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Abstract

Thegoal of this paperis to proposea candidatefor con-
siderationasa computationaprinciple for cognitivedevel-
opmentin autonomousobots.Thecandidatein questionis
thetheoryof Cortical Softwae Re-Usg CSRJ) andwewill
male the casein this paperthat it providesa medanism
for theincrementalconstructionof cognitive andlanguage
systemdrom simplersensory-motocomponents.

1. Introduction

Thereis a growing view amongrobotics researchers
that to be truly intelligent, robots needto be capableof
autonomousmentaldevelopment[18, 22]. If the goal is
to build complete,integratedsystemsthat can operateat
humanlevels of performance,we must find appropriate
methodologieshatallow usto scaleboththe sizeandcom-
plexity of their behaioral repertoire18]. One obvious
sourceof inspirationis the procesof humancognitive de-
velopment Amongtheattractive featureof adevelopmen-
tal approactareits open-endednesiss biologicalplausibil-
ity, andtheincrementallyincreasingoehaioral complexity
in aprincipledway. Thereis, we believe, agradualtrendin
roboticsresearctaway from off-line, pre-programmedys-
temdesignandconstructiorto a moreepigenetiapproach.
The hopeis that within this paradigm,increasinglymore
comple cognitive structureswill emegein thesesystems
asa resultof interactionswith the physicalandsocialervi-
ronment24].

Much work to date on implementinga developmental
methodologyfor robotshasbeenderived from the classi-
cal paradigmsf developmentapsychology{7, 8, 18]. The
termsof descriptionarebehavioral andcognitive: develop-
mentalstages accommodatiorand assimilationof behar-
ior, andso on. The currentfocusof muchof this research
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is on finding a way to specify theseconceptsat a neural
and implementationalevel. For example, one group of

roboticsresearcherfastaken the skills acquiredin learn-
ing to foveatea target and re-usedthemin the execution
of reachingandheadmovementq18]. Another strandof

researchhas explored how intentionality emegesfrom a
procesof learninggoal-methodassociation$7], andhow

communicatiordevelopson the basisof joint attentionin-

volving gazeanddeixis[7, 18]. However, all of theseef-

forts arequitetaskspecific,andcannotbeusedasageneral
developmentalframeavork. What is needed therefore,is

the specificationof a generaljmplementablalevelopmen-
tal methodologycapableof supportingthe gradualdevel-

opmentof highercognitive functionsfrom simplercompo-
nents. An appropriatedevelopmentaimethodologyshould
fulfill thefollowing criteria:

e provide a mechanisnfor constructingmore complex
behaiors from simplercomponents;

e be specifiedat behaioral, computationaland neural
levels;

e becapableof accountingfor the emegenceof higher
level cognitive functions(i.e. cognition,planning,lan-

guage).

We proposea candidateframenork in the form of Cortical
SoftwareRe-Use(CSRU) theory

2. CSRU principles

The centralconceptof the theory, that of “softwarere-
use”, is borroved from the field of software engineering.
Put simply, it statesthat dynamicalneuralprocesse$rom
the sensory-motoareasof the brain provide the computa-
tional building blocksfor higherlevel functionsup to and
includingthoseinvolvedin cognitionandlanguageWithin



https://core.ac.uk/display/297030487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this framawork, creatve cognitioncanbeviewedastheap-
propriation of computationalresourcesrom one domain
andtheir applicationto another

The principlesof CSRJ werefirst elaboratedy Reilly
[14, 17] to accounffor syntaxacquisitionin termsof there-
useof amotorprogramfor complec actionsequencesl hey
are:

e Cortical “algorithms” for languageprocessingand
cognitionarederivedfrom, andbuilt upon,thosefrom
the sensory-motoidomain. According to this view,
cortical circuits that are involved in the planning of
motormovementssay canbeexploitedduringreason-
ing, and not necessarilywhenreasoningaboutmove-
ment. This processs thebasisfor the simplestform of
corticalre-use.An exampleof haw this mightwork is
givenin section3.1.

e Thefunctioningof thesealgorithmsis mediatedoy re-
ciprocal projectionshetweensensory motor, associa-
tion, andprefrontalareas Thedirectionof influenceis
from thesensoryandmotorregionsto thehighercorti-
cal regions,becausehe circuitry in the sensory-motor
areasconsolidateandmaturesearlier andthat of the
prefrontalarearemainsplasticthelongest.

e The style of computationis a form of dynamicalcon-
straint satishiction, where patternsof neuronalfiring
from connectedregions mutually influence one an-
otherthrougha processof resonancend harmoniza-
tion. In computationatermsonecanthink of two res-
onantdynamicalpatternsasbeingequivalentto theap-
plication of a function designedor onedomain(e.g.,
sensory-motorjo a new domain(e.g.,cognitive). The
last two principleslay the foundationfor a complex
form of dynamicalre-usereferredasasymmetriccell
assembliesollaboration(section3.2).

If weareto build neurallyinspiredcomplex artificial sys-
tems, it is essentiato identify the fundamentakcomputa-
tional building blocks. Sucha basiccomponents likely to
beintrinsic,emepingearlyin developmentandnotrequir
ing the interventionof learning,at leastin its initial form.
The neuralprimitive proposedby CSRU is the collabora-
tive cell assembly(CCA). Here, softwae re-useindicates
thatthe developingpartnerin a collaborationis ableto re-
usethe repertoireof cell assemblieslreadyestablishedn
themoredevelopedcorticalregions. Whatis new aboutthis
proposalis thatit focuseson theinteractionbetweerthese
typesof cell assemblyandthe possiblerole that develop-
mentmay play in this interaction. CSRU makesa distinc-
tion betweencollaborationgnvolving cell assemblieshat
areequallywell developed,andthosein which onepartner
in the collaborationis more developedthanthe other We
referto theformerassymmetriccollaborationandthelatter

asasymmetric In the later case thereis the possibility for
the lesswell developedcell assemblyto exploit the func-
tionality of the more developedone. We illustratein the
following sectionshow thesecomputationsnaytake place.

3. CSRU developmental methodology

We have proposedabove three criteria that a develop-
mentalmethodologyshouldfulfill if it aimsto be applied
to cognitive developmentin robots. We believe that such
a methodologycan and should be groundedin a psycho-
logical accountof humandevelopment,be neurally plau-
sible, and computationallyimplementable. For example,
theconceptanderlyingCSRU have beenaroundin various
guisesfor sometime. The notion of re-useis very much
in harmory with adaptation-dsiendesignprinciplesfound
in both evolution and development[10]. Cell assemblies
are ervisagedalongthe lines proposedby Hebband later
Pulvermiller [4, 13]. Whatis nenv aboutCSRJ andwhat
malesit a feasibledevelopmentalmethodologyis that it
describesdevelopmentin relatively explicit neuralterms.
We proposebelaw, two forms of re-use,which, we main-
tain, give usthe computationameansultimately for devel-
opmentof cognitive capabilities.

3.1. Neighborhood collaboration

A key issuefor CSRJ is how relevant perceptuo-motor
functions are selectedor “indexed” for re-useby higher
level functions. CSRJ assumesheindexing to be domain
or contentindependentrelying on the relatednessf neu-
ronal firing patternsat an abstractstructurallevel. There-
fore,thereneednot necessarilype a“semantic”connection
betweerthere-useccomponenandits new application.An
illustrative exampleis the proposalby Greenfield[3] re-
gardingthe dual function of Broca’s area. She obsened
parallelsin thedevelopmentatomplexity of speeclandob-
ject manipulationof children aged11-36 months. Using
evidencefrom neurology neuropsychologychild develop-
ment,andanimalstudies shearguedthatthetwo processes
arebuilt uponaninitially commonneurologicafoundation,
whichthendividesinto separatepecializechreasasdevel-
opmentprogresses.

CSRUJ theory[14, 17] wasusedto provide a simulation
accountof how the motor programsdevelopedfor object
manipulationmight be re-usedfor languagesyntax. The
hypothesisof the simulationwas that thereis somecom-
putationalbenefitfrom constructinga languageprocessing
systemon a pre-&isting motor control system. To test
this hypothesis,a motor and speechtask have been se-
lectedandimplementedvithin a connectionistramework.
In the first phase the hierarchicalstructuresof the motric
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Figure 1. The relative effects on performance
of learning alangua ge production task with a
simple recurrent network, when diff erent pre-
training regimes are applied.

andlinguistic representatione/ere encodedusinga recur
sive auto-associate memory(RAAM) [11]. Secondthe
RAAM goal representationsere fed into a simplerecur
rentnetwork (SRN),which hadto generatehe appropriate
sequencef actionsasoutput. The motor representations
encodedheactionscarriedoutto nesta setof cupsof vary-
ing sizes,by usingdifferentstratgyies(see[3]). A general
representationadtructureof the form (<actor> <action>
<actedupor>) wasused. The outputspeechactionspar
alleledthat of objectassemblyandwere generatedased
on a sampleof simpleutterancesakenfrom the Higginson
corpus[5] (for moredetailsse€g[17]).

Thequestiorof re-usabilitywasoperationalizedy look-
ing for atrainingadvantagevhentherecurrennetwork was
pre-trainedn the objectassemblyaskprior to learningthe
languagdask.A numberof control conditionswereimple-
mented:randominitialization of thelanguageetwork, pre-
training the network on input with similar numericalprop-
ertiesto the objectassemblytask, pre-trainingthe network
with thelanguageproductiontaskfirst.

Figurel shavs the averageperformancef several SRN
networks on learninga simplelanguagecorpus,whendif-
ferentpre-conditioningregimeswere applied. The bottom
line shaws that pretrainingon an object assemblytask is
moreadwantageoushanthe othercontrol conditionsin fa-
cilitating theemegenceof a simplesyntaxcapability

In the caseof Greenfields proposalre-useactuallyin-
volvesexploiting moreor lessthe samecorticalregion. The
selectionof re-usabldunctionsfrom onedomainfor re-use
in anotheris based,at leastin part, on structuralisomor
phism,possiblysupportedy resonancdetweerthe firing
patternsof the re-usingand re-usedcortical regions. To-
pographicproximity is alsoobviously a factor Therefore,
in Greenfields case,at somelevel of abstractionthereis

an isomorphismbetweenthe neuronalactivity underlying
motor sequenc@lanningandspeectplanning. The child’s
emepging speechcapability indexes relevant functions of
the motor planningsystemby virtue of this structuraliso-
morphism,andexploits themduring development. This is
re-usein its simplestform. Recentwork on the mathemat-
ical foundationsof the CSRJ theory have establishedhe
basisof a morecomplec form of re-use:collaboratve cell
assemblie§l5].

3.2. Asymmetric collabor ation

A key challengeto implementing a developmental
methodologyis translatingbehavioral level accountsinto
neurocomputationabnes. CSRJ helpsbridge the gap by
usinga mathematicaframework thatin thelastdecadéhas
beenincreasinglyexploited as a meansof understanding
brain function both at a neuraland cognitive level. A dy-
namicalsystemgheoryaccounif cognitionseescognitive
processess behaioral patternsof non-lineardynamical
systemgq12]. Previouswork in our group hasfocusedon
developinga simulationervironmentfor networks of spik-
ing neurong9], which now allows usto explore properties
of dynamicalneuralsystemswhich are essentiato under
standingCSRJ computationssuchas: synchronizatiorof
firing patterns,and selectionof re-usablemoduleson the
baseof resonancandstructuralisomorphism.

Asymmetriccollaborationis basedon a computational
mechanismby which neuronalnitsarecapablenotonly of
learningandreproducinga patternbut, moreimportantly of
creatingnew typesof behaior by superimposingor apply-
ing someothertype of linear or nonlinearcombiningrule)
patternst is exposedo. More specifically the periodicbe-
havior displayedoy oneor moreneuralassembliefrom the
relatively well-developedarea(a motor areain our case)is
usedasan input for a network in a developingarea(cog-
nitive functionareas)andby adaptingthe synapticweights
of the "studentnetwork” the oscillatoris capableof com-
poundingthe inputsinto a more complex pattern. Current
work is undervay to implementa small-scalesimulationof
the dynamicsin two neuralpopulations,asan exampleof
asymmetricallycollaboratingcell assembliesOur specific
focusis on motor sequencdearningandreproduction(see
sectionb).

We have arguedsofar that CSRU canprovide a neural-
level accountfor aspect®f the developmenif syntaxpro-
ductionby usingexistentmotorprogramsFurthermorewe
proposethat the collaboratve cell assembliesrameavork
cansupportthe developmentof deferredimitation andin-
tentionalsearchin robots.Beforewe turnto theissueof in-
crementaldevelopmentof delayedimitation and planning,
we needto discussacritical problemin building robotsthat
imitate.



4. Visuo-motor mapping from re-use per spec-
tive

An essentiaproblemin learningby imitation is how to
mapanobsenedactionto theappropriatenotorcommands
[1, 8]. While the CSRU paradigmproposeghat one can
developcomplex cognitive capabilitiesfrom arepertoireof
sensory-motoprogramsthereis still theissueof how this
basicrepertoireof sensory-motoprograms(e.g.,eye-hand
coordination)is acquired.In thefollowing, we presenbour
approacho modelinga learningprocesdor theacquisition
of abasicimitative skill.

Resultsfrom neurophysiologicabktudiesof the visual
analysisof motion have establishedhe existenceof a spe-
cial pathway for processinghedirectionof movementi.e.,
the dorsalpathway) [6]. Furthermore,t hasbeenshavn
thatat all stagesf motorcontrol, the activity of a substan-
tial percentagef movement-relatedieuronsdependsipon
the directionof movement(i.e., involve directionselectve
cells)[6].

Ourideawasto usethemotionselectve cell asthebasic
information-processinglementfrom which arebuilt neural
networkscapableof visuo-motorcontrol. Thus,subsequent
activation of the motion selectve cells placedalong the
chainof areasinvolvedin processingand controlling mo-
tion, implementsa low-level mechanisnfor the transmis-
sion of directionalinformation. At two end-pointsof this
perceptuo-motocommunicationsystemwe implemented
neuralmechanismthatencodeghemotiondirectioninto the
firing patternsof directionallyselectve populationsof neu-
rons[16]. Self-oganizedlearningemegesfrom the cor
relatedfiring of the vision and motor neuronsthroughthe
meanf spike-timingdependenplasticity[20]. A learning
stepconsistsof the following sequencef processes(l) a
commando movein arandomdirectionis generatedby the
motornetwork andmaintainedor a certaintime interval by
thepopulationof neurongunedto thisdirection;(2) theeye
tracksthe moving handandthe motion selectve cellsfrom
thevisualsystensignalthedirection;(3) acorticalpathway
transmitsthe resultingfiring patternfrom the visualto the
motor control areas;(4) if the arrival of pre-synapticsen-
soryspikescoincideswith a post-synapti@ctiity of motor
neurongodingthis particulardirection,thenanincreaseof
theconnectiorstrengttresults.After trainingis performed,
astrongconnectiorformsfrom thevisualto themotorarea,
couplingselectvely the neuralassembliesvhich have sim-
ilar preferreddirectionsof movement. The formation of
this pathway facilitatesthe executionof amovementguided
only by visualneuralactiity [16].

The learningprocessrvisagedabove is inspiredby the
sensorimotostageghataninfantprogressethroughto de-
velopeye-handcoordination Within thePiagetiarview, the
beginningsof imitationappeaiasthechild becomegapable

of coordinatinghandmovementswith theincomingvisual
information,and masterghe imitation of handmovements
of others. When executing movementsduring the early
motor-babblingperiod, infants perceve and learn contin-
genciesbetweerthe motoractivity andthe visualimageof
their actions,hencethe simultaneousnoving andtracking
of anarm canprovide the context for the learningprocess
outlinedabove.

This modelsupportsa particularview onthe neurophys-
iological control of movement. Recentdebateson the re-
lation betweeroculomotorandlimb motorcontrolsystems
adwancethe hypothesishat eye and handmovementsare
subjectto similar control mechanismsand that gaze(i.e.,
extraretinalinformation) providesthe signalfor targetlimb
motion [2]. We believe that our modelprovidescomputa-
tional supportfor the emegenceof eye-handcoordination.
Specifically we have obtainedanexampleof “indexing” of
amotorsetof neuronscontrollingdirectionalityby another
setof neuronswhich analyzemotion direction. Puttingit
in moregenerakerms this examplesupportghethesisthat
gazeor eye movementneuralactivity canbe “re-used’to
control the movementof a limb. From this approachthe
corversionof gazedirection into a directionally oriented
limb motiondo notrepresenatransformatiorproblemany-
more,andbecomea problemof finding the meangfor col-
laborationbetweenactive cell assemblies.As supportfor
this thesis,we can cite anotherexampleof a developmen-
tal processdescribedin [18]. Constructinga systemthat
first learnsto foveatea visual targetandthen“re-use” the
saccadamapto achieve ballistic reachingprovidesa com-
pelling exampleof how motorprogramgor eye movements
(i.e. developedearlier) canprovide the computationabup-
portfor thelateracquisitionof visually-guidedreaching.

5. CSRU in developing delayed imitation and
planning

Oncethe basisfor immediateactionimitation hasbeen
establishedasdescribedn the previous section),the next
developmentalstageinvolves learningcomplex motor se-
guencesanddevelopinga memoryfor their representation.
From an epigeneticview, deferredimitation marksa pro-
gressionto the fourth stageof developmentin humanin-
fants,exploiting thefunctionalityof workingmemory Dur-
ing this fourth stage the child alsobeginsto shov behaior
in which meansare clearly differentiatedfrom ends[23].
Infantsat nine monthsof age,areableto searchor hidden
objects,pushasideobstaclesand usetools to retrieve dis-
tantobjects.Our interestgesidein modelingthe processes
thatsupportaparalleldevelopmenof delayedmitationand
intentional,goal-directeehavior.

Essentialfor articulatinga computationalapproachis
thatthis developmenbccursgraduallyandusuallyby using



unplannedorwardsearchwith solutionsoftenemeging by
accidentin the courseof trying out several familiar activi-
ties[23]. Therobot- liketheinfant- shouldbeableto learn
causalelationsbetweercommandsdo its motorregionand
visualinputswhile trying outa sequencef sensory-guided
actions(e.g., imitating actions)until eventually a goal is
reachedlf thissuccessionf actionsis externallyrewarded,
thanthe systemreinforcesit and createsa memoryrepre-
sentatiorof the profitablemeans-d&ctassociationTrough
this behaioral adaptationthe agentmakesthe transitionto
a stagewherepreparatiorand planningof the movements
occurs.In infants plannedbehaior requireshe capacityto
organizententionalbehaior, definedas:trying to achiesea
goalby selectingrom amongalternative actions correcting
for errorsandstoppingwhenthegoalis attained23]. Simi-
lar epigeneti@pproachebave beenimplementedn several
robotic systemsfor developmentof imitative skills [8], in-
tentionalityandcommunicatior{7].

Currentwork of our groupis focusedon implementing
the meansof asymmetriccollaborationand reinforcement
learningon a specialtype of cognitive architecturefo sup-
portthe emegenceof internallyinitiated, goal-directedse-
guence®f actions.

5.1. Incremental cognitive architecture

Consideringthe nature of the processeghat we want
to accountfor, the neurobiologicallyinspiredarchitecture
shouldinvolve a sensory(visual or perceptve) input gate-
way andthe frontal lobes’ motor and executive areas. We
proposea specialtype of connectionistrchitecturewhich
we referto asanincrementakognitivearchitecture. Thein-
crementahaturerelieson thecharacteristithatsomeof its
componentstartfully developedandfunctional,while oth-
erswill be progressiely recruitedand becameoperational
by aproces®f dynamicalcollaborationjnvolving synchro-
nization and resonancebetweenthe firing patternsof the
sourceandtargetdomains.Amongthefirst modulesdevel-
opedwill bethoseof thevisual cortex, proprioceptvearea,
dorsalpremotorand primary motor cortex. The latter may
includethe supplementarynotorareaanddorsalprefrontal
cortex. Conceptuallyincrementalearningis similar to the
recruitmentearningalgorithmappliedfor eaxmpleto con-
ceptualbinding[19], exceptthatincrementalearningleads
to recruitmentof entire neuralpopulationsfor executinga
new, emegentfunction, ratherthanrecruitingsinglenodes
for representingiew items. Furthermorerecruitmentn the
re-useframework is a large-scale ratherthan single unit
phenomenawhich emegesfrom the nonlinearinteraction
betweercouplednetworksdisplayingperiodicbehavior.

An incrementalarchitecturefavors the developmentof
complex behavioral programsin a cascademanner: the
activity from the low-level functional modulesis applied
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* learning of action sequences
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» memory for sequences
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» goal-directed reaching
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Figure 2. Incremental developmental model.
PMd stands for the dorsal premotor cortex,
M1 is the primar y motor cortex, SMA the sup-
plementar y motor area, BG the basal ganglia,
and DLPFC the dorsolateral prefrontal cortex.
The thick lines designate the cortico-basal
ganglia loops via thalamus. Note that the vi-
sual areas are not represented here.

throughcortical connectionssa teachingsignalto the os-
cillations occurring spontaneouslyn the higher modules
(e.g.,SMA, DLPFC). The essentiafjuality of the later de-
velopingareasds thatthe neuralpopulationsfrom hereare
capablenot only of learningthe input pattern,but more
importantly are ableto abstracta more generaland com-
pressedorm of behaior, by applyingsometype of nonlin-
earcombiningrule to the patternsthey are exposedto. In
this procesghereciprocalconnectvity - from the earlierto
thelaterdevelopedareasandvice versa- playsanessential
role. The basal-gangliahroughits cortico-thalamidoops
implementghe meansof reinforcementearning[21].
Thisarchitecturas “unfolded” in adevelopmentaimodel
with threestagegFigure?2), eachcorrespondingo new be-
havioral and cognitive acquisitions.A new stageincorpo-



ratestheachiezementof thepreviousdevelopmentaphase
and mirrors the recruitmentof a new functional module
throughthe meansof asymmetriccollaboration. Our cur-
rent and future work focuson implementingthis develop-
mentalmodelin a simulatedrobotandtestingthe implica-
tionsof ourtheory

6. Conclusions

We have presentedn-goingresearchon the implemen-
tationof a developmentamethodologydedicatedo thede-
sign of intelligent robotic systems.Our approachs based
onthecorticalsoftwarere-useconceptthatinvolvethecon-
structionof cognitive functionson afoundationof sensory-
motor programs.Two forms of re-use(e.g.,neighborhood
collaborationandasymmetricallycollaboratve cell assem-
blies) have beendescribedtthe neurallevel, giving us,we
maintain,the computationameangor developmenbf cog-
nitive capabilities It remaingto beseerhow furthermodels
will confirmor correcttheimplicationsof CSRJ theory
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