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Abstract

Thegoalof this paperis to proposea candidatefor con-
siderationasa computationalprinciple for cognitivedevel-
opmentin autonomousrobots.Thecandidatein questionis
thetheoryof Cortical SoftwareRe-Use(CSRU) andwewill
make the casein this paper that it providesa mechanism
for theincrementalconstructionof cognitiveandlanguage
systemsfromsimplersensory-motorcomponents.

1. Introduction

There is a growing view among robotics researchers
that to be truly intelligent, robots needto be capableof
autonomousmentaldevelopment[18, 22]. If the goal is
to build complete,integratedsystemsthat can operateat
human levels of performance,we must find appropriate
methodologiesthatallow usto scaleboththesizeandcom-
plexity of their behavioral repertoires[18]. One obvious
sourceof inspirationis theprocessof humancognitive de-
velopment.Amongtheattractivefeaturesof adevelopmen-
tal approachareits open-endedness,its biologicalplausibil-
ity, andtheincrementallyincreasingbehavioral complexity
in a principledway. Thereis, webelieve,a gradualtrendin
roboticsresearchaway from off-line, pre-programmedsys-
temdesignandconstructionto amoreepigeneticapproach.
The hopeis that within this paradigm,increasinglymore
complex cognitive structureswill emerge in thesesystems
asa resultof interactionswith thephysicalandsocialenvi-
ronment[24].

Much work to dateon implementinga developmental
methodologyfor robotshasbeenderived from the classi-
cal paradigmsof developmentalpsychology[7, 8, 18]. The
termsof descriptionarebehavioral andcognitive: develop-
mentalstages,accommodationandassimilationof behav-
ior, andsoon. The currentfocusof muchof this research

is on finding a way to specify theseconceptsat a neural
and implementationallevel. For example, one group of
roboticsresearchershastaken the skills acquiredin learn-
ing to foveatea target and re-usedthem in the execution
of reachingandheadmovements[18]. Anotherstrandof
researchhasexplored how intentionality emergesfrom a
processof learninggoal-methodassociations[7], andhow
communicationdevelopson the basisof joint attentionin-
volving gazeanddeixis [7, 18]. However, all of theseef-
fortsarequitetaskspecific,andcannotbeusedasageneral
developmentalframework. What is needed,therefore,is
the specificationof a general,implementabledevelopmen-
tal methodologycapableof supportingthe gradualdevel-
opmentof highercognitive functionsfrom simplercompo-
nents. An appropriatedevelopmentalmethodologyshould
fulfill thefollowing criteria:

� provide a mechanismfor constructingmorecomplex
behaviors from simplercomponents;

� be specifiedat behavioral, computational,andneural
levels;

� becapableof accountingfor theemergenceof higher
level cognitivefunctions(i.e. cognition,planning,lan-
guage).

We proposea candidateframework in theform of Cortical
SoftwareRe-Use(CSRU) theory.

2. CSRU principles

The centralconceptof the theory, that of “softwarere-
use”, is borrowed from the field of software engineering.
Put simply, it statesthat dynamicalneuralprocessesfrom
the sensory-motorareasof the brain provide the computa-
tional building blocksfor higher level functionsup to and
includingthoseinvolvedin cognitionandlanguage.Within
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this framework, creativecognitioncanbeviewedastheap-
propriation of computationalresourcesfrom one domain
andtheir applicationto another.

The principlesof CSRU werefirst elaboratedby Reilly
[14, 17] to accountfor syntaxacquisitionin termsof there-
useof amotorprogramfor complex actionsequences.They
are:

� Cortical “algorithms” for languageprocessingand
cognitionarederivedfrom, andbuilt upon,thosefrom
the sensory-motordomain. According to this view,
cortical circuits that are involved in the planningof
motormovements,say, canbeexploitedduringreason-
ing, andnot necessarilywhenreasoningaboutmove-
ment.Thisprocessis thebasisfor thesimplestform of
corticalre-use.An exampleof how this might work is
givenin section3.1.

� Thefunctioningof thesealgorithmsis mediatedby re-
ciprocalprojectionsbetweensensory, motor, associa-
tion, andprefrontalareas.Thedirectionof influenceis
from thesensoryandmotorregionsto thehighercorti-
cal regions,becausethecircuitry in thesensory-motor
areasconsolidatesandmaturesearlier, andthatof the
prefrontalarearemainsplasticthelongest.

� Thestyleof computationis a form of dynamicalcon-
straint satisfaction, wherepatternsof neuronalfiring
from connectedregions mutually influence one an-
otherthrougha processof resonanceandharmoniza-
tion. In computationaltermsonecanthink of two res-
onantdynamicalpatternsasbeingequivalentto theap-
plicationof a functiondesignedfor onedomain(e.g.,
sensory-motor)to a new domain(e.g.,cognitive). The
last two principles lay the foundationfor a complex
form of dynamicalre-use,referredasasymmetriccell
assembliescollaboration(section3.2).

If weareto build neurallyinspiredcomplex artificial sys-
tems,it is essentialto identify the fundamentalcomputa-
tional building blocks. Sucha basiccomponentis likely to
beintrinsic,emergingearlyin development,andnot requir-
ing the interventionof learning,at leastin its initial form.
The neuralprimitive proposedby CSRU is the collabora-
tive cell assembly(CCA). Here,software re-useindicates
that the developingpartnerin a collaborationis ableto re-
usethe repertoireof cell assembliesalreadyestablishedin
themoredevelopedcorticalregions.Whatis new aboutthis
proposalis that it focuseson the interactionbetweenthese
typesof cell assemblyand the possiblerole that develop-
mentmay play in this interaction.CSRU makesa distinc-
tion betweencollaborationsinvolving cell assembliesthat
areequallywell developed,andthosein which onepartner
in the collaborationis moredevelopedthanthe other. We
referto theformerassymmetriccollaborationandthelatter

asasymmetric. In the latercase,thereis thepossibility for
the lesswell developedcell assemblyto exploit the func-
tionality of the more developedone. We illustrate in the
following sectionshow thesecomputationsmaytake place.

3. CSRU developmental methodology

We have proposedabove threecriteria that a develop-
mentalmethodologyshouldfulfill if it aimsto be applied
to cognitive developmentin robots. We believe that such
a methodologycan and shouldbe groundedin a psycho-
logical accountof humandevelopment,be neurally plau-
sible, and computationallyimplementable. For example,
theconceptsunderlyingCSRU havebeenaroundin various
guisesfor sometime. The notion of re-useis very much
in harmony with adaptation-drivendesignprinciplesfound
in both evolution and development[10]. Cell assemblies
areenvisagedalongthe lines proposedby Hebband later
Pulvermüller [4, 13]. What is new aboutCSRU andwhat
makes it a feasibledevelopmentalmethodology, is that it
describesdevelopmentin relatively explicit neural terms.
We proposebelow, two forms of re-use,which, we main-
tain, give usthecomputationalmeansultimately for devel-
opmentof cognitivecapabilities.

3.1. Neighborhood collaboration

A key issuefor CSRU is how relevantperceptuo-motor
functionsare selectedor “indexed” for re-useby higher-
level functions. CSRU assumesthe indexing to bedomain
or contentindependent,relying on the relatednessof neu-
ronal firing patternsat an abstractstructurallevel. There-
fore, thereneednot necessarilybea “semantic”connection
betweenthere-usedcomponentandits new application.An
illustrative example is the proposalby Greenfield[3] re-
gardingthe dual function of Broca’s area. Sheobserved
parallelsin thedevelopmentalcomplexity of speechandob-
ject manipulationof children aged11-36 months. Using
evidencefrom neurology, neuropsychology, child develop-
ment,andanimalstudies,shearguedthatthetwo processes
arebuilt uponaninitially commonneurologicalfoundation,
which thendividesinto separatespecializedareasasdevel-
opmentprogresses.

CSRU theory[14, 17] wasusedto provide a simulation
accountof how the motor programsdevelopedfor object
manipulationmight be re-usedfor languagesyntax. The
hypothesisof the simulationwas that thereis somecom-
putationalbenefitfrom constructinga languageprocessing
systemon a pre-existing motor control system. To test
this hypothesis,a motor and speechtask have beense-
lectedandimplementedwithin a connectionistframework.
In the first phase,the hierarchicalstructuresof the motric



Figure 1. The relative effects on perf ormance
of learning a langua ge production task with a
simple recurrent netw ork, when diff erent pre-
training regimes are applied.

andlinguistic representationswereencodedusinga recur-
sive auto-associative memory(RAAM) [11]. Second,the
RAAM goal representationswerefed into a simplerecur-
rentnetwork (SRN),which hadto generatetheappropriate
sequenceof actionsasoutput. The motor representations
encodedtheactionscarriedout to nestasetof cupsof vary-
ing sizes,by usingdifferentstrategies(see[3]). A general
representationalstructureof the form ( �

actor� �
action�

�
actedupon� ) wasused. The outputspeechactionspar-

alleled that of objectassembly, andweregeneratedbased
on a sampleof simpleutterancestakenfrom theHigginson
corpus[5] (for moredetailssee[17]).

Thequestionof re-usabilitywasoperationalizedby look-
ing for atrainingadvantagewhentherecurrentnetwork was
pre-trainedon theobjectassemblytaskprior to learningthe
languagetask.A numberof controlconditionswereimple-
mented:randominitializationof thelanguagenetwork, pre-
training thenetwork on input with similar numericalprop-
ertiesto theobjectassemblytask,pre-trainingthenetwork
with thelanguageproductiontaskfirst.

Figure1 shows theaverageperformanceof severalSRN
networkson learninga simplelanguagecorpus,whendif-
ferentpre-conditioningregimeswereapplied. The bottom
line shows that pretrainingon an object assemblytask is
moreadvantageousthantheothercontrolconditionsin fa-
cilitating theemergenceof asimplesyntaxcapability.

In the caseof Greenfield’s proposal,re-useactually in-
volvesexploiting moreor lessthesamecorticalregion. The
selectionof re-usablefunctionsfrom onedomainfor re-use
in anotheris based,at least in part, on structuralisomor-
phism,possiblysupportedby resonancebetweenthefiring
patternsof the re-usingand re-usedcortical regions. To-
pographicproximity is alsoobviously a factor. Therefore,
in Greenfield’s case,at somelevel of abstractionthereis

an isomorphismbetweenthe neuronalactivity underlying
motorsequenceplanningandspeechplanning.Thechild’s
emerging speechcapability indexes relevant functions of
the motor planningsystemby virtue of this structuraliso-
morphism,andexploits themduringdevelopment.This is
re-usein its simplestform. Recentwork on themathemat-
ical foundationsof the CSRU theoryhave establishedthe
basisof a morecomplex form of re-use:collaborative cell
assemblies[15].

3.2. Asymmetric collaboration

A key challenge to implementing a developmental
methodologyis translatingbehavioral level accountsinto
neurocomputationalones. CSRU helpsbridge the gapby
usinga mathematicalframework thatin thelastdecadehas
beenincreasinglyexploited as a meansof understanding
brain function both at a neuralandcognitive level. A dy-
namicalsystemstheoryaccountof cognitionseescognitive
processesas behavioral patternsof non-lineardynamical
systems[12]. Previous work in our grouphasfocusedon
developinga simulationenvironmentfor networksof spik-
ing neurons[9], which now allows usto exploreproperties
of dynamicalneuralsystemswhich areessentialto under-
standingCSRU computations,suchas: synchronizationof
firing patterns,and selectionof re-usablemoduleson the
baseof resonanceandstructuralisomorphism.

Asymmetriccollaborationis basedon a computational
mechanism,by whichneuronalunitsarecapablenotonly of
learningandreproducingapatternbut, moreimportantly, of
creatingnew typesof behavior by superimposing(or apply-
ing someothertypeof linearor nonlinearcombiningrule)
patternsit is exposedto. More specifically, theperiodicbe-
havior displayedby oneor moreneuralassembliesfrom the
relatively well-developedarea(a motorareain our case)is
usedasan input for a network in a developingarea(cog-
nitive functionareas)andby adaptingthesynapticweights
of the ”studentnetwork” the oscillator is capableof com-
poundingthe inputsinto a morecomplex pattern.Current
work is underwayto implementa small-scalesimulationof
the dynamicsin two neuralpopulations,asan exampleof
asymmetricallycollaboratingcell assemblies.Our specific
focusis on motorsequencelearningandreproduction(see
section5).

We have arguedso far thatCSRU canprovide a neural-
level accountfor aspectsof thedevelopmentof syntaxpro-
ductionby usingexistentmotorprograms.Furthermore,we
proposethat the collaborative cell assembliesframework
cansupportthe developmentof deferredimitation andin-
tentionalsearchin robots.Beforeweturn to theissueof in-
crementaldevelopmentof delayedimitation andplanning,
weneedto discussacritical problemin building robotsthat
imitate.



4. Visuo-motor mapping from re-use perspec-
tive

An essentialproblemin learningby imitation is how to
mapanobservedactionto theappropriatemotorcommands
[1, 8]. While the CSRU paradigmproposesthat onecan
developcomplex cognitivecapabilitiesfrom a repertoireof
sensory-motorprograms,thereis still the issueof how this
basicrepertoireof sensory-motorprograms(e.g.,eye-hand
coordination)is acquired.In thefollowing, we presentour
approachto modelinga learningprocessfor theacquisition
of abasicimitativeskill.

Resultsfrom neurophysiologicalstudiesof the visual
analysisof motionhave establishedtheexistenceof a spe-
cial pathwayfor processingthedirectionof movement(i.e.,
the dorsalpathway) [6]. Furthermore,it hasbeenshown
thatat all stagesof motorcontrol,theactivity of a substan-
tial percentageof movement-relatedneuronsdependsupon
the directionof movement(i.e., involve directionselective
cells)[6].

Our ideawasto usethemotionselectivecell asthebasic
information-processingelementfrom whicharebuilt neural
networkscapableof visuo-motorcontrol.Thus,subsequent
activation of the motion selective cells placedalong the
chainof areasinvolved in processingandcontrolling mo-
tion, implementsa low-level mechanismfor the transmis-
sion of directionalinformation. At two end-pointsof this
perceptuo-motorcommunicationsystemwe implemented
neuralmechanismsthatencodethemotiondirectioninto the
firing patternsof directionallyselectivepopulationsof neu-
rons [16]. Self-organizedlearningemergesfrom the cor-
relatedfiring of the vision andmotor neuronsthroughthe
meansof spike-timingdependentplasticity[20]. A learning
stepconsistsof the following sequenceof processes:(1) a
commandto movein arandomdirectionis generatedby the
motornetwork andmaintainedfor acertaintimeinterval by
thepopulationof neuronstunedto thisdirection;(2) theeye
tracksthemoving handandthemotionselective cellsfrom
thevisualsystemsignalthedirection;(3) acorticalpathway
transmitsthe resultingfiring patternfrom the visual to the
motor control areas;(4) if the arrival of pre-synapticsen-
soryspikescoincideswith a post-synapticactivity of motor
neuronscodingthis particulardirection,thenanincreaseof
theconnectionstrengthresults.After trainingis performed,
astrongconnectionformsfrom thevisualto themotorarea,
couplingselectively theneuralassemblieswhich have sim-
ilar preferreddirectionsof movement. The formation of
thispathwayfacilitatestheexecutionof amovementguided
only by visualneuralactivity [16].

The learningprocessenvisagedabove is inspiredby the
sensorimotorstagesthataninfantprogressesthroughto de-
velopeye-handcoordination.Within thePiagetianview, the
beginningsof imitationappearasthechildbecomescapable

of coordinatinghandmovementswith the incomingvisual
information,andmastersthe imitation of handmovements
of others. When executing movementsduring the early
motor-babblingperiod, infantsperceive and learn contin-
genciesbetweenthemotoractivity andthevisual imageof
their actions,hencethe simultaneousmoving andtracking
of an arm canprovide the context for the learningprocess
outlinedabove.

Thismodelsupportsaparticularview on theneurophys-
iological control of movement. Recentdebateson the re-
lation betweenoculomotorandlimb motorcontrolsystems
advancethe hypothesisthat eye andhandmovementsare
subjectto similar control mechanismsand that gaze(i.e.,
extraretinalinformation)providesthesignalfor targetlimb
motion [2]. We believe that our modelprovidescomputa-
tional supportfor theemergenceof eye-handcoordination.
Specifically, wehaveobtainedanexampleof “indexing” of
a motorsetof neuronscontrollingdirectionalityby another
setof neuronswhich analyzemotion direction. Putting it
in moregeneralterms,this examplesupportsthethesisthat
gazeor eye movementneuralactivity canbe “re-used” to
control the movementof a limb. From this approach,the
conversionof gazedirection into a directionally oriented
limb motiondonotrepresentatransformationproblemany-
more,andbecomea problemof finding themeansfor col-
laborationbetweenactive cell assemblies.As supportfor
this thesis,we cancite anotherexampleof a developmen-
tal processdescribedin [18]. Constructinga systemthat
first learnsto foveatea visual target andthen“re-use” the
saccademapto achieve ballistic reachingprovidesa com-
pellingexampleof how motorprogramsfor eyemovements
(i.e. developedearlier)canprovide thecomputationalsup-
port for thelateracquisitionof visually-guidedreaching.

5. CSRU in developing delayed imitation and
planning

Oncethe basisfor immediateactionimitation hasbeen
established(asdescribedin the previoussection),the next
developmentalstageinvolves learningcomplex motor se-
quencesanddevelopinga memoryfor their representation.
From an epigeneticview, deferredimitation marksa pro-
gressionto the fourth stageof developmentin humanin-
fants,exploiting thefunctionalityof workingmemory. Dur-
ing this fourthstage,thechild alsobeginsto show behavior
in which meansare clearly differentiatedfrom ends[23].
Infantsat ninemonthsof age,areableto searchfor hidden
objects,pushasideobstaclesandusetools to retrieve dis-
tantobjects.Our interestsresidein modelingtheprocesses
thatsupportaparalleldevelopmentof delayedimitationand
intentional,goal-directedbehavior.

Essentialfor articulating a computationalapproachis
thatthisdevelopmentoccursgraduallyandusuallyby using



unplannedforwardsearchwith solutionsoftenemergingby
accidentin the courseof trying out several familiar activi-
ties[23]. Therobot- like theinfant- shouldbeableto learn
causalrelationsbetweencommandsto its motorregionand
visualinputswhile trying outasequenceof sensory-guided
actions(e.g., imitating actions)until eventually a goal is
reached.If thissuccessionof actionsis externallyrewarded,
thanthe systemreinforcesit andcreatesa memoryrepre-
sentationof theprofitablemeans-effectassociation.Trough
thisbehavioral adaptation,theagentmakesthetransitionto
a stagewherepreparationandplanningof the movements
occurs.In infants,plannedbehavior requiresthecapacityto
organizeintentionalbehavior, definedas:trying toachievea
goalby selectingfrom amongalternativeactions,correcting
for errorsandstoppingwhenthegoalis attained[23]. Simi-
lar epigeneticapproacheshavebeenimplementedin several
roboticsystems,for developmentof imitative skills [8], in-
tentionalityandcommunication[7].

Currentwork of our groupis focusedon implementing
the meansof asymmetriccollaborationandreinforcement
learningon a specialtypeof cognitivearchitecture,to sup-
port theemergenceof internally initiated,goal-directedse-
quencesof actions.

5.1. Incremental cognitive architecture

Consideringthe natureof the processesthat we want
to accountfor, the neurobiologicallyinspiredarchitecture
shouldinvolve a sensory(visual or perceptive) input gate-
way andthe frontal lobes’ motor andexecutive areas.We
proposea specialtypeof connectionistarchitecture,which
wereferto asanincrementalcognitivearchitecture. Thein-
crementalnaturerelieson thecharacteristicthatsomeof its
componentsstartfully developedandfunctional,while oth-
erswill beprogressively recruitedandbecameoperational
by aprocessof dynamicalcollaboration,involving synchro-
nization and resonancebetweenthe firing patternsof the
sourceandtargetdomains.Amongthefirst modulesdevel-
opedwill bethoseof thevisualcortex, proprioceptivearea,
dorsalpremotorandprimarymotorcortex. The lattermay
includethesupplementarymotorareaanddorsalprefrontal
cortex. Conceptually, incrementallearningis similar to the
recruitmentlearningalgorithmappliedfor eaxmpleto con-
ceptualbinding[19], exceptthatincrementallearningleads
to recruitmentof entireneuralpopulationsfor executinga
new, emergentfunction,ratherthanrecruitingsinglenodes
for representingnew items.Furthermore,recruitmentin the
re-useframework is a large-scale,rather than single unit
phenomena,which emergesfrom the nonlinearinteraction
betweencouplednetworksdisplayingperiodicbehavior.

An incrementalarchitecturefavors the developmentof
complex behavioral programsin a cascademanner: the
activity from the low-level functional modulesis applied

Figure 2. Incremental developmental model.
PMd stands for the dor sal premotor cor tex,
M1 is the primar y motor cor tex, SMA the sup-
plementar y motor area, BG the basal ganglia,
and DLPFC the dor solateral prefr ontal cor tex.
The thic k lines designate the cor tico-basal
ganglia loops via thalam us. Note that the vi-
sual areas are not represented here .

throughcorticalconnectionsasa teachingsignalto theos-
cillations occurring spontaneouslyin the higher modules
(e.g.,SMA, DLPFC).Theessentialquality of the laterde-
velopingareasis that the neuralpopulationsfrom hereare
capablenot only of learning the input pattern,but more
importantly, areable to abstracta moregeneralandcom-
pressedform of behavior, by applyingsometypeof nonlin-
earcombiningrule to the patternsthey areexposedto. In
this processthereciprocalconnectivity - from theearlierto
thelaterdevelopedareasandviceversa- playsanessential
role. The basal-gangliathroughits cortico-thalamicloops
implementsthemeansof reinforcementlearning[21].

Thisarchitectureis “unfolded” in adevelopmentalmodel
with threestages(Figure2), eachcorrespondingto new be-
havioral andcognitive acquisitions.A new stageincorpo-



ratestheachievementsof thepreviousdevelopmentalphase
and mirrors the recruitmentof a new functional module
throughthe meansof asymmetriccollaboration. Our cur-
rent andfuture work focuson implementingthis develop-
mentalmodelin a simulatedrobotandtestingthe implica-
tionsof our theory.

6. Conclusions

We have presentedon-goingresearchon the implemen-
tationof adevelopmentalmethodologydedicatedto thede-
sign of intelligent robotic systems.Our approachis based
onthecorticalsoftwarere-useconcept,thatinvolvethecon-
structionof cognitive functionson a foundationof sensory-
motor programs.Two formsof re-use(e.g.,neighborhood
collaborationandasymmetricallycollaborative cell assem-
blies)havebeendescribedat theneurallevel, giving us,we
maintain,thecomputationalmeansfor developmentof cog-
nitivecapabilities.It remainsto beseenhow furthermodels
will confirmor correcttheimplicationsof CSRU theory.
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