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Abstract 

 

Synthetic biology is a rapidly growing field in which recent advances now allow the 

formation of minimal or artificial cells composed of a minimum number of components, 

capable of performing specific functions. New developments contributing to the 

complexity of artificial cells or making their design more cell-like increases the number 

of possible applications. To-date many processes and chemical reactions have been 

studied in these cells; many more remain to be explored. However, more sophisticated 

approaches to artificial cell design and preparation will be required to do this. The results 

presented here provide insights into how artificial cell development can contribute to our 

understanding of the self-assembly of biomolecules. 

The formation of lipid based vesicles is an inherent element of artificial cell development, 

which requires reliable techniques to prepare vesicles of cell size. The most widely 

applied methods have been evaluated here based on the size, quality and abundance of 

vesicles formed as well as the ease of encapsulating biological solutes. The effect of 

various lipid compositions, particularly cholesterol, has also been analysed. This 

comparison provides reliable information for tailoring the selection of experimental 

approach when building a model cell.  

Functionalisation of the artificial cell surface and its interior is required for many 

applications. For surface modification, there is growing interest in using glycolipids to 

fulfil a molecular recognition role. A synthetic glycolipid has been incorporated into the 

phospholipid membrane of giant unilamellar vesicles at biologically relevant 

concentrations. The synthetic glycolipid shows concentration-dependent phase behaviour 

in binary mixtures with DOPC and in ternary mixtures with DOPC and cholesterol. At 

low concentrations, the glycolipid is fully dispersed in the GUV membrane. At 

concentrations above 10%, the formation of lipid tubules was observed, consistent with 

the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil 

solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can 

be formed. 

The self- assembly of proteins in cells is required for normal biological function and 

unintended self-assembly also can occur following a change in environmental conditions, 

in some cases leading to disease. To understand these processes more fully, experiments 
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performed in controlled, but closer to physiological conditions are required. Artificial 

cells provide an idea platform to do this. Bovine Serum Albumin (BSA) was encapsulated 

in phospholipid based giant unilamellar vesicles of cell size. The formation of aggregates 

within the GUV was analysed using a fluorescent dye (Thioflavin T) and various modes 

of microscopy. While protein aggregation was observed inside the vesicles, harsh 

environmental conditions were required to induce this aggregation (e.g.heat, low pH).  

An approach to investigate protein condensation upon in-situ expression in 

physiologically relevant conditions was also explored. In this case, a protein that 

aggregates at physiological temperature and pH (the P23T mutant of human gamma D 

crystallin) was expressed in-situ inside a GUV using a cell-free expression system. The 

formation of P23T specific aggregates was observed after incubation for several hours at 

37°C. These aggregates have a fractal dimension lower than those normally observed for 

amorphous protein aggregate. Furthermore, we have demonstrated that the self-assembly 

of P23T can also be induced following transfection in mammalian cells, providing deeper 

insights into the mechanism by which the genetic cataract associated with this mutation 

occurs. 
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 Synthetic biology 

Synthetic biology emerged as a field of research over a decade ago.[1,2] It combines 

scientific and engineering approaches to study and manipulate cellular processes. The 

origin of synthetic biology can be traced back to 1961 and a study of the lac operon in 

E.coli, postulating the existence of a mechanism regulating the cell’s response to the 

environment.[3] Technological and scientific advancements, such as the discovery of 

transcriptional regulation, the PCR technique, automated DNA sequencing and modelling 

have significantly enhanced the ways in which biological systems can be manipulated.[2] 

Of great interest to synthetic biology is how to assemble cells from individual molecular 

components in a bottom up manner. There are three different paths to do just that; the 

protocell, the minimal cell and the artificial cell.[4] 

Protocell preparation involves the development of scenarios explaining the origin 

of life in prebiotic conditions. The cells are assembled from prebiotic molecules, 

containing either a small amount or none of the genetic information, in the form of 

peptides or RNA.[5–7] 

The minimal (or synthetic) cell method involves integrating DNA information and 

a simple metabolism into lipid compartments in order to prepare entities capable of self-

reproduction based on a minimal genome.[4,8,9] 

The artificial (or model) cell methodology, which is employed in this thesis, 

entails assembling cell-sized compartments equipped to perform biological functions by 

integrating natural and synthetic molecules to construct hybrid systems with new 

characteristics and functions.[10–12] These types of compartments are not only used to 

model biological processes but also as microreactors.[13] These synthetic cell assemblies 

may be prepared using either a top down approach, where synthetic DNA can be used to 

control viable bacterial cells[14] or a bottom up approach where synthetic or semi-synthetic 

components are used to reconstruct biological processes.[15–17] 

Another area of synthetic biology research is the creation of gene regulatory 

circuits, which carry out functions in a similar way to electrical circuits, to program cells 

to perform specific tasks.[18,19] Various cell processes and functions have been developed 

using gene circuits, such as togglling between two stable expression states in response to 

external signals,[20] ordered, periodic oscillation of repressor protein expression,[21] cell 

phenotype switches,[22] cell-cell communication[23] or the creation of permanent 

memory.[24,25] One of the successes of gene circuit research was the heterologous 
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production of precursors to artemisinin (an antimalarial drug),[26] which resulted in 2013 

in large scale production of the drug in yeast.[27] Another important development was the 

emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR) 

technology, which is a new approach for generating RNA-guided nucleases, such as Cas9, 

which can be targeted to almost any sequence.[2,28,29] Genome editing using CRISPR 

technology has been used to modify endogenous genes in a variety cell types and in 

organisms and to regulate endogenous gene expression or label specific genomic loci in 

living cells.[30–32] 

Other applications of the synthetic biology approach include information 

storage,[33] incorporation of unnatural nucleotides[34,35] and amino acids,[36–38] reduced 

amino acid libraries[39] or engineered proteins[40–42] and others.[43–45] 

 The artificial cell 

The artificial (or model) cell is a simplified system mimicking properties of 

biological cells, various components of cells or processes.[46,47] The simplest model cells 

are vesicles formed by lipid self-assembly into bilayers in aqueous solution. The lipid 

bilayer may be composed of natural lipids, identical to those present in cell membranes 

or may contain other components, such as polymers,[48] synthetic glycolipids,[49] 

transmembrane proteins[50] or pore forming proteins.[51] 

Vesicles composed of a variety of lipids have been used to study membrane 

related processes such as budding,[52,53] fusion,[54] fission[55] and various aspects of 

membrane dynamics,[56–58] membrane composition and phase behaviour.[59,60] 

While sometimes challenging, a variety of molecules have been encapsulated 

inside minimal cells, including small molecules,[61] nanoparticles,[62] biological 

molecules[63] and protein mixtures or cells.[64,65] 

Protein synthesis inside vesicles is an important aspect of artificial cell research. 

Initially cell extracts form E. coli[66] or wheat germ[67] were used. However, quick energy 

depletion and protein degradation by enzymes present in those extracts were a major 

disadvantage. Development of a purified cell-free system provided a new tool for 

synthetic biology and model cell research in particular.[68–70] The PURE system contains 

purified proteins, ribosomes, t-RNAs, recombinant T7 RNA polymerase and low 

molecular weight components necessary for the transcription and translation processes. 

Additionally, all of the components of the PURE system bear His-tag, which allows for 



                  

  

11 

 

quick purification of the synthesized protein if necessary. The PURE system has several 

advantages over earlier expression systems, such as lower levels of proteases, nucleases 

and phosphatases, greater reproducibility and flexibility.[71] The PURE system can also 

be modified to mimic the macromolecular crowding of the cell.[72] It allows for the 

simultaneous expression of multiple polypeptides in a single reaction as shown for the 

heterotrimeric core of cytochrome c oxidase.[73] Recently published analysis of the gene 

expression dynamics provide valuable insights into the fine tuning of the expression 

process.[74] To date, various cell-free protein expression systems have been developed.[75–

79] Numerous proteins have been expressed inside lipid vesicles using cell-free expression 

systems, such as functional membrane proteins[80–84] and various water soluble 

proteins.[51,85–87] 

Due to advancements in methods for solution encapsulation and cell-free 

expression systems, various biological processes have been recreated in model cells, such 

as enzymatic reactions,[88,89] synthesis of nucleic acids[90,91] or lipids,[92] actin 

polymerization[93] or self-reproduction[94] and more recently self-proliferation.[95,96] 

Assembly processes, inevitable in biological cells may also be recreated in 

synthetic cells. Actin polymerization and the assembly of an actin cortex upon 

encapsulation of its building blocks within liposomes has been studied extensively 

providing insights into cell mechanics.[97,98] Xenopus egg extract have been used to 

recreate the process of assembly of cortical actin networks.[99,100] The understanding of 

the cell division processes and more specifically the formation of the mitotic spindle have 

been advanced by studying the embryos or the egg extracts of a variety of 

microorganisms.[101,102] One of the first self-assembly processes observed within lipid 

bilayers was the in-situ expression of α-hemolysin followed by the formation of a 

membrane pore via assembly of α-hemolysin heptamer following expression.[51] The 

possibility of pore formation also provided insights into extending the expression process 

of the cell-free system enclosed inside liposomes by means of providing a feeding 

solution on the exterior of the vesicle.  

In recent years there has been growing interest in using vesicles as microreactors 

for the analysis of biochemical reactions[103–105] or as a drug delivery vehicles.[106–110] 

Advances in synthetic biology and model cell research, some of which has been 

mention here, provides valuable insights into various biological processes such as 

ribosome synthesis,[111,112] cell adhesion,[106] mechanics,[65,113] reproduction[94] and 

proliferation.[95,96] 
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 Self-assembly of biological molecules 

Self-assembly is a spontaneous process tending towards equilibrium, in which 

individual components, that do not change their character upon integration, assemble in 

a specific way to form a well-defined structure uniquely determined by the size, number 

of components, geometry, and strength of interactions among the components.[114] Self-

assembly is driven by non-covalent interactions which are generally weaker than covalent 

bonds thus are reversible.[115] Self-assembly is an essential process in biological systems 

and virtually all biomolecules undergo self-assembly, which determines their structure 

and influences their function.[116–118] Various biological structures formed by a self- 

assembly process include the formation of the cell membrane, cytoskeleton, viral capsid 

or protein complexes involved in transcription and translation of genetic information.[119–

121] Self-assembly has also been explored in the context of non-biological applications 

such as nanotechnology and supramolecular or materials chemistry.[115,122,123] 

 Forces governing the assembly of biomolecules 

The self-assembly of biomolecules occurs as a result of non-covalent interactions 

between the assembling components. The stable and specific arrangement of components 

is a result of multiple non-covalent interactions. Non-covalent interactions are weaker 

than the covalent bonds (bond strengths on the order of 1-5 kcal/mol), therefore are 

reversible at physiological temperature and take place over longer distances, ca. 2 to 10 

Å.[124,125] Due to the nature of non-covalent interactions, the self-assembled structures 

usually remain in thermodynamic equilibrium and have the capability to rearrange.[115] 

Non-covalent interactions can be formed within a molecule (intra-) as in protein 

folding or between different molecules (inter-).[126] The main types of non-covalent 

interactions include: hydrogen bonds, van der Waals interactions, hydrophobic 

interactions and electrostatic interactions. 

 Hydrogen bonding 

The hydrogen bonding is an attractive interaction between a hydrogen atom 

covalently bonded to an electronegative donor atom of one molecule and an 

electronegative atom (acceptor) with at least one lone pair of electrons of the same or 

different molecule. The partial positive charge on the hydrogen atom, formed due to the 

polar character of the H-donor bond is the basis of its attraction to the lone pair of 

https://en.wikipedia.org/wiki/%C3%85
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electrons on the acceptor atom. In case of biological systems the electronegative atoms 

participating in hydrogen bonding are usually nitrogen and oxygen. The length of most 

hydrogen bonds is between 0.26 nm and 0.32 nm (0.27 nm in the water molecule) and 

has a strength of ~5 kcal/mol between water and 1 to 2 kcal/mol for biomolecules.[124] 

The strength of the hydrogen bond depends on the distance and the bond angle between 

donor and acceptor, with the strongest formed when the donor, the hydrogen, and the 

acceptor atom all lie in a straight line. Nonlinear hydrogen bonds are weaker but multiple 

nonlinear hydrogen bonds may act together. 

 Hydrogen bonding is particularly important in driving self-assembly due to its 

cooperative nature. The complex structure of biological molecules reveal the presence of 

multiple donor and acceptor sites within a single molecule. Hydrogen bonding, however 

weak in nature, is capable of stabilizing assembled structures.  

 Van der Waals interactions 

Van der Waals are non-specific attractive interactions resulting from the 

momentary random fluctuations in the distribution of the electrons of an atom, which 

results in a transient electric dipole. When two atoms are close enough the transient dipole 

in one atom generates a transient dipole in the second atom, and the two dipoles are 

weakly attracted by each other. This type of interaction occurs in all types of molecules. 

The strength of the van der Waals interaction is approximately 1 kcal/mol and depends 

on the distance between the two atoms; the larger the distance the weaker the 

interaction.[124] The distance over which the Van de Waals interactions occurs is generally 

twice the distance of the covalent bond between the same atoms, e.g. for a C-H interaction 

it is roughly 0.2 nm.[127] 

 The hydrophobic effect 

Hydrophobic interactions are relatively strong attractive interactions between 

non-polar groups, such as hydrocarbon chains of lipid molecules, separated by water. 

When non-polar groups are placed into water, their presence disrupts the hydrogen 

bonding network of the surrounding water molecules. This forces the rearrangement of 

water molecules around a hydrophobic surface, thus decreasing the number of possible 

orientations, which in turn decreases the entropy of the water. The assembly of 

hydrophobic groups occurs with the aim of decreasing the size of the hydrophobic surface 

in contact with water molecules (by excluding water from the hydrophobic region). The 
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increase in order of hydrocarbon groups is small compare to the increase in entropy 

related to the release of water molecules. The overall effect is the increase of entropy of 

the system.[117,128] Hydrophobic interactions are long range (up to 10 nm).[129] 

 Electrostatic interactions 

The electrostatic potential has either attractive or repulsive character depending 

on the relative sign and magnitude of the interacting charges.[129]  

A double layer is formed in the vicinity of the particle surface (e.g. biomolecules 

such as proteins) when exposed to a fluid (figure 1.1). The first layer, called the stern 

layer, consists of an increased concentration of strongly bound counter-ions. In the diffuse 

layer those counter-ions are less tightly bound. The slipping plane is located at the 

boundary between the diffuse layer and the bulk liquid, where the ions are uniformly 

distributed. The electrical potential at the slipping layer is referred to as zeta potential and 

it represents the magnitude of electrostatic interactions between the particles. 

 

 

Figure 1.1 Schematic representation of the electronic double layer and zeta potential. 

The interaction potential between two proteins can be described using DVLO 

theory (Derjaguin, Landau, Verwey and Overbeek). This theory combines the effects of 

the electrostatic repulsion and the van der Waals attraction. The electrostatic repulsion 

increases exponentially as the distance between particles decreases and the van der 

Waals’ attraction increases as an inverse power of separation. The net attraction between 

proteins can be characterised by negative interaction potential (figure 1.2a) and repulsive 

interactions by positive potential (figure 1.2b). 
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Figure 1.2 Schematic representation of an interaction potential between protein molecules.[130] 

 

 Lipid structure and self-assembly 

 Characteristics of lipids 

Lipid molecules are composed of hydrocarbon chains and a hydrophilic head 

group and in a similar way to other amphiphilic molecules, self-assemble in aqueous 

environments forming a variety of structures, such as micelles, vesicles or flat bilayers as 

shown in figure 1.3. 

 

Figure 1.3 Cross-section view of lipid organization in a micelle (left), vesicle (middle) and lipid 

bilayer (right), formed by lipids in aqueous solutions.[131]  

The assembly of lipid molecules in aqueous environments occurs due to the 

hydrophobic effect.[132] Hydrocarbon chains are water-insoluble and their assembly 

occurs in order to minimise the size of the hydrophobic surface in contact with water 

molecules. The overall effect is to increase the entropy of the system and it is the driving 
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force for the lipid assembly process.[117,128] Other non-covalent interactions playing a role 

in lipid self-assembly include hydrogen bonding, van der Waals and ionic 

interactions.[125] 

Lipid molecules assemble into a variety of structures, depending on the nature of 

both the head group and hydrocarbon chains.[133] The shape and size of structures formed 

upon assembly may be predicted based on the Israelachvili–Mitchell–Ninham packing 

parameter ρ, expressed by equation 3.1,[134,135]  

 𝜌 =
𝜈

𝑎0 𝑙𝑐
 1.1 

where ν is the volume of the hydrocarbon chain, ao is the optimal headgroup area and lc 

is the critical chain length. Cone-like shaped lipids (figure 1.4a), usually with one 

hydrocarbon chain and relatively large head group form mainly micelles. Lipid molecules 

with cylindrical shapes (figure 1.4b), with packing parameter between 0.5 and 1, assemble 

into bilayers, and inverted lipid structures (figure 1.4c) are usually formed by lipids with 

small head groups and bulky hydrocarbon chains.[136] 

 

 

Figure 1.4 Schematic representation of various shapes of lipid molecules; (a) cone, (b) 

cylindrical and (c) inverted cone, and main types of self-assembled lipid structures formed by 

those types of lipids. 
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 Lipid phases 

Geometric arrangements of lipid molecules include lamellar, hexagonal or cubic 

mesophases; with normal or inverse topography (figure 1.5) as well as nanotubes and 

toroidal structures.[117] The self-assembly process is driven by non-covalent interactions 

with the hydrophobic effect as the largest contribution. The type of self-assembled 

structure formed depends on variety of factors, including the nature of the lipid molecules, 

especially the head group, the interfacial curvature, temperature and the water content 

within the medium in which the assembly process occurs.[136,137] 

 

 

Figure 1.5 Schematic representation of self-assembled structures formed by amphiphilic 

molecules. 

A lamellar phase consists of two lipid layers with their hydrophilic head groups 

facing towards the water interface and the hydrophobic region facing each other, forming 

a lipid bilayer. This lipid arrangement is found in all biological and synthetic membranes. 

However, non-lamellar phases, including hexagonal and cubic phases are also observed 

within biological and synthetic systems.[137–139] Large numbers of non-lamellar lipids are 

present in biological membranes have been implicated in maintaining the structure and 
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therefore preserving the function of membrane proteins.[140] The transition between 

lamellar and non-lamellar phases may be induced by varying the composition or the 

temperature.[137] 

Biological and synthetic membranes are vastly dynamic assemblies. The types of 

lipid movements that can occur within the bilayer include lateral diffusion (exchange 

places with neighbouring lipid), transverse diffusion (or flip-flop, movement from one 

leaflet to the other), axial rotation and intra-chain motion (known as kink formation).[141] 

The rate at which a specific type of movement occurs depends on the nature and 

composition of the bilayer. Proteins within membranes can diffuse laterally, but not 

between the leaflets. 

Lipid bilayers of both natural and synthetic membranes exist in different physical 

states (figure 1.6), which are categorised by the lateral organisation and mobility within 

the membrane. The character of the bilayer may be altered by adjusting temperature, pH, 

ionic strength or modifying the lipid composition of the bilayer or the addition of 

cholesterol.[141] 

 

Figure 1.6 Schematic representation of physical states adopted by lipid bilayers in aqueous 

solution. 

The solid-ordered phase (also known as gel phase) is characterized by low 

mobility and a compact arrangement of lipid molecules due to a trans-configuration of 

the hydrocarbon chains, which may be tilted (Lᵦ’) or (Lᵦ) with regard to the bilayer surface 
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depending on water content (the lower the water content, the smaller the angle of the 

tilt).[142,143] Among the fluid phases, liquid-disordered (Ld) and liquid-ordered (Lo) phases 

may be distinguished.[141] The Ld phase is characterized by trans-gauche configuration 

resulting in shortening of the acyl chains and high degree of lateral and rotational 

movement of the lipid molecules. The transition between the So and Ld occurs at a 

temperature known as a phase transition (or melting) temperature (Tm), which depends 

on the length of the hydrocarbon chain, the structure of the headgroup and the degree of 

unsaturation and is specific for a given lipid type.[141] The lipid-ordered phase, also known 

as the liquid crystalline phase, is formed in the presence of cholesterol and is characterised 

by lateral and rotational diffusion that are similar to those of the Lo phase, but with a 

conformational order similar to the solid-ordered phase.[144–146] The ripple phase Pβ exists 

prior to the main chain melting and is characterized by periodic one-dimensional 

undulations on the surface of the lipid bilayer as a result of a periodic array of ordered 

and disordered domains.[147] 

The lipid phases, liquid-disordered, liquid-ordered and solid-ordered phase can 

coexist in the same bilayer. The coexistence of lipid phases has been observed in lipid 

bilayers composed of various lipid mixtures, usually containing cholesterol.[146,148–150] 

Various types of lipid molecules preferentially partition into either liquid-ordered or 

liquid-disordered phase, depending on their structure. 

Phospholipids favour the liquid-disordered lipid phase due to the structure of their 

hydrocarbon chains, the presence of cis double bonds which induces a kink and prevents 

very compact assemblies. Glyco- and sphingolipids on the other hand preferentially 

partition into the liquid-ordered phases within bilayers due to the characteristics of both 

the headgroup and the acyl chains.[151,152] Their ordered assembly is stabilized by the 

hydrogen bonding and van der Waals forces between these groups.[153] 

 Phase separation in biological membranes 

Various studies suggest that preferential partitioning of lipids and the formation 

of liquid-ordered phases enriched in cholesterol and sphingolipid occurs also in biological 

membranes.[154,155] However, the presence of these heterogeneous domains, also called 

lipid rafts, within biological membranes is still under debate.[156] Lipid rafts are usually 

small, 10-200 nm in diameter[157,158] but may form larger structures by stabilizing protein-

protein and protein-lipid interactions.[159,160] Lipid rafts play an important role in many 
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biological processes, such as the sorting and the transport of both membrane proteins and 

lipids during endocytosis and exocytosis, in cascade signalling as well as in other cellular 

processes such as apoptosis, membrane fusion, cell adhesion and migration.[155,157,161,162] 

It has been also suggested that lipid rafts are the target sites for cellular entry of various 

pathogens due to the high concentration of cellular receptors[163] and platforms for the 

assembly of the β-amyloid protein, associated with Alzheimer’s disease.[164] 

Biological membranes are extremely complex structures, therefore various 

mimetics have been developed, such as lipid monolayers, supported lipid bilayers or lipid 

vesicles, to facilitate studies of the behaviour and properties of membranes.[141] 

 Giant unilamellar vesicles (GUVs) 

Lipid vesicles, also called liposomes are cell-mimicking compartments consisting 

of lipid bilayers. Depending on the size, small (SUV, 20-200 nm), large (LUV, 200- 800 

nm) and giant unilamellar vesicles (vary from 1-300 µm) can be distinguished. In 

biological cells lipid membranes provide a 4 nm thick barrier between the interior and the 

exterior of a cell.[165] They were first described in the 1950s.[166] Bilayers of GUVs may 

be formed, depending on the purpose, from a variety of lipid categories, including 

phospholipids, sphingolipids, glycolipids or sterols. Structural differences between 

various lipid classes are manifested by differences in their behaviour within a lipid 

bilayer. Vesicles may also be prepared using block copolymers with amphiphilic 

properties.[119] 

 Preparation of GUVs 

The preparation of GUVs was first described in 1969 by a method now known as 

gentle hydration.[167] Since then a large number of methods are used to produce GUVs for 

many applications and these have been described in a several reviews.[165,168,169] 

Electroformation (or electro-swelling) is a widely used method for GUV 

preparation. Liposome formation induced by a static (DC) field was first described in 

1986[170] and then modified by application of an alternating (AC) electric field.[171] 

Electroformation may be performed by depositing a thin layer of lipid in organic solvent 

onto conductive indium tin oxide (ITO) coated glass, or a platinum wire and applying an 

external electric field. Spin-coating the lipid onto the slide creates lipid films with defined 

thickness which aids GUVs formation from lipid mixtures which do not easily form 

vesicles.[172] 
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GUVs may also be produced using hydration methods. There are several 

advantages of hydration methods over electroformation since large vesicle sizes are 

produced and the preparation conditions are mild.[173] Rapid hydration also produces cell-

sized vesicles and requires very short preparation times.[174] A recently developed method 

involving lipid hydration on an agarose film[175] facilitates the formation of a high yield 

of cell-size GUVs in solution at high ionic strength and from lipid mixtures usually found 

to be problematic (for example asolectin). It has also been used to encapsulate 

biomolecules, while retaining their biological activity.[65] 

An emulsion method (also termed inverted or w/o emulsion) was originally 

described by Pautot et al.[176] and involves the assembly of a bilayer on an aqueous droplet 

by lipid molecules dispersed in oil. The formation of cell-size vesicles, the possibility of 

forming asymmetric bilayers and high encapsulation efficiencies are among the many 

advantages of this method.[177,178] The emulsion transfer method has also been used to 

encapsulate a cell-free expression system. The continuous droplet interface crossing 

encapsulation (cDICE)[64] method was developed specifically for encapsulation and has 

been shown to lead to a high yield of cell-size vesicles. The cDICE method has been used 

to encapsulate a variety of solutions, including colloids, red blood cells, actin filaments[64] 

and parasites.[179] 

Other methods used to produce GUVs include fusion of small vesicles,[180,181] lipid 

stabilized w/o/w double emulsion,[182] lipid –coated ice droplets,[183,184] lipid dissolved in 

a water-miscible solvent[185] or micellar lipid solution methods,[186] among others. 

 Applications for GUVs 

Since their discovery, GUVs have been used to study biological processes such as 

budding,[52,53] fusion[54] and fission[55] or various aspects of membrane dynamics,[56,57] 

membrane composition and phase behaviour.[59,60] In recent years there has been growing 

interest in using vesicles as microcontainers for the analysis of biochemical reactions[105] 

and for the development of model cells.[16,187,188] 

 Lipid molecules used for liposomes preparation. 

 Phospholipids 

Depending on the alcohol group, phospholipids are commonly divided into 

glycerophospholipids and sphingomyelins. Glycerophospholipids are the lipids most 
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commonly used for the preparation of liposomes. They are the main components of the 

eukaryotic cell membrane, fulfilling a mainly structural role. They are composed of a 

glycerol backbone and symmetric hydrocarbon chains typically from 16 to 18 carbons 

long (figure 1.7).[189] The two main classes of glycerophospholipids used for GUV 

preparation include phosphatidylcholine (PC) and phosphatidylethanolamine (PE).[190] 

Two phosphatidylcholines used in this thesis are 1, 2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) and 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). 

DPPC is the main component of pulmonary surfactant, where it lowers the surface 

tension. Phosphatidylcholines are the most abundant lipids; they account for more than 

50% of lipid molecules in eukaryotic membranes. They are located mainly in the outer 

leaflet where they are part of the permeability barrier.[190] Phosphatidylcholines with 

unsaturated acyl hydrocarbon chains usually occur in liquid phase at room temperature. 

Due to a small head group they have nearly cylindrical shape and self-assemble into a 

planar bilayer and their inclusion into bilayers causes curvature stress.[191] 

 

 

Figure 1.7 Chemical structures of the phospholipids: DOPC (a), DPPC (b), brain 

sphingomyelin (c) and cholesterol (d). 

Sphingomyelins (SM) are abundant in cell membranes (2-15% of total lipid 

content), with higher concentrations found in nerve and red blood cells.[190] The chemical 

structure of brain sphingomyelin is shown in figure 1.7c. Sphingomyelins are composed 
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of a sphingosine backbone and asymmetric acyl chains in the tail. They exhibit more tight 

packing (gel phase) compared to PC due to a higher degree of saturation within the chains 

(on average 0.1-0.35 cis-double bonds in amide-linked acyl chains). The typical length of 

an acyl chain is usually more than 20 carbons. Sphingomyelins colocalize and strongly 

interact with cholesterol both in biological and synthetic membranes. 

 Cholesterol 

Cholesterol is a non-polar molecule and in biological membranes is responsible 

for maintaining structural integrity and fluidity (figure 1.7d). Most of the molecule is 

embedded within the hydrophobic portion of the bilayer while the –OH group interacts 

with head groups of other lipids.[190] Cholesterol has been shown to interact preferentially 

with sphingomyelin than with other non-saturated glycerophospholipids, which dictates 

the properties of SM/cholesterol bilayers (including low permeability). The strong 

interaction between sphingomyelin and cholesterol results from the van der Waals 

interactions between cholesterol and saturated lipid acyl chain of the sphingomyelin.[192] 

This interaction leads to the formation of a liquid-ordered phase within the lipid bilayers 

of both natural and synthetic membranes. In biological cells this favoured mixing of 

sphingomyelin and cholesterol has been implicated in the formation of lipid rafts, 

dynamic and ordered microdomains serving as an attachment for variety of protein 

molecules and implicated in membrane signalling and trafficking processes.[154,155,193] 

 Glycolipids 

Glycolipids are a class of lipids containing sugar-based headgroups. There are 

several classes of glycolipids, including glycoglycerolipids, glycophosphatidylinositols 

and glycosphingolipids.[194] Glycolipids, are major components of biological membranes, 

especially the outer leaflet. They are also abundant in intracellular membranes such as 

mitochondria, the Golgi apparatus, the nuclear membrane, lysosome, endosomes and the 

endoplasmic reticulum[195] or the apical side (facing inwards to the lumen) of polarized 

epithelial cells.[196] 

Glycolipids are composed of a carbohydrate-based head group which is 

continuously exposed at the surface of a bilayer, maximising the surface available for 

interactions and hydrocarbon chains buried within the hydrophobic portion of the lipid 

bilayer (figure 1.8). Glycolipids, like other lipids are amphiphilic, therefore upon self-

assembly (usually in mixtures with other lipids) can adopt a variety of structures, 
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including lamellar, hexagonal or cubic phases.[117] A variety of other structures, including 

helical ribbons have been observed in the presence of glycolipids.[197] The type of 

assemblies formed is dictated by the structure of both the head group and the hydrocarbon 

chain, expressed by a packing parameter.[136] Within the lipid bilayer of biological and 

synthetic membranes glycolipids can adopt both gel and fluid phases.[198] Transitions 

between these lamellar phases as for other lipids, is governed by the fluidity of the 

hydrocarbon chains (and strongly affected by temperature). For the majority of lipid 

types, the structure of the head group may shift the melt transition temperature in some 

cases, but generally it is as simple as determining the surface area per lipid molecule. 

 

 

Figure 1.8 Schematic representation of lipid bilayer composed of phospholipids, cholesterol, 

glycolipids and glycoproteins. 

However, this is not the case for glycolipid molecules where altering the structural 

features of the sugar-based head group such as the anomeric configuration of the glyosidic 

bond, isomeric configuration (D-galactose, D-galactose, D-mannose, etc.), charge or 

polarity also significantly alters the phase behaviour.[199–201] Hydration of the head group 

and the penetration of water into the interface have been shown to govern the type of non-

lamellar phases adopted by glycolipids.[202] Due to these interesting properties and the 

biological relevance of these membrane components, the phase behaviour and phase 

morphology of glycolipids have been extensively studied using both experimental and 

molecular dynamics simulation approaches.[203–207] 

Glycolipids contain a linkage area located between the head group and 

hydrocarbon chain capable of acting as both H-bond donor and acceptor. Hydrogen 
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bonding can also occur between the sugar head groups leading to the formation of clusters 

of molecules and therefore denser packing.[208] Interactions with other lipids, such as 

sphingolipids and cholesterol and a variety of membrane proteins leads to the formation 

of glycolipid-rich domains within phospholipid bilayers.[209] The types of microdomains 

containing glycolipids include glycosynapses (involved mainly in adhesion processes) or 

lipid rafts (with functions in signalling).[210–212] Glycolipids can also interact with 

complementary carbohydrates or proteins displayed on neighbouring cells which 

facilitates the specificity and direction of the interaction.[213] 

 Biological functions of glycolipids. 

Glycolipids are involved in a variety of biological functions. For many of those 

functions, recognition and signal transduction occurs within glycolipid-containing 

microdomains and through their interactions with other signal modulators such as kinases, 

G-coupled proteins, GPI-anchored proteins, immunoreceptors, tetraspanins and growth 

factor receptors.[196,210,214] 

The primary cellular functions involving carbohydrate-based signal processing 

includes cell adhesion, motility, differentiation,[215] growth,[216] proliferation and 

apoptosis.[217] Interactions between cell surface receptors and carbohydrates present on 

pathogens leads to recognition of infection and immune response. The most widely 

studied glycoconjugates are lipopolysaccharides (LPS), present on the surface of Gram-

negative bacteria. Their interaction with toll-like receptors (TLRs) and other members of 

the signalling complex leads to activation of the innate immune system and initiation of 

inflammation.[218] Interactions between pathogens and host surface glycolipids are often 

a way to mediate entry into host cells.[209,219,220] Glycolipids have been shown to play a 

role in the maintenance of membrane integrity,[221,222] photosynthesis[223] or certain 

aspects of energy transduction within biological systems.[224] 

 Fluorescent lipid analogues 

The properties, behaviour and various processes occurring within lipid 

membranes are often studied using different modes of fluorescent microscopy, such as 

wide field, confocal or superresolution microscopy.[225] In order to visualize these 

processes fluorescent lipid analogues are incorporated into lipid membranes. 

Commercially available fluorescent lipid analogues vary depending on the type of lipid 

used, the structure and therefore the spectral properties of the fluorescent label and its 
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location within the lipid molecule (head or chain). Their properties and cellular 

localization strongly depends on their structure. 

Apart from visualization by fluorescence microscopy, fluorescent lipids are also 

used as a phase-specific labels in phase behaviour studies, sensors of the cellular 

environment or trackers in cellular transport studies.[226] 

 Protein structure and assembly  

Proteins are polymeric chains composed of amino acids and are synthesized on 

ribosomes. They have a primary structure, which refers to the linear sequence of amino 

acids, determined by genetic information and these are held together by peptide bonds 

(figure 1.9). 

 

Figure 1.9 Levels of protein structure.[227] 

The polypeptide chains contain regions of localized organization with specific 

spatial arrangements, referred to as the secondary structure, stabilized by hydrogen 

bonding, such as in an α helix (right hand spiral conformation with 3.6 amino acids per 

turn), β sheet (fully extended alignments of short β strands) or a turn (U-shaped 4 residues 

long, with a H-bond between the end residues). Regions of polypeptide chains without 

stabilizing interactions assume a random-coil arrangement.[124]  

The protein tertiary structure refers to the three-dimensional protein structure 

driven by hydrophobic interactions between the nonpolar side chains, stabilized by 

hydrogen bonding, salt bridges and, in some proteins, by disulphide bonds. These 

stabilizing forces fold the α helices, β strands, turns, and random coils in a compact 
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internal scaffold. The quaternary structure of a protein describes the number and relative 

positions of the subunits in a multimeric protein and is stabilized by the same types of 

non-covalent interactions and disulphide bonds as the tertiary structure.[227] 

 Intramolecular self-assembly 

Folding a protein into its three-dimensional structure occurs by an intramolecular 

self-assembly process and is driven by the requirement to lower the free energy. Folding 

protein may assume various partially folded conformations before reaching the native 

folded state. Random sampling of possible conformations would require timescales 

beyond a biological lifetime.[228] The idea of a protein folding pathway was introduced to 

explain details of protein folding. Another way to present the protein folding is a statistical 

energy landscape representing possible partially folded states with a corresponding free 

energy.[229] For protein folding via a two-state transition mechanism in which only the 

denatured and native states are populated, the energy landscape is relatively smooth, 

lacking deep valleys and high barriers. However folding scenarios for most proteins 

involves rough, rugged landscapes representing multiple transient non-native species.  

Protein folding has been extensively studied providing insights into the structural 

diversity of non-native states, folding pathways or the folding efficiency.[230–234] However 

much remains unknown as the folding pathways of large proteins, membrane proteins or 

modified proteins have not yet been studied in great detail.[235–237] 

 Intermolecular self-assembly 

Proteins are often found to form oligomers composed of two or more subunits 

held together by various non-covalent interactions, such as hydrogen bonding, salt 

bridges or disulphide bonds. The quaternary protein structure is closely linked with its 

function and interactions with other proteins.[238,239] The four types of proteins based on 

their structure include fibrous, globular, integral membrane proteins, and disordered 

proteins. Regardless of the structure type, proteins can self-assemble into larger structures 

generally termed macromolecular assemblies.[124] 

Fibrous proteins assemble into rod or wire-like protein filaments usually via a 

coiled coil arrangement. Collagen is an example of a fibrous protein. It is a major protein 

of the extracellular matrix, forming 30-100 nm thick fibrils.[240] Collagen is a structural 

protein, providing strength to tissues. The collagen triple helix has a super-coiled, right-
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handed structure composed of three parallel α-chains, each with a polyproline II helical 

conformation.[241] 

Membrane proteins are either embedded into lipid bilayers (transmembrane 

protein) or are bound to their surface by electrostatic interactions with anionic lipids. 

Transmembrane proteins are usually composed of three domains: two water-soluble 

portions (cytosolic and exoplasmic) and one spanning the membrane, rich in hydrophobic 

amino acids.[124] Membrane proteins often self-assemble into multidomain complexes, 

such as ion channels, transporters or receptors.[242,243] One of the most commonly studied 

transmembrane complexes is the potassium channel. Its transmembrane domain is 

composed of four identical subunits forming an ion pore at the centre. The pore may be 

open or closed by conformational change within the channel in response to different 

signals requiring sensor domain transmitting information to the pore domain. Potassium 

channels contain a selectivity filter formed by a highly conserved sequence of five 

residues.[235,243] 

Globular proteins are spherical, water soluble molecules found in cytosol and 

body fluids. They form a variety of self-assembled complexes performing specific 

functions within the cellular environment. In the case of viruses, the capsid formed by 

protein assembly is a shell in which its genome is encapsulated.[244] Viruses, such as the 

tobacco mosaic virus or small plant viruses self-assemble spontaneously from a solution 

containing capsid proteins and single-stranded RNA.[245,246] Other self-assembled 

structures formed within the cellular environment include the nuclear pore complex, 

receptor/signalling complexes, proteasome, DNA polymerase III holoenzyme, RNA 

polymerase II holoenzyme or nucleosome.[247–253] 

 Non-native protein assembly 

Occasionally, proteins which normally do not form assemblies do so due to 

changes to solution conditions or conformational change within their structure. Structures 

formed as a result of non-native protein assembly, also referred to as aggregation, can 

adopt various conformations (folded up to fully unfolded) and different sizes (from small 

monomer up to hundreds of micrometres).[254,255] Aggregates can be associated by either 

covalent bond or non-covalent interactions. 

Understanding how and why proteins aggregate is extremely important in various 

branches of food and in the biopharmaceutical industry.[256] The effects of protein 



                  

  

29 

 

aggregates present in biopharmaceutical formulations include decreased efficacy and 

stability or in some cases immunogenic response in patients.[257] Formation of protein 

aggregates has also been linked to several diseases such as Alzheimer’s or Parkinson’s 

disease and therefore better understanding of the aggregation process may lead to 

development of new strategies resulting in its prevention.[258,259] 

Protein solutions are a colloidal fluid (with radius of gyration ca. 1-2 nm) and 

therefore their stability can be considered in terms of both, the structural stability of the 

protein molecule and the solution stability.[260–262] The structural stability refers to the 

preservation of the native (folded) protein conformation. The solution stability discusses 

the ability of the protein molecules to exist as monomers in solution. Structural and 

colloidal stability are closely related since the aggregate formation often involves the 

presence of unfolded or partially folded protein species.[261] 

Techniques routinely employed in aggregation studies include chromatography, 

electrophoresis, mass spectrometry and UV-Vis spectroscopy, circular dichroism 

spectroscopy, various modes of microscopy and many more.[254,263]  

 Morphology of protein aggregates 

Based on morphology, aggregates can be divide into two types: amorphous or 

fibrillar.[263] Fibrillar aggregates have an average width of 10-20 nm, and are formed by 

the constituting proteins aligning perpendicular to the fibrillar axis,[264] resulting in a 

cross-β-sheet structure, identified by an X-ray diffraction signature known as the cross-β 

pattern.[265] They can be detected using various methods, most commonly by transmission 

electron microscopy (TEM), optical birefringence and increased fluorescence upon 

association of dyes such as Congo red and Thioflavin T(ThT).[266] Insoluble amyloid 

fibrils are formed from soluble proteins, usually by a nucleation driven mechanism.[264] It 

has been shown that lipid membranes play a role in fibril formation.[267] The mechanism 

of fibril formation has not yet been proven, however some studies suggests that the initial 

step involves binding of the protein to the lipid bilayer driven by the electrostatic 

attraction. Bound proteins are thought to undergo a structural transformation to the β-

sheet followed by the oligomerization of membrane bound proteins.[267] Lipid membranes 

and lipid rafts have also been shown to be the target for the toxic species.[164,267] Several 

studies have suggested that the oligomeric species formed in the earlier stage of amyloid 

aggregation are the main cytotoxic species.[268] 
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Amyloid fibrils have been linked to pathological changes observed in many 

neurodegenerative diseases. Parkinson’s disease is associated with the formation of 

intracellular fibrillar deposits of aggregated α-synuclein, known as Lewy bodies, in the 

dopaminergic neurons of the substantia nigra of the midbrain and other monoaminergic 

neurons in the brain stem.[269] Moreover, mutations associated with the early-onset forms 

of Parkinsonism give rise to neuronal degeneration in the absence of the accumulation of 

Lewy bodies.[270] Other neurodegenerative disorders associated with formation of protein 

fibrils include Alzheimer’s disease, Huntington’s disease and type II diabetes.[271–274] 

Protein fibrils are also involved in physiological processes. Examples of such protein 

include a Pmel17 which is a structural template for the formation of melanine polymers 

or the secretory granules of the endocrine system.[275] 

The term amorphous aggregate is used to describe a heterogeneous population of 

particulates formed in protein solutions, which do not exhibit a long range order. Studying 

amorphous aggregates has proven difficult due to their heterogeneity and light scattering 

properties, leading to notions that they lack distinguishable structure.[263] 

Certain amorphous aggregates associate with Congo red and ThT, dyes known to 

bind to the β-sheet structures found in fibrillar aggregates. This suggests that at least some 

amorphous aggregates undergo structural rearrangement increasing its β-sheet content as 

observed for insulin in the presence of sulfate anion.[276] However ThT was also shown 

to bind to hydrophobic pockets of globular proteins, such as human serum albumin[277] or 

acetylcholinesterase.[278] ThT binding in this case is mediated by the presence of aromatic 

residues and involves extensive π-stacking with Tyr and Trp residues. 

Formation of amorphous aggregates commonly occurs during protein 

processing,[279] in food (production of dairy products and wine) and in the 

biopharmaceutical industry.[256,280] The effects of protein aggregates present in 

biopharmaceutical formulations include decreased efficacy and stability or in some cases 

immunogenic response in patients.[257] Amorphous aggregates have also been linked to 

the formation of cataract, the opacity of the eye lens as a result of protein condensation. 

In congenital forms of cataract the formation of protein condensed phases such as 

crystals[281] or aggregates[282] is caused by a single amino acid substitution (due to single 

point mutation) in the sequence of the crystallin proteins. In age related types of cataract, 

a change in the solution behaviour of the crystallin proteins found in the eye lens occurs 

as a result of environmental changes, such as oxidative or osmotic stress.[283,284] 
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 Factors influencing the aggregation process 

Protein solutions are generally thermodynamically unstable and therefore 

predisposed to aggregation. However aggregation is also strongly influenced by various 

factors, depending on both the nature of the protein as well as the solution conditions.  

Single point mutations have been shown to be a cause aggregation of crystallin 

proteins without any significant changes within their structure.[282,285,286] The substitution 

of certain amino acids results in the formation of attractive patches on the surface of 

crystallin proteins (mainly gamma D crystallin), causing an increase in net protein-protein 

attractive interactions which in turn leads to the formation of aggregates and crystals of 

the crystallin proteins.[287,288] Aggregation can be induced by chemical modification of 

individual amino acids, such as deamidation and oxidation of methionine or cysteine.[255] 

One particular example of such a modification is the fluorescent labelling of proteins, 

routinely performed on studies involving fluorescence microscopy. It has been shown that 

the use of even small fractions of labelled protein may increase the net protein-protein 

attractive interactions.[289] 

Protein aggregation is also strongly influenced by the solution conditions. 

Altering the pH of the solution changes the overall charge of the protein and higher charge 

of the protein results in stronger electrostatic repulsion between molecules.[290] The 

addition of salts at high concentrations may cause screening of charges and therefore a 

reduction in the electrostatic repulsions. The presence of various co-solutes has been 

shown to stabilize the native protein conformation.[291,292] Aggregation of various proteins 

can also be influenced by the presence of lipid bilayers, mainly in case of fibrillar 

proteins.[293,294]  

 Mechanisms of protein aggregation 

The aggregation of proteins depends on the solution conditions as well as the 

thermodynamic stability of the folded protein. Aggregates may form via several 

pathways, often occurring simultaneously within a protein solution, resulting in a 

formation of aggregates with various characteristics.[295] There are five main mechanisms 

of protein aggregation. 

1. Reversible association of the native monomer 

This mechanism involves monomer assembly into small oligomers due to self-

complementarity of protein monomers in their native state.[295] This process may be 
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reversible if the aggregates are formed by non-covalent interaction, or irreversible if 

formation of covalent bonds (such as disulphide linkages) is involved. 

2. Aggregation of a conformationally - altered monomer 

This mechanism occurs when a protein undergoes a conformational change or partial 

unfolding (transition state) and is generally irreversible.[295] Studies suggests that it is the 

most dominant mechanism of aggregation, easily promoted by heat or shear stress and 

implicated in many diseases, involving aggregation of prions or alpha-synuclein.[296] 

3. Aggregates formed from a chemically-modified product 

This mechanism involves chemical degradation, such as oxidation, deamidation or 

proteolysis of the native monomer. The chemically modified monomers can induce the 

aggregation of native monomers by altering their structural properties. Aggregates 

formed via this mechanism can be composed of chemically modified monomers, but can 

also include native monomers.[295] 

4. Nucleation-controlled aggregation 

This mechanism involves two stages; nucleation and growth. Nucleation is the rate 

limiting step and involves the assembly of monomers to form a critical sized nucleus. 

Once formed nucleus acts as a seed for further growth of the aggregates.[263,295] 

5. Surface induced aggregation 

This mechanism involves an adsorption to surfaces during protein handling and storage. 

It is initiated by binding (usually reversible) of the native monomer to surfaces, which 

induces a conformational change in the monomer structure.[295] Aggregation propagates 

either on the surface or in the bulk, if the altered monomer is released into the solution. 

Surface induced aggregation is similar to nucleation-controlled aggregation, with the 

surface acting as a nucleus. 

 Characteristics of proteins used in this research 

 Green fluorescent protein (GFP) 

Green fluorescent protein was first isolated, together with aequorin, from the 

Aequorea victoria jellyfish (figure 1.10a) by Shimomura et al.[297] Soon after the 

excitation/emission spectrum of GFP was published,[298] followed by its crystal 

structure[299] and the identification of the structure of the chromophore.[300] However, it 

was not until the cloning[301] and expression of GFP in other organisms,[302,303] showing 

that all of information necessary for synthesis of functional protein was contained within 
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its sequence, that the potential of fluorescent proteins has been realized.[304] GFP and other 

fluorescent proteins are used for a large number of applications including detection of 

gene expression, monitoring localization and fate of fusion proteins, fluorescent tag 

addition to various cell organelles or detection of various conditions such as Ca2+ level or 

membrane potential.[304] 

The structure of wild-type GFP is referred to as a β-can (figure 1.10b). It is 

composed of an 11-stranded β-barrel with an α-helix running inside the barrel along the 

axis of the cylinder and other short helical fragments at the ends of the cylinder.[305] The 

chromophore, p-hydroxybenzylideneimidazolinone is formed from residues Ser65-

Tyr66-Gly67 and is buried in the centre of the cylinder (figure 1.10 c). A large number 

of polar amino acids, including Gln69, Arg96, His148, Thr203, Ser205, and Glu222 and 

structured water molecules are buried adjacent to the chromophore.[304] 

 

 

Figure 1.10 Aequorea victoria jellyfish (a) from which the wild-type GFP was initially 

purified,[306] (b) crystal structure of wild-type GFP with the 11 β-sheets forming a β can 

structure (Protein Date Bank Id code 1WMA) and the structure of the chromophore of (c).[307] 

Wild-type GFP has a major excitation peak at 395 nm and a minor peak at 475 

nm. Excitation at 395 nm results in emission peaking at 508 nm, while excitation at 475 

nm gives an emission maximum at 503 nm.[308] The dependence of the emission spectrum 

on the wavelength of the exciting light is a result of the presence of two distinct species, 

both protonated and deprotonated which are not equilibrated within the lifetime of the 
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excited state.[304] Folding of wild-type GFP is efficient at or below room temperature, but 

it is greatly reduced at higher temperatures.  

A large number of GFP variants have been developed by introducing various 

mutations, altering components of the chromophore or altering properties of the protein, 

such as improved folding at 37°C or reduced aggregation at high concentrations. GFP 

variants are usually classified based on the nature of the chromophore, into seven classes, 

which have a distinct set of excitation and emission wavelengths.[304] 

Emerald GFP belongs to a class 2 grouping variants with phenolate anions 

forming the chromophore. Replacement of serine at position 65 with threonine causes 

ionisation of the chromophore, resulting in increased maturation,[309] suppression of the 

395 nm excitation peak (natural phenol) and the enhancement and shift of the 470-475 

nm peak to 489-490 nm.[310] Other mutations, such as F64L, S72A, N149K, M153T and 

I167T (figure 1.11), improve folding at higher temperatures, resulting in greater 

brightness. 

 

Figure 1.11 GFP mutation map listing common mutations overlapped with a topological layout 

of the peptide structure (a). The β-sheets are represented as green cylinders (arrow pointing 

towards the C-terminus) and α-helices are shown as gray cylinders. Mutations are color-coded 

to represent the variants of fluorescent protein to which they apply (bottom left corner); folding, 

shared and monomerizing mutations are shown in gray. Emission/excitation spectrum of the 

emerald GFP protein (b), one of the green variants of GFP. 

EmGFP has quantum yield of 0.68, molar extinction coefficient of 57 mM-1cm-1 

and relative fluorescence of 100%, making it one of the brightest variants of GFP in its 

class.[311] Measuring photostability of this protein has been difficult due to an initial 

photobleaching component. Recent results of photostability measurements reported as 

time required to photobleach from 1,000 to 500 photons per second per molecule in live 

cells under widefield arc-lamp illumination, was found to be 101 s for EmGFP.[312] In 
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comparison, that value for the superfolded EmGFP was found to be 157 s. Other recent 

publications do not report photostability issues in a number of applications, including 

cell-free protein synthesis[313] or fluorescence imaging.[314] 

 Bovine serum albumin (BSA) 

Bovine serum albumin is also known as “Fraction V” which refers to the Cohn 

method of purification of blood plasma and its use as a treatment for severe blood lost.[315] 

Serum albumin is a globular protein produced in the liver and has a half-life of up to 19 

days. It is the most abundant protein in the blood and is responsible for maintaining the 

colloidal osmotic pressure in blood vessels.[316] Other functions of serum albumin include 

transport and the distribution of a variety of molecules including metabolites, hormones 

or drugs, buffering pH or preventing degradation of folic acid.[317] Albumins have several 

binding sites facilitating binding of various molecules. 

BSA has a structure similar to human serum albumin with 76% sequence 

homology.[318] The primary structure of BSA, containing 583 amino acids leads to the 

synthesis of a multi-domain monomer of BSA[319] with molecular weight of 66 kDa. The 

sequence of albumins has a unique arrangement of disulphide double loops. Nine such 

loops are found in the BSA structure, forming three homologus domains: I, II, and III, 

shown in figure1.12. These are further divided into subdomains; A consisting of six 

helices and B with four helices.[317] Some interesting characteristics of BSA’s amino acid 

sequence include a high percentage of cysteine and charged residues as well as lack of 

sites for enzymatic glycosylation. The secondary structure of BSA consists of α-helices 

(55%), β-sheets (16%) and disordered structure (29%) and its tertiary structure is 

stabilized by 17 disulphide bridges. 

Most structural investigations of albumin have been based on human serum 

albumin with more than 50 crystal structures of HAS available in the Protein Data Bank. 

Recent studies of the BSA structure reveal differences in the structure of serum albumin 

from various mammals.[316,319] 

BSA is widely used in research, mainly as a nutrient in cell culture, as a reagent 

in a variety of assays, such as ELISA, immunoblotting, immunohistochemistry or as a 

molecular weight standard.[319] BSA is also commonly used as a model protein 

drug.[320,321] 
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Figure 1.12 Structure of bovine serum albumin; domains and elements of secondary 

structure,[316] Protein Data Bank Id code 3V03. 

 

 Human γD-crystallin (HGD) and the Pro23 to Thr (P23T) single mutant 

The α-, β- and γ-crystallins are the most abundant proteins of fibre cells in the eye 

lens of vertebrates.[322] The concentration of crystallin proteins within the eye lens 

exceeds 400 mg/ml,[323] which results in a high refractive index, up to 1.418 in the centre 

of lens,[324] which is required for correct light focusing on the retina. Crystallins are 

mainly structural proteins, however α-crystallin also functions as a molecular chaperone 

preventing aberrant protein interactions.[325] 

The γ-crystallins are small, compact, globular proteins. They exhibit short range 

attractive interactions, unlike the α- and β-crystallins, which were shown to display 

mainly repulsive interactions in solution.[326] Due to this difference in behaviour γ-

crystallins are responsible for reducing the osmotic pressure in the fibre cells and 

maintaining the transparency of the eye lens.[322,327] The γ-crystallins are soluble at very 
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high concentrations but their attractive interactions result in increased susceptibility to 

phase separation. 

Human γD-crystallin (HGD) is one of the most abundantly expressed γ-crystallin 

in the lens.[328] It is composed of 174 residues with two polypeptide domains forming a 

monomer shown in figure 1.13.[329] Several single point mutants of γD-crystallin resulting 

in protein condensation (causing increased light scattering) have been implicated in 

congenital cataract.[281,282] Age-related cataract is the formation of aggregates as a result 

of environmental stress or post-translational protein modifications.[330] 

 

 

Figure 1.13 Crystal structure of human γD-crystallin, cartoon representation of the secondary 

structure (a), the space fill representation illustrating hydrohobicity (b) and the amino acid 

sequence (c). Protein Data Bank Id code 1hk0. 

One of the single point mutations of the human γD-crystallin is the Pro23 to Thr 

(P23T) substitution. This mutation results in significant decrease in solubility (2 mg/ml 

at room temperature) compared to wild-type HGD[282] without major conformational 

changes in the protein structure.[331] Additionally, the solubility of P23T decreases with 

increases in temperature.[282] It has been proposed that lower solubility of the P23T mutant 

is caused by increased hydrophobicity due to the presence of “sticky patches” on the 

protein surface and decreased flexibility of the backbone.[285,286,332] Other substitutions at 

the 23 position such as P23V and P23S were also shown to invert the temperature 

dependence of the solubility line but result in a less drastic decrease in solubility.[282,287] 
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 Thesis motivation 

The motivation for this work was to further our understanding of self-assembly of 

biomolecules and its role and applications in model cell development. To-date, the self-

assembly of lipids and glycolipids have been extensively studied, however many aspects 

of their phase behaviour remain unclear. In particular the phase behaviour of synthetic 

glycolipids is of interest since these types of molecules can be used as a mimics for 

molecular recognition studies. 

The self-assembly of proteins is not only a feature of natural biological function 

but can also be associated with a pathological state in protein condensation diseases (such 

as Parkinson’s disease, Alzheimer’s disease or cataract disease) or reduced quality of 

biopharmaceutical protein products. Protein aggregation has traditionally been studied in 

a bulk, but this approach is not always optimal since it is not the best representation of 

the cellular environment. Studies of assembly in model cells offers a cell-like 

environment, but without the complexity of biological cells. The model cell can therefore 

be designed to contain only the required components, making both observation of the 

assembly (potentially without the use of fluorescent labels) and the interpretation of data 

less problematic. Additionally, model cells are much more resistant to a range of 

environmental conditions, which are unsuitable for live cell imaging, such as broad pH 

range or increased temperature and as such they can be used as a microreactors, to study 

processes in cell-like volumes but beyond only physiological conditions.  
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 Buffer and regents preparation 

 Buffers 

For the preparation of buffers, analytical grade salts and Milli-Q water (ultra-pure) 

were used. The pH of the buffer solutions was adjusted using appropriate concentrated 

acid or base solutions. Buffer solutions were filtered through 0.45 μm, 47 mm nylon 

membranes (Merck Millipore, Ireland) and degassed using a vacuum pump (Merck 

Millipore, Ireland) if necessary. Buffers for preparation of protein solutions were 

supplemented with 0.02% of sodium azide (Fisher, UK). 

 Sodium phosphate 

Sodium phosphate buffers at pH 7.4 at various molarities were prepared by dissolving 

disodium phosphate (Na2HPO4, 268.07 g/mol; Fisher, UK) and monosodium phosphate 

(NaH2PO4, 156.01 g/mol; Fisher, UK) (quantities listed in table 2.1) in 1 L of Milli-Q 

water. If necessary pH was adjusted using appropriate concentrated acid or base solution. 

 

Table 2.1 Quantities of the components of sodium phosphate buffer with varying molarity. 

 5 mM 20 mM 50 mM 

Na2HPO4 1.037 g 4.149 g 10.37 g 

NaH2PO4 0.176 0.705 g 1.76 g 

 Tris-HCl 

0.5 M Tris-HCl at pH 6.8 was prepared by dissolving 6.06 g of Tris base (121.1 g/mol; 

Merc, Germany) in 100 ml of Milli-Q water and adjusting pH with concentrated HCl. 

1 M Tris-HCl at pH 8.8 was prepared by dissolving 30.3 g of Tris base (121.1 g/mol; 

Calbiochem, USA) in 250 ml of Milli-Q water and adjusting pH with concentrated HCl. 

 Glycine-HCl 

50 mM glycine-HCl at pH 3 was prepared by dissolving 3.752 g of glycine (75.07 g/mol, 

Calbiochem, USA) in 1 L of Milli-Q water) and adjusting pH with concentrated HCl. 

 Sodium acetate 

50 mM sodium acetate at pH 4 was prepared by dissolving 244.96 mg of sodium acetate 

(136 g/mol; Fisher, UK) in 200 ml of Milli-Q water and adjusting pH with acetic acid. 
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 Sodium borate  

50 mM sodium borate, pH 8.5 was prepared using 1.55 g of boric acid (61.8 g/mol; Sigma, 

USA) in 500 ml of Milli-Q water and adjusting pH with concentrated NaOH. 

 Loading buffer – 20 mM sodium phosphate 0.5 M sodium chloride 30 mM 

imidazole 0.02% sodium azide 

Loading buffer for protein purification, pH 7.4, was prepared using 4.149 g of disodium 

phosphate, 0.705 g of monosodium phosphate, 29.22 g of sodium chloride (58.44 g/mol; 

Fisher, UK), 2.042 g of imidazole (68.08 g/mol; Sigma, Ireland) and 0.2 g of sodium 

azide (65 g/mol) in 1 L of Milli-Q water. 

 Elution buffer – 20 mM sodium phosphate 0.5 M sodium chloride 1 M 

imidazole 0.02% sodium azide 

Elution buffer for protein purification, pH 7.4, was prepared by dissolving 4.149 g of 

disodium phosphate, 0.705 g of monosodium phosphate, 29.22 g of sodium chloride, 

68.08 g of imidazole and 0.2 g of sodium azide in 1 L of Milli-Q water. 

 Reagents 

 Sucrose 

A 2 M sucrose solution was prepared by dissolving 17.114 g of sucrose (342.29 g/mol; 

VWR, Belgium) in Milli-Q water and made up to 25 ml. 

 Thioflavin T (ThT) 

4 mM thioflavin T stock solution was prepared by dissolving 12.75 mg of ThT (318.86 

g/mol; Sigma, USA) in Milli-Q water and made up to 10 ml. The solution was filtered 

through 0.22 μm syringe driven filters (Millipore, Durapore) and stored at 4°C for up to 

a week. 

 Fluorescein isothiocyanate (FITC)  

A 5 mM FITC stock solution was prepared using 9.73 mg of FITC (389.38 g/mol; Fisher, 

USA) in 5 ml of Milli-Q water. FITC solutions were stored at -20°C for up to a month. A 

10mg/ml FITC for BSA labelling was prepared using 10 mg of FITC in 1 ml of DMF. 
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 Sodium chloride (NaCl) 

A 2 M sodium chloride solution was prepared by dissolving 11.68 g of sodium chloride 

in Milli-Q and made up to 100 ml. 

 Reagents for the E. coli culture 

Where indicated, reagents for the E.coli cell culture were autoclaved at 121°C and 0.212 

MPa pressure for 20 minutes in a SX-500E TOMY autoclave (Seiko, Japan). 

 Ampicillin stock solution 

A 50 mg/ml ampicillin solution was prepared using 1 g of ampicillin (Fisher, China) in 

20 ml of Milli-Q water. The solution was filtered through a 0.22 µm filter and stored at 

-20°C. 

 LB agar for agar plates 

37 g of LB agar (Fisher, Ireland) was dissolved in 1 L of Milli-Q water and autoclaved. 

Upon cooling (ca. 50°C) a stock solution of ampicillin was added to a final concentration 

of 100 µg/ml. The solution was poured into 10 cm petri dishes, allowed to set and stored 

at 4°C for up to a week. 

 LB broth 

25 g of LB broth (Fisher, Ireland) was dissolved in 1 L of Milli-Q water and autoclaved. 

Upon cooling (ca. 37°C) a stock solution of ampicillin was added to a final concentration 

of 100 µg/ml and the broth was inoculated from a single E. coli colony selected from an 

LB agar plate. 

 IPTG stock solution 

1 M IPTG solution was prepared using 4.76 g of Isopropyl β-D-1-thiogalactopyranoside 

(238 g/mol; Fisher, Ireland) in 20 ml of Milli-Q water. Aliquots were stored at -20°C. 

 Cell lysis buffer 

Lysis buffer was prepared by dissolving 0.0788 g (50 mM) of Tris-HCl, 0.01461 g (25 

mM) of NaCl and 0.0074 g (2 mM) of ethylenediaminetetraacetic acid (EDTA; Fisher, 

USA) in 10 ml of Milli-Q water. 
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 Reagents for the mammalian cell culture 

The solutions listed below were prepared using sterile reagents and solvents. All of the 

steps were performed in the laminar air flow cabinet using aseptic technique. Cell culture 

media were stored at 4°C and stock solutions at -20°C. 

 Complete cell culture media (cDMEM) 

450 ml of DMEM (4.5 g/l glucose, 4 mM L-glutamine, no sodium pyruvate; HyClone, 

USA) was supplemented with 50 ml of bovine calf serum (BCS) or fetal bovine serum 

(FBS) (heat inactivated at 54°C for 45 min; Sigma, USA) and 2.5 ml of penicillin (10000 

units/ml) - streptomycin (10 mg/ml) stock solution (Sigma, USA) and stored at 4°C. 

 Serum free cell culture media (sfDMEM) 

50 ml of DMEM was supplemented with 250 µl of Pen-Strep stock solution. 

 Poly-D-lysine stock solution 

A 100 mg/ml stock solution was prepared using 5 mg poly-D-lysine (70-150 kDa; Sigma, 

USA) in 50 ml of Milli-Q water. The solution was filter sterilized (0.22μm) and stored at 

4°C. 

 Phosphate-buffered saline (PBS buffer) 

To prepare 1X PBS, 10 ml of 10X (Sigma, USA) solution was added to 90 ml of Milli-Q 

water. Alternatively a PBS tablet (Oxoid, UK) was dissolved in 100 ml of Milli-Q water. 

The solution was filter sterilized (through 0.22 µm filters). Aliquots were stored at -20°C. 

 Blasticidin stock solution 

A 0.2 mg/ml blasticidin stock solution was prepared by dissolving 2 mg of Blasticidin S 

HCl (Fisher, Ireland) in 10 ml of Milli-Q water. The solution was filter sterilized (through 

0.22 µm syringe driven filters). Aliquots were stored at -20°C. 

 L-glutamine stock solution 

A 200 mM L-glutamine stock solution was prepared by dissolving 2.923 g of L-glutamine 

(146.15 g/ml; Fisher, Brazil) in 100 ml of Milli-Q water. The solution was filter sterilized 

(0.22 μm filters). Aliquots stored at -20°C. 
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 Trypsin-EDTA solution 

To prepare a 1X trypsin-EDTA solution, 300 µl of 10X trypsin-EDTA (Sigma, Ireland) 

was added to 2.7 ml of sterile PBS buffer. 

 Protein solutions 

 Bovine serum albumin (BSA) stock solution 

BSA (Sigma, USA, Lot SLBL2871V) was used without further purification. A fresh 

protein solution was prepared each time by dissolving BSA in 20 mM sodium phosphate 

buffer pH 7.4, incubated for 1 hour at room temperature and then washed of co-

precipitated salts by repeated ultrafiltration using Amicon Ultra 10 kDa (Millipore, 

Ireland) centrifugal devices at 3500 g. BSA concentrations were determined by UV/Vis 

absorbance using the extinction coefficient 0.66 ml mg−1 cm−1. 

 BSA labelling 

FITC is widely used to fluorescently tag a variety of proteins. The isothiocyanate group, 

which in the isomer I is located on the C-4 of the benzene ring reacts preferentially with 

surface exposed primary amines and the terminal amino group. Here BSA solution was 

fluorescently labelled with the isomer I of FITC (Pierce Biotechnology, USA). 

Procedure: FITC was dissolved in DMF at 10 mg/ml. The BSA was hydrated for 1 hour 

in the conjugation buffer (50 mM borate buffer at pH 8.5) at final concentration of 2-2.5 

mg/ml. The FITC solution was added at a 20-fold molar excess to the BSA and incubated 

at room temperature in the dark. The excess of unbound FITC was removed using 

fluorescent dye removal columns (Pierce Biotechnology, Rockford) followed by multiple 

washes using Amicon Ultra 10 kDa centrifugal filter units, until no FITC was detected 

within the filtrate. 

Calculations: The concentration of labelled BSA was calculated as follows: 

 factordilution
CFAA

Mconcprotein 





)(
)(. max280  2.1 

where: Amax is the absorbance of the dye solution at the wavelength maximum (λmax for 

FITC is 494 nm), CF is the correction factor adjusting for the amount of FITC absorbance 

at 280 nm (CF for FITC is 0.3) and ɛ is the molar extinction coefficient of BSA, 43,824 

M-1cm-1. To calculate the degree of labelling following equation was used: 



                  

  

45 

 

degree of labelling factordilution
MconcBSA

BSAlabelledofA





)(.,
 2.2 

where ɛ’ is the molar extinction coefficient of FITC, 68,000 M-1cm-1. 

 Emerald green fluorescent protein (EmGFP) stock solution 

EmGFP was expressed in E. coli and purified via affinity chromatography (see section 

2.7 and 2.9). Upon purification the elution buffer was exchanged with 20 mM sodium 

phosphate, pH 7.4 and the solution was stored in the dark (to prevent photobleaching) at 

4°C. Buffer exchange was performed using a stirred ultrafiltration unit and Ultracel 10 

kDa membranes (Millipore, Ireland). For small volumes and to increase concentration, 

Amicon Ultra 10 kDa were used, with centrifugation at 3500 g. EmGFP concentrations 

were determined by UV/Vis absorbance using the extinction coefficient 0.918 ml mg−1 

cm−1. 

 Microscopy 

 Introduction 

Microscopy is a technique which produces magnified images of objects or 

features not visible to the human eye. The first optical microscope, composed of a single 

lens, was invented by Robert Hook in the 1660s. Over the next few centuries the design 

of the microscope was altered by new approaches and discoveries, such as optimisation 

of the single lens design by Anton von Leeuwenhoek or the introduction of Kohler 

illumination.[333] Modern microscopes are equipped with interchangeable components 

incorporating multiple modes of microscopy in one instrument. Components of 

microscopes may be arranged as inverted or an upright designs. Inverted microscopes are 

becoming more popular, especially in biological sciences due to the possibility of direct 

observation of cells directly in culture flasks. 

There are three main branches of microscopy which include optical, electron and 

scanning probe microscopy. Optical microscopy uses light and multiple component 

optical systems. There are several optical microscopy techniques based on the type of 

sample illumination. Electron microscopy uses a beam of accelerated electrons as a source 

of sample illumination. Scanning probe microscopy (SPM) uses a physical probe to scan 

the specimen and offers resolution of the order of fraction of a nm.[334] 
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 Light microscopy techniques 

 Components of light microscope and bright field analysis 

Light is electromagnetic radiation with properties of both particles (energy 

defining wavelength and vibrational frequency) and waves (electric and magnetic field, 

oscillating as sinusoidal waves in perpendicular planes). These properties can be related 

using the following equation: 

 
𝐸 =

ℎ𝑐

𝜆
= ℎ𝑣 2.3 

where E is the energy (ergs), , h is Plank’s constant, c is the speed of light (3  108 m/s), 

λ is the wavelength (µm) and ν is the frequency (cycles/s). 

 The electromagnetic spectrum is shown in figure 2.1. The resolution limit of the 

human eye, electron and light microscopy is indicated above the scale. The visible light, 

used in light microscopy is a small portion of the spectrum. 

 

 

Figure 2.1 The electromagnetic spectrum with different classes of electromagnetic radiation in 

the range of wavelengths between picometer up to a meter. 

A typical microscope setup is illustrated in figure 2.2. Objectives are designed to 

image specimens either with air (refractive index, n=1) between the objective and the 

cover glass (n=1.5) or with other media, most commonly oil (n=1.51), water (n=1.33) or 

glycerol (n=1.47). Using an immersion medium reduces the difference in refractive index 

(the ratio of speed of light in vacuum and in the medium), therefore preventing the 

refraction of light at the lower surface of the lens and allowing higher working numerical 

apertures to be achieved.[335] 
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Figure 2.2 Image formation in modern light microscope. 

The resolution of a microscope is the shortest distance between two points of a 

specimen that can be viewed as separate entities. The limit of resolution of a microscope 

is restricted by the wavelength of light but also depends on the numerical aperture of the 

objectives, substage condenser and proper alignment of the optical components. A simple 

equation to calculate the limit of resolution when the NAcond ≥ NAobject is shown below 

 NA
R 61.0  2.4 

where, R is the resolution (µm), λ is the wavelength of light (µm) and NA is the numerical 

aperture of the objective. If the NAcond < NAobject then the resolution is expressed as: 

 
NAobjectiveNAcondenser

R



22.1

 2.5 

The resolving power of a microscope increases when light with shorter wavelengths is 

used. Therefore the best resolution is achieved when using near-ultraviolet, followed by 

blue, green and then red light. 

Final magnification of an image is a result of both the magnification of the 

objective and the eyepiece.[333,336] The optimal magnification required to resolve a details 

present within the image is set between 500 and 1000 times of the NA. Use of higher 

magnification will enlarge the object but will not add further detail resulting in blurred or 

indistinct images. 

Protocol: Bright field images were acquired using an Olympus BX61 microscope 

(Japan), equipped with various lenses (between 10x and 100x; Olympus, Japan). Images 
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were viewed and recorded using CellF software and processed using ImageJ.[337–339] 

Figures were prepared using FigureJ plugin for ImageJ.[340] 

 Phase contrast microscopy 

Phase contrast microscopy was developed in the 1930’s by Frits Zernike. His 

discovery revolutionised biology and medicine (Nobel Prize in 1953). This technique 

facilitates high-contrast imaging of transparent, unstained specimens, which do not 

absorb much light, such as living cells. Such objects, known as phase objects induce a 

phase shift of light passing through them due to diffraction and scattering, however either 

the human eye or a digital camera cannot detect differences in the phase of light. The 

optics of the phase contrast microscope transform the differences in phase of light to 

amplitude differences within the image.[333] 

In phase contrast microscopy the light passing through an object is divided into 

two components (direct and diffracted waves) shown in figure 2.3 by an annulus ring 

positioned at the front focal plane of the condenser.[336]
  

 

 

Figure 2.3 Path of light and the location of optical components in phase contrast microscopy. 

The direct (or surrounding) bright light do not interact with the specimen. The 

scattered diffracted wave is relatively faint and retarded compared to the direct wave. 

Light passing through the specimen forms a ring of light at the rear focal plane of the 

objective. Light rays diffracted after interaction with the specimen are distributed over 

the objective’s focal plane. A phase difference of the two components (increasing the 

contrast) is achieved by placing a phase plate at the rear focal plane of the objective. The 

design of the phase plate is such that the surrounding light travels through the thinner part 

(so shorter distance) of the plate and therefore travels faster compared to the diffracted 

light. The plate is also coated with an absorbing film, reducing the amplitude of passing 
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light. Both of the waves are focused at the intermediate image plane, where the phase 

differs by λ/2 which results in a destructive interference pattern.[341] In the positive (or 

dark) phase contrast image dark specimen is observed on the light background. 

The main limitation of phase contrast microscopy is the presence of optical 

artefacts in the form of halos around outlines of specimens. The presence of halos affects 

the detection of boundaries within the specimen.[333] 

Protocol: Phase contrast images were acquired using an Olympus BX61 microscope 

(Japan), equipped with a phase rings and UPlanFLN lenses of various magnifications. 

Images were recorded using CellF software and processed using ImageJ. Figures were 

prepared using FigureJ plugin for ImageJ. 

 Polarized light microscopy 

Polarization microscopy is used to study several properties, such as molecular 

order, thickness and the refractive index of a variety of specimens. Diverse biological 

specimens studied using polarized light include lipid bilayers,[342,343] microtubules and 

actin filaments,[344] chloroplast,[345] collagen[346] and cell walls.[347] Polarization 

microscopy is also commonly used in geology, chemistry, optical crystallography and 

material sciences.[348] 

In a beam of linearly polarized light, electric field vectors of all waves vibrate in 

planes parallel to each other. The orientation of the plane in which vibrations occur is 

described by the angle of the tilt.[336] Polarized light can be obtained using a polarizer 

such as a Polaroid sheet, which is a film of parallel arrays of polyiodide crystals. Such a 

filter has a transmission axis, which allows light through, vibrating parallel to that axis 

and blocking other rays. Two polarizers (the second one is usually called the analyser) 

with their transmission axis parallel to each other will transmit polarized light (figure 2.4). 

As the relative orientation of the transmission axis changes from parallel to perpendicular, 

the amount of transmitted light decreases. In the case of crossed polarizers (arranged at 

90°) linear light from the polarizer is blocked by the analyzer resulting in final 

transmission of light close to 0.[336]  

Birefringent materials, such as quartz are optically anisotropic and cause splitting 

of a ray of light into two rays (linearly polarized and with electric field vectors vibrating 

in perpendicular planes) travelling through it by separate paths; the ordinary (following 

the laws of refraction) and extraordinary ray.[336] This is known as double refraction and 

is caused by the geometrical arrangement of the crystal and the differences of its refractive 
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index with the respect of the direction. Birefringent materials contain a unique optical 

axis (called uniaxial) and if the beam of light is perpendicular to that axis the resulting 

rays exit at the same location but are shifted in phase due to different path lengths.[348] 

The perpendicular orientation of the two vectors and the phase shift give rise to elliptically 

polarized light. This is how most biological samples are viewed using polarized light 

microscopy.[336] 

 

Figure 2.4 Polarization of light obtained with a polarizing filter (a). The light transmission 

through the analyzer and polarizer depends on the orientation of their transmission axis (b). 

The speed of light in a given medium is influenced by the interaction of light with 

electric fields present in that medium. This property is known as the dielectric constant 

(ε) and is related to the refractive index (n) of the medium (ɛ = n2). Polarized light 

microscopy of biological samples is possible due to the polarizability (distortion from the 

normal distribution of the electron cloud upon the interaction with light[130] of biological 

molecules. The more polarizable the molecule the more extensive its interaction with light 

resulting in lower velocity of passing light.[336] Biological polymers, such as cellophane, 

composed of cellulose are polarizable in the direction parallel to the polymeric chain. In 

this direction the refractive index is the highest, resulting in the slowest light transmission. 

Therefore the polarizability of larger structures, such as cellulose fibers strongly depends 

on their orientation and so the orientation of their optical axis in respect to the direction 

of polarized light. 

 Any compound microscope may be converted into a polarizing microscope by 

addition of the polarizer and analyzer into the light path. Birefringent specimens observed 

using both the polarizer and the analyzer produce images of light and dark contrast 

depending on the shape and molecular orientation of ordered structures. 

Protocol: Polarized light images were acquired using an Olympus BX61 microscope, 

equipped with polarizer (rotatable) and (stationary) analyser and various magnification 
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lenses. Images were recorded using CellF and processed using ImageJ. Figures were 

prepared using FigureJ plugin for ImageJ. 

 Fluorescence microscopy 

Fluorescence microscopy is a technique used to study properties of a variety of 

organic and inorganic molecules. Fluorescence is a property of atoms or molecules with 

the ability to absorb light of a specific wavelength followed by emission of light of a 

longer wavelength (therefore lower energy). Fluorescence microscopy is especially 

popular in material sciences and biology due to the difficulties in obtaining sufficient 

contrast when using other types of microscopy.[349]  

Absorption of a photon of light of specific wavelength by a fluorescent molecule 

happens on a timescale of femtoseconds and results in the excitation of the molecule from 

the ground state to its excited state as shown in figure 2.5. The excited states may be 

formed as a result of physical (absorption), mechanical or chemical processes.[350] 

  

 

Figure 2.5 Example of a Jabłoński diagram.[350] 

Excitation is followed by relaxation to the lowest excited state (S1) in a process 

referred to as internal conversion, most widely known as Franck-Condon principle. It 

results in a loss of energy due to a collisions of the excited fluorophore with solvent 

molecules.[351] Relaxation from the lowest excited state to the ground state is accompanied 

by emission of photons of lower energy and is referred to as fluorescence.[352] If the 

relaxation to the ground state involves intersystem crossing to a triplet state, the light 

emission occurs in a process known as phosphorescence.[353] Delayed fluorescence can 

also be observed as a result of transitions occurring from the excited triplet state through 
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the lowest excited (singlet state) and back to the ground state.[351] These transitions are 

graphically presented in the form of a Jabłoński diagram (figure 2.5). 

 Fluorescent molecules 

Molecules capable of producing fluorescence are known as fluorophores (or 

chromophores). They can be divided into two main groups.[354] Intrinsic fluorophores are 

naturally fluorescing molecules, such as aromatic amino acids (phenylalanine, tryptophan 

and tyrosine), enzyme cofactors (NADH), and fluorescent proteins (GFP). Extrinsic 

fluorophores (fluorescent dyes) are fluorescent molecules added to the sample (or 

chemically bonded to it) in order to provide the fluorescence or change the characteristics 

of an intrinsic fluorescence.[352,355] Fluorophores absorb and emit light over a 

characteristic spectrum of wavelengths, known as absorption/emission spectra (figure 

2.6). The shape of the peaks depends on solvent conditions, such as pH, O2 concentration, 

the nature of the solvent, etc. and whether the given fluorophore is free in solution or 

bound to another molecule.[336] The difference in wavelength between the absorption and 

emission maxima is known as the Stokes shift. Fluorescent molecules having a large 

Stokes shift are particularly useful in microscopy since it is easier to separate their 

emission and absorption using appropriate filters.[352] 

 

 

Figure 2.6 Absorption and emission spectrum of FITC (Fluorescence SpectraViewer, Fisher). 

The molar extinction coefficient of a fluorophore is a measure of its ability to 

absorb light under specific conditions. It is reported at specific wavelengths and is used 

to convert units of absorbance to the molar concentration.[350] The quantum yield (Q) 

represents the efficiency of a given fluorophore to emit fluorescence and is calculated as 
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a ratio of emitted photons relative to the number of absorbed photons.[354] Fluorescence 

is proportional to the absorbed light multiplied by the quantum yield: 

  xQcIF 0  2.6 

where I0 is the intensity of light illuminating the solution, ɛ is the molar extinction 

coefficient (at the absorption λmax), [c] is the concentration of the fluorophore and x is the 

pathlength of the beam of light passing through the solution.[351] If values of I0, ɛ, x and 

Q are known, the concentration c can be determined as a function of F. 

Another important characteristic of fluorescent molecules is the fluorescence 

lifetime which is a measure of time during which the fluorophore remains in excited state 

before the relaxation process take place.[354] In a uniform population of molecules excited 

with a brief pulse of light, the decay of fluorescence intensity as a function of time can be 

described by following exponential function: 

 
)/(

0)( teItI   2.7 

where I(t) is the intensity measured at time t, I0 is the initial intensity and τ is the 

fluorescence lifetime, the time during which the fluorescence decays to 1/e of I0. 

As shown by Herman (1998)[351] the contribution of processes, such as quenching, 

phosphorescence and internal conversion, competing with the fluorescence (and therefore 

reducing its intensity) for access to the electrons in the excited state can be combined into 

a single variable named the non-radiative rate constant (knr). The quantum yield can be 

expressed as: 
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where kf is the rate constant for the fluorescence decay, τo is the intrinsic fluorescence (the 

lifetime of the excited state in the absence of non-radiative processes, it is an inverse of 

the rate constant of fluorescence decay) and τF is the measured lifetime which includes a 

contribution from the intrinsic lifetime and non-radiative processes.  

Fluorescence microscopes commonly use epi-illumination systems (figure 2.7) 

where the light from the source is reflected by a dichromatic beam splitting mirror onto 

the back aperture of the objective which acts as a condenser.[351] A beam splitter reflects 

light with shorter wavelengths and transmits light of longer wavelengths. Fluorescence 

emitted by the specimen is collected by the objective and passed onto the detector 

(photomultiplier tube or a camera). Since fluorescence emitted by specimens is usually 
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quite weak the objectives used need to have a high numerical aperture (and preferably oil 

immersion) in order to collect as much of the light emitted in all directions. 

 

 

Figure 2.7 Path of light and the location of optical components in fluorescence microscopy. 

The most commonly used light sources used in fluorescence microscopy include 

xenon arc and mercury vapour lamps. They emit light of various wavelengths, the 

wavelengths required for excitation of the specimen are selected using an excitation 

filters. Undesirable wavelengths which did pass through the filter (usually only a small 

percentage) are transmitted by the beam splitter. The emission filter also allows for 

selected wavelengths to be passed onto the detector, preventing the detection of scattered, 

not-filtered excitation light. The excitation and emission filters consist of glass disks 

coated with either a refractive or interference coating. Depending on the coating, various 

ranges (long and short or narrow pass filters) of wavelengths may be passed through while 

others are blocked. Combinations of short and long pass filters are used when very 

specific wavelengths are required. 

The epi-fluorescence set-up is one of many fluorescence techniques available. The 

choice of the type of fluorescence microscopy depends on the nature of the dyes and the 

specimen and the type of information to be obtained. A variety of advanced microscopic 

techniques utilising fluorescent emission have been developed, such as superresolution, 

fluorescence recovery after photobleaching (FRAP), total internal reflectance 

fluorescence microscopy (TIRF) and many more.[350,356] 

Protocol: Fluorescence microscopy images were acquired using an Olympus BX61 

microscope with either UPlanSApo or UPlanFLN PH3 lenses. Fluorophores were excited 

using a mercury vapour lamp and either FITC (excitation 470 nm – 495 nm, emission 510 
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nm – 550 nm) or CY5 (excitation 620 nm – 660 nm, emission, long pass from 665 nm) 

filters. Images were viewed and recorded using CellF software and processed using 

ImageJ. Figures were prepared using FigureJ plugin. 

  Confocal microscopy 

Confocal microscopes have several advantages over traditional fluorescence 

microscopy, such as control over depth of field, significant background reduction and 

removal of out of focus fluorescence (through spatial filtering), which is very useful when 

imaging thick specimens.[357] Most of the optical elements of the confocal and widefield 

fluorescence microscopy perform identical functions. The most commonly used light 

source is a laser system. For confocal microscopy, emitted light passes through a pinhole 

aperture located in a conjugated plane with a scanning point on the specimen.[358] A 

second pinhole aperture is located in front of the detector. Laser light is reflected by the 

dichromatic mirror onto the specimen in a defined focal plane. Fluorescence emitted by 

the specimen is focused as a confocal point at the pinhole aperture below the detector. 

Some of the differences between confocal and widefield microscopy include the 

detection system (confocal consists of a photomultiplier tube) or use of pinhole aperture 

acting as a spatial filter (not used in widefield microscopy).[357] Another significant 

difference is the specimen illumination, which in traditional fluorescence microscopy has 

a shape of wide cone which results in high background emission from object located 

beyond and above the focal plane. In confocal microscopy the specimen is illuminated by 

a point of illumination. This significantly reduces the photobleaching and the out-of-focus 

emission, resulting in high-contrast images. 

Protocol: Images were acquired using an Olympus FluoView1000 laser scanning 

confocal microscope (Tokyo, Japan), using 458 and 633 nm lasers as a source of 

excitation. Images were analysed using FluoView (Olympus) and ImageJ. Figures were 

prepared using FigureJ plugin for ImageJ 

 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is a microscopic technique where 

images are obtained using an electron beam. TEM is widely used to study the structure, 

morphology and chemical properties of variety of samples, including biological material, 

metals or minerals. Development of the first TEM designed by Knoll and Ruska in 1931 

was driven by the limit of resolution encountered by light microscopy. 
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The source of the electron beam in a TEM instrument is usually a tungsten 

filament, connected to voltage source, which releases electrons upon introduction of a 

sufficiently high current.[359] A gas pressure of around 10-4 Pa is used to prevent 

generation of an electrical arc and to reduce the collisions of electrons with gas atoms. A 

small electron beam (between 5 and 0.1 nm in diameter) is necessary to achieve a good 

image quality.[341,360] The wavelength of an electron depends on its velocity; the higher 

the velocity the smaller the resulting wavelength. The wavelength of an electron is also 

related to its energy and in TEM, λ may be as little as 0.004 nm for a 100 keV electron 

microscope.[361] Shifts in the beam of the electron path are introduced with the aid of an 

electrostatic field.[360] Magnification in TEM is achieved by varying the ratio of the 

distances between the specimen and the objective lens. Apertures are used to control the 

intensity of the electron beam and to remove scattered electrons.[362] 

Thin specimens for TEM analysis are usually deposited onto a copper grid, which 

then is placed onto the sample holder and introduced into the path of the beam of 

electrons.[363] The interaction of the electron beam with the specimen occurs 

simultaneously with its passage through it. If necessary, the specimen may be stained with 

a variety of reagents, such as uranyl acetate to aid imaging. TEM yields black and white 

images, where the darker areas represent more dense parts of the specimen. 

Protocol: TEM analysis was performed at the Royal College of Surgeons in Ireland. TEM 

images were acquired using Hitachi H-7650 Transmission Electron Microscope with a 

side mount 2k AMT camera. Specimen was mounted onto pioloform mesh copper grids, 

blotted and air dried for several minutes. TEM was operated at 100 kV. Images were 

taken at 7 k or 10 k magnifications. Figures were prepared using FigureJ plugin. 

 Preparation of giant unilamellar vesicles (GUVs) 

 Lipid stocks 

The synthetic glycolipid used in these experiments was obtained as a white 

powder, stored at -20°C and used without further purification. All of the lipids purchased 

from commercial sources were used without further purification. Stocks were prepared in 

chloroform or a 9:1 chloroform/methanol solution and the aliquots were stored under 

argon at -20°C or -80°C in case of fluorescent dyes. 

Lipids used for vesicle preparation are listed in the table 2.2. 
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Table 2.2 Lipids used for vesicles preparation. 

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine 
Avanti Polar Lipids 

(Alabama, USA) 

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
Avanti Polar Lipids 

(Alabama, USA) 

PEG-DOPE 

1,2-dioleoyl-sn-glycero-3-phospho-

ethanolamine-N-[methoxy (polyethylene 

glycol) - 2000] (ammonium salt) 

Avanti Polar Lipids 

(Alabama, USA) 

BSM 18:0 Brain sphingomyelin 
Avanti Polar Lipids 

(Alabama, USA) 

Cholesterol (3β)-cholest-5-en-3-ol 
Calbiochem 

(Germany) 

Egg-PC 1, 2-Diacyl-sn-glycero-3-phosphocholine Sigma (USA) 

Liss Rhod PE 

(18:1) 

1, 2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N -(lissamine rhodamine 

B sulfonyl) (ammonium salt) 

Avanti Polar Lipids 

(Alabama, USA) 

NBD-PC 

(14:0-12:0) 

1-Myristoyl-2-[12-[(7-nitro-2-1,3-

benzoxadiazol-4-yl)aminododecanoyl]-sn-

Glycero-3-Phosphocholine 

Avanti Polar Lipids 

(Alabama, USA) 

Bodipy FL 

C5 ceramide 

N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-

diaza-s-indacene-3-pentanoyl) sphingosine 

Invitrogen 

(California, USA) 

cholesteryl 

bodipy FL 

C12 

cholesteryl 4,4-difluoro-5,7-dimethyl-4-bora-

3a,4a-diaza-s-indacene-3-dodecanoate 

Invitrogen 

(California, USA) 

Bodipy TR 

ceramide 

N-((4-(4,4-difluoro-5- (2-thienyl)-4-bora-3a, 

4a-diaza-s-indacene-3-yl) phenoxy) acetyl 

sphingosine 

Invitrogen 

(California, USA) 

 

Lipid mixtures were prepared by addition of appropriate amounts of the stock 

solution of each component, based on weight or molar ratios. When necessary, solutions 

were diluted using chloroform or 9:1 chloroform: methanol mixtures. All of the lipid 

solutions were handled using a 100 µl Hamilton gas tight glass syringe and glass bottles. 

 Electroformation 

An electroformation cell was built in-house on a microscope slide using a protocol 

based on Okamura et. al.[364] Three sets of incisions, 2 mm apart, were made on the bottom 

of a perfusion chamber (Grace Bio-labs, USA) to accommodate two platinum wires 

(Fisher, Ireland) and a narrow glass capillary, 50-100 µm in diameter (figure 2.8). The 
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glass capillary was coated with a thin layer of a 0.1 M lipid solution in chloroform, and 

allowed to dry for several minutes. A perfusion chamber was placed onto the adhesive 

surface of an imaging spacer (Secure-Seal, Grace Bio-labs, USA) which was in turn 

placed onto a microscope slide and allowed to adhere for several minutes. The chamber 

then was filled with Milli-Q water ensuring no air bubbles were formed around the Pt 

wires or the glass capillary. The platinum wires were connected to a function generator 

(built in-house) operating at 10 Hz and 2 V using crocodile clips.  

 

Figure 2.8 Experimental setup for electroformation on a standard glass microscope slide. 

Electroformation was carried out typically for two hours. For visualization and 

measurement, the assembly was disconnected from the function generator and placed 

directly under the microscope. During electroformation evaporating Milli-Q water can be 

replace through the opening in the cover of the perfusion chamber if necessary. 

 Gentle hydration 

A previously described method was used.[173] 20 µl of lipid of the required 

composition, dissolved in chloroform (0.1 M) was placed in a pear-shaped flask. 180 µl 

of chloroform was added. Excess chloroform was removed by evaporation, forming a thin 

layer of lipid on the inner surface of the flask. The flask was then placed under vacuum 

for 24 hours to remove any remaining chloroform. Nitrogen gas was passed through 

MilliQ water at 50ºC and then onto the dried lipid film for 40 minutes. Enough sucrose 

solution (0.1 M) was added (gently to avoid disturbing the film) to the flask up to cover 

the lipid film. The flask was the sealed and placed in an oven at 50ºC for 24 hours. The 

contents of the flask were gently swirled once to ensure homogeneity but further 

movement was limited to minimise shearing of GUVs before observation. 
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 Rapid hydration 

A previously published protocol[174] was modified slightly as follows; 20 µl of 

lipid of the required composition, dissolved in chloroform (0.1 M) was placed in a pear-

shaped flask. A mixture of 150µl of ethanol and 900 µl of chloroform were added. Milli-

Q water (7 ml) was added to the flask along the inside wall and the organic phase was 

removed using a rotary evaporator at temperature ca. 40ºC. 

 Lipid film hydration on an agarose film  

A protocol published by Horger et al.[175] and modified by Tsai et al.[65] was used. 

Agarose was dissolved in Milli-Q water (1% w/w), and boiled for up to 2 minutes. 300µl 

of agarose was spin-coated onto a glass microscope slide at a speed of 1380-1500 rpm for 

30 sec (SCK-100 Spin Coater, Instras Scientific). The slide was then dried for 30 minutes 

at 37ºC. A lipid mixture containing DOPC and PEG-DOPE at the appropriate ratio was 

dissolved at a concentration of 3.75 mg/ml in 95:5 (v/v) chloroform/methanol and 

deposited onto the agarose film by spin-coating (150 µl for 5 minutes at 1380-1500 rpm). 

The slide was placed under vacuum for 1 hour. An imaging chamber was placed on top 

of the microscope slide. 200 µl of 50 mM sodium phosphate buffer or Milli-Q water was 

injected into the chamber and incubated for 1 hour. For encapsulation experiments, 30 µl 

of 0.25 mM FITC in 20 mM sodium phosphate or 25 µl of cell-free expression medium 

was placed on top of the lipid film and incubated for 1 h (at 4°C in case of cell-free 

solution). To aid visualisation vesicles were diluted by adding a further 300 µl of the 

sodium phosphate. 

 Inverted (or w/o) emulsion method 

A protocol based on the method originally described by Pautot et al.,[176] and 

modified by Noireaux and Libchaber[51] was used. A lipid mixture of the desired lipid 

composition was dissolved in mineral oil (Sigma, Ireland) at a concentration of 5 mg/ml. 

The mixture was then heated and sonicated at 50ºC for 1 hour and incubated overnight at 

room temperature. 200 µl of the clear supernatant and 1-1.5 µl of PBS buffer were 

vortexed for a few seconds to form a water-in-oil emulsion. After leaving the emulsion 

to rest for a few minutes, 50 µl of the emulsion was placed on top of PBS buffer (950 µl) 

and centrifuged at 2000 rpm for 1 hour to form GUVs. 



                  

  

60 

 

A modified version of the above protocol was also used, mainly for the 

encapsulation experiments.[365] Egg-PC solution at 10 mg/ml in 9:1 chloroform: methanol 

was prepared. The solution was placed in a glass bottle and the solvent was evaporated 

under a stream of nitrogen. A bottle containing the lipid film was place under vacuum 

overnight to remove traces of solvent. Mineral oil was added to a final concentration of 

0.5 mM (ca. 0.38 mg/ml). The solution was incubated at room temperature for 1 hour and 

then sonicated for 1 hour at a temperature below 40°C. 

For the encapsulation experiments two solutions were prepared: 

1. the inner solution containing molecules to be encapsulated, such as FITC, BSA, 

EmGFP in 20 mM sodium phosphate, pH 7.4 or cell-free expression medium. 

2. the outer solution composed of sodium phosphate or small molecular weight 

component of the cell-free expression medium supplemented with sucrose at a 

concentration matching the osmolarity of the inner solution. 

30 µl of the inner solution was added to 300 µl of a lipid in oil solution and vortexed 

gently or pipetted up and down to form an emulsion, which was then equilibrated for a 

few minutes. 250 µl of the emulsion was placed on top of the outer solution and 

centrifuged at 18000 g, 4°C, for 30 minutes. The GUV suspension was removed from the 

bottom of the tube by gentle aspiration. 

 Continuous droplet interface crossing encapsulation (cDICE) 

A previously published cDICE method protocol was used.[64] A 0.5 mM egg-PC 

solution in mineral oil was prepared as described for the emulsion method. The formation 

chamber was made of two 35 mm petri dishes lids (one with an opening of 1 cm) glued 

together. The chamber was filled with 3 ml of the outer solution (sodium phosphate buffer 

supplemented with sucrose at concentration matching the osmolarity of the internal 

protein solution), 3.5 ml of lipid in oil solution and 1 ml of decane (Sigma, USA) as 

shown in figure 2.9. 

 

 

Figure 2.9 Side and top view of the set-up used for GUV preparation by the cDICE method. 
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The chamber was then fixed on a spin coater. A needle of gauge 30 to 34 

(Radionics, Ireland), connected to a syringe containing the internal solution, was 

introduced through the opening. Larger size needles were selected if concentrated protein 

solutions were used to avoid clogging of the needle tip. The chamber was rotated at 1400 

rpm separating the different liquid phases into layers. The internal solution was injected 

from the needle at 2-30 µl/min for 5 to 20 min. After the formation was completed the 

spin coater was gradually stopped and the aqueous layer containing vesicles was 

withdrawn through the opening of the chamber. 

 Size distribution analysis 

Images of vesicles prepared using various conditions were recorded using CellF 

software. The diameter of 200 randomly selected, spherical and free in solution vesicles 

was measured (unless stated otherwise). Multilamellar, oligovesicular or liposomes with 

visible membrane deformations were not included in the size distribution analysis. 

For each composition and for each method used, experiments were conducted in 

triplicate/quadruplicate (unless stated otherwise); meaning that for each size distribution, 

600-800 GUVs have been measured, unless indicated otherwise. The vesicle diameters 

were averaged across the 3-4 repeat experiments and the distribution was normalized. 

 Incorporation of glycolipid into a lipid bilayer 

The synthetic glycolipid used here was synthesised using L-aspartic acid building 

blocks.[366] The glycolipid was dissolved in chloroform or a chloroform: methanol 

mixture, depending on the method used for preparation. The glycolipid was incorporated 

into the bilayer with other lipids, DOPC, cholesterol, PEG-DOPE and fluorescent lipid 

dyes. Various mixtures of lipids in chloroform or chloroform/methanol at concentrations 

required by each method were prepared. The amount of each component was calculated 

as a weight or mole fraction. 

The GUVs and the lipid tubules were imaged using phase contrast, polarized light 

and fluorescent microscopy. The fluorescent dyes added to lipid mixtures included the 

bodipy FL C5 ceramide, bodipy TR ceramide, cholesteryl bodipy FL C12 and (14:0-12:0) 

NBD-PC. These dyes were used at concentrations between 0.1 to 1 mol percent of the 

total lipid composition. 
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 EmGFP expression in E. coli 

 Transformation and growth of DH5α Competent cells for plasmid 

propagation 

The pRSET-EmGFP Bacterial Expression Vector (Invitrogen, Ireland) was 

propagated in Library efficiency DH5α Competent cells (Invitrogen, Ireland). Cells were 

transformed using the protocol recommended by the manufacturer, consisting of a heat-

shock procedure. Cultures were grown in LB broth containing 100 µg/ml ampicillin, at 

37°C with vigorous shaking (300 rpm) in an Innova 42 incubator shaker (New Brunswick 

Scientific Co., INC). Plasmid DNA was isolated and purified with a Qiagen plasmid 

purification midi kit (Qiagen GmbH, Germany) using a method recommended by the 

manufacturer. The concentration of plasmid DNA was obtained using a SpectraMax M2e 

microplate reader (Molecular Devices, USA) by measuring UV absorbance at 260 nm, 

and using the relationship that A260 equal to 1 corresponds to 50 µg/ml of dsDNA. The 

purity of DNA was determined from the A260/A280 ratio of diluted DNA solution. The 

nucleotide sequence of the emerald GFP was confirmed by sequencing with the T7 

promoter primer using an automated capillary DNA sequencer (MRCPPU, University of 

Dundee, Scotland). 

 Transformation and growth in BL 21-Gold (DE3) Competent cells 

for protein overexpression 

EmGFP protein was expressed in BL 21-Gold (DE3) Competent cells (Stratagene, 

USA). Cells were transformed with the EmGFP plasmid using the protocol recommended 

by the manufacturer and were cultured in 1.2 L of LB broth containing 100 µg/ml 

ampicillin at 37°C and shaken at 225 rpm. Expression was induced after 3-4 hours of 

growth (OD600 between 0.8 and 1) by addition of isopropyl β-D-1-thio-galactopyranoside 

(IPTG) to a final concentration of 0.83 mM. The culture was grown for a further 5 hours. 

Cells were harvested by centrifugation at 6000 rpm for 8 minutes. Cell pellets were stored 

at -80°C before protein extraction. 

 Preparation of bacterial cell stock 

Bacterial cell stocks for long term storage were prepared by aliquoting 2 ml of the 

BL 21-Gold (DE3) Competent cells (in Log phase growth) into sterile cryogenic vials 

(Nalgene, Ireland). Stocks were stored at -80°C. 
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  Site directed mutagenesis and molecular cloning 

Site directed mutagenesis is a method for creating specific changes at a specific 

site in the DNA sequence. The mutation may be a substitution, deletion or insertion of 

one or more bases. This method requires synthesis of two short DNA oligomers (forward 

and reverse sequence), complementary to the DNA and containing the desired mutation. 

A PCR reaction using high fidelity DNA polymerase leads to production of copies 

containing the mutated sequence. The PCR product is transformed into E. coli. 

The Human γD crystallin (HGD) bacterial expression vector coding for the eye 

lens γD-crystallin was used to prepare HGD P23T plasmid DNA coding for its single 

mutant (proline to threonine substitution at the 23 position). Oligonucleotides with 

following sequence were used for the P23T mutation[282]; 

Forward primer: 5ʹ-GCA GCA GCG ACC ACA CCA ACC TGC AGC CC-3ʹ 

Reverse primer: 5ʹ-GGG CTG CAG GTT GGT GTG GTC GCT GCT GC-3ʹ. 

Oligonucleotides were synthesized by Life Technologies (Dublin, Ireland). Mutagenesis 

was performed with QuikChange II site-directed mutagenesis kit (Stratagene, USA) using 

procedure recommended by the manufacturer. The PCR reaction was assembled as 

follows: 

5 µl of 10X PCR reaction buffer 

1.01 µl (50 ng) of ds DNA template 

0.39 µl (125 ng) of forward primer 

0.37 µl (125 ng) of revers primer 

1 µl of dNTP mix 

1 µl of PfuUltraHF DNA polymerase 

Milli-Q to final volume of 50 µl 

 

The PCR reaction mixture was assembled in a thin-walled PCR tube, gently vortexed and 

briefly centrifuged before being subjected to the following heating cycles: 

 

Pre-heat led step 105°C 2 min 

1 cycle 95°C 30 sec 

16 cycles 95°C 30 sec 

65°C 1 min 

68°C 9 min 
 

Following the removal of methylated DNA, containing the unchanged sequence, 

plasmid was transformed into E.coli (section 2.7.1). The plasmid was amplified, purified 

and sequenced as described in section 2.9.1. 



                  

  

64 

 

 Protein expression in cell-free medium. 

Cell-free protein synthesis was carried out using PURExpress (New England 

Biolabs, USA), the E. coli based, purified in-vitro transcription and translation system. 

As per manufacturer instruction the components of the kit (solutions A and B) 

were combined on ice using RNAse free pipette tips. The reaction mixture was 

supplemented with 20 units of RNase Inhibitor (New England Biolabs, USA) and 350 ng 

of plasmid DNA. The total volume was adjusted to 25 µl with Milli-Q water. Protein 

expression in solution was carried out at 37°C. The concentration of expressed protein 

was quantified using a SDS-PAGE protein quantification technique and ImageJ 

(described in section 2.9). 

 Protein expression in cell-free medium was also performed inside GUVs. In order 

to do so, 25 µl of the cell-free expression was encapsulated inside GUVs using the 

inverted emulsion method. The outer solution was composed of the low molecular 

components of the cell-free expression kit (solution A) supplemented with 50 mM 

sucrose. 

 Protein extraction, purification and characterization 

 Protein extraction 

Cell pellets containing E. coli overexpressing EmGFP were thawed at 30°C in a 

water bath. The pH of the cell suspension was adjusted to 7. The cell pellet was 

resuspended (by vortexing) in lysis buffer (10 ml) and complete protease inhibitor 

cocktail tablet (25 MU, Roche) was added. The cell suspension was incubated at room 

temperature for 2 hours before the addition of 160 µl of a 50 mg/ml lysozyme solution. 

The solution was vortexed and incubated at room temperature for a further 30 minutes. 

The cell suspension was subjected to four freeze (liquid nitrogen) – thaw (30°C water 

bath) cycles. After the last cycle, 2 ml of 1 mg/ml DNAse and 1 ml of 1 M MgSO4 

(premixed) was added and solution was incubated at room temperature for 30 minutes. 

The pH was adjusted to 7 and the solution was centrifuged at 10 000g overnight or until 

cell debris was fully removed. The supernatant was stored at 4°C for chromatographic 

purification and the cell pellet was analysed by SDS-PAGE and if necessary stored at -

80°C for further extraction. 
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  Immobilized metal ion affinity chromatography (IMAC) 

Affinity chromatography is an analytical purification method used for 

biochemical mixtures. It exploits a specific interaction between the stationary phase and 

the analyte.[367] In immobilized metal ion affinity chromatography (IMAC) the stationary 

phase contain metal ions (nickel, cobalt, iron or others) which have a high affinity for a 

specific tag (His-tag or sites of phosphorylation) introduced to the molecule structure via 

recombinant DNA technology.[368] Elution of the analyte is usually induced by change of 

pH or introduction of competing molecules (imidazole). 

IMAC set up: Immobilized metal ion affinity chromatography was carried out 

using AKTAprime plus (GE Healthcare BioSciences, Sweden) and the PrimeView 5.0 

software (GE Healthcare, Sweden) was used to control the instrument. Absorbance 

spectra at 280 nm were obtained using the optical unit. A glass column (XK 16) was 

packed with ca. 10 ml of Ni Sepharose™ High Performance (GE Healthcare, Sweden) 

using the protocol provided by the manufacturer. 

Purification procedure: IMAC was used for purification of EmGFP present in 

the E. coli cell lysate. Prior to each purification, the system was rinsed with 200 ml of 

Milli-Q water and 100 ml of the loading buffer. Once the column was connected the flow 

rate was set to 2 ml/min (or less) with a maximum pressure of 0.3 MPa (3 bar). The 

column was rinsed with 3 column volumes of Milli-Q (to remove ethanol used for 

storage) and 10 column volumes of the loading buffer. Before loading onto the column, 

the cell lysate containing the crude protein (after centrifugation step) was filtered through 

0.22 μm Millex-Gv Millipore low protein binding (PVDF) membrane filter units 

(Millipore, Ireland). The pH, sodium chloride and imidazole concentration in the cell 

lysate was matched to that of the loading buffer. The cell lysate was introduced onto the 

column via one of the solvent lines. In order to remove any unbound proteins the column 

was rinsed with 100 ml of the loading buffer. The EmGFP was removed from the column 

by gradient elution using imidazole at concentrations from 30 mM to 500 mM. After each 

purification the column was rinsed with 5 column volumes of Milli-Q water to remove 

the imidazole. For long term storage, the column was filled with a 20% ethanol solution. 

  High Performance Liquid Chromatography (HPLC) 

HPLC is an analytical technique used to separate or quantify components of a 

mixture based on their distribution in two immiscible phases. Size-exclusion HPLC 
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separates molecules based on their size. In this method, the liquid mobile phase moves, 

together with the analyte, through the pores of the stationary phase. Larger molecules are 

eluted first, smaller molecules interact more with the matrix of the packing material and 

therefore have a longer retention time.[369] HPLC analysis was performed in order to 

assess the purity of EmGFP after affinity chromatography separation. 

HPLC set up: Size exclusion HPLC was carried out using a Shimadzu SPD 

HPLC system. Shimadzu LC solution software was used to control the instrument. 

Absorbance spectra were obtained using a diode array detector (DAD) at 190 – 800 nm. 

A Superdex 200 10/300 column (GE Healthcare, Sweden) composed of crosslinked 

agarose and dextran, with a molecular weight range 10-600 kDa was used. 

Procedure: Prior to use the HPLC lines were purged and rinsed with the correct 

buffer to remove any air bubbles. The column was then rinsed until a stable baseline was 

attained. A sample analysis was performed using 100 mM sodium phosphate buffer (pH 

7) as the mobile phase and a flow rate of 0.5 ml/min. Samples were prepared in glass vial 

with rubber seal and introduced onto the column via autosampler set to a 20 µl injection 

volume. 

Sample preparation: An EmGFP solution (from liquid chromatography 

purification) at 2 mg/ml in 100 mM sodium phosphate buffer, pH 7 was prepared, filtered 

through the 0.22 µm syringe filter (Millipore, Ireland) and placed into a glass vial. 

Calibration of the column: A mixture of five proteins (listed in figure 2.10) with 

various molecular weights were dissolved at 2 mg/ml in 100 mM sodium phosphate buffer 

and filtered through 0.22 μm syringe driven filters into a glass vial. Proteins were run 

individually to assign a retention time and as a mixture to establish a column calibration 

curve. 

 

Figure 2.10 Calibration of Superdex 200 10/300 HPLC column. 
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  SDS-PAGE analysis 

SDS-PAGE is a type of electrophoresis in which the separation, detection or 

purification of molecules is based on their molecular weight.[370] In this method an anionic 

detergent (sodium dodecyl sulphate or SDS) binds to the protein giving it an overall 

negative charge (driving their migration in electric field towards the anode) and causing 

protein unfolding by breakage of hydrogen bonds. Whenever breakage of disulphide 

bonds is desired, a reducing agent, such as 2-mercaptoethanol may be used. 

SDS-PAGE analysis was performed in order to check if the desired protein is 

present in cell lysate or the pellet (after purification), to assess the purity of the protein 

solution or to quantify a specific protein in the mixture. 

Gel preparation: Gel plates were assembled in the mini-protean tetra cell (Bio-

Rad, Ireland) as per the manufacturer’s manual. The following solutions were prepared: 

Resolving gel (12.5%) solution: Stacking gel (4%) solution: 

3.15 ml of Milli-Q water  

2.5 ml of 1 M Tris-HCl pH 8.8 

100 µl of 10% w/v SDS 

4.2 ml of acrylamide/Bis (30% stock) 

3.05 ml of Milli-Q water 

0.65 ml of acrylamide bis 

1.25 ml of 0.5 M Tris-HCL pH 6.8 

50 µl of 10% w/v SDS 

 

The components of the resolving gel were mixed and degassed, followed by the addition 

of 50 µl of freshly prepared 10% (w/v) ammonium persulfate (Riedel-de-Haën, Germany) 

and 5 µl of tetramethylethylenediamine (TEMED) (Thermo Scientific, USA). Next, the 

solution was poured between the glass plates and allowed to set for 30 minutes. A thin 

layer of tert-amyl alcohol was placed on top of the gel to remove air bubbles and prevent 

drying. Once the gel was set, the tert-amyl alcohol was rinsed off, and the stacking gel 

(4%) was prepared by mixing its components and degassing the solution for 30 min. 25 

µl of 10% (w/v) ammonium persulfate and 5 µl of TEMED were added. The solution was 

poured on top of the resolving gel and allowed to set. Gels were stored (in cling film to 

prevent drying) at 4°C for up to a week before use. 

Sample preparation: Samples for SDS-PAGE analysis were mixed with the sample 

buffer, heated at ca. 95°C for 5 minutes and briefly centrifuged before loading onto the 

gel. For reducing SDS-PAGE sample buffer was supplemented with β-mercaptoethanol 

in a 1: 20 ratio. Molecular weight markers (Bio-Rad) (figure 2.11) were diluted in 

reducing sample buffer (1:20), and 10 µl aliquots were stored at -20○C. 
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Before use markers were thawed, heated at 95○C and briefly centrifuged. 

Sample buffer: 

4 ml of Milli-Q 

1 ml of 0.5 M TRIS-HCl pH 6.5 

0.8 ml of glycerol  

1.6 ml of 10% w/v SDS  

0.5 mg of bromethyl blue (Sigma Aldrich, Germany) 

Gels were run in a 4-gel electrophoresis tank (Bio-Rad) with the power source set to 200 

mV. Tris-glycine buffer was used as the running buffer. In order to visualise protein 

bands, gels were stained in Coomassie brilliant blue R-250 (Biorad, Ireland) for a 

minimum of 2 hours. Gels were de-stained in a 1:3:6 acetic acid: methanol: Milli-Q 

(v/v/v) solution. 

 

 

Figure 2.11 Low range (left) and broad range (right) molecular weight markers (MWM). 

 

 Protein quantification using SDS-PAGE 

The Concentration of P23T protein, expressed in the cell-free mix was quantified 

based on the intensity of the band from the SDS-PAGE gel analysis. A calibration curve 

was prepared for each gel and used for protein quantification with either BSA or HGD 

protein as standards. A range of concentrations of the standard were used. The cell-free 

expression samples and the calibration standards were mixed with the reducing sample 

buffer, heated at 95°C and briefly centrifuged before 15 µl of each was loaded onto a gel. 

The gel was run using the set-up and parameters described above and stained in 

Coomassie brilliant blue R-250 solution overnight. De-staining of the gel was performed 

in a 1:3:6 acetic acid: methanol: Milli-Q (v/v/v) solution. 
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Gel were scanned and digital images were saved in .tif or .png format. 

Densiometric analysis was performed using the ImageJ software. 

 Determination of protein concentration in GUVs 

The amount of light absorbed by the fluorophore can be related to its concentration  

 
0kcQIF   2.10 

where k is a constant, c is the concentration fluorophore, Q is the quantum yield and I0 is 

the intensity of light illuminating the solution.[351] This equation relates values of F and c 

at low concentration of the fluorophore. At higher fluorophore concentrations the 

fluorescence intensity is independent of its concentration: 

 0QIF   2.11 

When using the fluorescent intensity measurement to calculate the concentration 

of the fluorophore the value of I0 must be kept constant. The intensity of illuminating 

beam can be monitored using a fluorescent standard. 

  Monitoring mercury lamp intensity. 

Measurement of the fluorescence intensity may be affected by various factors, 

with the intensity of the illuminating beam being one of them. MultiSpeck Multispectral 

fluorescence microscopy standards (Molecular Probes, USA) were used to monitor the 

day to day performance of the mercury lamp, mainly the fluctuation in the intensity of 

illuminating light. 

MultiSpeck fluorescence standard is a suspension of microspheres, 4 µm in 

diameter emitting red, green and blue fluorescence when excited with the appropriate 

wavelength of light. 1 µl of the microsphere suspension was deposited onto a microscope 

slide and air dried. When fully dry, the mounting medium supplied with the kit was added 

and a coverslip was placed on top. Microspheres were imaged every time protein 

quantification or related calibration curve measurements were performed. 

Monitoring of the intensity of illuminating light allows for the detection of 

variation in the instrument performance. The fluorescence intensity measurements 

performed on the days when such variations arise may therefore be either repeated or 

corrected. 
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  Calibration curve preparation for protein quantification 

A calibration curve for measuring the protein concentration in GUVs was 

obtained using glass capillaries (Hilgenberg, Germany) with internal diameters of 20, 30, 

40, 50, 70, 80 and 100 µm. Capillaries were filled with EmGFP solution in 20 mM 

phosphate buffer at pH 7.4. Filling of the capillaries was performed by capillary action 

(which lead to an uneven distribution of the protein solution across the length) and by 

connecting the capillaries with a syringe via silicon tubing then filling it by immersing 

the free tip of capillary in the GFP solution and slowly withdrawing the protein solution 

until a droplet of liquid was observed on the opposite tip of the capillary (the one 

connected to the syringe). The following concentrations of EmGFP were used: 0.21, 

0.348, 0.506, 0.84 and 1.08 mg/ml. 

Each capillary filled with the EmGFP solution was observed and two images were 

recorded using fluorescence microscopy (figure 2.12a) with 10x and 20x magnification. 

Images with various exposure times were also recorded, but a 20 ms exposure time was 

used for constructing the calibration curves presented here. The calibration curve was 

constructed by: (1) measuring the fluorescence intensity in the centre of the capillary 

(mid-point in relation to its width) or (2) recording the fluorescent intensity profiles across 

the width of the capillary (perpendicular to its length). Graphs representing the calibration 

plots were prepared using Origin V6.1 software. 

 

 

Figure 2.12 Schematic representation of the measurement of cross-sectional intensity of GFP-

filled capillary (a) or vesicle (c) and the resulting fluorescent intensity plot (b); used for either 

the preparation of calibration curve or direct measurement of protein concentration inside the 

vesicle. 

In both cases a total of six measurements (three for each image) were obtained for 

each capillary size and each protein concentration. A separate calibration curve was 

constructed for each capillary size by plotting the average fluorescence intensity, 

measured within the center of GUVs or obtained by measuring the area under the peak 

for each fluorescent intensity profile. 
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  Conversion between various objectives and exposure times.  

The calibration curve of protein (EmGFP) concentration as a function of the 

fluorescence intensity and diameter was recorded using 10x and 20x lenses. Since images 

of vesicles encapsulating EmGFP were recorded using either 60x or 100x, a scaling factor 

was determined using fluorescent microspheres as a standard. To do this, microspheres 

were imaged using objectives with magnification from 10x to 100x and their fluorescence 

intensity was measured as in section 2.7.2, table 2.3. The scaling factor was thereby 

determined as a difference of the fluorescence intensity within microspheres observed 

with 10x and any other objective. Fluorescence intensity of EmGFP encapsulated within 

a GUV may therefore be multiplied by the scaling factor corresponding to the objective 

used to record a given image. The obtained value corresponds to the EmGFP 

concentration which can be obtained from the calibration plot. 

 

Table 2.3 Conversion table listing fluorescence intensity measurements obtained using a 

fluorescent standard and a range of lenses. The scaling factor (for 10x calibration) allows 

conversion of intensity between higher magnification lenses used for imaging of GUVs and the 

10 X lens used to obtain measurements for the calibration curve. 

Lens 10x 20x 40x 60x* 60x** 60x** 60x** 100x 

Exposure time 10 ms 10 ms 10 ms 10 ms 10 ms 5 ms 2 ms 10 ms 

Fluorescence 

intensity (au) 
180.36 510.67 681.67 1225.3 1413.3 977.94 516.69 1315.6 

Scaling factor (10x) - 0.353 0.264 0.147 0.1276 0.184 0.349 0.137 

* UPlanFLN objective ** UPlanSapo objective 

 

  Quantification of protein concentration within GUVs 

Liposomes were prepared and protein solutions were encapsulated using one of 

the previously described methods. Upon formation, vesicles containing protein solutions 

were imaged using either 60x or 100x magnification. Fluorescence images were analysed 

using CellF and ImageJ software. 

For vesicles containing EmGFP solutions, fluorescence intensity was measured 

either in the centre of the vesicle (point measurement) or across the vesicle’s diameter 

and used to construct the intensity plot. The area under the curve and the scaling factor 

for a given lens were used to obtain the EmGFP concentration for a given GUV size. 
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 Quantification of BSA encapsulated inside vesicles was performed indirectly, by 

measuring the concentration of EmGFP present in the GUV. EmGFP was added to a BSA 

solution at 0.5% of the total protein concentration. The EmGFP concentration was 

obtained using the procedure above. The BSA concentration was then inferred by 

calculating the concentration of EmGFP and its contribution to the total protein 

concentration. 

Analysis of the effect of BSA on the fluorescence of EmGFP 

The fluorescence measurements were conducted using SpectraMax M2e multi-

platform reader. Solutions of EmGFP and EmGFP/BSA mixtures in 20 mM sodium 

phosphate buffer, pH 7.4 were prepared and placed in quartz cuvette. The sample was 

excited at 487 nm and emission spectra between 450 and 600 nm were recorded. 

 Aggregation of BSA in various solution conditions. 

  In bulk solution 

Experiments to monitor BSA solution behaviour were performed in 96-well, clear 

bottom plates. A BSA stock solution at a concentration of 100 mg/ml was prepared in 5 

mM sodium phosphate buffer, pH 7.4 and diluted to 10 mg/ml using an appropriate 50 

mM buffer: glycine-HCl (pH 2.2 and 3), sodium acetate (pH 4) and sodium phosphate 

(pH 7.4). ThT (if used) was added to a final concentration of 200 µM and NaCl was added 

from a 2 molar stock to achieve final concentrations ranging from 0 - 100 mM. The total 

volume in each well was fixed at 150 µl. Plates were incubated either at room temperature 

or at 65°C and cooled to room temperature before analysis. Fluorescence intensity 

measurements were performed immediately after preparation and at set time points (every 

12 hours for when incubated at room temperature and every 20 minutes when incubated 

at 65°C) using a SpectraMax M2e microplate reader. The excitation wavelength was set 

to 435 nm and the emission spectrum was recorded between 465 and 565 nm. 

Additionally absorbance at 450 nm and 600 nm was recorded and percentage 

transmittance (%T) was calculated using following equation: 

 )2(10% AT   2.12 

The measurements were performed in triplicate and the results reported as an average. 
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  Protein inside vesicles  

A 100 mg/ml BSA stock solution was prepared for the encapsulation experiments 

in 5 mM sodium phosphate buffer at pH 7.4. 

The inner solution (to be encapsulated in GUVs) was composed of: 

 a buffer at the correct pH: glycine-HCl (pH 2.2 and 3), sodium acetate (pH 4) or 

sodium phosphate (pH 7.4), 

 BSA at concentrations of 10, 20 or 40 mg/ml, 

 ThT at a concentration of 200 µM 

 50 mM NaCl was added to solutions where indicated. 

The inner solution was prepared immediately before the encapsulation. 

The outer solution (in which GUVs were suspended upon formation) was composed of: 

 a buffer at the correct pH, 

 sucrose at concentration (established experimentally) required to match the 

osmotic pressure of the BSA filled liposomes, 

 ThT at a concentration of 200 µM 

 50 mM NaCl was added to solutions where indicated. 

After formation the GUVs suspension was removed from under the oil layer, gently 

mixed and incubated at room temperature for approximately two hours. Next, the vesicle 

suspension was transferred into PCR tubes and incubated at either room temperature for 

up to 5 days or at 65°C for up to 100 minutes. 

 Mammalian cell culture 

  HEK 293T/17 cell line 

HEK 293T/17 was purchased from LGC (UK). HEK 293 is an epithelial cell line 

derived from human embryonic kidney cells transfected with mechanically sheared 

adenovirus 5 DNA, which then was integrated into chromosome 19.[371,372] The 293T cell 

line was created by inserting the temperature sensitive gene for the SV40 T-antigen. 

Clone 17 was selected due to its high transfectability. 

  Initiation of cell culture 

Vials containing frozen stocks of cells were defrosted at 37°C in a water bath for 

2 minutes. From this point all of the operations were carried out in a biological safety 
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cabinet (SafeFast Classic, Faster S.r.l.) under strict aseptic conditions. The contents of the 

vial were transferred into a falcon tube containing 9 ml of the complete DMEM and 

centrifuged at 125 g for 7 minutes. The supernatant was removed and cell pellet was 

resuspended in 6.5 ml of cDMEM and transferred into a T25 flask (Corning). Cells were 

grown in Memmert INCO 153 incubator (Germany) at 37°C, 90% humidity and 5% CO2. 

  Subculturing and maintenance of culture 

The cultures were maintained by refreshing the cDMEM every 2-3 days as 

indicated by confluence or change in colour of the cDMEM caused by change an in pH 

due to the presence of metabolites. When the culture reached 90% confluence, cells were 

subcultured using the following procedure (volumes are given for T25 flasks). The 

medium was removed and the cells were rinsed with 1X PBS, followed by the addition 

of 1 ml of trypsin-EDTA (500 mg/L porcine trypsin, 200 mg/L EDTA.4Na) in PBS 

solution. The flask was incubated at 37°C until the cells detached (but for no longer than 

10 minutes). 9 ml of cDMEM was added and the cells were harvested by gently aspirating 

the medium. The cell suspension was placed in a falcon tube and centrifuged at 125 x g 

for 10 minutes. The supernatant was discarded and the cells were resuspended in fresh 

medium. Cells were counted using a hemicytometer and seeded at an appropriate 

concentration, usually 2x105 cells/ml. 

  Cryopreservation of cell stocks 

Once confluent, cells were harvested using the protocol described above and 

resuspended in the cryopreservation medium composed of 95% of complete DMEM and 

5% diethyl sulfoxide (DMSO) at 3 x 106 cells/ml. The cell suspension was aliquoted into 

cryopreservation vials. The vials were first placed at 4°C for 5 minutes, next in a -20°C 

freezer for 1 hour followed by -80°C for 1 hour and finally into a liquid nitrogen storage 

container for long term storage. 

 Protein expression in mammalian cells 

  Transfection 

Transfection is a process by which a nucleic acids are introduced into a 

mammalian cell. There are several methods for transfection routinely used. Here, 

Lipofectamine 2000 (Invitrogen, USA) was used as the transfection reagent. It is a 
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cationic liposome formulation which forms complexes with DNA, via electrostatic 

interactions with the nucleic acid charge.[373] 

A mammalian expression vector containing the sequence of a fusion protein 

EmGFP-HGD was designed and the vector was synthesized by GeneArt (Thermofisher, 

GeneArt division, Germany). The mammalian vector pc-DNA6.2_C-EmGFP-DEST 

vector was used and the HGD gene was inserted at the C-terminus. The EmGFP-P23T 

vector was obtained by performing site directed mutagenesis of the mammalian 

expression vector. Mutagenesis was performed with QuikChange II site-directed 

mutagenesis kit using a primers and protocol described in section 2.9.3. The correct 

nucleotide sequence was confirmed by sequencing (MRCPPU, University of Dundee, 

Scotland) (see section 2.9.1 for details). 

The mammalian cells expressing EmGFP were obtained by transfection with the 

Vivid Colors™ pcDNA™ 6.2/EmGFP GW/TOPO mammalian expression vector 

(Invitrogene, USA). 

Transfection was performed once cells seeded in 6-well plate reached 90% 

confluency. Prior to transfection, the medium was exchanged to DMEM without serum 

(sfDMEM). The DNA plasmid was diluted in sfDMEM (2.5 µg in total of 100 µl per 

well). Lipofectamine was diluted in sfDMEM (5 µl into 95 µl of DMEM per well) and 

incubated at room temperature for 5 minutes. Diluted Lipofectamine was added to the 

diluted DNA, mixed and incubated at room temperature for 20 minutes. Next the DNA-

Lipofectamine complex solution was added to the cells and incubated at 37°C for 4 hours. 

Following that time the medium was exchanged for complete DMEM (containing serum). 

Transfected cells were visualized 4 days from the transfection date. 

  Generating stable cell lines 

The fusion plasmids used here contain the Blasticidin resistance gene to allow for 

selection of stable cell lines. In order to do that the minimum concentration of the 

antibiotic required to kill untransfected cells must be determined. 

Determining sensitivity of the HEK 293T/17 cells to Blasticidin: Cells were 

grown in 6-well plate. When confluency of around 25% was reached, the medium was 

replaced with fresh complete DMEM containing various Blasticidin concentrations 

ranging from 0 to 10 µg/ml. The growth of cells was monitored for 2 weeks. 
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A blasticidin concentration of 5 µg/ml was found to be the minimum 

concentration required to kill untransfected cells. Stable transfectants were selected using 

following protocol. The day after transfection (approximately 24 hours), cells were 

washed with PBS and fresh medium was added. On day 2, cells were split into fresh 

DMEM and seeded at 25% confluency. Cells were allowed to adhere for ~ 4 hours and 

the medium was replaced with the complete DMEM containing 5 µg/ml of blasticidin. 

The medium was replenished every 2-3 days for at least 2 weeks. 

  Microscopic imaging of live cells 

In order to facilitate cell growth on glass coverslips, surface treatment with poly-

D-lysine was performed. The coverslips were first cleaned and sterilised. Next, their 

surface was coated with 300 µl of 100 mg/ml poly-D-lysine (70-150 kDa) solution and 

incubated at 37°C. After 40 minutes, the coverslips were thoroughly rinsed with sterile 

Milli-Q water and allowed to dry for at least two hours. Coated glass slides were stored 

at 4°C. 

Coated glass cover slides were placed in the wells of 6- or 12- well plates. Cells 

were seeded at 2x105 cells/ml. Once the desired confluency was reached the medium was 

replaced with complete, phenol red-free DMEM and cells were incubated for 30 minutes. 

Prior to imaging the cover slide was placed on a glass slide and covered with second 

coverslip. An imaging spacer was placed between the two coverslips to prevent crushing 

the cells. The coverslip was sealed with melted agarose. Slides containing live cells, either 

with transient or stable transfectants, were imaged on a heated stage set to 37°C. Cells 

were observed using both phase contrast and fluorescence microscopy (section 2.3). 

Images were recorded using CellF software and processed using ImageJ. 

 

 Fractal dimension analysis 

A Fractal, also known as expanding symmetry is a natural or mathematical 

phenomenon characterized by repeating patterns exhibited at every scale (figure 2.13). 

The word ‘fractal’ originates from the Latin fractus, which means “to break” but also 

“irregular” and was coined by Benoit Mandelbrot[374] 
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Figure 2.13 Mathematical fractals (a): Gosper island and Koch snowflake and fractal patterns 

found in nature (b-e) (taken from mathworld.wolfram.com, fractalfoundation.org, 

sya.deviantart.com, cohabitaire.com and [375]). 

 

  Introduction: theory behind fractal analysis 

Fractals are self-similar, which means that the same pattern is observed regardless 

of scale or size. This can be realized using a lens to zoom in on the image, uncovering 

repeating shapes with no change or new detail.[374] Another characteristic of fractal 

structures is the fact that they follow non-linear scaling rules and their fractal dimension 

is greater than their topological dimension. For example if a 1-dimensional straight line 

is divided into three pieces each of them will be 1/3 of the original length resulting in 

fractal dimension of 1. This is not the case for a fractal object. For example if the Koch 

snowflake (also 1-dimensional) is divided into four pieces, each will have 1/3 of the 

original length (figure 2.14). Fractals cannot be measured using traditional approaches as 

the fractal curve is infinitely long.[376] It has been proposed that the boundary length of a 

fractal object can be expressed as a power law[377]: 

 𝐿(𝑟) = 𝑁 ∙ 𝑟𝐷𝐻 2.13 

where L(r) is the boundary length, r is the length of straight line fragments used to 

measure the boundary length, N is the number of such fragments and DB is the Hausdorff 

dimension, which after rearrangement becomes: 

 𝐷𝐻 = lim  
𝑟→0

𝑙𝑜𝑔𝑁

log (
1
𝑟)

 2.14 

The Hausdorff dimension has a value between the topological dimension of the 

object and the topological dimension of the space which it occupies. A more complex 

boundary of a fractal object correlates to a higher value of the Hausdorff dimension. 
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Figure 2.14 Fractal dimension of the Koch curve.[376] 

 Fractal analysis is used to quantify and analyze similarities between patterns 

otherwise hard to describe. Approximate fractals can be found in nature (figure 2.13) and 

include snowflakes,[378] coastlines or earthquake locations[379] and river networks. Fractal 

dimensions have also been frequently used to analyse biological and biomedical images 

including retinal vasculature,[380] tumours,[381,382] cellular morphology,[383,384] bacterial 

growth patterns[385] or protein aggregates.[386,387] Fractal dimension analysis of biological 

samples is used to represent complexity of the shape of an object and to compare 

morphological features.[388] 

There are a large number of fractal dimensions, (some used only in pure 

mathematics) as well as several methods of measuring a fractal dimension. The methods 

most popular for analysing biological images include: box counting, perimeter-

stepping[389] or pixel dilation.[390] The fractals found in nature exhibit random fluctuations 

in their self-similar patterns, which results in statistical self-similarity expressed by a 

divider fractal dimension[391] or box-counting dimension.[377] Various types of software 

offering fractal dimension calculations are available such as Benoit,[392] BCF,[393] Fractal 

Analysis v02[394] and the FracLac plugin for ImageJ.[395] 

  Box-counting method 

ImageJ free software was used to prepare the digital images and the FracLac 

plugin for ImageJ, developed by A. Karperien was used for the fractal dimension 

calculation. The method outline was taken from the FracLac manual.[395] 

Image preparation  

In order to be analysed, digital microscopy images must be converted to binary 

images. This can be done using a threshold function, which divides pixels of an image 
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converting ones below a set value to black and above that set value to white, therefore 

assigning the background and foreground pixels. Binary images can further be converted 

to one-pixel wide outlines or skeletonized drawings (with lines of unchanging diameter). 

Box-counting method 

Box-counting is a method of data gathering for fractal dimension measurements. 

It involves a series of grids (boxes) of decreasing size laid over a digital image. Data 

collection involves counting how many boxes of each grid contains foreground pixels. 

Changing the grid calibre (the size of the box) results in changes in the number of pixels 

(or so called “mass”) in each box. The mean mass and the average number of foreground 

pixels per box at any given size may be used to calculate a mass dimension, lacunarity 

(inhomogeneity or texture) and multifractality. 

Fractal dimension is a measure of how a detail changes with resolution and is 

based on the concept of a dimension arising from N=RD where N is the number of counted 

parts of a pattern and R is the relative scale. FracLac uses a bounding box, which is the 

smallest rectangle oriented box enclosing all of the foreground pixels within an image, to 

determine the relative size of the largest box within the grid calibre and the scale for a 

given box counting scan. The degree of complexity is given by: 

 
D =  

𝑙𝑜𝑔𝑁𝜀

𝑙𝑜𝑔𝜀
 2.15 

where N is the number of new pieces and ɛ is the scale applied to an object and equal to 

box size/image size (so the size of boundary enclosing the foreground pixels). The fractal 

dimension is approximated as the slope of regression line from: 

 𝐷𝐵 = lim  
𝜀→0

𝑙𝑜𝑔𝑁𝜀

𝑙𝑜𝑔𝜀
 2.16 

The slope of the regression line is given by: 

 
𝑚 =

𝑛 ∑ 𝑆𝐶 − ∑ 𝑆 ∑ 𝐶

∑ 𝑆2 − (∑ 𝑆)
2  2.17 

where S is the log of the scale or size (ɛ), C is the log of the count, which is the number 

of sampling elements (boxes) containing foreground pixels, and n is the number of sizes. 

 FracLac allows the user to choose the number of grid positions, meaning the 

orientations of the grid with respect to an image. The first four orientations assume the 

grid positioning in the corners of the bounding box. If more than four grid positions were 

selected, the locations of remaining orientations are selected based on predetermined 



                  

  

80 

 

random numbers generating the coordinates within the biggest box in the series of a given 

grid calibres and with respect to the four corner locations. 12 grid positions were selected 

for the fractal dimension calculations used here. The use of more than 12 positions was 

found to significantly increase the time required for measurement without any gain in the 

accuracy of the result. 

Since multiple grid locations were used, delivering multiple DB values, the mean 

fractal dimension was calculated using equation 2.18. 

 

𝐷̅𝐵 = ∑ 𝐷𝐵(𝐺)

𝐺𝑟𝑖𝑑𝑠

𝐺=1

× 𝐺𝑟𝑖𝑑𝑠−1 2.18 

FracLac also allows for custom selection of other options, such as the box size or 

shape. The box size was set to optimum values based on the image size. The smallest size 

of a grid was not predetermined, the largest grid was set to 45% of the image size. 

The results of fractal analysis, reported in table format were averaged over several 

digital images representing a set of experimental conditions. The standard deviation and 

the coefficient of variation were reported for each data set. 
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 Introduction 

Lipid vesicles can be prepared from a variety of lipids using numerous methods 

of preparation. Both the lipid composition and method of preparation affect various 

properties of the lipid bilayer within these vesicles. 

Since their discovery, lipid vesicles have been a work horse of cell membrane 

research, providing a better understanding of membrane properties and the processes 

occurring within. In recent years there has been growing interest in using vesicles as 

microcontainers for analysis of various biochemical reactions[105] or for development of 

model cells,[16,187,188] the latter being pursued in this work. 

The number of methods available for liposome preparation is large and still 

growing, due to recent technological advancements, such as improvements in 

microfluidic techniques. The choice of the right experimental approach however still 

remains unclear, as various methods produce different types of vesicles, with various 

yields, depending on the type of lipids used. Therefore the choice of method is strongly 

influenced by the intended application. Since comparison with published data is not 

always possible, a reliable and fast approach for the comparison of results of various 

methods of preparation is presented here. 

 GUVs are commonly used to study the phase behaviour of model 

membranes.[60,146,149,396–398] The presence of coexisting liquid phases (liquid-ordered and 

liquid-disordered) was previously shown for variety of lipid mixtures such as ternary lipid 

mixtures containing DOPC, cholesterol and DPPC or sphingomyelin (SM). In fact, only 

small differences were observed between phase diagrams for mixtures containing DPPC 

and/or the sphingomyelin.[145,399] Similar lipid mixtures were used to observe phase 

behaviour within lipid bilayers prepared by gentle hydration method. 

Giant unilamellar vesicles have been prepared by electroformation, lipid 

hydration methods (hydration on an agarose film, gentle and rapid hydration), water-in-

oil emulsion and continuous droplet interface crossing encapsulation (cDICE). For each 

method investigated GUVs were assessed qualitatively (by appearance, lamellarity, 

presence of surface defects, tendency to cluster) and also by constructing size distribution 

profiles. For electroformation and hydration methods lipid composition and the aqueous 

solution in which formation was performed were varied in order to assess the influence 

of a given parameter on the characteristics of vesicles formed. The base lipid composition 

used for most of the experiments was an 80:20 DOPC/DPPC mixture, since this 
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composition produced consistent GUVs by a number of different methods. Cholesterol 

and sphingomyelin were added to the membranes to assess how their presence altered 

both the quality and size distribution of the GUVs formed. Egg PC was mainly used in 

the cDICE and emulsion method, since it has previously been shown to form large and 

abundant GUVs. 

 While there are a number of methods available to prepare GUVs, it is often 

difficult to predict if the GUVs formed will be suitable for the experiment that a particular 

application requires, especially where the desired membrane composition differs from the 

one described in the literature. The diameter of vesicles is of particular interest since 

depending on the method of analysis a particular range of sizes may be required. While 

smaller vesicles (1-2 μm) may be sufficient for many applications, it is often easier to see 

features, such as lipid phase separation or details of liposome’s interior in substantially 

larger ones.[400] 

Several of the most widely used methods for GUV production were analysed, 

mainly those that do not require specialized or expensive equipment. Typical size 

distribution data and qualitative analysis of vesicles formed was provided for each method 

using a variety of lipid compositions.  

Additionally the applicability of the above methods for encapsulation of 

biomolecules was determined based. Above results provide information necessary for 

selecting the best method for specific application. 

 Results  

 Qualitative assessment of GUVs 

 Vesicles prepared by each of the methods listed above were observed by light 

microscopy. Their quality was assessed based on their appearance, the presence of surface 

defects, lamellarity and theformation of clusters or vesicles nests (number of small 

vesicles entrapped inside a larger one). Images of vesicles prepared by each of these 

methods are shown in figure 3.1. The quantities of each of the components are expressed 

in terms of molar ratios. 

Formation of vesicles consisting of a single bilayer is important for analysing 

membrane dynamics or lipid phase behaviour. Lamellarity also affects the encapsulation 

of molecules inside liposomes.[401] In order to assess the lamellarity, vesicles were 

observed using widefield fluorescent and confocal microscopy. These techniques allow 
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observation of multiple lipid layers within onion-like vesicles or oligovesicular vesicles 

(OVV). Due to the resolution limit light microscopy may not always be sufficient to 

distinguish between single and multiple lipid layers remaining in close contact with each 

other. This type of assessment requires bending elasticity measurements[402] or 

fluorescence quenching assay.[403] 

 

 

Figure 3.1 Phase contrast microscopy images of GUVs prepared by each of the methods 

described; a) 56:14:30 DOPC/DPPC/Cholesterol by electroformation; b) 80:20 DOPC/DPPC 

by electroformation; c) 64:16:20 DOPC/DPPC/Cholesterol by gentle hydration; d) 80:20 

DOPC/DPPC by rapid hydration; e) 95:5 DOPC/PEG-DOPE by lipid hydration on an agarose 

film; f) Egg-PC by cDICE method and g) Egg-PC by w/o emulsion method. Scale bar = 5 µm. 

 Examples of unilamellar vesicles prepared by lipid hydration on an agarose film 

and composed of 80:20 DOPC/DPPC with 0.05% of fluorescent the dye, bodipy TR 

ceramide, imaged by both confocal and widefield fluorescent microscopy are presented 

in figure 3.2. The fluorescent intensity plots are constructed by measuring fluorescent 

intensity across the diameter of the vesicle. The maximum intensity on the fluorescent 

intensity plots corresponds to the location of the bilayer. Differences in the images and 

the intensity plots arise from the characteristics of each of the techniques. Confocal 

microscopy uses spatial filtering to eliminate background fluorescent and out of focus 

light observed due to the thickness (diameter) of the vesicle exceeding the thickness of 

focal plane. Since spatial filtering is not available in widefield fluorescent microscopy, 

fluorescence of the dye incorporated into the membrane is observed also inside the 

vesicle. This effect can be slightly reduced by a decrease in the exposure time or reducing 

the amount of dye incorporated into the membrane. 
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Figure 3.2 Images and fluorescent intensity plots of unilamellar vesicles observed by widefield 

fluorescent (a) and confocal (b) microscopy. 

 Most methods of vesicle preparation yield, in addition to unilamellar vesicles a 

number of multilamellar GUVs and nests of vesicles. The term multilamellar vesicles 

(MLV) is used to describe multiple vesicles of nearly the same size and in close contact 

with each other, which cannot be distinguished by optical microscopy (figure 3.3c) as 

opposed to nest of vesicles which refers to a larger GUV containing a smaller one with a 

diameter less than 20% smaller (figure 3.3b).[404] Oligovesicular vesicles (OVV), which 

are simply small vesicles inside larger ones are also commonly observed (figure 3.3a).[133] 

These can be easily identified by both phase contrast and widefield fluorescent 

microscopy, as shown in figure 3.3 (for vesicles formed by lipid hydration on an agarose 

film, composed of 80:20 DOPC/DPPC with 0.05% of bodipy TR ceramide). The number 

of lipid bilayers may be estimated by analysis of the fluorescent intensity plots obtained 

from high resolution images. A small percentage of multilamellar vesicles were observed 

in every method analyzed. Nests of vesicles were observed mainly within samples 

prepared by the lipid hydration on an agarose film method and the emulsion method. 

 In the protocols for vesicle preparation by both the emulsion and cDICE methods, 

the inclusion of mineral oil dispersed with lipid molecules is required. For that reason 

traces of oil may also be present in the bulk of the aqueous solvent or within the bilayer. 

Oil droplets can usually be distinguished simply by observation with light microscopy. 

Since a monolayer of lipids may be present on the surface of the droplets, the detection 

of oil droplets using fluorescent lipid dyes may not be appropriate. To improve upon this, 
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we introduced a hydrophobic dye, Sudan Red, to the mineral oil used for GUV 

preparation (figure 3.4a). As a second way to distinguish oil droplets from GUVs 

unambiguously, we included FITC in the aqueous solvent. Aqueous compartments will 

encapsulate FITC, while oil droplets will exclude it (figure 3.4b and c), providing an easy 

classification method. 

 

Figure 3.3 Oligovesiclular vesicles (a), nest of unilamellar vesicles (b) and vesicle resembling 

onion-like structure (c) observed by phase contrast (left) and widefield fluorescent microscopy 

in the presence of 0.05% of bodipy TR ceramide dye (middle); fluorescent intensity plots (right). 

Scale bar = 5 µm. 

  

Figure 3.4 Identification of GUVs and mineral oil droplets. Mineral oil droplets exclude FITC 

aqueous solution (b) but the Sudan red, a dye only soluble in non-aqueous solvents was found to 

localize in the mineral oil droplets, with several Sudan Red crystals observed at the oil/water 

interface (a). GUVs formed by the inverted emulsion method can also be identified by 

encapsulation of FITC solution inside aqueous interior of the vesicle (c). Scale bar = 20 µm. 
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 Quantitative assessment of GUVs 

 Size distributions for each method have been constructed by measuring the 

diameters of GUV after imaging using light microscopy. By selecting 300-800 spherical 

and unilamellar vesicles the sizes of vesicles produced by each method were determined. 

Only isolated vesicles were counted, and GUVs were randomly sampled across the full 

sample volume. Lower numbers (100-200) were considered for methods with a low yield 

of vesicles fulfilling above criteria. The vesicle diameters were averaged across the 3-4 

repeat experiments and the size distribution plots were normalized. For all of the methods 

used here, large numbers of vesicles below 5 μm were observed and measured. However, 

for such small structures, determining the edges of the vesicles may produce some error. 

A summary of GUV sizes obtained by each of the different methods is shown in 

table 3.1. Whilst for all of the size distributions shown all data is included, for reporting 

vesicles sizes in table 1, the proportion of vesicles above both 5μm and 10μm respectively 

are used to compare each of the methods, since larger vesicles are most desired and this 

allows the usefulness of each method in terms of producing optimal vesicles sizes to be 

compared. 

 Electroformation 

Electroformation is a fast and highly reproducible method for the preparation of 

cell-sized GUVs. It is widely used, especially in membrane phase behaviour studies since 

it yields good quality unilamellar vesicles with bilayers free of organic solvents. An 

inexpensive setup, built on a microscope slide (developed previously in the lab) was used 

for these experiments (see experimental section). It facilitates GUVs formation from a 

dried lipid film deposited onto a glass surface by the application of an external electric 

field. The electroformation cell facilitates direct observation of the vesicles under an 

upright or inverted microscope. If desired, GUVs can be retrieved from the chamber 

through the opening at the top of the perfusion chamber. 

 Vesicles were produced for 80:20 DOPC/DPPC lipid mixtures and for 

DOPC/DPPC/cholesterol mixtures with increasing concentrations of cholesterol (from 10 

to 30 mole percent). Size distributions for each membrane composition prepared are 

shown in figure 3.5. 
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Table 3.1 Summary of GUVs sizes for different lipid compositions prepared by various methods. 

Method Composition Buffer 
% GUVs 

above 5μm 

% GUVs 

above 10μm 

Largest GUV 

observed (μm) 

Electroformation 

80:20 

DOPC/DPPC 

Milli-Q 

H2O 
42 8 24 

72:18:10 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
47 6 23 

64:16:20 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
38 6 23 

56:14:30 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
24 3 20 

80:20 

DOPC/BSM 

Milli-Q 

H2O 
56 7 22 

50:25:25 

DOPC/BSM/Cholesterol 

Milli-Q 

H2O 
37 6 17 

Gentle 

Hydration 

 

80:20 

DOPC/DPPC 

Milli-Q 

H2O 
36 4 17 

64:16:20 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
82 33 78 

33:33:33 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
39 12 14 

33:33:33 

DOPC/BSM/Cholesterol 

Milli-Q 

H2O 
23 3 15 

47:23:30 

DOPC/BSM/Cholesterol 

Milli-Q 

H2O 
26 4 16 

Rapid Hydration 

80:20 

DOPC/DPPC 

Milli-Q 

H2O 
56 13 33 

64:16:20 

DOPC/DPPC/Cholesterol 

Milli-Q 

H2O 
14 3 30 

Hydration on an 

agarose film 

98.5:1.5 

DOPC/PEG-DOPE 

Milli-Q 

H2O 
60 27 68 

95:5 

DOPC/PEG-DOPE 

Milli-Q 

H2O 
52 18 30 

98.5:1.5 

DOPC/PEG-DOPE 

50mM 

Na3PO4 
69 18 37 

95:5 

DOPC/PEG-DOPE 

50mM 

Na3PO4 
63 21 46 

Emulsion 

method 
Egg-PC 

20mM 

Na3PO4 
60 25 28 

cDICE Egg-PC 
20mM 

Na3PO4 
73 55 60 
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Figure 3.5 Size distributions for GUVs prepared by electroformation; in the absence of 

cholesterol a) 80:20 DOPC/DPPC and with increasing cholesterol concentration b) 72:18:10 

DOPC/DPPC/Cholesterol; c) 64:16:20 DOPC/DPPC/Cholesterol and d) 56:14:30 

DOPC/DPPC/Cholesterol. 

 GUVs obtained by this method were almost exclusively spherical, with rare 

membrane defects (figure 3.1b). Vesicle formation occurs by swelling of a thin lipid film 

deposited onto a glass capillary. Often GUVs remain attached to the surface of the glass 

capillary, which may be advantageous during microscopy observation.[405] This method 

rarely produces multilamellar vesicles (MLVs).[404] The absence of MLVs was confirmed 

by fluorescence microscopy. For the 20:80 DPPC/DOPC mixture, 42% of the GUVs 

formed were larger than 5 µm and a rather small percentage (8%) were larger than 10 µm 

(table 3.1). This was not altered significantly by the addition of 10% cholesterol. A 

cholesterol content above 20% decreases the average size of GUVs formed (figure 3.5c), 

narrows the size distribution and induces membrane irregularities (i.e. vesicles have 

various, also non-spherical shape and tend to stick to each other).[404,406] For lipid 

compositions containing 30% cholesterol, in addition to single GUVs, the formation of a 

network of connected GUVs was also observed (figure 3.1a), which is a feature consistent 

with lipid phase separation into lipid-ordered and lipid-disorder phases, corresponding to 

the formation of lipid rafts within biological membranes. Indeed studies of lipid phase 

behavior are often conducted with similar proportions of cholesterol.[145,146] At the highest 
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cholesterol content, only 24% of the GUVs are larger than 5 μm and a very small fraction 

(3%) are larger than 10 μm (table 3.1). Electroformation using the microscope slide setup 

up on the microscope slide yields vesicles with diameters ranging up to 24 µm for 

phospholipid only vesicles and up to 20 μm for vesicles containing 30% cholesterol. 

 GUVs were also formed by electroformation from lipid mixtures containing 

sphingomyelin (BSM) instead of DPPC. As mentioned before due to the shape of 

sphingomyelin, its molecules tend to pack more tightly and have previously been 

included, together with cholesterol, in lipid mixtures used for vesicles formation in order 

to observe lipid phase separation and lipid raft formation.[399] A high yield of spherical 

and unilamellar vesicles was observed. The size distributions for lipid mixtures composed 

of 80:20 DOPC/BSM and 50:25:25 DOPC/BSM/cholesterol are shown in figure 3.6. The 

size distributions are to some extent wider than for phospholipid-based liposomes. The 

addition of 25% of cholesterol to vesicles containing sphingomyelin has a similar, 

although a slightly smaller effect than for phospholipid vesicles, decreasing the number 

of vesicles above 5 µm from 56% to 37% for DOPC/BSM based GUVs (table 3.1). 

 

 

Figure 3.6 Size distributions for GUVs prepared by electroformation; a) 80:20 DOPC/BSM; b) 

50:25:25 DOPC/BSM/Cholesterol. 

 

 Methods employing lipid film hydration 

 Three methods based on the principle of lipid film hydration as a step leading to 

GUVs formation have been selected; lipid hydration on an agarose film, gentle and rapid 

hydration. These methods facilitate vesicle preparation across a wide range of aqueous 

solutions and at physiological salt concentrations. They also allow charged or PEG-

containing lipids to be efficiently incorporated into the membrane. Lipid hydration 
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methods facilitate entrapment of molecules inside liposomes, but the encapsulation 

efficiency differs significantly among those methods. 

 Gentle hydration 

 Vesicles prepared by the gentle hydration of a thin lipid film deposited onto a 

glass surface were mostly spherical with rare membrane defects (figure 3.1c). Isolated 

vesicles were used for the diameter measurements, but liposomes occurring in clusters 

were also observed. 36% of vesicles formed by this method at 80:20 DOPC/DPPC lipid 

composition were larger than 5 μm, with only 4% larger than 10 μm and sizes did not 

exceed 17 μm (figure 3.7a). Interestingly, the addition of cholesterol actually increased 

the mean diameter, the distribution of sizes and also the occurrence of larger GUVs. 

64:16:20 DOPC/DPPC/Cholesterol yielded the largest vesicles, with 82% of vesicles 

larger than 5 μm and 33% larger than 10 μm. The largest vesicles observed were 78 μm 

in diameter (figure 3.7b). 

 

 

Figure 3.7 Size distributions for GUVs prepared by gentle hydration; a) 80:20 DOPC/DPPC; 

b) 64:16:20 DOPC/DPPC/Cholesterol. 

 Giant unilamellar vesicles are frequently used as a model to study the phase 

behavior of a variety of lipids. Gentle hydration is one of the methods used for the 

preparation of vesicles for studying lipid phase behavior.[407,408] A lipid composition of 

1:1:1 DPPC/DOPC/cholesterol, previously shown to exhibit coexistence of liquid 

phases,[399] was used to form GUVs. 

Similar to previous results, phase separation manifested by the presence of dark 

regions within fluorescent bilayer. Clusters and nests of vesicles were also observed 

(figure 3.8a). Besides spherical and isolated GUVs, with sizes up to 14 µm (12% of 

vesicles with size above 10 µm) a large number of clusters and small vesicles inside 
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bigger ones were observed. Due to a generally low yield, 100 vesicles were used for the 

size distribution analysis (figure 3.9a). 

  

 

Figure 3.8 Lipid phase separation in vesicles prepared by gentle hydration method and 

composed of (a) 33:33:33 DPPC/DOPC/cholesterol, (b) 23:47:30 BSM/DOPC/cholesterol and 

(c) 33:33:33 BSM/DOPC/cholesterol. Scale bar = 5 µm. 

 Sphingomyelin is often used as a component of lipid mixtures for preparation of 

vesicles exhibiting lipid phase separation. Liposomes composed of 23:47:30, 33:33:33 

and 53:27:20 BSM/DOPC/cholesterol were prepared. As shown in figure 3.8 (b and c) 

phase separation was observed within bilayers composed of 23:47:30 and 33:33:33 

BSM/DOPC/cholesterol. Due to a high percentage of vesicle aggregates, GUVs within 

aggregates were also included in size measurements (where the edges of vesicles were 

clearly visible). Lipid bilayers containing 23 and 33% of sphingomyelin have narrow size 

distributions, similar to those with a high DPPC content (figure 3.9b), with the majority 

of vesicles below 5 µm (table 1.1). 

 

 

Figure 3.9 Size distributions for GUVs prepared by gentle hydration; a) 33:33:33 

DPPC/DOPC/cholesterol; b) 23:47:30, 33:33:33 (red) and 53:27:20 (black) 

BSM/DOPC/cholesterol. 

 A lipid composition containing 53 mole percent sphingomyelin resulted in a very 

low vesicle yield, which didn’t allow a size distribution analysis to be completed. Also 



                  

  

93 

 

the majority of vesicles formed with high sphingomyelin content were multilamellar, star-

shaped and arranged in clusters. Phase separation in bilayers containing 53% 

sphingomyelin could not be explicitly confirmed. 

 Rapid hydration 

 The rapid hydration method generates mostly spherical vesicles with no 

membrane defects (figure 3.1d) and diameters below 33 µm (table 3.1). While 56% of the 

vesicles formed in the phospholipid mixture 80:20 DOPC/DPPC were greater than 5 μm 

in size, this reduced significantly with the addition of cholesterol (figure 3.10a). The lipid 

composition 64:16:20 DOPC/DPPC/cholesterol lead to the formation of vesicles with 

diameters up to 30 µm and the narrowest size distribution of all the methods and lipid 

compositions used (figure 3.10b). Only 14% of vesicles were 5 μm in diameter or larger. 

A significant number of smaller vesicles with sizes in the region of 1μm were also 

observed at this composition. 

 Due to relatively narrow size distribution and the use of organic solvent during 

preparation, rapid hydration was found not to be suitable for the observation of phase 

separation or encapsulation. 

 

 

Figure 3.10 Size distributions for GUVs prepared by rapid hydration; a) 80:20 DOPC/DPPC; 

b) 64:16:20 DOPC/DPPC/Cholesterol. 

 

 Lipid hydration on an agarose film 

 A method involving lipid hydration on an agarose film[65,175] lead to a high yield 

of cell-size GUVs across a range of solution conditions, even at high ionic strength. The 

lipid mixture used for lipid film preparation contained 5% PEG-DOPE, which reduces 

liposome aggregation commonly occurring in solutions at high ionic strength. Here, that 



                  

  

94 

 

composition was reproduced but the size distributions obtained were smaller on average 

than those reported previously.[65,175] Also it was observed that a number of GUVs 

prepared by this method contained a number of smaller vesicles inside larger ones. There 

are several reasons why this may have been the case. Water or low ionic strength buffer 

was used to hydrate the GUVs, whereas Tsai et. al. encapsulated actin in physiological 

buffer. Additionally, a basic spin coating device was used to produce an agarose film, 

which may not have been as precise as in the earlier work. GUVs were also measured 

after being washed off the agarose film, so any larger vesicles which were attached to the 

agarose film would not have been observed. Formation of GUVs with lower proportions 

of PEG-DOPE (1.5 mole %) compared to 5 mole % used previously showed no significant 

difference in the sizes of GUVs prepared (figure 3.11). Both compositions had the 

majority of GUVs above 5μm, with 18-27% of GUVs formed above 10μm in size, 

depending on the composition and ionic strength of the aqueous medium used to hydrate 

the lipid film (table 3.1). 

 

Figure 3.11 Size distributions for GUVs prepared by lipid hydration on an agarose film; a) 

98.5:1.5 DOPC/PEG-DOPE hydrated with MilliQ water; B) 98.5:1.5 DOPC/PEG-DOPE 

hydrated with 50mM sodium phosphate buffer; c) 95:5 DOPC/PEG-DOPE hydrated with 

MilliQ; d) 95:5 DOPC/PEG-DOPE hydrated with 50mM sodium phosphate buffer. 
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 Methods employing lipid-in-oil dispersion 

 In addition to creating a lipid film by hydration, GUVs may also be prepared from 

lipids dispersed in mineral oil. The two methods employing this strategy are selected here. 

The inverted w/o emulsion and the continuous droplet interface crossing encapsulation 

(cDICE) method have been used and assessed. 

 Inverted emulsion method 

 The inverted emulsion method was first described by Pautot et. al.[176] It involves 

the preparation of a water-in-oil emulsion, where the droplets, which constitute the inner 

solution of vesicles, are surrounded (and stabilized) by lipid molecules. Forcing the lipid 

coated droplets through an oil-water interface, using centrifugal force, into another (outer) 

aqueous solution, results in the formation of second monolayer (outer leaflet). 

 A very high yield of vesicles were formed by the inverted emulsion method using 

egg-PC lipid, which were mainly spherical and free in solution (figure 3.1g). However, a 

high percentage of vesicles were either multilamellar, arranged in clusters or entrapped 

one inside another vesicle (figure 3.3). As mentioned previously these structures can be 

identified using a fluorescent lipid dyes. 

 An emulsification process leads to the presence of mineral oil droplets within the 

bulk of solution. The presence of oil within the bilayer limits their use to study membrane 

phase behaviour. However the high yield and large sizes of GUVs makes this method 

desirable for encapsulation experiments. The emulsion method forms mostly cell-sized 

vesicles (figure 3.12a), with 60% of total liposomes with size above 5 µm and 25% above 

10 µm (table 3.1). 

 

 

Figure 3.12 Size distributions for GUVs prepared by inverted emulsion (a) and cDICE method 

(b). 
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 Continuous droplet interface crossing encapsulation (cDICE) method. 

 The continuous droplet interface crossing encapsulation (cDICE) method[64] 

involves the formation of vesicles by forcing aqueous droplets through a lipid-rich oil-

water interface facilitated by centrifugal force. A good yield of spherical vesicles with no 

membrane defects was observed (figure 3.1f). A small percentage of small GUVs 

entrapped within bigger ones was also present. A wide size distribution (up to 60 µm) of 

vesicles prepared by the cDICE method was observed (figure 3.12b). 73% and 55% of 

the total number of GUVs formed had sizes above 5 and 10 µm respectively (table 3.1). 

A narrower size distribution and better control over the mean size could have been 

achieved using glass capillaries with a smaller diameter instead of 30 gauge needles with 

internal diameter of 80 µm. Similar to the inverted emulsion method, the presence of 

mineral oil droplets within vesicle suspensions was also observed.  

 Comparison of GUV preparation methods based on suitability for 

encapsulation. 

 All of the methods mentioned above can be used to encapsulate molecules inside 

vesicles, some more successfully than others. When selecting a suitable method of 

preparation, a number of factors, such as preparation time or use of organic solvents, must 

be taken into consideration. Vesicles prepared by electroformation or by gentle or rapid 

hydration are widely used in studies mimicking biological processes, such as membrane 

fusion or phase behaviour. These methods are less often selected for applications 

involving encapsulation due to lengthy preparation, use of electric fields or organic 

solvents. Also with these methods the composition of the interior and exterior solutions 

are identical during formation and additional steps (microdialysis or centrifugation) are 

required to change the outer solution. 

From the methods analysed here, three were selected for encapsulation 

experiments (in later chapters); the lipid hydration on an agarose film, the inverted 

emulsion and cDICE methods (figure 3.13). The lipid hydration on an agarose film has 

been previously used for encapsulation of cytoskeletal protein networks.[65] It offers a 

good yield of vesicles and relatively good encapsulation efficiency. However since the 

‘inner’ solution is simply placed on top of the lipid film, there is no control over how 

much of that solution is successfully encapsulated and how much of it is mixed with the 
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external solution. This leads to high background when encapsulating fluorescent 

molecules. 

The continuous droplet interface crossing encapsulation method has been 

designed with encapsulation in mind.[64] It is fast and produces the largest vesicles among 

the methods analysed. The range of sizes produced by this method can be tuned by 

varying the experimental parameters (e.g. needle diameter and the centrifugal force). A 

large volume of the external and internal solution or requirements for few specific tools 

(e.g. needles or rotating motor) are the main disadvantages of this method. 

The w/o emulsion method has been successfully used to encapsulate a variety of 

molecules, including proteins,[113] enzymes[177] or components of E.coli extract.[51] Small 

volumes of the inner and outer solution, high yields of cell-sized vesicles and a high 

encapsulation efficiency are among the most important advantages of this method. 

However, the possibility of oil residues within the bilayer may be undesirable.[113] 

 

 

Figure 3.13 EmGFP solution in 20 mM sodium phosphate buffer encapsulated inside 

phospholipid vesicles, prepared by hydration on an agarose (a), cDICE (b) and inverted 

emulsion (c) methods. Scale bar 5 µm. 

 

 Conclusions 

 Giant unilamellar vesicles may be prepared by several different methods 

(electroformation, lipid film hydration or methods involving lipid dispersion). The 

methods described here are relatively easy, rarely require specialized equipment and 

exhibit a high degree of reproducibility. Each of the methods examined here produce 

unilamellar vesicles of biological cell size (or larger) which facilitates their observation 

by phase contrast microscopy and with addition of fluorescent dye, also by fluorescence 

microscopy. The proportion of vesicles of larger sizes formed depends on both the method 
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used to prepare them and as well as the lipid mixture used. For a fixed composition, 

substantially larger vesicles can be prepared by selecting an alternative method. Here, 

size distributions have been measured for a set of membrane compositions using several 

of the methods described. Comparison of the overall size distributions and the proportions 

of larger vesicles formed for each lipid composition and method may simplify the process 

of selecting a method optimal for a given application. 

 During the course of the project some undesirable forms of vesicles (or artifacts) 

have been observed. Approaches for their identification have been proposed, and include 

addition of fluorescent lipid dye for identification of MLVs and vesicle nests and oil-

soluble dye for detection of oil droplets. 

 All of the methods described above may be used for encapsulation (of 

biomacromolecules, for example); however the success will depend strongly on the 

method chosen. Electroformation along with gentle and rapid hydration are generally not 

selected for encapsulation for several reasons,[165] mainly due to low efficiency. The 

applicability of a given method for encapsulation was determined based on the use and 

time required for preparation, reproducibility of the results and finally the level of 

encapsulation efficiency. Here, lipid hydration on an agarose film or the inverted 

emulsion and cDICE method were selected and used for this purpose, which will be 

discussed in following chapters. 

 The above results provide comparison of several methods of vesicle preparation 

based on the size and quality of vesicles, as well as the ability to efficiently encapsulate 

variety of molecules. This type of assessment provides information necessary for 

application tailored selection of method. 
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 Introduction 

Glycolipids are a highly diverse class of lipids. In addition to naturally occurring 

molecules, a range of synthetic glycolipids have been developed.[203,204,409–411] This 

structural and functional variety is widely used in a range of academic and industrial 

applications.[412–415] Glycolipid biosurfactants have potential antimicrobial applications 

due to their ability to damage cell membranes or to prevent the formation of biofilms.[416] 

A variety of biological processes such as cellular uptake, molecular trafficking and certain 

aspects of immune response have been studied within natural and model membranes 

using fluorescent, photoactive, biotinylated and radio-labelled glycolipid-based probes 

discussed extensively in a recent review.[417] 

Glycolipids (both natural and synthetic) may be incorporated into the lipid 

bilayers of giant unilamellar vesicles. These types of vesicles are used to study glycolipid 

phase behaviour and the properties of glycolipid-rich domains.[418–420] Studies involving 

the phase behaviour, shape transformation or fission of GUVs containing 

lipopolysaccharides (LPS) are of special interest since LPS are strongly involved in the 

inflammation process.[421,422] Glycolipid containing vesicles, due to the specificity of 

carbohydrate interactions are investigated as vehicles for targeted drug delivery.[423,424] 

The defined structure of the carbohydrate head group facilitates delivery onto selected 

organs or tissues, by specific interaction with an appropriate receptor (for the 

carbohydrate used). For example vesicles containing sialyated Lewis antigens, which 

bind to selectin receptors present on the surface of various cell types, such as endothelial 

cells, platelets and leukocytes can mimic biological antigens and therefore alter the 

immune response of targeted cells.[425–427] A variety of drugs may be encapsulated within 

glycolipid vesicles providing a way to induce an immune response,[428] alternative 

therapies for immunodeficiency,[429] inflammation[430] or cancer[431] to name just a few. 

Recently, liposomes incorporating glycolipids have also been used for targeted delivery 

of gene-based therapeutics.[432] Growing interest in the role of glycolipids in bacterial and 

viral infections and studies involving the interaction of pathogenic antigens with 

glycolipid vesicles may lead to new glycolipid-based therapeutic strategies or novel 

approaches to drug delivery and molecular recognition.[433,434] 

 The preparation of a model cell mimicking cell adhesion or signalling requires the 

presence of molecules involved in this processes within the lipid bilayer. The aim of this 

study was to incorporate a protected synthetic glycolipid, with a galactose-based 
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headgroup and two asymmetrical hydrocarbon tails, into phospholipid and phospholipid-

cholesterol based liposomes at biologically relevant concentrations. The stability and the 

appearance of the glycolipid-containing vesicles were observed by phase contrast and 

fluorescence microscopy. The phase behaviour of the synthetic glycolipid was analysed 

using various modes of microscopy (phase contrast, polarized light and fluorescence) 

with the aid of various fluorescent dyes depending on its concentration in the lipid 

mixture. 

The use of synthetic structures as glycolipid mimetics also removes the necessity 

of difficult and often time consuming purification of naturally occurring forms. The 

synthetic design of the glycolipid used here provides the opportunity for further 

modification of the functionality of the carbohydrate head group, greatly extending the 

number of ways in which the specificity of the interaction may be altered. 

 Results and discussion 

 Incorporation of glycolipid within bilayer. 

Giant unilamellar vesicles were prepared using variety of methods, including 

electroformation, gentle and rapid hydration, the water-in-oil emulsion method and the 

hydration on an agarose film method, as described in section 2.4. Lipid mixtures used 

were composed of DOPC, cholesterol, a range of fluorescent lipid-based dyes and the 

synthetic glycolipid which structure is shown in figure 4.1. The synthesis of the glycolipid 

has been described previously.[366] Its structure consists of an acetylated (-OAc instead of 

-OH) galactose-based head group, flexible ethylene linker and two asymmetric 

hydrocarbon tails. 

The aim of the initial experiments was to confirm the presence of the protected 

synthetic glycolipid within the lipid bilayer formed. A lipid film consisting of only the 

synthetic glycolipid (100%) does not swell after hydration and therefore does not produce 

vesicles. Vesicles were produced when glycolipid concentrations between 1-5 mol 

percent were added to binary lipid mixtures with DOPC or ternary lipid mixtures with 

DOPC and cholesterol. At concentration greater than 5 mol % of glycolipid, in addition 

to vesicles, tubular structures, discussed in section 4.3.3, were also observed. 

Successful formation of vesicles in the presence of glycolipid was achieved using 

all of the methods attempted, such as the electroformation, lipid film hydration methods 

or the inverted emulsion method. 
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Figure 4.1 Chemical structure of the synthetic glycolipid. 

 

 Fluorescent dyes used in microscopic analysis of structures formed in the 

presence of the synthetic glycolipid 

Direct observation of the glycolipid within bilayer was not possible, since there is 

no label attached directly to it. Lipid bilayer containing the synthetic glycolipid was 

observed by widefield fluorescent microscopy in the presence of fluorescent dyes, such 

as bodipy FL C5 ceramide, bodipy TR ceramide or cholesteryl bodipy FL C12 (figure 4.2). 

The amount of dye used depends on its photo-stability, lifetime and the quantum yield. 

Additionally it was shown that for majority of fluorescent dyes the addition of dye below 

2 mol % of total lipid content have negligible effect on mechanical properties of 

membrane.[435] Nonetheless, the presence of the fluorescent dye within the bilayer was 

not a conformation of the incorporation of the glycolipid. Instead to confirm the presence 

of the synthetic glycolipid within the lipid membrane the properties of vesicles formed in 

the presence of the glycolipid was compared to those formed in its absence. 

 Evidence of glycolipid incorporation into GUVs 

During the preparation of the vesicles, care was taken to ensure that the synthetic 

glycolipid was fully dispersed within the solvent (chloroform or mineral oil) and within 

the resulting lipid film. Low total lipid concentrations (10 mM) and spin-coating instead 

of droplet deposition (where applicable) were used to ensure the formation of a thin and 

uniform lipid film which in turn promotes its full hydration and complete swelling. 

Following the completion of vesicle formation, no evidence of the presence of a lipid film 

still present on the surfaces was observed, which indicated that the glycolipid did swell 

at the same time as the other lipids present in the film. Also, no artefacts or free-floating 

material of any sort was present within the vesicle suspension. This strongly suggests that 

all of the glycolipid present within the lipid film was fully incorporated into the lipid 

bilayer. 
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Figure 4.2 Chemical structures of the bodipy FL C5 ceramide (a) and bodipy TR ceramide (b), 

cholesteryl bodipy FL C12 (c) and (14:0-12:0) NBD-PC (d). 

 

 Characteristics of glycolipid vesicles 

A very high yield of spherical vesicles prepared in the presence of 1-5 mol % 

glycolipid was observed. Liposomes containing the synthetic glycolipid exhibit 

characteristics not observed in phospholipid-based GUVs. The differences include a 

strong tendency to form chains and clusters (figure 4.3), which was not observed in the 

absence of the glycolipid, with the exception of GUVs formed in the presence of 30% 

cholesterol (see chapter 3, figure 3.1a). The presence of the synthetic glycolipid also leads 

to formation of higher numbers of multilamellar and elongated vesicles. 
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Figure 4.3 Clusters of GUVs containing the synthetic glycolipid, formed by gentle hydration 

method, composed of 1:9 glycolipid–phospholipid mixtures and 0.1% of bodipy FL ceramide. 

Scale bar = 10 µm. 

A size distribution analysis of liposomes prepared by the gentle hydration method 

composed of 1:9 glycolipid/phospholipid (DOPC) was performed using the method 

described in section 3.3.2. In comparison with vesicles composed of 1:9 DPPC/DOPC 

prepared in the same way, the glycolipid-GUVs were significantly smaller and had 

narrower size distributions (figure 4.4). 

The vesicles containing the synthetic glycolipid were rather stable. No changes in 

the shape or stability of the vesicles stored at room temperature were observed for up to 

12 days, which is longer than for phospholipid-based vesicles. Hydrogen bonding 

interactions altering the polarity of the lipid head group are believed to be the reason of 

the improved stability.[436] 

 

 

Figure 4.4 Size distribution of GUVs prepared by gentle hydration method from lipid film 

containing only phospholipids (red) or 1:9 glycolipid/phospholipid mixtures (green). 
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 Glycolipid phase behavior – lamellar phase formation  

Model membranes composed of variety of lipid mixtures are commonly used to 

study lipid phase behavior.[60,437] The coexistence of various lamellar phases (mainly the 

liquid ordered Lo and liquid-disordered Ld) was previously shown for variety of lipid 

mixtures, such as ternary mixtures containing DOPC, cholesterol and DPPC or 

sphingomyelin (SM) and in fact substitution of DPPC for SM results in only small 

differences in the phase diagrams.[145,149,399] The 1:1:1 DPPC/DOPC/cholesterol, 1:1:1 

BSM/DOPC/ cholesterol and 23:47:30 BSM/DOPC/cholesterol lipid mixtures were 

previously used to form vesicles exhibiting phase separation (chapter 3 figure 3.8). The 

synthetic glycolipid used here and the sphingomyelin share some structural similarities. 

GUVs containing the synthetic glycolipid were therefore formed in the presence of 

fluorescent dyes and analyzed using fluorescent microscopy to investigate whether the 

synthetic glycolipid causes phase behavior similar to that observed for membranes in the 

presence of sphingomyelin. 

 The effect of glycolipid concentration on lipids phase behavior 

Giant unilamellar vesicles were prepared using the gentle hydration method from 

DOPC in mixtures with increasing concentrations of the synthetic glycolipid (figure 4.5). 

Fluorescent dyes, bodipy FL C5 ceramide and bodipy TR ceramide were added to the 

lipid mixture in order to facilitate observation of phase separation by widefield 

fluorescence microscopy. The glycolipid appears to be uniformly and fully incorporated 

within the bilayer as no lipid phase separation or residual material remaining after 

hydration was observed. The presence of the synthetic glycolipid leads to formation of 

higher numbers of multilamellar and elongated vesicles. Also the size and yield of 

vesicles decreased with an increase of glycolipid content within the bilayer, with the most 

drastic effect observed at 20 mol % of glycolipid. This effect is very similar to behaviour 

observed for vesicles formed with high cholesterol content within DOPC/DPPC lipid 

mixtures discussed in section 3.3.3 (see figure 3.5).  

Vesicles containing identical lipid compositions as shown in figure 4.5 were also 

prepared using a rapid hydration method (data not shown). The size and the appearance 

of GUVs prepared by the gentle and rapid hydration methods were almost identical. The 

glycolipid was uniformly distributed within the bilayer and no phase separation was 

detected. This suggests that the observations with regard to the appearance and size 
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decrease accompanying the increase in glycolipid concentration were due to the presence 

of glycolipid (and not related to the method of preparation). 

 

Figure 4.5 Fluorescence microscopy images of GUVs prepared by gentle hydration from 

mixtures of synthetic glycolipid, DOPC (lipid composition at the top of the image) and 0.1% of 

bodipy FL C5 ceramide. Scale bar = 10 µm. 

 

 The effect of cholesterol concentration on lipid phase behavior 

The effect of cholesterol on glycolipid containing membranes was evaluated. 

Cholesterol is known to induce phase separation in membranes of various 

compositions.[145,150,397,438] Moreover its presence was implicated in the formation of 

sphingomyelin/cholesterol rich domains within biological membranes.[155,193] The phase 

behaviour of glycolipid in the ternary lipid mixtures was analysed in vesicles composed 

of DOPC, 5 mol % glycolipid, 0.05 mol % cholesteryl bodipy FL C12 and various 

concentrations of cholesterol and DOPC, prepared using gentle hydration method (figure 

4.6). The cholesteryl bodipy dye was previously used to study lipid phase behaviour.[439] 

It was shown to preferentially partition into the cholesterol-rich liquid-ordered phase due 

to its structural similarity to cholesterol (figure 4.2c). 

 

 

Figure 4.6 Fluorescence microscopy images of GUVs prepared by gentle hydration method 

from lipid mixtures containing 0.05% cholesteryl bodipy FL C12 and a) 85:10:5 DOPC/ 

cholesterol/glycolipid; b) 80:15:5 DOPC/cholesterol/glycolipid; c) 75:20:5 DOPC/cholesterol/ 

glycolipid; d) 70:25:5 DOPC/cholesterol/glycolipid; e) 65:30:5 DOPC/cholesterol/glycolipid. 

Scale bar = 5 µm. 

Within lipid bilayers containing both the glycolipid and various concentrations of 

cholesterol, the fluorescent cholesteryl bodipy dye was uniformly distributed and no 
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evidence of lipid-ordered and lipid-disordered phase coexistence was observed. However, 

increasing concentrations of cholesterol present within the bilayer lead to a decrease in 

the number of vesicles formed. Also, significantly smaller average diameters of the 

liposomes were related to high cholesterol content within the membrane. 

 Analysis of lipid phase behavior using fluorescent dye pairs  

 Vesicles were also prepared using equimolar concentrations of the synthetic 

glycolipid, DOPC and cholesterol. The coexistence of the lipid phase separation for 

similar lipid mixtures, but with either DPPC or sphingomyelin instead of the glycolipid 

was shown in figure 3.8 (see section 3.3.4). The 33% content is above glycolipid’s 

solubility within the lipid bilayer and guarantee its oversaturation in the membrane. Lipid 

vesicles with equimolar mixtures of the glycolipid, DOPC and cholesterol were formed 

in the presence of both of the ceramide-based dyes; bodipy FL C5 (green) and bodipy TR 

ceramide (red) which, based on their structural features were expected to partition into 

the glycolipid-rich phase (figure 4.2 a and b). This was done in order to determine whether 

the small difference in the structure of the fluorescent tag, may alter their behavior within 

the coexisting lamellar phases. Phase separation was not observed and both dyes seemed 

to be co-localized and uniformly distributed within the membrane. To test if either of the 

two fluorescent ceramide dyes was capable of detecting phase separation within the 

bilayer, they were used in pairs with other well-known dyes, the cholesteryl bodipy FL 

C12 and the NBD-PC (figure 4.7). The cholesteryl bodipy FL C12 (figure 4.2c) is a 

cholesterol analogue, that partitions into cholesterol-rich domains, also known as lipid 

rafts or lipid-disordered lamellar phases. NBD-PC (figure 4.2d) is known to partition into 

phospholipid-rich domains.[225,440,441] In fact, the cholesteryl bodipy FL C12 dye was 

previously used to observe phase separation within lipid bilayers formed from 

DPPC/DOPC/cholesterol and BSM/DOPC/cholesterol mixtures (chapter 3, figure 3.8). 

The use of glycolipid/DOPC lipid mixtures with the above pairs of fluorescent 

dyes was to examine whether the phase separation of the glycolipid from either the 

phospholipid-rich or cholesterol-rich domains was occurring. Since both pair of dyes 

were homogenously dispersed within the lipid bilayer of liposomes and separation of the 

fluorescent dyes was not observed (figure 4.7) it was concluded that the synthetic 

glycolipid was also uniformly distributed in the lipid bilayer of vesicles with all of the 

lipid mixtures studied. 



                  

  

108 

 

 

Figure 4.7 Fluorescent microscopy images of GUVs (33:33:33 DOPC/glycolipid/cholesterol) 

prepared by gentle hydration. Lipid bilayer was labelled with: (a-c) 0.05% cholesteryl bodipy 

FL C12 and 0.05% bodipy TR ceramide; (d-f) 0.05% bodipy TR ceramide 1% NBD-PC; (c & f) 

overlay of the two images. 

It is important to note that the preference of a given fluorescent lipid to partition 

into either the liquid-ordered or liquid-disordered phase is strongly influenced by its 

structure, mainly the size, chemical character and location of the tag within the lipid 

molecule. The dye’s preference towards one of the lipid phases also strongly depends on 

the characteristics of the other lipids present in the mixture. For that reason the choice of 

the dye should be carefully considered and partitioning preferences of a given dye should 

be tested individually for every lipid mixture. 

 Lipid phase behavior in GUVs formed by inverted emulsion method 

Vesicles containing the synthetic glycolipid were also prepared using the inverted 

emulsion method. GUVs were observed within the bulk of the aqueous solution as well 

as on the surface of mineral oil droplets. As discussed in section 3.3.1 formation of 

mineral oil droplets is a common artifact of this method. Fluorescent dye was included in 

the lipid mixture to analyze the lipid distribution on the surface of the droplets. Similarly 

to results described above (gentle and rapid hydration methods), glycolipid incorporation 

lead to its uniform distribution within the lipid bilayer, for liposomes present in the bulk 

and attached onto the surface of the oil droplet. 

In order to analyze the behavior of the synthetic glycolipid on the surface attached 

vesicles two fluorescent dyes; bodipy TR ceramide and NBD-PC were also incorporated 

into the bilayer (figure 4.8 a and b). Both of these dyes were uniformly distributed as 

shown in the overlay of the images (figure 4.8c) and the fluorescent intensity profile 
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(figure 4.8d) and therefore no phase separation was observed on the surface of mineral 

oil droplets. However it was presumed that the vesicles present on the surface of the oil 

droplets are very likely the source of material for the formation of the lipid tubules 

(described later).  

 

 

Figure 4.8 Fluorescent microscopy images of GUVs attached to the surface of the mineral oil 

droplet; (a-c) composed of 80:20 DOPC/glycolipid with 0.1% bodipy FL C5 ceramide and1% 

NBD-PC); (d) fluorescent intensity profile (cross-section intensity). 

 

 Glycolipid phase behavior – non-lamellar phases 

Lipid mixtures containing up to 5 mol % of the synthetic glycolipid form GUVs 

with a uniform distribution of the bilayer components. Incorporation of larger quantities 

of the glycolipids (10 mol % and above), results in the simultaneous formation of both, 

lipid vesicles and tubular structures as illustrated in figure 4.9. Imaging of both of these 

at the same time was challenging, mainly due to the difference in their size and 

localization within the focal plane. 

Lipid tubules were initially observed in the sample from electroformation, where 

the lipid film was swelled in aqueous solvent with an aid of an AC field (figure 4.10). 

They were usually observed in form of bundles of tubules resembling overall spherical 

structures and were present mainly in the vicinity of the glass capillary, onto which the 
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lipid film was deposited, however the majority seemed to be floating freely in solution as 

opposed to being attached to the lipid film deposited on the surface of glass capillary. The 

number of tubular structures increased with higher concentration of the synthetic 

glycolipid included in the initial lipid mixture. 

 

 

Figure 4.9 Simultaneous formation of vesicles and tubular structures from lipid mixtures 

containing above 5% of the synthetic glycolipid (here 10:90 glycolipid/DOPC) by gentle 

hydration method. Scale bar = 10 µm. 

 

 

Figure 4.10 Phase contrast images of tubules formed by the electroformation method in 

aqueous solvent from a lipid composition 20:80 glycolipid/DOPC. Scale bar = 10 µm. 

 Both vesicles and tubules were also observed in lipid preparations containing 

more than 5% glycolipid prepared by the gentle (figure 4.9) and rapid hydration (figure 
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4.11) methods (indicating again that the structure are not an artifact of a particular 

preparation method). In fact the same type of self-assembled structures are formed by all 

of these methods, as long as the glycolipid content is kept identical. This clearly suggested 

that presence of the lipid tubules (at glycolipid concentration above 5 mol %) can be fully 

attributed to the behavior of the protected glycolipid within the phospholipid membrane. 

Tubules were formed both in the presence (figure 4.11) and absence (figure 4.10) of 

fluorescent dyes, which eliminates the possibility of dye-induced phase separation. 

However the presence of the fluorescent ceramide dyes in the tubules is a conformation 

that these types of dyes can be used to observe glycolipid behavior within the membrane. 

Since the fluorescence images show the ceramide dyes to be uniformly distributed, it 

suggest that the lipid composition in the tubules is also homogenous. 

 Lipid tubules formed from binary mixtures (glycolipid and DOPC) were also 

analyzed using polarized light microscopy (figure 4.11 middle panel). In this method the 

polarized light interacts with the birefringent sample and generates a bright image with a 

black background (see section 2.3.2). As the lipid tubules formed here can be visualized 

using polarized light microscopy, it is clear that they are not an amorphous material but 

possess some degree of structural order. Similar properties were observed for ternary lipid 

mixtures containing the synthetic glycolipid, DOPC and cholesterol, however, in those 

lipid mixtures the presence of crystalline material was shown to be due to the presence of 

cholesterol and were most likely cholesterol crystals. 

 

 

Figure 4.11 Optical microscopy images of tubular structures observed in binary mixtures of 

DOPC/glycolipid with 0.1% of bodipy FL C5 ceramide; left panel; phase contrast, middle 

panel; polarization; right panel, fluorescence due to presence of the dye. Scale bar = 5 µm. 

 Different behavior was observed while using the inverted emulsion method. A 

Relatively small number of vesicles (compared to the hydration methods) were present 

within the aqueous solvent and on the surface of mineral oil droplets, as shown in the 

figure 4.8. Rather, the tubular structures which in the case of hydration methods were 
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found in the aqueous solvent, here were formed within the interior of the mineral oil 

droplets (figure 4.12 d-e). Moreover, with increasing size of the droplet, which in turn 

means a higher concentration of the lipid molecules, the size of the tubule bundles 

increases. The overall size of the bundles of tubular structures was similar in both solvents 

(water and oil) as shown in figure 4.12. Given that the synthetic glycolipid was fully 

dispersed in both the chloroform and the mineral oil, the formation of the tubular 

structures cannot be attributed to its insolubility in either of the solvents but rather is an 

outcome of oversaturation within the lipid bilayer. 

 

 

Figure 4.12 Fluorescence microscopy images of tubules formed in aqueous solvent (a-c) and in 

mineral oil (d-e). Scale bar = 20 µm. 

The above observations suggest the formation of a columnar lipid phase, where 

in aqueous solvent the tubules consists of lipid molecules arranged hexagonally and in 

mineral oil they exhibit inverted hexagonal packing. It was estimated, based on the size 

of the tubular structures, that they were formed by several layers of lipid with a hexagonal 

arrangement. Extensive studies of phospholipid phase behavior indicate that pure DOPC 

or DOPC/cholesterol mixtures do not exhibit a lamellar to hexagonal phase transition. 

This type of behavior was observed after the inclusion of non-membrane forming lipids, 

usually PE.[139,408] This strongly suggests that the glycolipid must be present within the 
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tubular structures in order to drive this behavior as similar structures are not observed in 

its absence. 

Taken together, these observations support the initial assumption that the 

glycolipid is incorporated in both the lipid vesicles and the tubular structures. However 

whether the glycolipid is present in these structures at concentrations identical to those 

used in the lipid film preparation cannot be confirmed unambiguously, although there is 

no evidence to suggest otherwise. 

Formation of the hexagonal and inverted hexagonal phases has been observed for 

a variety of lipids, including various glycolipids.[204,442,443] The transition between 

lamellar and hexagonal or inverted hexagonal arrangements have been shown to occur in 

biological membranes due to the presence of high concentrations of lipids with a tendency 

to form non-lamellar structures.[137] These types of lipid phases are associated with a 

variety of biological processes, including the formation of tight junctions or as 

intermediates in membrane fusion.[444] Factors affecting lipid phase behavior have 

previously been reviewed[137] and include the properties of the headgroup (mainly its 

hydrophilicity), type of chain linkage, structure of hydrocarbon chain or the nature of the 

solute. 

At glycolipid concentrations below 5 mol %, only the lamellar phase was 

observed. Above that concentration, which also is considered to be the solubility of the 

glycolipid within bilayer, coexistence of lamellar and columnar (arrangement depends on 

the solvent system) lipid phases was observed. The transition between lamellar and 

hexagonal lipid phases is driven by the curvature stress exerted,[445] which in the lipid 

mixtures studied here, occurs via a high concentration of the synthetic glycolipid present 

within the lipid membrane. 

This behavior may be considered in terms of the packing parameter ρ = ν / a l, 

which depends on the nature and area of the head group, a and the length l and volume, ν 

of the hydrocarbon chains. The packing parameter is commonly used to predict the type 

of self-assembled structure formed by a given lipid.[134] 

Lamellar phase formation is preferred in the case of lipid mixtures with an overall 

packing parameter of ρ < 1, which, based on the experimental results presented above is 

the case for lipid mixtures with a synthetic glycolipid content below 5 mol %. The 

structure of the protected glycolipid used here, consists of bulky sugar-based head group 

and two asymmetrical, fully saturated hydrocarbon tail groups, which results in a larger 

head group area, a, and smaller value for the volume hydrocarbon chain, v when 
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compared with the phospholipid components. Therefore in lipid mixtures containing 10 

mol % or more of the glycolipid, the packing parameter will have a value below 1, 

resulting in the occurrence of the normal hexagonal phase (HI), where the sugar based 

head groups are facing the toward the aqueous solvent (figure 4.13). The presence of 

flexible linker in the structure of the synthetic glycolipid allows the reorientation of head-

group, possibly resulting in larger (ρ >1) value of the packing parameter and making the 

formation of inverted hexagonal phase (HII) possible. 

The transition between lipid phases can be triggered by changing the 

environmental conditions, e.g. temperature or hydration.[139] In the system studied here 

the hexagonal phase was observed within the aqueous solvent. In the presence of the 

hydrophobic solvent the formation of an inverted hexagonal phase with the hydrocarbon 

chains facing the solvent, is expected to be more energetically favorable. The possibility 

of the formation of the inverted hexagonal phase within the aqueous solvent due to 

slightly hydrophobic character of the protected groups present on the sugar moiety was 

also considered. However due to the presence of l4 and 8-carbon long chains the HI phase 

was presumed to be entropically more favorable. 

 

 

Figure 4.13 Schematic representation of the arrangement of lipids in columnar phases; (a) 

normal hexagonal phase (HII) with glycolipid headgroups oriented towards the aqueous solvent 

and inverted hexagonal phase (HI), where the glycolipid tail groups are oriented towards the 

mineral oil solvent. 
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 Conclusions 

A protected synthetic glycolipid has been incorporated into GUV membranes by 

a variety of methods at biologically relevant concentrations in binary mixtures with 

DOPC and in ternary mixtures with DOPC and cholesterol. In both cases, the glycolipid 

was fully dispersed in the solvent prior to the preparation and homogenously distributed 

within the lipid bilayer. At glycolipid concentrations below 5 mol % only the lamellar 

lipid phase was observed, giving rise to large numbers of vesicles. Coexistence of the 

lipid-disordered and lipid-ordered lamellar phases was not observed in the range of 

concentrations where the glycolipid was soluble in the vesicle membrane. Liposomes 

were prepared in the presence of various glycolipid and cholesterol concentrations, and 

increasing their concentration was shown to decrease the size of vesicles formed. The 

preparation of liposomes containing the synthetic glycolipids was not affected by the 

method of preparation or the presence of fluorescent dyes within the membrane. 

Synthetic glycolipid concentrations above 10% lead to the formation of lipid 

tubules, which are composed of columnar lipid phases. The arrangement of lipid 

molecules in either the hexagonal or inverted hexagonal phases was dependent on the 

chemical nature of the solvent system used. The glycolipid was shown to be 

homogenously distributed within the tubular structures. Since the tubules were optically 

birefringent, it was presumed that they exhibit some degree of structural order as opposed 

to resembling aggregated material. Their formation was shown both in aqueous solvent 

and in mineral oil droplets, therefore suggesting the hexagonal and inverted hexagonal 

lipid arrangement respectively. The formation of the bundles of tubular structures was 

found to arise from cooperative action of both the glycolipid and DOPC since none of 

these components form similar structures separately. 

There is a growing interest in the use of a variety of glycolipids incorporated into 

GUVs for variety of applications, including studies of molecular recognition or targeted 

drug delivery. Phase behaviour of both naturally occurring and synthetic glycolipids, and 

factors affecting their behaviour and their potential applications have not been fully 

explored. This work contributes to the understanding of concentration-dependent phase 

behaviour of synthetic glycolipid.[49] 
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 Introduction 

An important feature of building a model cell is the requirement to encapsulate 

biomolecules, such as nucleic acids, peptides or proteins, within the interior of the 

phospholipid vesicles. There are a large number of methods available to do this and the 

choice of a suitable method needs to be carefully considered as it may affect the activity 

of the biomolecules. Upon encapsulation various processes can be observed within the 

interior of the vesicle, such as nucleic acid amplification or protein synthesis. One of the 

advantages of using liposomes as reaction vessels is the small volume, therefore small 

amounts of reagents are required. In order to evaluate the reactions or processes occurring 

within vesicles, the encapsulation efficiency and the concentration of molecules within a 

specific vesicles need to be quantified.[188] There are several methods for the estimation 

of encapsulation efficiency, reporting the efficiency as either the average amount of solute 

per vesicle in suspension[446] or as a quantity obtained for a single vesicle,[61,447] protein 

subunit[448] or for a biological cell.[449] The suitability of the method of quantification 

strongly depends on the application. Drug or gene delivery studies are more concerned in 

analysing the average encapsulation efficiency, however if chemical or biochemical 

reactions are studied within a model cell consisting of a single liposome, then the 

concentration of individual reagents may be crucial. 

Assembly processes are at the centre of minimal cell research. Formation of the 

lipid bilayer, folding of protein or formation of signalling complexes are just a few 

examples of assembled structures inherent to biological cells and are often recreated in 

model cells. One of the assembly processes commonly occurring in cells is protein 

aggregation; which may be defined as a non-native assembly process leading to formation 

of species with a molecular weight higher than a monomer.[450] Virtually all proteins are 

susceptible to aggregation depending on the solution conditions, such as pH, ionic 

strength, temperature, presence of denaturants or the characteristics of the surface (charge 

distribution and presence of hydrophobic patches) of a protein molecule.[254] These 

various solution conditions and the protein properties will allow aggregates to form by 

different aggregation mechanisms[254,451] and result in the formation of various types of 

protein particles, from fibril-type structures to amorphous aggregates.[452] Aggregation 

processes may be reversible or can result in the formation of insoluble particulates.[254] 

Protein aggregation, its mechanisms and the conditions under which it occurs has 

been extensively studied.[291,292,295,450,453] These studies provide valuable insights into 
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protein structure, stability and the folding process. Understanding how and why proteins 

aggregate is extremely important in various branches of food and in the 

biopharmaceutical industry.[256] The effects of protein aggregates present in 

biopharmaceutical formulations include decreased efficacy and stability or in some cases 

immunogenic response in patients.[257] Formation of protein aggregates has also been 

linked to several diseases such as Alzheimer’s or Parkinson’s disease and therefore better 

understanding of the aggregation process may lead to development of new strategies 

resulting in its prevention.[258,259] 

Protein aggregation studies have traditionally been performed in bulk. This 

approach offers the possibility of performing analysis across a range of conditions, using 

a variety of instrumentation, and provides specific details about the mechanisms leading 

to aggregation. However care must be taken when interpreting results of such studies as 

the conditions in which they are performed lack the complexity of the cellular 

environment, such as molecular crowding or protein-membrane interactions. The 

conditions under which in vivo studies may be carried out are however significantly 

limited due to the sensitivity of cell culture. Additionally the interior of a cell is filled 

with a variety of biomolecules and therefore identifying the key factors that play a role in 

the aggregation process is extremely difficult. Furthermore several studies have 

emphasized the role of lipid bilayers in the aggregation process and this type of interaction 

cannot be reproduced unless supported lipid bilayers or giant unilamellar vesicles are 

used.[293,454,455] 

 Firstly a method to quantify the amount of protein encapsulated in a GUV is 

presented. Aggregation of BSA was then analysed in solution to select a set of conditions 

where aggregation occurs. Formation of aggregates in solution was monitored by 

Thioflavin T (ThT) fluorescence and solution turbidity. ThT becomes fluorescent upon 

binding to either protein aggregates or amyloid fibrils. Finally, BSA was encapsulated 

into GUVs and its aggregation in-situ was monitored using phase contrast and 

fluorescence microscopy. Fractal analysis of the aggregates formed in solution and in 

liposomes is used to compare the aggregates formed in each case. 
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 Results and discussion 

 Production and characterisation of emerald variant green 

fluorescent protein (EmGFP) 

Emerald variant of green fluorescent protein (EmGFP) was expressed in E.coli as 

described in the experimental section 2.7. Transformed E.coli cells were inspected using 

fluorescence microscopy (figure 5.1). Bacterial cells expressing EmGFP emit green 

fluorescence (emission maximum at 509 nm), which can was observed under 

fluorescence microscope upon excitation with blue light (excitation maximum at 487 nm). 

 

 

Figure 5.1 Fluorescence microscopy image of bacterial cells (E.coli) expressing EmGFP; 

image was acquired using the FITC filter set. 

Following cell lysis, the lysate, containing GFP was purified on a Ni-NTA column 

(figure 5.2). The protein fractions corresponding to the second peak were selected based 

on visual inspection of the solution (green colour is indicative of the presence of EmGFP). 

Selected fractions were analysed by reducing SDS-PAGE (figure 5.3). The presence of a 

single band corresponding to EmGFP monomer confirms the purity of the solution. 
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Figure 5.2 Affinity chromatography purification of EmGFP protein. The fractions 

corresponding to the second peak contain the purified EmGFP. 

 

 

Figure 5.3 SDS-PAGE gel of the cell lysate and purified EmGFP. MWM, is the molecular 

weight marker. Two concentrations of the purified EmGFP were run to determine if any low 

concentration contaminants were present. 

Purified EmGFP was also analyzed with size exclusion HPLC (SE-HPLC). The 

presence of a single peak at 19.11 min confirmed the purity of the EmGFP (figure 5.4). 

From the calibration of the Superdex 75 10/300 GL SE-HPLC column (for details see 

section 2.9), a peak at 19.11 min indicates a molecular weight in the region of 30.5 kDa, 

which is consistent with the molecular weight of a EmGFP monomer. 
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Figure 5.4 SE-HPLC profile of purified EmGFP in 100 mM sodium phosphate buffer pH 7.4. 

Purified EmGFP solution was stored in the dark at 4°C and was stable for several weeks. 

 Quantification of protein concentration in GUVs 

As discussed in the chapter 2 (section 2.3), the amount of light absorbed by a 

fluorescent molecule and emitted in the form of fluorescence can be related to its 

concentration by the following equation; 

 kcQIF   5.1 

where k is a constant, c is the concentration of the fluorophore, Q is the quantum yield 

and I0 is the intensity of light illuminating the solution.[351] The above equation relates 

values of F and c at low concentrations of the fluorophore. Since kc∝ A the fluorescence 

intensity is also directly proportional to the absorbance but only at low concentrations of 

fluorescent molecules. Therefore the relationship between the fluorescence and the 

concentration of a fluorophore must also be analysed. Here a concentration range between 

0.2 and 1.2 mg/ml was analysed. As will be shown in this chapter, the relationship 

between fluorescence intensity and protein concentration is linear for the selected range 

of EmGFP concentrations. 

The concentration of protein was estimated based on the measurement of 

fluorescence emitted by the emerald variant of GFP. Fluorescent protein was chosen over 

other light emitting molecules, such as luciferase or small organic molecules, due to its 

compatibility and inert nature in respect to other biological molecules and the possibility 

that it can be synthesized in situ inside a model or biological cell.[456] 



                  

  

122 

 

 Calibration curve 

In order to obtain a calibration plot allowing for the quantification of protein 

concentration within GUVs, glass capillaries filled with a solution of EmGFP were used. 

A similar approach was previously used by Leonhardt et al.,[449] where rectangular PDMS 

microchannels were used for the quantification of expression levels of GFP in mammalian 

cells. The choice was dictated by the similarity of the cross-sectional geometry and the 

focal depth of both the capillaries and the vesicles. In both cases the objective was focused 

at the center of the capillary (in the z-direction), (for experimental details see section 

2.10). Empty glass capillaries were also observed under identical conditions to ensure no 

background fluorescence was contributing to calibration measurement. 

 Image analysis 

Images used for fluorescence intensity measurements were recorded with the 

FITC excitation-emission filter engaged and using CellF software with a manually set 

exposure time. The intensity of the illuminating beam of light, monitored using the 

MultiSpeck multispectral fluorescence microscopy standard, showed no significant 

fluctuations for up to 280 hours of usage of the mercury burner. After that time the burner 

was replaced. Imaging of EmGFP was performed in a manner that ensured the 

preservation of the EmGFP fluorescence; the focusing and centering (placing an object 

of interest in the center of the field of view) steps were performed promptly, usually with 

the use of neutral density filters reducing the intensity of illuminating light, up to 50%. 

Background subtraction and flat-field correction were performed when necessary.[457–459] 

Image processing and fluorescence intensity measurements were performed using CellF 

and ImageJ software. 

The first method used to prepare the calibration curve involved the measurement 

of fluorescence intensity at a point in the middle of the glass capillary filled with GFP 

solution (figure 5.5). The glass capillary was first filled with the protein solution using a 

syringe and a silicon connector. Capillaries were placed onto a glass slide and imaged 

using a 10X objective. All of the above steps were performed in the dark to prevent 

bleaching of the EmGFP solution. Measurements for the calibration plot were performed 

with five different EmGFP concentrations and capillaries of various diameters. 

Another calibration curve was obtained by measuring fluorescence intensity 

across the width of the capillary and plotting the area under the intensity curve for each 
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EmGFP concentration and various capillary diameters (figure 5.6). This approach offers 

more consistent results, especially in cases where the solutions exhibits uneven mixing of 

the fluorophore or is adsorbing onto the glass surface.[460] In the case of EmGFP none of 

these characteristics were observed. 

 

Figure 5.5 Calibration plot for protein quantification based on point measurement of 

fluorescence intensity within a range of different size capillaries. 

 

 

Figure 5.6 Calibration plot for protein quantification based on the cross-sectional 

measurement of fluorescence intensity within a range of different size capillaries. 
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The calibration plot of EmGFP concentration as a function of the fluorescence 

intensity and capillary diameter was recorded using a 10x objective. Since images of 

vesicles encapsulating EmGFP were recorded using either 60 or 100x objectives, a 

scaling factor was determined for each objective pair (table 5.1). A scaling factor allows 

one to convert the fluorescence intensity recorded by the higher magnification objectives 

to a value for a 10x lens, which then can be used to obtain the concentration of EmGFP 

from the calibration plot. 

 

Table 5.1 Conversion table listing fluorescence intensity measurements obtained using a 

fluorescent standard and a range of objectives. The scaling factor allows conversion of intensity 

between higher magnification lenses used for imaging of GUVs and the 10x lens used to obtain 

measurements for the calibration curve. 

Lens 10x 20x 40x 60x* 60x** 60x** 60x** 100x 

Exposure time 10 ms 10 ms 10 ms 10 ms 10 ms 5 ms 2 ms 10 ms 

Scaling factor (for 

10x calibration) 
- 0.353 0.264 0.147 0.1276 0.184 0.349 0.137 

* UPlanFLN objective ** UPlanSapo objective 

 

The calibration plots shown in figure 5.5 and 5.6 allow one to obtain the 

concentration of protein encapsulated within vesicles of sizes similar to the sizes of 

capillaries. These results are also represented in the form of a surface plot (figure 5.7).  

 

Figure 5.7 Surface plot of calibration for protein concentration determination based on the 

cross-sectional measurement of fluorescence intensity. 
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  This method can be used to quantify concentrations of fluorescent proteins upon 

encapsulation inside giant unilamellar vesicles. Fluorescence measurements are sensitive 

to solution conditions; therefore the calibration and the encapsulation should be 

performed using identical buffer conditions. If changes are introduced, the impact on the 

fluorescence intensity should be examined. 

Due to the sensitivity of fluorescence measurements to buffer conditions, the 

multiple steps involved in the vesicle preparation process, and variation in the 

performance of the equipment (such as short time changes in the intensity of illuminating 

light), the concentration of protein encapsulated may only be estimated to the nearest 0.1 

mg/ml.[304] 

 Encapsulation of molecules inside GUVs 

 EmGFP encapsulation inside giant unilamellar vesicles (GUVs) 

Encapsulation of EmGFP inside GUVs was performed using either the inverted 

emulsion or cDICE method as described in section 2.4. The osmotic pressure was 

balanced by the addition of sucrose to the external solution. The concentration of sucrose 

required was assessed experimentally for every protein concentration used. Once the 

vesicles were formed, images were recorded. Next, the background fluorescence and the 

fluorescence intensity across the diameter of the vesicle was measured. Background 

subtraction was performed either using rolling ball toll in ImageJ or by manual subtraction 

of the fluorescence intensity measured in the area of the image surrounding the vesicle. 

The second method was used more often as it allows for more control of the intensity 

subtraction and it represents a more accurate approach in the case of an uneven 

background due to the presence of out of focus vesicles. The value for the intensity 

obtained (usually as an area under the fluorescence intensity curve) was then multiplied 

by the scaling factor appropriate for a given set of objectives. The concentration of 

EmGFP was obtained using the calibration plots shown in figures 5.6 and 5.7. EmGFP in 

the concentration range of 0.1 to 1 mg/ml was successfully encapsulated within lipid 

vesicles. Encapsulation efficiencies were calculated as ratios of EmGFP concentration in 

individual vesicles to its concentration in the solution used for encapsulation. Examples 

of vesicles encapsulating EmGFP and corresponding encapsulation efficiencies are 

shown in figure 5.8. The observed difference in intensity between the two images 

corresponds to the difference in the EmGFP concentration. 
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Figure 5.8 EmGFP encapsulated into GUVs; the concentration of protein and the efficiency of 

the encapsulation are indicated above. Scale bar = 20 µm. 

Encapsulation of EmGFP was also be performed in vesicles composed of mixtures 

of phospholipids and the galactose-based synthetic glycolipid described in chapter 4 and 

can be seen in figure 5.9. No difference in the vesicle yield or the encapsulation efficiency 

was found when compared to the phospholipid-based GUVs. 

 

 

Figure 5.9 EmGFP at a concentration of 0.34 mg/ml encapsulated in GUVs containing a 95:5 

phospholipid (DOPC)-glycolipid mixture and 0.05% bodipy TR ceramide. Vesicles were imaged 

with the CY5 (left) and FITC (right) fluorescence filters. Scale bar = 10 µm. 

 

 EmGFP/BSA mixtures encapsulation inside GUVs 

Bovine serum albumin (BSA) was also encapsulated in GUVs at concentrations 

ranging from 10 to 100 mg/ml. Just as for EmGFP encapsulation, rupture of vesicles due 

to the osmotic pressure differences between the interior and exterior of the vesicle was 

prevented by the addition of sucrose to the external solution. BSA is not fluorescent in 

the visible region of the spectrum and therefore direct measurement of its concentration 
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inside vesicles using the method described in section 5.2.2 is not possible. In order to 

provide the means for quantification based on fluorescence measurements, up to 0.5% of 

EmGFP was added to BSA solutions before encapsulation. Examples of vesicles 

encapsulating mixtures of BSA with EmGFP are shown in figure 5.10.  

 

 

Figure 5.10 EmGFP and BSA mixtures encapsulated in GUVs. The total protein concentration 

and the efficiency of encapsulation are shown above. Scale bar = 10 µm. 

The concentration of EmGFP inside the GUVs was obtained using the method 

described in section 5.2.2. It was previously shown that fluorescence intensity 

measurements are sensitive to solution conditions such as buffer type, pH and ionic 

strength.[304] The effect of BSA on the fluorescence intensity of EmGFP was analyzed by 

comparing emission spectra of EmGFP at a known concentration with and without BSA 

in the solution (figure 5.11). It was found that the addition of BSA results in an increase 

in the fluorescence intensity of the EmGFP solution by 5.4%. Due to this, the fluorescence 

intensity used to obtain the concentration of EmGFP was corrected for this effect. One 

thing to note is that this method to determine the BSA concentration assumes that there 

is complete mixing of the two proteins and that the solution encapsulated is representative 

of the stock solution. No phase separation of the BSA and GFP solutions were observed. 

Once the concentration of EmGFP (corrected for the effect of BSA present in the 

solution) was obtained from the calibration plot and its content in the mixture with BSA 

was known (up to 0.5% of total protein concentration), the concentration of BSA in the 

individual vesicles could be calculated. Examples of protein concentrations in vesicles 

and encapsulation efficiencies are shown in figure 5.10.  
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Figure 5.11 Comparison of the emission spectra (left) and the fluorescence intensity at 512 nm 

of an EmGFP solution and EmGFP/BSA mixtures with identical EmGFP content. 

Vesicles containing protein solutions were stable for several days at room 

temperature. They were also stable after incubation at 65°C for up to 2 hours. The number 

of vesicles gradually decreased over time but no significant decrease in protein 

concentration within the remaining vesicles was observed, suggesting that no leakage of 

content took place. 

The values representing encapsulation efficiencies shown in figures 5.8 to 5.10 

are only examples of the efficiencies obtained under specified conditions. In fact various 

encapsulation efficiencies ranging from approximately 25-110% of the stock protein 

solution were observed within any given experiment. The distributions of various 

efficiencies were not analyzed. This variation in encapsulation efficiency, however not 

its extent, was previously published.[188,461,462] The solute occupancy distribution inside 

vesicles was shown to be determined by a power law, resulting in a range of solute 

concentrations observed for a given vesicle size. The presence of “super-filled” vesicles, 

containing concentrations of protein significantly exceeding (up to 50 times) the 

concentration within the bulk solution has previously been reported[462] for small vesicles 

(up to 1μm in size) , and it is not clear if the enhancement of entrapment occur in giant 

vesicles to the same extent as this issue is still being investigated.[462] 

The observation of vesicles showing either very low or very high encapsulation 

efficiency have been attributed to the mechanism of droplet formation and the 

redistribution of solutes from larger droplets between two smaller ones during the 

fragmentation step.[462] The heterogeneity of solute concentration within w/o droplets was 

suggested to be the source in the variability of encapsulation efficiencies observed. 

Additionally, the range of protein concentrations observed here may be in fact be limited, 
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since the vesicles would become unstable due to the osmotic pressure differences between 

the interior and the exterior of the vesicle. 

 Screening conditions promoting BSA aggregation in solution 

The process of protein aggregation and the conditions leading to it have been 

studied extensively.[291,292,295,450,453] Bovine serum albumin (BSA) is often selected for 

such studies as a model globular protein. The range of solution conditions under which 

BSA forms aggregates were measured first. Relatively short incubation times were used 

since identical experimental conditions were later replicated in phospholipid vesicles. 

Previously published results suggests that the aggregation of BSA can be induced in 

acidic buffer conditions.[321,463,464] Additionally these studies showed that the presence of 

high salt concentrations enhances the aggregation process. The effect of a range of acidic 

pHs on the aggregation of BSA was measured. 

Solutions of BSA at 10 mg/ml in buffers of various pH (2.2, 3, and 4) and with 

various concentrations of NaCl (0 to 100 mM) were prepared in a 96 well plate. For 

comparison, BSA at physiological pH was also prepared. Thioflavin T (200 µM) was 

added to the solution and fluorescence intensity of the dye was monitored at 485 nm 

(following excitation at 435 nm). Increases in the fluorescence intensity of ThT is most 

often used to confirm the formation of amyloid-like fibrils, particularly the cross-β-sheet 

structure commonly found in amyloid proteins,[465,466] although an increase in 

fluorescence intensity is also observed for amorphous protein aggregates.[277,278] The 

absorbance at 600 nm was also recorded in order to monitor the formation of amorphous 

protein aggregates and the corresponding decrease in % transmission due to the formation 

of large particles. 

 Monitoring BSA behaviour upon incubation at room temperature 

Upon incubation at room temperature the highest ThT fluorescence intensity was 

observed for BSA at 10 mg/ml in a glycine-HCl buffer at pH 3 with 100 mM NaCl (figure 

5.12 left), indicating the formation of some type of BSA aggregate. No significant 

increase in absorbance at 600 nm was observed (figure 5.12 right panel), which suggests 

that aggregates formed are too small to be detected using this technique. 

For glycine-HCl at pH 2.2 and sodium acetate at pH 4 (data not shown), no 

significant increase in fluorescence intensity over the three day observation period was 

seen. Additionally no change in % transmission and no visible aggregates were observed 
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using phase contrast microscopy for BSA solutions at 10 mg/ml incubated in any of the 

buffers analysed. 

 

 

Figure 5.12 Observation of BSA behavior in solutions at 10 mg/ml under various buffer 

conditions during incubation at room temperature. 

 

 Monitoring BSA behavior after heating 

Protein aggregation is often induced by an exposure to increased temperature 

which aids protein unfolding.[467] BSA buffer solutions at various pH and NaCl 

concentrations were incubated at 65°C. This temperature has been shown to cause partial 

unfolding of BSA at pH 3.[468] It has also been shown that amyloid-like fibrils are formed 

in BSA in glycine-HCl at pH 3 upon incubation at 65°C.[464] 

As shown in figure 5.13 an increase in ThT fluorescence was observed at pH 3 

and pH 7.4 indicating the formation of aggregates. However due to the lack of a lag phase, 

characteristic of the growth profiles for fibrils,[453] it is most likely that these aggregates 

are amorphous. Detection of amyloid-like fibril formation needs to be confirmed using 

other methods (such as TEM), since ThT is capable of non-specific binding under various 

conditions.[466] A reduction in % transmission was also observed, most prominent in the 

case of BSA solutions at pH 3 in the presence of 50 mM NaCl. No significant increase in 

the ThT fluorescence was observed for BSA in buffer at pH 2.2 (data not shown). 

Aggregates formed under conditions tested above were imaged using various modes of 

light microscopy (figure 5.14). 



                  

  

131 

 

 

Figure 5.13 Aggregation of BSA in different solution conditions during incubation at 65°C. 

 

 

Figure 5.14 BSA aggregates formed after incubation at 65°C at pH 2.2 (a-c), pH 3 (d-g), pH 3 

with 50 mM NaCl (h-k) and at pH 7.4 (l-o). Images were recorded using polarized light 

microscopy (f, j, l), fluorescence microscopy with a FITC emission/excitation filter (c, h, n) and 

with a phase contrast. Brightness and contrast adjusted to aid visualization. Scale bar = 10 µm. 
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Upon visual inspection of BSA solutions at pH 2.2 in the presence of 50 mM 

NaCl, the formation of a weak, clear protein gel was observed. This is in agreement with 

previous studies.[321] Large portions of the gel were observed with smaller particulates 

present at the edge of the gel, which were imaged (figure 5.14a). The presence of a green 

fluorescent signal co-localized with the gel material suggests binding of ThT in these 

regions. However the polarized microscopy did not confirm the presence of any ordered 

structures, suggesting that no amyloids are present and it is therefore more likely that the 

gel is formed from a network of amorphous aggregates. 

Aggregates formed at pH 3 appear to be amorphous by phase contrast microscopy 

(figure 5.15d, f, h and j). However observation under polarized light revealed that the 

structures formed are optically birefringent which indicates that these structures are 

ordered (figure 5.15 g and k) and may suggest the presence of amyloid material in these 

aggregates. Very small aggregates were formed at pH 7.4 in the presence of NaCl. No 

aggregates were observed in BSA solutions at pH 2.2 and pH 7.4 in the absence of salt. 

 Encapsulation and aggregation of BSA in GUVs 

BSA at 10, 20 and 40 mg/ml in glycine-HCl (pH 2.2 and 3), sodium acetate (pH 

4) and sodium phosphate (pH 7.4) buffers with increasing concentrations of NaCl (0-100 

mM) was encapsulated in phospholipid-based liposomes using the inverted emulsion 

method (see section 2.4.6 and 2.11.2). Initially, when encapsulation was performed in the 

presence of 100 mM NaCl, a very low yield of vesicles was achieved. Therefore, NaCl 

concentrations of 50mM were used thereafter. Thioflavin T was added to the solutions at 

200 µM. Solutions of BSA containing 0.5% of protein labelled with a FITC dye were also 

encapsulated in GUVs (but never simultaneously with ThT as both emit green 

fluorescence). Images of vesicles were recorded both immediately after formation and 

after the specified incubation period. In the case of incubation at 65°C, the vesicle 

suspension was cooled to room temperature for at least 60 minutes before imaging. 

Concentrations of BSA in excess of 10mg/ml were required to observe 

aggregation inside GUVs, since aggregates larger than 1μm in size are necessary to 

observe the aggregates by optical microscopy. The absence of aggregates at 10 mg/ml 

can be linked to the encapsulation efficiency discussed in section 5.2.3. Quantification of 

protein concentration in individual vesicles was not possible as the acidic pH leads to 

quenching of GFP fluorescence.[304] 
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 Observation of vesicles encapsulated with BSA  

Vesicles encapsulating various concentrations of BSA at pH 2.2, 3 and 7.4 at 0 

mM and 50 mM NaCl were incubated at room temperature. Fluorescence and phase 

contrast images were recorded after vesicle formation and every 24 hours thereafter. 

Previous observations of protein-filled vesicles suggest that vesicles formed at neutral pH 

are stable for several days (see section 5.2.3). However phospholipid-based liposomes 

formed at acidic pH were found to remain stable for roughly four days of incubation at 

room temperature. After that time the number of vesicles observed started to decrease. 

Additionally, the average size of GUVs observed appears to decrease overtime, 

suggesting that larger vesicles are significantly less stable under these conditions. 

Incubation at room temperature did lead to a minor increase in the ThT 

fluorescence of the protein encapsulated in the vesicles (compared to the background) for 

liposomes formed at pH 3 in the presence of 50 mM NaCl. No other solution condition 

produced any aggregation that could be imaged by light microscopy at room temperature.  

 Observation of BSA aggregates formation in vesicles at pH 2.2 after 

incubation at 65°C 

At pH 2.2 and after incubation at 65°C there were indications of BSA aggregates 

either on the membrane (figure 5.15a) or within the interior of the vesicle (figure 5.15c).  

 

 

Figure 5.15 Phase contrast and fluorescence microscopy images of GUVs containing BSA 

solutions at pH 2.2 without NaCl (a-d) and in the presence of 50 mM NaCl (e-h) after 

incubation at 65°C for 90 minutes (and returned to room temperature for imaging). Brightness 

and contrast adjusted to aid visualization. Scale bar = 5 µm. 
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Regions in which increased ThT fluorescence was observed are co-localized with 

the aggregates observed by phase contrast. In bulk, BSA solutions in glycine-HCl buffer 

at pH 2.2 with 50 mM NaCl after incubation at 65°C form a weak protein gel. BSA 

solutions after encapsulation in vesicles and incubation under the same conditions formed 

aggregates similar to those formed in the absence of salt. However they appear to be 

somewhat larger and present in slightly greater number (figure 5.15e). Additionally, 

structures which appear to be formed on the surface of the lipid bilayer were observed by 

phase contrast (figure 5.15g). The increase in the fluorescence intensity of ThT appears 

to be highly inhomogeneous and restricted to the interior of vesicles (figure 5.15h). 

 Observation of BSA aggregates in vesicles at pH 3 after incubation at 65°C 

The interior of vesicles encapsulating BSA at pH 3 both in the presence of 50 mM 

NaCl and in its absence, appear darker under phase contrast observation compared to 

those formed at neutral pH. Phase contrast microscopy produces images that can be 

roughly interpreted as density maps.[469] The amplitude and intensity observed in phase 

contrast images are related to refractive index and optical path length, therefore image 

density can be utilized as a scale for approximating relationships between various 

structures. Essentially, a structure having increasing density are visualized as darker 

objects relative to the background. In case of BSA containing vesicles at neutral pH the 

density inside vesicles is comparable to that of the bulk solution. However at pH 3 the 

density inside vesicles is significantly higher. 

 

 

Figure 5.16 Phase contrast and fluorescence microscopy images of GUVs containing BSA 

solutions at pH 3 without NaCl (a-d) and in the presence of 50 mM NaCl (e-h) after incubation 

at 65°C for 90 minutes (and returned to room temperature for imaging). Brightness and 

contrast were adjusted to aid visualization. Scale bar = 5 µm. 
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As shown in figure 5.16, the presence of micrometer-sized aggregates were 

observed in several GUVs. The aggregates occurred throughout the vesicle and were 

polydisperse in size. Significant increases in ThT fluorescence were observed in the 

majority of vesicles, even in vesicles were phase contrast microscopy did not indicate the 

presence of aggregates (most probably due to the formation of aggregates smaller than 

1μm. Smaller areas of more intense green fluorescence were co-localized with the 

aggregates observed with light microscopy as shown in figure 5.16 a, b, e and f. 

 Observation of BSA aggregates in vesicles at pH 7.4 after incubation at 65°C 

BSA aggregates were also observed, albeit significantly less frequently in vesicles 

formed at pH 7.4, but only after the concentration of encapsulated protein was increased 

to 40 mg/ml. The increase in fluorescence intensity of ThT was significantly lower than 

at pH 3. Any ThT fluorescence observed was quite uniform, with increases in the intensity 

co-localized with aggregates large enough to be observed by phase contrast microscopy.  

 

 

Figure 5.17 Phase contrast and fluorescence microscopy images of GUVs containing a BSA 

solution at pH 7.4 without NaCl (a-d) and in the presence of 50 mM NaCl (e-h) after incubation 

at 65°C for 90 minutes (imaged at room temperature). Brightness and contrast were adjusted to 

aid visualization. Scale bar = 5 µm. 

 

 Observation of BSA aggregates formed in the presence of FITC-labelled BSA 

Vesicles encapsulating a mixture of BSA and 0.5% of FITC-labelled BSA at a 

total protein concentration of 40 mg/ml, in buffer at pH 3 and pH 7.4 with 50 mM NaCl 

were found to contain aggregates similar to those observed in the unlabelled BSA (figure 

5.18). 
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FITC is commonly used to label proteins for fluorescent microscopy 

applications.[470] A previous study showed that the labeled protein preferentially partitions 

into the more concentrated phase after liquid-liquid phase separation and that labelling 

the protein is the equivalent of adding an attractive component to the protein-protein 

interaction potential, making the labeled protein more prone to aggregation than the 

unlabelled protein.[289] The FITC-labelled BSA was added in order to investigate whether 

similar behavior will be observed in case of BSA, and if so, can it be used to obtain images 

with better quality than those in the presence of ThT dye. This was not possible as the 

fluorescence images show uniform distribution of the labelled protein (figure 5.18). The 

preferential partitioning of the FITC-labelled BSA was however not observed (but can’t 

be ruled out due to the limitations of wide field fluorescence microscopy) for the solid-

liquid phase separation of BSA encapsulated inside GUVs. 

 

 

Figure 5.18 Phase contrast and fluorescence microscopy images of GUVs containing BSA and 

0.5% FITC-labelled BSA at total protein concentration of 40 mg/ml, in buffer at pH 3 (a-d) and 

pH 7.4 (e-h) with 50 mM NaCl after incubation at 65°C for 90 minutes (imaged at room 

temperature). Brightness and contrast were adjusted to aid visualization. Scale bar = 5 µm. 

 

 Fractal analysis 

 Describing the appearance of amorphous aggregates is generally quite difficult 

due to their irregular shape. However their morphological features can be described using 

a fractal dimension (see section 2.14), a single value representing a structural complexity 

of a given type of aggregate. 
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Prior to the analysis the images of aggregates, typically recorded in RGB format, 

images were converted to a binary format (figure 5.19). The analysis of the images was 

performed using a box counting method as described in section 2.14.2 using the 

FracLacv.2.5 plugin for ImageJ.[395] Values for the fractal dimension were obtained for 

each of the twelve grid positions selected for each image and the final value of DB was 

then reported as an average. 

 

 

Figure 5.19 Phase contrast images of BSA aggregates prepared in buffer solution (a) and 

inside GUVs (b) at pH 3, after incubation at 65°C. Insets: the corresponding binary images 

used for fractal dimension calculations. 

The fractal dimension analysis of aggregates formed at pH 3 after incubation at 

65°C are shown in table 5.1. The DB values reported in the table represent an average of 

20 high contrast images of aggregates formed under specified conditions.  

 

Table 5.1 Comparison of fractal dimension values for BSA aggregates formed at pH 3 in solution 

and inside GUVs. 

 Aggregates formed in solution Aggregates formed in vesicles 

 No NaCl 50 mM NaCl No NaCl 50 mM NaCl 

Fractal dimension 

(DB) (average) 
1.56 1.58 1.50 1.51 

Standard deviation 0.069 0.086 0.119 0.128 

Coefficient of 

variation 
4.4% 5.4% 7.9% 8.5% 

 

Fractal dimension values of 1.56 and 1.58 were calculated for BSA aggregates 

formed in buffer solution at pH 3 without NaCl and in the presence of 50 mM NaCl 
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respectively). Values of the fractal dimension calculated for aggregates grown inside 

vesicles are 1.5 and 1.51 for the formation in the absence of NaCl and in 50mM NaCl 

containing solution respectively. High contrast images of BSA aggregates inside GUVs 

were much more difficult to obtain. The interior appeared darker than in case of empty 

liposomes and therefore any structures formed inside were generally harder to focus on. 

Additionally any aggregates present inside vesicles were generally located at different 

focal depths and image quality was worse due to the presence of large halos surrounding 

the out of focus membrane. Due to these difficulties, the values of fractal dimensions 

were calculated based on the analysis of only ten images (where good data was obtained) 

for each of the buffer conditions analyzed.  

Fractal analysis of protein aggregation, mainly protein gel formation have been 

extensively studied for various types of proteins.[471–476] Values of the fractal dimension 

between 1.5 and 2.8 for amorphous aggregates[477–479] and protein gels[480] have been 

reported. They vary greatly depending on the nature of the protein used, its concentration 

and solution conditions. Fractal dimension values also differ depending on the method 

used in calculations, however the DB values obtained using rheological determination and 

the box-counting method remain in good agreement.[476] 

Fractal analysis of BSA aggregates has previously been studied. The values of DB 

published were generally higher than the ones calculated here, most probably due to the 

differences in experimental conditions used to form the aggregates between that study 

and this. One such study reported fractal dimension value of 1.68 for heat-induced 

aggregates of BSA formed at pH 7 in the presence of CaCl2 calculated using box-counting 

method.[481] The general trend illustrating the increase in the value of DB observed for 

solutions at higher NaCl concentration have previously reported by Kumagai et al. was 

also observed here.[482] Nonetheless it is important to note that the previous studies used 

significantly different solution and heating conditions.[474,483] Other approaches to 

calculating the fractal dimension have been employed, such as evaluation of DB based on 

the light scattering experiments.[473,484] 

 Conclusions 

The preparation of model cells requires encapsulation of biomolecules inside lipid 

vesicles. The choice of the encapsulation method depends on the nature and stability of 

the biomolecules, but also on the composition of the lipid bilayer. Here two methods, the 
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continuous droplet interface crossing encapsulation (cDICE) and the inverted emulsion 

method were used to successfully encapsulate BSA and EmGFP under various solution 

conditions. The methods of protein quantification presented here allow for the fast 

determination of protein concentration inside individual vesicles.  

Calibration plots for encapsulated protein at various capillary diameters were 

combined to create a surface plot, allowing the determination of protein content inside 

vesicles across a range of diameters. This method was used to measure the concentration 

of EmGFP and EmGFP/BSA protein mixture after its encapsulation in GUVs. Both 

methods used here showed encapsulation efficiencies ranging from around 25 - 110% of 

the protein content in the bulk solution. This observation remains in agreement with 

published results.[188] The variation in the encapsulation efficiency is linked to the nature 

of the vesicle preparation process. 

Aggregation of BSA was analyzed both in solution and after encapsulation into 

GUVs. The formation of BSA aggregates was induced at acidic pH and incubation at 

elevated temperature. The formation of aggregates in solution was monitored by ThT 

fluorescence and by the analysis of the solution turbidity. In vesicles, a similar analysis 

was performed using phase contrast and fluorescence microscopy. Formation of BSA 

aggregates was observed at various pHs after protein unfolding at 65°C but it was most 

prominent at pH 3 in both the bulk solution and inside GUVs. Fractal dimension analysis 

was performed in order to describe the morphological feature of aggregates formed under 

various conditions. Relatively similar values for the fractal dimensions were obtained, 

slightly lower for the aggregates formed inside vesicles compare to those formed in bulk 

solution at given solution condition. Generally higher DB values were observed for 

solutions at higher NaCl concentration. 

The results presented here illustrate how model membranes can be used as vessels 

for analysis of protein aggregation processes. Among the main advantages of this 

approach is the cell-like size of vesicles (and hence very small volumes) or the presence 

of a lipid bilayer which may be implicated in some aggregation processes. 
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 Introduction 

Advances in synthetic biology now allow artificial cells to be formed from a 

minimum number of components to perform specific functions. Several examples have 

been discussed in the introduction.[14,47,485,486] Protein synthesis inside vesicles is vital for 

minimal cell development. The requirement for increased complexity within the minimal 

cell will require the production and assembly of protein (or protein and nucleic acid) 

components in-situ. This approach can be difficult due to rapid energy depletion within 

the system once protein translation occurs and subsequent protein degradation by 

enzymes present in E.coli or wheat germ extracts.[66–68] However, development of purified 

cell-free expression systems has provided a better tools for synthetic biology and minimal 

cell research in particular.[68] 

The assembly of proteins inside cells is a feature of normal biological function[487] 

and can sometimes be associated with of the pathology of diseases such as cataract 

disease[325,488] and sickle cell anemia.[489] Protein phase diagrams have been instrumental 

in explaining many of these biological condensation events.[490] However, the connection 

between in-vitro bulk measurements and those performed under physiologically relevant 

conditions is not always clear. At the same time, observing protein assembly in live cells 

is now possible due to advances in imaging technologies and labeling techniques. 

However linking these in-cell experiments and those performed in-vitro is complex due 

to the inherent complexity of the cellular environment and the potential for fluorescent 

labels to alter the conditions under which condensation events occur.[289] Therefore, there 

is a need to observe the condensation of proteins in more physiologically relevant 

conditions, and without the use of fluorescent labels. 

Self-organization (steady-state) and self-assembly (equilibrium) driven by non-

covalent interactions are essential processes in biological systems.[491] Virtually all 

biomolecules undergo self-assembly which defines the structure and function for that 

molecule.[492] Assembly processes have been explored by synthetic biology, especially in 

the development of minimal cells.[133] The organization of proteins, mainly components 

of the cell’s cytoskeleton and spindle apparatus have been previously studied by 

encapsulating the components required for assembly within a vesicle,[97,98] for example 

embryos or egg extracts of variety of microorganisms have been used for this purpose.[100–

102,493] Noireaux and Libchaber showed the cell-free in-situ expression of α-hemolysin 

inside lipid vesicles, followed by formation of a membrane pore via assembly of the α-
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hemolysin heptamer.[51] Hence, while a number of assembly processes have been 

observed inside vesicles, either by encapsulation or after in-situ expression, there is still 

a requirement to link these observations to studies performed under more explicit control 

to explain fully the process of assembly and how it is altered by the other components 

required for normal cell function. 

Here an approach to observe the condensation of proteins in model cells in 

physiologically relevant conditions is proposed. The P23T mutant of human gamma D 

crystallin was expressed in-situ following the encapsulation of a cell-free expression 

system inside a cell sized GUV. P23T is a mutant of HGD which aggregates at 

physiological temperatures (due to an inverted temperature dependence of the solubility 

line[282]). By analysing the fractal dimension of the aggregates formed, it was possible to 

distinguish these aggregates from those formed by non-specific interactions without the 

need for labelling. 

 Results and discussion 

 Protein expression in cell-free expression system 

The P23T single mutant of human γD-crystallin was obtained by site-directed 

mutagenesis (section 2.7.3). The incorporation of the single amino acid substitution, 

proline (CCC) to tyrosine (ACC), at position 23 was confirmed by sequencing (figure 

6.1). 

 

Figure 6.1 Sequence of the P23THGD plasmid DNA aligned against the WT HGD using BLAST 

(NCBI). 

 The HGDP23T mutant (referred to as P23T throughout) and EmGFP plasmid 

DNAs were expressed in a purified E. coli based cell-free transcription and translation 

system, PURExpress using a protocol described in section 2.8. Degradation of RNA by 

traces of RNAse from the DNA purification step was prevented by adding RNAse 

Inhibitor to the reaction mixture.P23T and EmGFP plasmids were used at a concentration 

of 350 ng per 25 µl reaction volume. 



                  

  

143 

 

 Monitoring the time required for completion of the expression process 

The cell-free expression mix was used to express EmGFP in a 386-well plate. The 

point at which the protein expression reaction was completed was determined by 

monitoring the change in the fluorescence intensity over time (figure 6.2). It was found 

that the expression of EmGFP proceeded for roughly 6 hours and no significant increase 

in fluorescence intensity was observed beyond that point (figure 6.3). The only exception 

was the measurement after 24 hours, where a slight increase in fluorescence intensity was 

observed. This is mostly likely due to a small increase in concentration as a result of 

reduced volume due to evaporation (condensation was observed on the cover of the plate). 

 

 

Figure 6.2 Fluorescence intensity spectra recorded over 24 hours for EmGFP expressed in a 

cell-free expression medium. 

Previous work suggests that termination of the expression reaction occurs within 

3 hours due to degradation of the ribosomes.[74] Therefore we are confident that all of the 

transcription/translation factors of the cell-free expression kit had been consumed and the 

protein concentration did not increase further after 6 hours. 
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Figure 6.3 EmGFP concentration changes during expression in a cell-free expression medium 

monitored by the increase in the fluorescent intensity over 24 hours. The expression reaction is 

finished within ~ 6 hours. 

 

 Determination of the concentration of protein expressed in the cell-free 

system  

Successful expression of P23T in the cell-free expression system was confirmed 

by SDS-PAGE analysis (figure 6.4 line 8). P23T was expressed in a manner identical to 

one described in section 2.8, in a small volume vial. BSA was used as a standard for 

quantification (figure 6.4 lines 2-6). By running the BSA at different concentrations, it 

was possible to relate the intensity of the protein band to its concentration in an unknown 

(i.e. P23T expressed in the cell-free expression system). The measurement of the band 

intensity was performed using ImageJ software.[339] The intensity of BSA bands was used 

to construct a calibration plot (figure 6.5), from which the concentration of P23T was 

obtained. The location of the P23T band was determined by comparison to the location 

of the band for HGD obtained from a purified protein solution (figure 6.4 line 9), the 

molecular weight markers (figure 6.4 lines 1 and 10) and the cell-free expression mix 

without DNA (figure 6.4 line 7). The final concentration of P23T following 24 hours 

incubation at 37°C was found to be 0.13 (+/-0.02) mg/ml. The accuracy of determining 

protein concentration by this method depends on the quality of the gel (background and 

the signal-to-noise ratio) and the quality of the image (scanner specifications).[494] 
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Figure 6.4 Expression of P23T in a cell-free expression system; (a) lines 1 and 10 show 

molecular weight marker; 2-6 BSA standards for quantification, line 7 cell free expression sys-

tem without DNA plasmid; 8, cell free expression system with P23T DNA plasmid; 9, purified 

HGD solution for comparison; (b) excised lines (7-9). 

 

 

Figure 6.5 Calibration plot for determination of protein concentration from a SDS-PAGE 

analysis obtained from five BSA concentrations 

 Protein quantification using the SDS-PAGE gel is commonly performed using 

BSA as a standard. However due to the significant difference in the size between P23T 

HGD and BSA, a second quantification using HGD as a standard was performed (figure 

6.6). The final concentration of P23T expressed under identical conditions (in a different 

experiment) and determined by comparison with HGD was also 0.13 (+/-0.02) mg/ml. 
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Figure 6.6 Expression of P23T in cell-free expression system. Lines 1 and 9 show molecular 

weight marker, 2-6, HGD standards for quantification, line 7, cell free expression system with 

HGD (P23T) DNA plasmid, line 8, cell free expression system without DNA plasmid; (b) 

excised lines 6-9). 

 

 P23T aggregate formation in solution after expression in a cell-

free expression system 

The cell-free reaction expressing P23T protein was incubated at 37°C for several 

days. Small and difficult to resolve aggregates were observed after 8 hours. After 20 

hours, the formation of defined amorphous protein aggregates was observed by phase 

contrast microscopy (figure 6.7 a). The P23T aggregates were also imaged using 

transmission electron microscopy (figure 6.7 b). The size of the aggregates increased over 

a number of days and eventually they grow to several microns in size. Since protein 

expression ceases after ~24 hours, the slow growth of the aggregates reflects the kinetics 

of the aggregation process, and not an increase in protein concentration over time. 

To ensure that the aggregates observed are those formed by the assembly of P23T, 

and not due to non-specific aggregation of other components within the PURExpress 

system, a cell-free expression mix without P23T plasmid DNA was incubated under the 

same conditions and imaged over a number of days. In this solution (in the absence of 

P23T) several clusters with sizes up to few micrometers were observed (figure 6.8). 

However, even a cursory analysis suggests that the morphology of the aggregates in the 

absence of P23T is significantly different. Furthermore, the number of aggregates formed 

was far lower. 
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Figure 6.7 HGDP23T expressed in solution in a cell-free expression system. Images recorded 

with (a) phase contrast light microscopy and (b) TEM. 

 

 

Figure 6.8 Phase contrast image of particles formed within the cell-free transcription-

translation system (without the P23T HGD plasmid DNA) after 3 days of incubation at 37°C. 

The most interesting property of the P23T mutant of HGD is the inverse 

temperature dependence of the solubility line (figure 6.9), i.e. the protein is more soluble 

at lower temperatures and aggregates “melt” upon cooling.[282] For the aggregates formed 

in the cell-free expression mixture expressing P23T, the aggregation process was 

reversible with temperature. Upon cooling to 4°C, the size and number of aggregates 

formed in the cell-free solution significantly decreased and this was not observed for the 

aggregates observed in the control sample. This strongly suggests that the aggregation 

observed in the cell-free expression system is primarily caused by the self-association of 

expressed P23T. However, the formation of P23T aggregates occurs at protein 
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concentrations that are significantly lower than in purified protein solutions (at 37°C, ~0.7 

mg/ml). 

There is a difference between the appearance of aggregates of P23T formed in the 

cell-free system and those formed from purified P23T solutions.[282] The aggregates 

formed in the purified single-component solutions used to determine the solubility line 

appear very dense, and are almost exclusively spherical aggregates of several microns in 

size. Those produced in the cell-free expression system are less dense, with an appearance 

typical of amorphous protein aggregates formed by self-association (figure 6.7). Hence, 

while it appears that there is a sufficiently high concentration of P23T within the cell free 

expression system to allow protein assembly to occur, the kinetics for the formation of 

the aggregates are quite different when compared to a purified protein solution. 

 

 

Figure 6.9 The solubility line for the P23T mutant of HGD, taken from Pande et al., 2005. 

 

  Protein aggregate formation in GUVs after expression in cell-free 

system 

 P23T mutant of human γD-crystallin 

To further explore this self-assembly, the cell-free transcription-translation 

system, together with plasmid DNA for P23T was encapsulated in phospholipid-based 

giant unilamellar vesicles. The encapsulation process was performed at 4°C to prevent 

expression taking place outside of the GUVs. The solution on the exterior of the GUVs 

contained a solution of the PURExpress mix but containing only the low molecular weight 
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components (i.e. without ribosomes or enzymes). This is necessary since previous studies 

have shown that a significant decrease in protein expression levels occurs when buffer is 

used as the external solvent.[365] This ensures that the osmotic pressure inside and outside 

of the vesicle are similar (reducing rupture) and eliminates any dilution of the components 

required for protein expression inside the vesicle due to diffusion across the membrane. 

After encapsulation, the suspension containing vesicles was incubated at 37°C to allow 

protein expression to proceed. Due to the inverted solubility of P23T, once the protein is 

expressed, self-assembly can occur within the vesicle without changing the temperature 

(figure 6.10). Phase contrast images of the vesicles were recorded every 24 hours for up 

to 10 days. After that time most of vesicles had ruptured or degraded. 

 

 

Figure 6.10 Phase contrast images of GUVs containing P23T aggregates formed after 

expression in a cell-free system, imaged immediately after formation (a) and then every 24 

hours (b-h) (i.e. 8 days are shown here). Scale bar = 5 µm. Each vesicle is indicative of those in 

the suspension (i.e. the same vesicle was not monitored over 8 days). 

Following encapsulation and during the first 24 hours of incubation at 37°C 

(during which time all of the expression occurs), no evidence of protein aggregation was 

observed. The first appearance of small aggregates (~1 μm in size) was observed 24 - 48 

hours after encapsulation (i.e. 18 - 42 hours after expression has ceased). By day 4, larger 

aggregates with a more branched structure were observed. The aggregate size continued 

to increase for a further 2-3 days. After day seven the size of aggregates remained 

unchanged and the number of vesicles in general began to decrease. 

The aggregation process within the GUVs occurs more slowly than in the un-

encapsulated cell-free expression mix. The most likely explanation for this is 



                  

  

150 

 

heterogeneity in the concentration of the encapsulated solute.[188,461,462] This means that 

the concentration of the components of the cell-free expression system vary greatly 

among the vesicles, and in general is lower than in the un-encapsulated solution. These 

variations of the concentration of the individual components of the cell-free expression 

system result in the expression of various quantities of protein which we can assume is 

generally lower than measured for the un-encapsulated solution. Therefore it was 

expected that at any given time point, the sizes of aggregates varied between vesicles with 

similar diameters. Moreover some vesicles did not show any signs of aggregation, due to 

encapsulation of insufficient amounts of the components of the PURExpress system for 

protein expression to actually occur inside. Therefore, we expect that in the majority of 

vesicles, the concentration of expressed protein is lower than 0.13mg/ml, which was the 

concentration determined from the expression of P23T in un-encapsulated cell free 

expression medium. 

In general, larger aggregates formed in GUVs with larger diameters. This was 

expected, since encapsulation of larger volumes of the cell-free expression system results 

in expression of higher numbers of P23T molecules and therefore within the vesicle, more 

material is available to form aggregates. 

 For both encapsulated and un-encapsulated cell-free expression mixture, the rate 

of aggregation is significantly slower than for purified solutions of P23T. At 1 mg/ml 

large aggregates (sizes exceeding the detection range of QLS) were observed after 10-20 

min[282] for purified P23T. The main reason for this observation is simply the lower 

concentration of the protein inside the vesicles. 

 Wild type HGD 

As a control, wild type HGD was also expressed inside GUVs (figure 6.11). 

Purified WT HGD is soluble at 37°C and doesn’t form amorphous aggregates at the 

concentrations of protein expressed in the vesicle.[282] Within the interior of the GUVs no 

aggregation was observed. After three days small clusters were observed in several 

vesicles in close proximity to the lipid bilayer. For these experiments, a fluorescent dye 

(0.05 % of bodipy TR ceramide) was integrated into the phospholipid mixture during 

GUV formation (figure 6.12). 
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Figure 6.11 Phase contrast images of GUVs upon expression of WT HGD in cell-free 

expression system, imaged immediately after formation (a) and then every 24 hours (b-h) (i.e. 8 

days are shown here). Scale bar = 5 µm. Each vesicle is indicative of those in the suspension 

(i.e. the same vesicle was not monitored over 8 days). Scale bar = 5 µm. 

 

 

Figure 6.12 Self-assembled structures formed inside GUVs labelled with 0.05 % of the 

fluorescent dye, bodipy TR ceramide, upon expression of P23T (a and b) and WT HGD (c and 

d). Scale bar 5 = µm. 

The regions where aggregation is visible by phase contrast microscopy 

corresponds to areas where there is an increase of the fluorescent dye concentration within 

the lipid membrane (Figure 6.12 c and d). This was not found in similar experiments 



                  

  

152 

 

performed in vesicles containing P23T aggregates (Figure 6.12 a and b), where the 

fluorescent dye is more evenly distributed in vesicles containing P23T mutant. It remains 

unclear whether the formation of these clumps in the HGD containing solutions is due 

aggregation of cell-free expression components or HGD, but in either case, it appears to 

occur only at the membrane, and not in the interior of the vesicles, which distinguishes it 

from the P23T aggregation observed previously. 

 Fractal analysis 

Due to the significant experimental differences in the morphology and kinetics of 

aggregate formation in the P23T containing vesicles, compared with purified P23T 

solutions, further analysis of the aggregates was performed. Comparisons of the aggregate 

sizes in different vesicles is not appropriate, since each vesicle contained a slightly 

different concentration of expressed P23T, which influences the overall size of the 

aggregates formed. However comparing the overall shape of aggregates (i.e. the fractal 

dimension), will provide some useful insights. We performed this comparison based on 

the fractal dimension analysis in an identical manner as described in sections 2.14 and 

5.2.6, using the box counting method available through FracLac plugin for ImageJ 

software. 

 The fractal dimension of P23T aggregates formed after expression in a cell-free 

system firstly in solution (Figure 6 a) and then inside GUVs (Figure 6 b) was calculated. 

Images of aggregates obtained by phase contrast microscopy were converted to binary 

images prior to analysis (Figure 6, inserts). 

The average of the mean values for DB obtained for P23T aggregates formed in 

solution and inside GUVs are presented in table 6.1. The differences in these values, are 

very small and may be caused by the differences in the volume and the environment in 

which the aggregation took place. 

There was more variation in the fractal dimension values calculated for each 

aggregate formed inside vesicles than for aggregates formed in solution. This can be 

caused by the variation of encapsulation efficiency, and therefore various protein 

concentrations within individual vesicles and the component of the cell-free expression 

mix.[495] The imaging of aggregates entrapped inside GUVs is also slightly more 

challenging compared to imaging aggregates free in solution. 
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Figure 6.13 Phase contrast and binary images of aggregates prepared in solution (a) and 

inside GUVs (b) for fractal dimension calculations. 

 

Table 6.1 Comparison of fractal dimension values for P23T HGD aggregates formed in 

solution and inside GUVs. 

 
Aggregates 

in solution 

Aggregates 

inside GUVs 

Fractal dimension (DB) (average) 1.38 1.34 

Standard deviation 0.095 0.159 

Coefficient of variation 6.9 % 11.9 % 

 

The values for the fractal dimension of P23T aggregates are significantly different 

from those obtained for BSA aggregates formed at pH 3 after thermal denaturation (1.51 

and 1.5 for aggregates formed in the presence of 50 mM NaCl and in its absence, 

respectively).  

Fractal analysis of protein aggregates has been extensively studied for various 

types of proteins.[471–476] Values of the fractal dimension between 1.5 and 2.8 have been 

observed for various types of aggregates (including amorphous aggregates and protein 

gels.[477–480] These values vary greatly depending on the nature of the protein used, its 

concentration and the solution conditions. The fractal dimension values also differ 

depending on the method used in calculations, however the DB values obtained using 

rheological determination and the box-counting method remain in good agreement.[476] 
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Previously published fractal dimension values, ranging from 1.5 to 2.8 have been 

measured for aggregates formed in purified protein solutions. These aggregates formed 

via processes driven by non-specific interactions between unfolded or partially unfolded 

species (induced by heat denaturation or extreme pHs) and are compact structures. The 

P23T aggregates with fractal dimensions of ~1.3 were formed in the cell-free expression 

system, suggesting the formation of loose amorphous material, quite different to those 

observed in purified solutions. The formation of aggregates at such low P23T 

concentration is already somewhat surprising, since it is below the solubility boundary 

for the purified protein. Hence, the formation of aggregates with a significantly different 

fractal dimension is not unexpected. If it was possible to produce higher concentration of 

P23T from the cell-free expression system, we would expect the fractal dimension to 

increase. At the very least, this very specific fractal dimension for the P23T aggregates 

distinguishes them from other non-specific aggregates and provides further confirmation 

of P23T specific aggregates after expression of the protein. Interestingly these 

measurements are consistent with the values for of fractal dimension reported for sparse, 

less compact protein self-assemblies found in nature.[496] 

 Protein expression in mammalian cells 

Here an EmGFP fusion protein of both human γD-crystallin and the P23T mutant 

were expressed in HEK 293T/17 mammalian cells to monitor expression and aggregation 

of these proteins inside cells. 

 Mammalian expression vectors 

 Plasmid DNA with the HGD gene fused to EmGFP was designed for propagation 

in E.coli and optimal expression in mammalian cells. It was synthesized by GeneArt 

(ThermoFisher, Germany). The HGD gene was inserted into the pcDNA6.2_C-

EmGFPDEST mammalian vector at the attL2/attL1 site (figure 6.14). The EmGFP-HGD 

vector contained a blasticidin resistance gene for selection of stable transfected cell lines. 

The EmGFP-P23T vector was obtained by site directed mutagenesis of the 

EmGFP-HGD mammalian expression vector using protocol described in section 2.9.3. 

The Vivid Colors™ pcDNA™ 6.2/EmGFP GW/TOPO mammalian expression vector 

was used to express free-EmGFP (not fused to any other protein). 
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Figure 6.14 Map of the mammalian vector pcDNA6.2_C-EmGFP-DEST_A321 with a HGD 

gene obtained using SnapGene software. 

 Transfection of HEK 293T/17 mammalian cells with the three vectors was 

performed using lipofectamine 2000 (section 2.13). After transfection, cells were imaged 

using fluorescence microscopy to confirm the presence of EmGFP expressing cells. 

Relatively high transfection efficiencies (ca. 70-90%) were obtained depending on the 

type of the vector or the type of culture flask used (figure 6.15).  

Images of both transient and stable transfected HEK cell lines were obtained using 

an upright microscope at either 60x or 100x. In order to do that, cells were grown on glass 

surface chambers or coverslips. These surfaces were coated with poly-D-lysine since 

HEK cells do not easily grow on glass directly. Transfected cells attached more efficiently 

to the pretreated surface in the presence of fetal bovine serum as opposed to bovine calf 

serum, which was routinely used to maintain the cell growth. 
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Figure 6.15 HEK 293T/17cells after transfection with the EmGFP-HGD (left) and the EmGFP-

P23T (right) plasmid DNA, grown in a 6-well plate. Scale bar = 100 µm. 

 

 EmGFP expression in HEK 293T/17 mammalian cells 

HEK cells expressing EmGFP are shown in figure 6.16. The transfection 

efficiency was higher for this plasmid than for either of the fusion protein plasmids. These 

cells easily attached to the pretreated glass surfaces (poly-D-lysine). The EmGFP was 

evenly distributed within the cells and no signs of aggregation were observed. The areas 

where the fluorescence intensity is lower corresponds to the location of cellular 

organelles, such as the nucleus. 

 

 

Figure 6.16 Phase contrast and fluorescence microscopy images of HEK 293T/17cells 

expressing the EmGFP. Scale bar = 10 µm. 
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It was important to ensure that the EmGFP didn’t aggregate by itself inside cells, 

since as part of a fusion protein, it will be used to detect regions of protein aggregation in 

cells expressing HGD and P23T. For in-cell measurements (unlike in the GUVs described 

earlier), fluorescent tags are essential to distinguish the protein of interest from the rest of 

the cellular milieu.  

 HGD expression in HEK 293T/17 mammalian cells 

HEK cells expressing the EmGFP-HGD fusion protein are shown in figure 6.17. 

These cells required a much longer time period to attach to the pretreated glass surfaces. 

The attachment was however significantly improved in the presence of 10% fetal calf 

serum. The growth rate of the EmGFP-HGD expressing cells was slightly slower 

compared to those expressing EmGFP or the P23T fusion protein. 

The expressed EmGFP-HGD was evenly distributed within the cells suggesting 

that the presence of the EmGFP tag does not affect the HGD solubility (at the relatively 

low concentrations that are likely to be achieved in the cell in any case). Again areas with 

lower fluorescence intensity corresponds to cellular organelles (figure 6.17a). 

 

 

Figure 6.17 Phase contrast and fluorescence microscopy images of HEK 293T/17cells 

expressing the EmGFP-HGD fusion protein. Scale bar = 10 µm. 
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 HGDP23T expression in HEK 293T/17 mammalian cells 

HEK cells expressing the EmGFP-P23T fusion protein are shown in figure 6.18. 

These cells exhibited a similar growth rate and the ability to adhere to the poly-D-lysine 

pretreated glass surface as the EmGFP expressing cells. 

 

 

Figure 6.18 Phase contrast and fluorescence microscopy images of HEK 293T/17cells 

expressing the EmGFP-P23THGD fusion protein. Scale bar = 10 µm. 

Within the interior of the cells (of both transient and stable cell lines) areas of 

increased fluorescence intensity were observed. These regions of increased intensity are 

located throughout the cells in which they are observed (figure 6.18 a, e and i) and 

correspond to sizes up to 1 µm. These areas are expected to represent the self-assembly 

structures composed of the EmGFP-P23T fusion proteins. Additionally, formation of 2 

to 3 larger areas, with sizes up to 5 µm, within a single cell was also observed (figure 6.18 

c, g and k). No difference in the average size of the aggregates was observed between 

transient and stable transfectants. The larger structures observed possibly consist of 

intracellular vesicles entrapping the overexpressed and self-assembled proteins as these 

structures appear in close vicinity to the cell membrane. Fluorescent labeling of other 

cellular structures would be required to more precisely asses the location of the aggregates 

within the cell interior. 

The increase of the intensity observed by fluorescence microscopy does not 

always corresponds to the increased in density in the phase contrast image, which was 
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expected since there is little difference in refractive index between the cell organelles and 

protein aggregates. 

The P23T aggregate formation was observed in HEK cells within three days after 

transfection (two days from the seeding on the glass slide), which is consistent with our 

observation in cell-free expression system. However, more investigation is required to 

assess what effect cell division has on the aggregate formation and growth. The 

aggregates formed in HEK cells had sizes ranging from 1 µm to 5 µm. These sizes are 

slightly larger than the average aggregate sizes observed in vesicles (up to ~3.5 µm, which 

is not at all surprising considering the larger size of the cells (~15 μm). 

Various mammalian cell lines have been used to study cellular processes such as 

protein-protein interactions, protein behavior, localization within cellular environment[497 

–499] or protein aggregation.[500,501] Those studies usually involve expression of fusion 

proteins or other methods of fluorescent labelling in order to avail of various 

supperresolution microscopy techniques.[502] Careful interpretation of such studies is 

necessary not only due to the complexity of the cellular environment but also due to the 

possible effect which various strategies of protein labelling may have on its 

behavior.[289,503–505] Comparison to the experiments in model cells mimicking studied 

process may make the interpretation less problematic.  

 Conclusions 

An approach to investigate protein condensation in physiologically relevant 

conditions has been discussed. This can be achieved with in-situ expression of a protein 

(the P23T mutant of human gamma D crystallin) from a cell-free expression medium 

encapsulated in a giant unilamellar vesicle of cell-size. The formation of self-assembled 

P23T structures was observed following in-situ expression using a cell-free expression 

system encapsulated in a GUV. Due to the low protein concentration, these structures 

were formed after incubation for several hours at 37°C. Measuring the fractal dimension 

of the aggregates formed allowed P23T specific aggregates to be distinguished from those 

formed via non-specific interactions without the need for labeling. 

The formation of self-assembled protein structures in a GUV encapsulating the 

cell-free expression system, occurs at much lower concentrations than for purified protein 

in an in-vitro system. We have chosen to express the P23T mutant of human gamma-D 

crystallin, since it forms amorphous protein assemblies with an inverse temperature 
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dependence of the solubility line (i.e. it forms reversible aggregates at higher temperatures 

that return to a monomeric state when the temperature is lowered). This inversion of the 

temperature dependence of the solubility line in the mutant occurs without a change in 

protein structure, which makes it possible to both express protein and monitor assembly 

at 37°C over a number of days. 

The HGD and the P23T mutant was also expressed in mammalian cells. The 

crowded cellular environment and the presence of the tag protein was shown not to affect 

the solubility of the wt HGD protein. In case of the P23T single mutant fusion protein, 

the formation of the protein aggregates observed by fluorescence microscopy suggest a 

formation of self-assembled protein structures, similar to those observed in label-free 

conditions in giant unilamellar vesicles. 
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Summary and Concluding Remarks 

Building even a simple artificial or minimal cell can be a complex process, 

requiring suitable preparation techniques and functionalisation of both the membrane 

surface and the interior of the cell. In this thesis a critical comparison of the methods to 

prepare giant unilamellar vesicles as basic building block for an artificial cell has been 

discussed. The relative merits of these preparation methods when applied to the 

encapsulation of biomolecules was also presented. This comparison of experimental 

techniques provides reliable information for tailoring the selection of experimental 

approach when building an artificial cell. 

Bottom-up approaches to synthetic biology allow formation of minimal cells 

composed of the basic components required to perform specific functions. To-date many 

processes and chemical reactions have been studied in minimal cells; many more remain 

to be explored. In order to broaden the range of the applications, both the surface and the 

interior of the model cell needs to be functionalized with versatile molecules. 

The growing interest in incorporating glycolipids into lipid bilayers is driven by 

the increasing number of their biomedical applications, primarily targeted drug delivery. 

Glycolipids are ideal candidates since the complementarity of sugar residues is vital to 

the molecular recognition in biological cells. The specificity and mode of interaction can 

be modified by altering the functionality of the sugar-based head group. Furthermore, the 

structure, glycolipid concentration and the nature of solvent, can significantly alter the 

phase behaviour of the glycolipid within a membrane. We have shown how a change in 

the concentration of an acetylated, galactose-based glycolipid can change the lipid phase 

behaviour, leading to the formation of either lamellar or columnar lipid phases. This 

behaviour needs to be carefully considered when designing a minimal cell, since phase 

separation and consecutive formation of non-lamellar phases may alter the distribution 

within the bilayer or diminish the number of glycolipid molecules remaining available 

for interactions with other particles or cells.  

 The self-assembly of proteins is required to maintain the structure and biological 

function of a cell. Proteins may also self-assemble in response to a change in 

environmental conditions, in some cases leading to disease. Studies of the aggregation 

process, have traditionally been performed in-vitro, mainly in solutions of purified 

proteins. This approach provides vital information regarding the mechanism or the nature 
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of the forming structures, however it also has a significant drawbacks as it lack the 

complexity of the cellular environment. On the other hand studies in cells are limited due 

to the sensitivity of cell culture and the identification of the key factors that play a role in 

the aggregation process may be difficult to elucidate. A minimal l cell provides an idea 

platform to carry out such analysis, as it provides a controlled, cell-like conditions. 

Aggregation of BSA in GUVs was induced under harsh environmental conditions 

(beyond the sensitivity of cell) and analysed using a fluorescent dye (Thioflavin T) and 

various modes of microscopy. To examine protein assembly under more physiologically 

relevant conditions, the P23T mutant of human gamma D crystallin was examined after 

in-situ expression from a cell free expression system inside a GUV. We have shown that 

the aggregation observed is specifically related to P23T and not non-specific aggregation 

of other components and occurs at a rate that is determined by the concentration of protein 

in the vesicles. Furthermore, the self-assembly of P23T was also be induced following 

transfection in mammalian cells. The analysis of the P23T self-assembly in minimal and 

biological cells furthers our understanding of the mechanism by which this mutation 

which causes genetic cataract leads to condensation in lens fiber cells. 
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