
GeneRepair - A Repair Operator for Genetic Algorithms

George G. Mitchell Diarmuid O’Donoghue David Barnes Mark McCarville

Department of Computer Science
National University of Ireland Maynooth,

Co. Kildare, Ireland.
georgem@cs.may.ie

Abstract

In this paper we present the outcome of two
recent sets of experiments to evaluate the
effectiveness of a new adjunct genetic operator
GeneRepair. This operator was developed to
correct invlaid tours which may be generated
following crossover or mutation of our particular
implementation of the genetic algorithm.
Following implementation and testing of our
genetic algotihm with GeneRepair we found a
significant positive side in our results. Using
GeneRepair along side traditional crossover and
mutation operators we have been able to travers
the search space of a problem and generate very
good results in an extremely efficent manner, in
both time and number of evaluations required.

1 INTRODUCTION

In this paper we present a novel approach to solving
permutation problems that uses only standard crossover
and standard mutation. We isolate the problem constraints
in a separate operator, which operates as an adjunct
operator to the standard set of genetic operators.

This approach is applicable to any problem domain where
the solution constraints can be identified in the gene string.
In this paper we explore two different types of permutation
problems. We look at the Traveling Salesman Problem
(TSP), which is a well-known NP-Complete problem, and
the Vehicle Routing Problem (VRP), which is an NP-Hard
problem (Garey and Johnson, 1979). The TSP involves
visiting all cities on a map, generating the shortest total
tour distance. The VRP involves finding the delivery
schedule for N cities using M trucks of finite capacity,
again for the shortest total distance traveled by all trucks.

As Mitchell (1999) points out “some type of encoding
require specially defined crossover and mutation
operators... like the Traveling Salesman Problem in which
the task is to find a correct ordering for a collection of
objects”.

2 REPRESENTATION AND

OPERATORS

The natural choice of representation for the TSP and VRP
is an Order-based representation. These have been
successfully applied to the TSP and VRP problems by
Fogel (1988, 1993 and 1993a), Banzhaf (1990), Ambati
(1991) and Pereira et al (2002). Additionally, the genetic
operators employed must also be Order-based. If either the
representation or the operators do not respect the Order
based nature of the problem, then invalid solutions will be
generated.

First, we looked at the crossover operators that respect the
Order-based nature of permutation problems, and prevent
the introduction of errors such as invalid tours (Mitchell,
1999). The order preserving crossover operators that have
been developed include: Order Crossover (Syswerda,
1991), Modified Crossover (Davis, 1985), Partially
Mapped Crossover (Goldberg and Lingle, 1985), Cycle
Crossover (Oliver et al., 1987), 2-quick / 2-repair (Gorges-
Schleuter, 1989), plus a number of less frequently used
crossover operators (Crawford and Wainwright, 1996).

Secondly, we looked at Order-based mutation operators
developed for Order-based problems. These include:
Displacement Mutation (Michalewicz, 1992), Exchange
Mutation (Banzhaf, 1990), Insertion Mutation (Fogel 1988
and Michalewicz 1992), Simple Inversion Mutation
(Holland 1975 and Grefenstette et al., 1985), Inversion
Mutation (Fogel, 1993 and 1993a) and other order
preserving mutation (Larrañaga, 1999).

We present a solution for Order-based problems that uses
only standard crossover and standard mutation. To
counteract the invalid tours that occur as a result, we
introduce GeneRepair - a genetic repair operator that has a
number of positive effects: It allows the use of standard
GA libraries, with the addition of a single repair operator
for permutation problems. It simplifies the understanding
of the GA, by allowing the use of standard crossover and
mutation for Order-based problems. Finally, it removes
problem specific activities from the genetic operators
themselves, and isolates it in a single intra-generation
operation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297030252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 GENEREPAIR

The GeneRepair enhanced genetic algorithm operates in
the manner of traditional genetic algorithms, and can be
summarized as follows:

1. Generate the initial population P(0) at random
and set i = 0;

2. Evaluate the fitness of each individual in P(i);

3. Select parents from P(i) based on their fitness.

4. Apply standard crossover

5. Apply standard mutation.

6. Apply GeneRepair.

7. Repeat until convergence.

Although the VRP is NP-Hard and TSP is NP-Complete,
they may be characterized by two separate facets:
Optimization and Permutation. Responsibility for
optimization lies with the standard genetic algorithm,
which effectively remains unchanged from Holland
(1975). Responsibility for only allowing valid permutation
in the population lies solely with the GeneRepair operator.

3.1 SOLUTION CONSTRAINTS

Combinatorial problems like the TSP and VRP place
constrains on the valid solutions. Solutions are only valid
when all N cities in the problem are present in the solution.
Thus, we use a fixed-length chromosome to represent our
tours. Furthermore, a solution is only considered valid
when all cities are represented once only in the solution,
and no cities are absent. These constraints act as a trigger
for the application of the GeneRepair operator.

Non order-preserving crossover (above) can cause a
violation of the validity constraint, by combining parent
strings, which result in invalid offspring. See Figure 1.

Similarly, non order-preserving mutation operators can
also generate invalid solutions. This happens when
mutation randomly inserts a city that already exists in the
solution.

Figure 1: Constraint violation by 2-Point Crossover.

In practice, GeneRepair examines each tour in turn,
enforcing the following:

1. Correct number of cities in the tour

2. No duplicate cities

3. No missing cities

These constrains invoke the GeneRepair operator, and
identifies the string the location of duplicate cities (see
Figure 2).

Figure 2: GeneRepair- Invalid cities identified.

3.2 REPAIR

Knowing the location of the offending cities, GeneRepair
replaces these cities iteratively with valid cities retrieved
from a corrective template. The first strategy investigated
was to replace the duplicate cities with the missing cities,
according to a pre-determined template (see Figure 3).

Figure 3: GeneRepair- correction of tour.

The majority of GeneRepair replacements were performed
in a left-to-right manner - replacing the left-most duplicate
city first. Additionally, the replacement city was retrieved
from the template also in a left-to-right manner. However,
brief evaluation of a random replacement technique,
randomly selecting the replacement city from the template

Parent 1 0 1 2 3 4 |5 6 7 8 |9

Parent 2 8 4 1 6 3 |7 9 2 0 |5

Child 1 0 1 2 3 4 |7 9 2 0 |9

Child 2 8 4 1 6 3 |5 6 7 8 |5

Detection of invalid cities:

Child 1 0 1 2 3 4 7 9 2 0 9

GeneRepair Template 0 1 2 3 4 5 6 7 8 9

 | | | | |
(i) Child 1 0 1 2 3 4 7 9 2 0 9

 (ii)Child 1GeneRepaired 0 1 2 3 4 7 9 5 6 8

was also evaluated. Initial results show no identifiable
difference between the two techniques.

The replaced city is selected according to a corrective
template. Three different types of template were
investigated:

1. Static template. This consisted of a preset valid
tour, and remained constant throughout.

2. Parent-based Template. Select the fitter parent,
and use that as the corrective template. This
template varied for every corrected individual.

3. Random Template. For each corrected individual
a new template of random numbers was
generated, within the validity constraints of the
TSP or VRP problem.

Each of these techniques was tested on a select number of
VRP and TSP problems. The parent-based solution
produced the worst results. Both random and fixed
template solutions produced good results, with the
randomly generated template producing marginally better
results.

4 EXPERIMENT 1 - VRP

We now evaluate the performance of GeneRepair on a
number of VRP benchmark problems selected from the
Augerat Set-A (A-n32-k5, A-n33-k6, A-n34-k5, A-n36-k5,
A-n39-k6). These include the best-known solutions to each
problem. These problems range from 32 cities to 39 cities,
using either 5 or 6 trucks for the solution.

We firstly compare two implementation, one with
GeneRepair and the other without. The allowed us assess
the performance of the GeneRepair operator in conjunction
with the standard genetic operators.

Figure 4: Comparison to best-known solutions

In Figure 4 we see that the solutions produced with
GeneRepair, are significantly better than those produced
without. Furthermore, the GeneRepair solutions
consistently approach the best-known solutions.

Our experiments were purely a proof of concept, and no
special effort was made to optimize the genetic parameters
in order to achieve short tours. Specifically, we only used
truncation selection with just two different truncation
parameters. Additionally, only two mutation rates were
investigated. We expect that significant improvements can
be made to the shortest tours we produce, by optimizing
the genetic parameters.

Next we show that GeneRepair develops better solutions
faster. In Figure 5 we see that the GeneRepair
implementation converges on the better solutions
significantly faster than one without GeneRepair.

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

1 0 0 0 0 0

1 2 0 0 0 0

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0

Figure 5: Solution with and without GeneRepair

Thus, GeneRepair has shown itself to be very promising
and worthy of further investigation - particularly with
regard to the use of only truncation selection.

5 EXPERIMENT 2 - TSP

Next we evaluate GeneRepair on the TSP benchmark
problems from the Heidelberg TSPLIB problem set
(Reinelt, 1991). For these experiments we investigated the
potential of the GeneRepair based solution, without
reference to a non-GeneRepair implementation.

We optimized the genetic parameters of crossover and
mutation in order to produce the best solutions on selected
TSP problems. This investigated the ability of GeneRepair
to generate optimal solutions, as the benchmark solutions
are assured optimal solutions.

We conducted approximately 5 experiments on each of the
3 following problem sets. Throughout all experiments the
population size was the square of the number of cities in
the problem set. Tournament and roulette wheel selection

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5

(but not truncation selection) were used. Only 1-point
crossover was investigated. Exchange mutation was used
exclusively, with rates varying between 0% and 10%.

The first problem set involved a 16-city TSP problem.
Tests revealed the optimal mutation rate to be 2%. The
optimal solution to this TSP problem was repeatedly found
in approximately 25 generations.

The second problem involved 22 cities and again
optimality was found with mutation at 2%. The optimal
solution to this TSP problem was found in approximately
3200 generations.

The final problem involved 51 cities and a mutation rate of
2% was used. Only one test was complete at the time of
writing with less than 10,000 generations. The shortest we
produced in this test was 433 compare with the optimal
solution of 429 - approximately 1% off the best solution.

6 EXPLANATION FOR GENEREPAIR

GeneRepair is composed of two distinct tasks: fault
detection and fault correction. To help identify the exact
reason for GeneRepairs‘ improvement in performance, we
analyzed each phases in turn.

First we measure the frequency with which GeneRepair
was invoked. GeneRepair repaired approximately 11% of
the alleles, while solving the benchmark VRP problems.
Additionally, some of these alleles required multiple repair
operations. (As may be expected, these figures are higher
during the first 100 epochs). For comparison, we recorded
the number of invalid tours generated by our solution
without GeneRepair. Here, approximately 15% of
individuals were found to violate the VRP validity
constraint.

In general, GeneRepair does increase the number of
generated individuals that form part of the valid search
space. However, this relatively modest increase in the
search space does not adequately account for the
significant increase in performance obtained. For example,
increasing the population size to allow for this 11%
wastage, had little effect on the quality of the results
generated.

Next we investigated the fault correction part of
GeneRepair. First, we analyze how errors are introduced.
Crossover introduces the majority of errors as it is always
applied. It does this by combining incompatible sections of
tours. (See figure 1)

N-point-Crossover preserves the identicallity between both
parents. Thus, the GeneRepair operator is invoked more
during early evolution than it is when we reach
convergence.

Secondly, the replacement strategy replaces invalid (i.e.
duplicate) genes with missing genes, according to the
replacement strategy described above. So, in conclusion,
GeneRepair is a multi-point mutation operator, that is

applied heavily during early evolution and rarely applied
when convergence is achieved.

1-point mutation tends to introduce errors and, GeneRepair
will Fix the error, but it does So randomly. Either the
mutation will remain unaffected by GeneRepair and
another duplicate city will be replaced. This has tie effect
of causing 2-point mutation. Alternatively, the mutation
itself will be repaired, which Reduces the level of
mutation. Importantly, the mutation introduced by
GeneRepair is Not an alternative to standard mutation, as
standard mutation is still required when near-optimal
convergence is reached. Initial results seem to indicate that
the reduction in mutation is (at least partly) counteracted
by GeneRepair's introduction of its own mutogenic effect,
but investigations are ongoing.

This may account for our improved performance as it
effectively prohibits the problem of premature
convergence. Furthermore, it is applied less frequently
during final convergence, allowing an optimal to be
achieved. (This seems to mimic the operation of a
Boltzman machine on simulated annealing problems.)
However, investigations are at a relatively early phase, and
research is ongoing.

7 FUTURE WORK

The experiments performed so far highlight the need for a
number of further investigations. Future work is necessary
to compare the effectiveness of GeneRepair against the
order-preserving crossover and mutation operators. We
will also conduct experiments to evaluate the effectiveness
of GeneRepair on large problems with more than 1000
cities. Finally, we will explore the interplay between
standard mutation and the mutogenic effects of
GeneRepair. This may involve the use of an adaptive
mutation rate in conjunction with GeneRepair.

8 CONCLUSION

We solved two permutation problems by combining
standard genetic operators with a novel genetic repair
operator - GeneRepair. Validity constraints that originate
in the problem domain are thus centralized in a single
repair operator. We explored the use of GeneRepair on the
TSP and VRP, using the fitness function to optimize the
solution while GeneRepair ensures the validity of
solutions. This approach is potentially applicable to any
domain where the solution constraints can be separated
from the fitness function. Results produced so far have
either reached global optimal solutions, or have been close
to optimal solutions. Furthermore, solutions appear to be
produced in a relatively small number of generations. We
examined the higher levels of early mutation that result
from GeneRepair operations, as one possible explanation
for the results produced so far.

References

M.R Garey and D.S. Johnson (1979). Computers and
Intractability. A Guide to the Theory of NP-Completeness.
New York, NY: W. H Freeman and Company.

M. Mitchell (1999). An Introduction to Genetic
Algorithms, Cambridge USA, London UK: MIT Press.

D.B. Fogel (1993), Empirical Estimation of the
Computation Required to Discover Approximate
Solutions to the Travelling Salesman Problem Using
Evolutionary Programming, Proceedings of 2nd Annual
Conference on Evolutionary Programming, 56-61.

D.B. Fogel (1993a), Applying Evolutionary Programming
to Selected Travelling Salesman Problems, Cybernetics
and Systems: An International Journal, 24 : 27-36

D.B. Fogel (1988), An Evolutionary Approach to the
Travelling Salesman Problems , Biological Cybernetics, 60
: 139-144.

W. Banzhaf (1990), The “Molecular” Travelling Salesman,
Biological Cybernetics, 64 : 7-14.

B.K. Ambati, J. Ambati and M.M. Mokhtar (1991),
Heuristic Combinatorial Optimisation by Simulated
Darwinian Evolution: a Polynomial Time Algorithm for
the Traveling Salesman Problem, Biological Cybernetics,
65 : 31-35.

F. B. Pereira, J. Tavares, P. Machado, and E. Costa (2002),
GVR: a New Genetic Representation for the Vehicle
Routing Problem, Proceedings of the 13th Irish
Conference on Artificial Intelligence and Cognitive
Science, 95-102.

G. Syswerda (1991), Schedule Optimization Using Genetic
Algorithms, Handbook of Genetic Algorithms, New York
NY, Van Nostrand Reinhold, 350-372.

L. Davis (1985), Applying Adaptive Algorithms to
Epistatic Domains, Proceedings of the International Joint
Conference on Artificial Intelligence, 162-164.

D.E. Goldberg and R. Lingle (1985), Alles, Loci and the
TSP, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, 154-159.

I.M. Oliver, D.J. Smith and J.R.C. Holland (1987), A
Study of Permutation Crossover Operators on the TSP,
Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference, 224-230.

M. Gorges-Schleuter (1989) ASPARAGOS An
Asynchronous Parallel Genetic Optimization Strategy,
Proceedings of the Third International Conference on
Genetic Algorithms, 422-427.

Augerat Set-A available at http://www.branchandcut.org

Crawford, K. D., R. Wainwright (1996), Research
Question: How does one go about developing a new
crossover operator with an a priori expectation of its merit?
(A Survey of Crossover Operators for Genetic
Algorithms), Technical Report UTULSA-MCS-96-2, The
University of Tulsa, USA.

Z. Michalewicz (1992), Genetic Algorithms + Data
Structures = Evolution Programs, Berlin Germany,
Springer Verlag.

J. Holland (1975), Adaptation in Natural and Artificial
Systems, Ann Arbor USA, University of Michigan.

J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht
(1985), Genetic Algorithms for the TSP, Proceedings of
the First International Conference on Genetic Algorithms
and Their Applications, 160-65.

P. Larrañaga, C.M.H Kuijpers, R.H. Murga, I. Inza and S.
Dizdarevic (1999), Genetic Algorithms for the Travelling
Salesman Problem A Review of Representations and
Operators, Artificial Intelligence Review, 13 : 129 – 170.

G. Reinelt. (1991), TSPLIB: A traveling salesman problem
library. ORSA Journal on Computing, 3:376—384.

