — Eapch (SF" y ASA™ + 8F%,, ASA”) + O(1?)

= J, +003?). (43)
Thus the symplectic current is &fU (2) singlet. This allows us to write
“J, =V I,
=tr V*8F,, ASA +1r8F,, A V#SA". (44)
The equations of motion
V¥ F,, = 3" F,, +[A*, F,,] =0, (45)
imply that
VHSF,, = —[8A, F,,]. (46)
Also

tr VASFuy ASAY = eape F€ 0 8A% A AP

=0. (47)



A covariant approach to Ashtekar’s canonical gravity 483

Next we consider

tr8Fyu A VESA" = Ltr6F,, A (VASAY — V 5 A

= 1tr6F,, ASF" =0. (48)
Combining (47) and (48), we see that
3J, =0 (49)

by (44). It follows that the closed functional 2-forrfe, given by
Q= / do# J, = | do* tréF,, AnSA", (50)
=, =,

is Lorentz invariant. Thus we have constructed a Lorentz invariant and gauge invariant
symplectic form,$2, on theSU (2) Yang—Mills phase space.

We can obtain the standaftl/ (2) Yang—Mills symplectic form by a suitable choice of
the spacelike hypersurfacg:

Q= [ BxtrdE; ASA, (51)

P

where E; = Fy is the momentum canonically conjugate A6.

4. A symplectic form for Ashtekar’s canonical gravity

The inverse densitized triads and the Ashtekar connection act as symplectic coordinates in
the phase space of Ashtekar’s canonical gravity. We wish to put a symplectic form on
Ashtekar’s phase space in a manner consistent with the Crnkovic—Witten construction. An
extra difficulty here, over and above the problem of gauge invariance, is the complex nature
of Ashtekar’'s canonical variables. Denoting the functional exterior derivative of forms on
Ashtekar’s phase space Bywe have

(Sa)om' bj (Sa)om‘ S bj 1: (Sa)“ii bj
(SAm' = aEbj SF + (Sﬁ‘ihjaE — i|8acdmaE , (52)
where the shorthand notation
Swoai _/ Swoai (x) P
SEbI [ SEbI(y) 7
is understood.
We require the symplectic form,
Q= [ IExSEY ASAL
5,
8Adi . i  8Au ,
- _/ Bx ( L SEY ASEY + U SEY ASEY ), (53)
% SEbj 8Ebj

to be real valued in order to have a unique symplectic structure on Ashtekar's phase
space. A complex-valued symplectic form would give rise to two real symplectic structures.
Moreover, a real-valued symplectic form produces real-valued Poisson brackets.
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Working in the time gauge and using (6) and (7), it is straightforward to show that

dBx Swai

SEY A SEY
5, SEDI

1 . X
= ZT/[((E‘l)b,-(E‘l)ak + (E™DG(E D eap) 9 N* — (E™Hp(E™HG(E e

+ (EHo(E™YHE D) (B + EfagNF — N EF)

— (E™Dai(E™¢j (ETDp(N 8 B — E“)|8EY ASE, (54)

6 ti . . .
/ By 280 S fbi A S B
%, SEbI

1 L .
= [EHGE D1 + (ED(E ey — (EDu(E™ Yy |SEY ASEX.

2N
(55)
Following Henneawset al [8], we can write
3
Eacda)Cdi = SE@ /)‘:/ d3X G,
where
G = Ejklhbjakhbg. (56)
Then
S, , ; 8 8 . ‘
o et e LSEY A SET = O : f d*x G |SEY A SE®
%, SEb SEbI\SE“ 5,
§ § 3 bj ai
=— N\ — | &xG|SEY ASEY =0. (57)
SEY \SE“ [y,

Thus the complex part of the symplectic forf, is zero in the time gauge.

Now we must show that the symplectic form is real valued for all other gauges, apart
from the time gauge. When we go from a time gauge hypersurface to a more general
hypersurface, the group of local symmetries enlarges from the rotation grogp) to the
Lorentz groupSO (3, 1) (see the appendix).

Ashtekar’s action can be written as:

S =/ £ d*x,
M

Ld' =iF, A A, (58)

where

as in (17) and (20). The symplectic form (53) can be then be written as:

sz:/ d%a(g‘if )/\SA‘”. (59)

The analogy with the Hamiltonian formulation of tl§é&/ (2) Yang—Mills field suggests
that we ought to postulate a functional 2-form on Ashtekar’'s phase space, with the vector
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density on spacetime:
§L ai
J, =8 ——— | nSA
8(0uAai)

1)
=34 |:£:| AN SAY
EW

= itr8A,, ASAY, (60)

as a symplectic current. Here, the trace tr relates to a representatioif2of), the
Lie algebra ofSO(3,1). We can associate afiO (3, 1) covariant derivativeD, with the
connectionA4,, such that

8F,, = D,8A, — D,8A,. (61)

Under a localSO(3, 1) transformation,A, — A, + d,A + [A,, 2], where 1 is
a real-valued function on spacetime. It is found tdat, — &A, + [§4,,A] and
A, — 8AL + [8A,, A]. It follows that the symplectic current is a$i0(3, 1) singlet.
Thus we can write:

o*J, = D"J, (62)
= itr D*§A,, ASAY +itr §A,, A D"SA". (63)
Since
D*A,, =0, (64)
we have
D"8A,, = —[8A", A,
and

itr DESA,, ASAY = —itr[8A*, AL] A SAY

= itr[8 A", SA'1 A Ay, = 0. (65)
When we vary the action with respect to the orthonormal 1-forms, while keeping the
connection 1-forms fixed, the equations of motion imply:
FM§A,, =0. (66)
Consequently,
itr A, A D*SAY = Zitr §A,, ASF™ = —1itr §(F*'8A,,) = 0. (67)

It is clear from (65) and (67) that the divergence of the symplectic current in (63)
vanishes, and it follows that the closed functional 2-form

Q- f dot J, =i / Ao’ tr5A, ASA, (68)
N %

is a Lorentz invariant and general coordinate invariant symplectic form on Ashtekar’s phase
space. In particular, since the imaginary partbfvanishes in the time gauge, astlis
Lorentz invariant, them2 is real valuedin any local Lorentz frame, even one in which the
inverse densitized triads are complex valued.

A further question, which must be addressed, is the convergence of the integral in (68)
when X, is non-compact since, unlike the case of a scalar field or a Yang—Mills field, one
cannot in general assume th&t’ and A,; vanish outside a compact region Bf. This
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guestion is analysed in detail in [6], where the sufficient conditions on the asymptotic form
of the 3-metricg;; are derived to ensure the convergence of the relevant integrals when
¥, is non-compact, though the complex variable¥ and A,;, are not considered there.
Having proven thaf2 is real whenE® and A,; are used as canonical variables, we only
need to transcribe the conditions @i used in [6] to equivalent conditions dif’ and A,;

in Ashtekar’s formalism and this will ensure that (68) converges.

5. Conclusions

We have described Ashtekar’s canonical gravity in a manifestly covariant way by using
a construction due to Crnkovic and Witten. This construction had worked for the ADM
formulation of general relativity, so we hoped it might work for Ashtekar’s formulation, at
least in the time gauge. The only obstacles to be overcome were gauge invariance and the
complex nature of Ashtekar’s canonical variables.

Gauge invariance was incorporated into the symplectic form we put on Ashtekar’s phase
space, along with Lorentz invariance, as in the work of Crnkovic and Witten. Using a result
in a paper by Henneauet al, we showed that the symplectic formrigal valuedin the
time gauge, thereby giving rise toumique symplectic structure on Ashtekar’s phase space,
as well as real-valued Poisson brackets.

It remained to show that the symplectic form is real valued for all other gauges, in
addition to the time gauge, when the canonical variables arg @|C) valued. This was
accomplished using the analogy with the Hamiltonian formulation of $b&2) Yang—

Mills field. As a result, we know that the Crnkovic—Witten construction can be applied to
Ashtekar’s canonical gravity.

Appendix

A general orthonormal basis can be obtained from one adapted to a spacelike hypersurface,
3, as follows. Denoting four-dimensional orthonormal and coordinate indices, B . . .
andpu, v, ..., respectively, let
N 0
W, = [ | ] (A1)
h®;N7  h¢;
be a tetrad withh® = N dx® normal to X,. This choice of tetrad is compatible with the
time gauge condition. Her® is the lapse functionN’ are the shift functions ané®; is
an orthonormal triad orx, satisfying

hihaj = gij, (h™Ha'h; =6, (A2)
whereg;; is the three-dimensional metric ay. An arbitrary Lorentz boost, tangent &,
with 3-velocity v¢ is given by

14 —VU
L(U)AB = ]/2 s
_ a 8(1 a
yv b+ 1+y ViU
where
y =(1—vv) 2 (A3)

So an arbitrary tetrad is of the form:
eAu = L(U)ABhB;L- (A4)
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Note, however, that

2
14

Y =hY

e +1+

» viv,h?; (A5)
are not an orthonormatiad because®;e,; # g;;. Let e be the determinant of the matrix,
[e.;]. Defining the inverse densitized triads’ by

EY = e(e )4 — isijke“jebkvb, (AB)
Ashtekar’s Lagrangian takes the form:
L= | &Px[AGEY — Aw(E” — i A E') + SINe Fu; E) E/ + N'Foi; EV,

%

(A7)

whereN = y N/e. This shows thaE* andA,; are canonically conjugate, with", N and
Ao behaving as Lagrange multipliers for the secondary constraints. It is straightforward to
verify that the complex inverse densitized triads satisfy

E“E,’ = gg", EYEy gij = 8%, (A8)
whereg is the determinant of the matrig], and so they can be regarded, in a sense, as

a complex orthonormal triad density. The effect of an infinitesimal Lorentz boost on the
canonical variables is easily calculated. Using

0 —51.)b
SL",(0) = , A9
o= . o] (A9)
we find
8y AY = —(9;8v" — ie* Apiduv,), (A10)
SyEY =" E}' Sv,, (A11)

which is to be compared with the effect of an infinitesimal tangent space rotatidy,on
parameterized by6?,

S9 A% = 1(8;80% — g% A,;86,), (A12)

SoE“ = g E,'50,. (A13)

As an extra check that these variables are canonically conjugate, it is instructive to prove
that Lorentz transformations leave the Poisson brackets unchanged. It is easy to verify that
an infinitesimal boost leaves the Poisson bracket unchanged as, of course, do infinitesimal
rotations. As boosts and rotations form a group, we can simply exponentiate and deduce
thatfinite Lorentz transformations also leave the Poisson bracket invariant. Hence,

{EY, Apj} = 898", (A14)

must hold for the complext® with v* # 0. In conclusion, it has been shown that it is

not necessary to match the choice of an orthonormal frame to the foliation of spacetime
in Ashtekar’s canonical gravity. The inverse densitized triads are now complex valued,
but there are still conditions on them, since the imaginary part only has three degrees of
freedom,v?, rather than the nine which would be necessary for a complex33matrix.

The Ashtekar connection,;, becomesi (2, C) valued. The infinitesimai/(2, C) gauge
transformations are given above in (A10) and (A11). Finally, this appendix is equivalent to
the work of Ashtekaet al in [11], where the results are formulated in spinor notation.
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