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Abstract 

 

In this paper we present the outcome of two 
recent sets of experiments to evaluate the 
effectiveness of a new adjunct genetic operator 
GeneRepair. This operator was developed to 
correct invlaid tours which may be generated 
following crossover or mutation of our particular 
implementation of the genetic algorithm. 
Following implementation and testing of our 
genetic algotihm with GeneRepair we found a 
significant positive side in our results. Using 
GeneRepair along side traditional crossover and 
mutation operators we have been able to travers 
the search space of a problem and generate very 
good results in an extremely efficent manner, in 
both time and number of evaluations required.      

1 INTRODUCTION 

In this paper we present a novel approach to solving 
permutation problems that uses only standard crossover 
and standard mutation. We isolate the problem constraints 
in a separate operator, which operates as an adjunct 
operator to the standard set of genetic operators. 

This approach is applicable to any problem domain where 
the solution constraints can be identified in the gene string. 
In this paper we explore two different types of permutation 
problems. We look at the Traveling Salesman Problem 
(TSP), which is a well-known NP-Complete problem, and 
the Vehicle Routing Problem (VRP), which is an NP-Hard 
problem (Garey and Johnson, 1979). The TSP involves 
visiting all cities on a map, generating the shortest total 
tour distance. The VRP involves finding the delivery 
schedule for N cities using M trucks of finite capacity, 
again for the shortest total distance traveled by all trucks.  

As Mitchell (1999) points out “some type of encoding 
require specially defined crossover and mutation 
operators... like the Traveling Salesman Problem in which 
the task is to find a correct ordering for a collection of 
objects”. 

2 REPRESENTATION AND 

OPERATORS 

The natural choice of representation for the TSP and VRP 
is an Order-based representation. These have been 
successfully applied to the TSP and VRP problems by 
Fogel (1988, 1993 and 1993a), Banzhaf (1990), Ambati 
(1991) and Pereira et al (2002). Additionally, the genetic 
operators employed must also be Order-based. If either the 
representation or the operators do not respect the Order 
based nature of the problem, then invalid solutions will be 
generated. 

First, we looked at the crossover operators that respect the 
Order-based nature of permutation problems, and prevent 
the introduction of errors such as invalid tours (Mitchell, 
1999). The order preserving crossover operators that have 
been developed include: Order Crossover (Syswerda, 
1991), Modified Crossover (Davis, 1985), Partially 
Mapped Crossover (Goldberg and Lingle, 1985), Cycle 
Crossover (Oliver et al., 1987), 2-quick / 2-repair (Gorges-
Schleuter, 1989), plus a number of less frequently used 
crossover operators (Crawford and Wainwright, 1996).  

Secondly, we looked at Order-based mutation operators 
developed for Order-based problems. These include: 
Displacement Mutation (Michalewicz, 1992), Exchange 
Mutation (Banzhaf, 1990), Insertion Mutation (Fogel 1988 
and Michalewicz 1992), Simple Inversion Mutation 
(Holland 1975 and Grefenstette et al., 1985), Inversion 
Mutation (Fogel, 1993 and 1993a) and other order 
preserving mutation (Larrañaga, 1999).  

We present a solution for Order-based problems that uses 
only standard crossover and standard mutation. To 
counteract the invalid tours that occur as a result, we 
introduce GeneRepair - a genetic repair operator that has a 
number of positive effects: It allows the use of standard 
GA libraries, with the addition of a single repair operator 
for permutation problems. It simplifies the understanding 
of the GA, by allowing the use of standard crossover and 
mutation for Order-based problems. Finally, it removes 
problem specific activities from the genetic operators 
themselves, and isolates it in a single intra-generation 
operation. 
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3 GENEREPAIR  

The GeneRepair enhanced genetic algorithm operates in 
the manner of traditional genetic algorithms, and can be 
summarized as follows: 

 

1. Generate the initial population P(0) at  random 
and set i = 0; 

2. Evaluate the fitness of each individual in P(i); 

3. Select parents from P(i) based on their fitness. 

4. Apply standard crossover  

5. Apply standard mutation. 

6. Apply GeneRepair. 

7. Repeat until convergence. 

 

Although the VRP is NP-Hard and TSP is NP-Complete, 
they may be characterized by two separate facets: 
Optimization and Permutation. Responsibility for 
optimization lies with the standard genetic algorithm, 
which effectively remains unchanged from Holland 
(1975). Responsibility for only allowing valid permutation 
in the population lies solely with the GeneRepair operator.  

 

3.1 SOLUTION CONSTRAINTS 

Combinatorial problems like the TSP and VRP place 
constrains on the valid solutions. Solutions are only valid 
when all N cities in the problem are present in the solution. 
Thus, we use a fixed-length chromosome to represent our 
tours. Furthermore, a solution is only considered valid 
when all cities are represented once only in the solution, 
and no cities are absent. These constraints act as a trigger 
for the application of the GeneRepair operator.  

Non order-preserving crossover (above) can cause a 
violation of the validity constraint, by combining parent 
strings, which result in invalid offspring. See Figure 1.  

Similarly, non order-preserving mutation operators can 
also generate invalid solutions. This happens when 
mutation randomly inserts a city that already exists in the 
solution. 

 

 

 

 

 

 

 

 

 

Figure 1: Constraint violation by 2-Point Crossover. 

 

In practice, GeneRepair examines each tour in turn, 
enforcing the following: 

 

1. Correct number of cities in the tour 

2. No duplicate cities 

3. No missing cities  

 

These constrains invoke the GeneRepair operator, and 
identifies the string the location of duplicate cities (see 
Figure 2).  

 

 

Figure 2: GeneRepair- Invalid cities identified. 

 

 

3.2 REPAIR 

Knowing the location of the offending cities, GeneRepair 
replaces these cities iteratively with valid cities retrieved 
from a corrective template. The first strategy investigated 
was to replace the duplicate cities with the missing cities, 
according to a pre-determined template (see Figure 3).  

 

 

 

Figure 3: GeneRepair- correction of tour. 

 

The majority of GeneRepair replacements were performed 
in a left-to-right manner - replacing the left-most duplicate 
city first. Additionally, the replacement city was retrieved 
from the template also in a left-to-right manner. However, 
brief evaluation of a random replacement technique, 
randomly selecting the replacement city from the template 

 

Parent 1     0 1 2 3 4 |5 6 7 8 |9  

Parent 2     8 4 1 6 3 |7 9 2 0 |5  

 

Child 1     0 1 2 3 4 |7 9 2 0 |9  

Child 2     8 4 1 6 3 |5 6 7 8 |5    

 

Detection of invalid cities: 

Child 1     0 1 2 3 4 7 9 2 0 9  

 

      

GeneRepair Template 0 1 2 3 4 5 6 7 8 9  

     | |  |   |  |  
(i) Child 1  0 1 2 3 4 7 9 2 0 9   
 
 (ii)Child 1GeneRepaired 0 1 2 3 4 7 9 5 6 8                                            
 

 
 



was also evaluated. Initial results show no identifiable 
difference between the two techniques. 

The replaced city is selected according to a corrective 
template. Three different types of template were 
investigated: 

 

1. Static template. This consisted of a preset valid 
tour, and remained constant throughout.  

2. Parent-based Template. Select the fitter parent, 
and use that as the corrective template. This 
template varied for every corrected individual. 

3. Random Template. For each corrected individual 
a new template of random numbers was 
generated, within the validity constraints of the 
TSP or VRP problem. 

 

Each of these techniques was tested on a select number of 
VRP and TSP problems. The parent-based solution 
produced the worst results. Both random and fixed 
template solutions produced good results, with the 
randomly generated template producing marginally better 
results.  

 

4 EXPERIMENT 1 - VRP 

We now evaluate the performance of GeneRepair on a 
number of VRP benchmark problems selected from the 
Augerat Set-A (A-n32-k5, A-n33-k6, A-n34-k5, A-n36-k5, 
A-n39-k6). These include the best-known solutions to each 
problem. These problems range from 32 cities to 39 cities, 
using either 5 or 6 trucks for the solution. 

We firstly compare two implementation, one with 
GeneRepair and the other without. The allowed us assess 
the performance of the GeneRepair operator in conjunction 
with the standard genetic operators.  

 

Figure 4: Comparison to best-known solutions 

In Figure 4 we see that the solutions produced with 
GeneRepair, are significantly better than those produced 
without. Furthermore, the GeneRepair solutions 
consistently approach the best-known solutions.  

Our experiments were purely a proof of concept, and no 
special effort was made to optimize the genetic parameters 
in order to achieve short tours. Specifically, we only used 
truncation selection with just two different truncation 
parameters. Additionally, only two mutation rates were 
investigated. We expect that significant improvements can 
be made to the shortest tours we produce, by optimizing 
the genetic parameters. 

Next we show that GeneRepair develops better solutions 
faster. In Figure 5 we see that the GeneRepair 
implementation converges on the better solutions 
significantly faster than one without GeneRepair. 
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Figure 5: Solution with and without GeneRepair 

 

Thus, GeneRepair has shown itself to be very promising 
and worthy of further investigation - particularly with 
regard to the use of only truncation selection.  

 

5 EXPERIMENT 2 - TSP 

Next we evaluate GeneRepair on the TSP benchmark 
problems from the Heidelberg TSPLIB problem set 
(Reinelt, 1991). For these experiments we investigated the 
potential of the GeneRepair based solution, without 
reference to a non-GeneRepair implementation.  

We optimized the genetic parameters of crossover and 
mutation in order to produce the best solutions on selected 
TSP problems. This investigated the ability of GeneRepair 
to generate optimal solutions, as the benchmark solutions 
are assured optimal solutions.  

We conducted approximately 5 experiments on each of the 
3 following problem sets. Throughout all experiments the 
population size was the square of the number of cities in 
the problem set. Tournament and roulette wheel selection 
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(but not truncation selection) were used. Only 1-point 
crossover was investigated. Exchange mutation was used 
exclusively, with rates varying between 0% and 10%.  

The first problem set involved a 16-city TSP problem. 
Tests revealed the optimal mutation rate to be 2%. The 
optimal solution to this TSP problem was repeatedly found 
in approximately 25 generations.   

The second problem involved 22 cities and again 
optimality was found with mutation at 2%. The optimal 
solution to this TSP problem was found in approximately 
3200 generations.   

The final problem involved 51 cities and a mutation rate of 
2% was used. Only one test was complete at the time of 
writing with less than 10,000 generations. The shortest we 
produced in this test was 433 compare with the optimal 
solution of 429 - approximately 1% off the best solution. 

 

6   EXPLANATION FOR GENEREPAIR 

GeneRepair is composed of two distinct tasks: fault 
detection and fault correction. To help identify the exact 
reason for GeneRepairs‘ improvement in performance, we 
analyzed each phases in turn. 

First we measure the frequency with which GeneRepair 
was invoked. GeneRepair repaired approximately 11% of 
the alleles, while solving the benchmark VRP problems. 
Additionally, some of these alleles required multiple repair 
operations. (As may be expected, these figures are higher 
during the first 100 epochs). For comparison, we recorded 
the number of invalid tours generated by our solution 
without GeneRepair. Here, approximately 15% of 
individuals were found to violate the VRP validity 
constraint.  

In general, GeneRepair does increase the number of 
generated individuals that form part of the valid search 
space. However, this relatively modest increase in the 
search space does not adequately account for the 
significant increase in performance obtained. For example, 
increasing the population size to allow for this 11% 
wastage, had little effect on the quality of the results 
generated.  

Next we investigated the fault correction part of 
GeneRepair. First, we analyze how errors are introduced. 
Crossover introduces the majority of errors as it is always 
applied. It does this by combining incompatible sections of 
tours. (See figure 1) 

N-point-Crossover preserves the identicallity between both 
parents. Thus, the GeneRepair operator is invoked more 
during early evolution than it is when we reach 
convergence.  

Secondly, the replacement strategy replaces invalid (i.e. 
duplicate) genes with missing genes, according to the 
replacement strategy described above. So, in conclusion, 
GeneRepair is a multi-point mutation operator, that is 

applied heavily during early evolution and rarely applied 
when convergence is achieved.  

1-point mutation tends to introduce errors and, GeneRepair 
will Fix the error, but  it does So randomly. Either the 
mutation will remain unaffected by GeneRepair and 
another duplicate city will be replaced. This has tie effect 
of  causing 2-point  mutation. Alternatively, the mutation 
itself will be repaired, which Reduces the level of 
mutation. Importantly, the mutation introduced by 
GeneRepair is Not an alternative to standard mutation, as 
standard mutation is still required when near-optimal 
convergence is reached. Initial results seem to indicate that 
the reduction in mutation is (at least partly) counteracted  
by GeneRepair's introduction of its own mutogenic effect, 
but investigations are ongoing.      

This may account for our improved performance as it 
effectively prohibits the problem of premature 
convergence. Furthermore, it is applied less frequently 
during final convergence, allowing an optimal to be 
achieved. (This seems to mimic the operation of a 
Boltzman machine on simulated annealing problems.) 
However, investigations are at a relatively early phase, and 
research is ongoing.    

 

7 FUTURE WORK         

The experiments performed so far highlight the need for a 
number of further investigations. Future work is necessary 
to compare the effectiveness of GeneRepair against the 
order-preserving crossover and mutation operators. We 
will also conduct experiments to evaluate the effectiveness 
of GeneRepair on large problems with more than 1000 
cities. Finally, we will explore the interplay between 
standard mutation and the mutogenic effects of 
GeneRepair.  This may involve the use of an adaptive 
mutation rate in conjunction with GeneRepair.   

 

8 CONCLUSION    

We solved two permutation problems by combining 
standard genetic operators with a novel genetic repair 
operator - GeneRepair. Validity constraints that originate 
in the problem domain are thus centralized in a single 
repair operator. We explored the use of GeneRepair on the 
TSP and VRP, using the fitness function to optimize the 
solution while GeneRepair ensures the validity of 
solutions. This approach is potentially applicable to any 
domain where the solution constraints can be separated 
from the fitness function. Results produced so far have 
either reached global optimal solutions, or have been close 
to optimal solutions. Furthermore, solutions appear to be 
produced in a relatively small number of generations. We 
examined the higher levels of early mutation that result 
from GeneRepair operations, as one possible explanation 
for the results produced so far. 

 



References 

 

M.R Garey and D.S. Johnson (1979). Computers and 
Intractability. A Guide to the Theory of NP-Completeness. 
New York, NY: W. H Freeman and Company.  

 

M. Mitchell (1999). An Introduction to Genetic 
Algorithms, Cambridge USA, London UK: MIT Press. 

 

D.B. Fogel (1993), Empirical Estimation of the 
Computation      Required to Discover Approximate 
Solutions to the      Travelling Salesman Problem Using 
Evolutionary  Programming, Proceedings of 2nd Annual 
Conference  on Evolutionary Programming, 56-61. 

 

D.B. Fogel (1993a), Applying Evolutionary Programming 
to  Selected Travelling Salesman Problems, Cybernetics  
and Systems: An International Journal, 24 : 27-36 

 

D.B. Fogel (1988), An Evolutionary Approach to the 
Travelling Salesman Problems , Biological Cybernetics, 60 
: 139-144. 

 

W. Banzhaf (1990), The “Molecular” Travelling Salesman, 
Biological Cybernetics, 64 : 7-14. 

 

B.K. Ambati, J. Ambati and M.M. Mokhtar (1991), 
Heuristic Combinatorial Optimisation by Simulated 
Darwinian Evolution: a Polynomial Time Algorithm for 
the Traveling Salesman Problem, Biological Cybernetics, 
65 : 31-35. 

 

F. B. Pereira, J. Tavares, P. Machado, and E. Costa (2002), 
GVR: a New Genetic Representation for the Vehicle 
Routing Problem, Proceedings of the 13th Irish 
Conference on Artificial Intelligence and Cognitive 
Science, 95-102. 

 

G. Syswerda (1991), Schedule Optimization Using Genetic 
Algorithms, Handbook of Genetic Algorithms, New York 
NY, Van Nostrand Reinhold,  350-372. 

 

L. Davis (1985), Applying Adaptive Algorithms to 
Epistatic Domains, Proceedings of the International Joint 
Conference on Artificial Intelligence, 162-164. 

 

D.E. Goldberg and R. Lingle (1985),  Alles, Loci and the 
TSP, Proceedings of the First International Conference on 
Genetic Algorithms and Their Applications, 154-159. 

 

I.M. Oliver,  D.J. Smith and J.R.C. Holland (1987), A 
Study of Permutation Crossover Operators on the TSP, 
Genetic Algorithms and Their Applications: Proceedings 
of the Second International Conference, 224-230. 

 

M. Gorges-Schleuter (1989) ASPARAGOS An 
Asynchronous Parallel Genetic Optimization Strategy, 
Proceedings of the Third International Conference on 
Genetic Algorithms, 422-427. 

 

Augerat Set-A available at http://www.branchandcut.org 

 

Crawford, K. D., R. Wainwright (1996), Research 
Question: How does one go about developing a new 
crossover operator with an a priori expectation of its merit? 
(A Survey of Crossover Operators for Genetic 
Algorithms), Technical Report UTULSA-MCS-96-2, The 
University of Tulsa, USA. 

 

Z. Michalewicz (1992), Genetic Algorithms + Data 
Structures = Evolution Programs, Berlin Germany, 
Springer Verlag. 

 

J. Holland (1975), Adaptation in Natural and Artificial 
Systems, Ann Arbor USA, University of Michigan. 

 

J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht 
(1985), Genetic Algorithms for the TSP, Proceedings of 
the First International Conference on Genetic Algorithms 
and Their Applications, 160-65. 

 

P. Larrañaga, C.M.H Kuijpers, R.H. Murga, I. Inza and S. 
Dizdarevic (1999), Genetic Algorithms for the Travelling 
Salesman Problem A Review of Representations and 
Operators, Artificial Intelligence Review, 13 : 129 – 170. 

 

G. Reinelt. (1991), TSPLIB: A traveling salesman problem 
library. ORSA Journal on Computing, 3:376—384. 


