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Abstract 

We describe the Interactional-Constraint (ICON) model of 
conceptual combination. This model is based on the idea that 
combinations are interpreted by incrementally constraining 
the range of interpretation according to the interacting 
influence of both constituent nouns. ICON consists of a series 
of discrete stages, combining data from the British National 
Corpus, the WordNet lexicon and the Web to predict the 
dominant interpretation of a combination and a range of 
factors relating to ease of interpretation. One of the major 
advantages of the model is that it does not require a tailored 
knowledge base, thus broadening its scope and utility. We 
evaluate ICON’s reliability and find that it is accurate in 
predicting word senses and relations for a wide variety of 
combinations. However, its ability to predict ease of 
interpretation is poor. The implications for models of 
conceptual combination are discussed.  

Keywords: Conceptual combination; noun-noun compounds; 
paraphrase frequencies; WordNet; language comprehension. 

Introduction 

People using language to communicate often need to 

identify concepts for which there is no simple or suitable 

one-word expression. In such cases, a combination formed 

from two nouns will frequently suffice, allowing the speaker 

to succinctly describe a complex concept in a way that can 

be reliably deciphered (e.g. kitchen sink, car magazine). In 
English, a language in which compounding is particularly 

productive, combinations consist of a modifier followed by 

a head noun. Usually, the head noun denotes the main 

category while the modifier implies a relevant subcategory 

or a modification of that set’s typical members.  In this way, 

a penguin film is interpreted as a particular type of film, and 

more precisely as one that is about penguins.  

Although conceptual combination has been the focus of 

much research, modelling the interpretation process has met 

with limited success to date. The various psychological 

theories of the phenomenon that have been proposed have 

tended to suffer from a lack of specificity regarding how 

commonsense knowledge is filtered, activated and applied 

(e.g. the Concept Specialization model, Murphy, 1988; the 

Dual-Process Theory, Wisniewski, 1997). In addition, the 

accuracy of computational models has been limited by the 

extent of the conceptual knowledge required to generate 

appropriate interpretations. 

Outline of Theory 

ICON is based on the findings of a series of studies 

investigating the cognitive processes involved in 

interpreting conceptual combinations (e.g. Maguire, 

Maguire & Cater, 2007; Maguire, Maguire & Cater, 2008). 

These studies have suggested that the influence of both noun 

constituents is an interactional one and that the range of 

interpretation is incrementally constrained until an 

appropriate interpretation is identified, at which point a 

modality-specific representation is instantiated. Maguire et 

al. (2007) proposed that conceptual knowledge is activated 

dynamically rather than ‘all-at-once’ and that concepts are 

dynamic and context-sensitive as opposed to being 

associated with a fixed set of features. For example, in the 

case of plastic knife, there is no need to activate the image 

of the canonical metal knife prior to combination. The 

knowledge that plastic is a substance and knife is an object 

is activated first and this is sufficient for indicating the 

<made of> relation. As a result, the conceptual content 

retrieved for the word knife remains appropriate to the 

context. This idea contrasts with other accounts such as 

Murphy’s (1988) Concept Specialization model insofar as it 

does not require that both constituent concepts are fully 

activated prior to their combination. Instead, the abstract 

properties of the constituents are used to ‘home-in’ on the 

correct interpretation, avoiding the activation of 

inappropriate conceptual knowledge. 

An important implication of our theory is that the 

contribution of a combination’s constituents to the 

interpretation cannot be separated from each other. Instead, 

the interaction of noun properties must be taken into 

account. Our Interactional-Constraint (ICON) model views 

the identification of a referent as the main objective of 

combination interpretation and the dynamic strengthening of 

constraints as the process by which this is carried out. The 

model consists of a series of stages, each of which relates to 

a different component of the interpretation process. In order 
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to facilitate the modelling process, these stages are 

consecutive and unidirectional. 

 

 
 

Figure 1: Stages involved in combination interpretation 

 

While the output of our model is impoverished relative to 

the rich modality-specific representations that people can 

generate, it improves on previous models by providing both 

an interpretation and an estimation of the ease of that 

interpretation. ICON also obtains the senses of both 

constituents and is thus capable of interpreting combinations 

appearing in open text.  

Identifying a Relation Taxonomy 

Given that our model provides a specific relation as output, 

we are therefore confronted with the problem faced by 

previous models, namely specifying a limited range of 

relations. We do not maintain that people explicitly select 

from among a set of possible relations. Rather, they attempt 

to determine the referent, with a relation often emerging as 

an epiphenomenon of this process. Due to regularities in 

how entities can be related in the real world, many of the 

relationships between combinations will happen to fall into 

a number of discrete and coherent categories. While there 

will be many exceptions, the general interpretative form of 

many combinations can be reliably and informatively 

described using a limited taxonomy of relations. The 

generalisation of combination interpretations into a number 

of discrete categories is therefore a justifiable measure 

which can simplify the modelling process while retaining an 

acceptable level of informativeness.  

We developed a concise taxonomy of relation categories 

approximating the relational gists that people form when 

interpreting combinations. This taxonomy was designed to 

balance coverage and parsimony, subsuming a significant 

proportion of combinations in a robust and consistent 

manner. In designing this taxonomy, we took into account 

previous efforts at categorisation (e.g. Gagné & Shoben, 

1997), corpus statistics providing accurate relation 

frequencies (e.g. Cater & McLoughlin, 2000), and the real-

world factors underlying epiphenomenal relation categories. 

Based on these considerations, a hierarchical taxonomy was 

identified as providing the most intuitive system for 

labelling combinations. We identified seven relation super-

categories, dividing into 13 categories and 21 categories at 

successive depths of the hierarchy. The seven super-

categories were as follows: <position>, <constitution>, 

<origin>, <effect>, <meronymy>, <predicative> and 

<topic>. According to Cater and McLoughlin’s (2000) 

corpus study, these categories can account for 83% of 

compounds. A further <idiosyncratic> category was 

included as a catch-all for any remaining combinations. The 

distribution between categories was reasonably balanced, 

varying from a maximum of 24% for <effect> to 4% for 

<origin>.  

Implementing the ICON Model 

The stages in the ICON model are arranged as a cascade of 

discrete units, with the output of one stage being used as the 

input for the next. These stages exploit readily available 

sources of information with broad scope, namely WordNet, 

the British National Corpus (BNC) and the Google search 

engine. In designing the model, we sought to balance scope 

and utility with cognitive plausibility. However, while the 

latter might have been enhanced by providing a hand-

crafted knowledge base for a limited set of concepts, this 

would have severely comprised the model’s scope.  

Stage 1: Lexical Access 

Lexicalised phrases are more likely to be idiosyncratic than 

other combinations as the constituents do not need to be 

related in order for the referent to be retrieved (e.g. passion 

fruit). The combination can have a prior agreed meaning 

which is not reflected by any deducible relationship between 

the modifier and the head. Therefore, it is important for a 

model of conceptual combination to be aware of the degree 

of lexicalisation of a phrase. The first stage of the ICON 

model checks whether a combination is lexicalised and to 

what degree. A Google search is carried out for the 

combination preceded by the phrase “define: ”. ICON 

returns a measure of the availability of the lexicalised phrase 

based on the number of definitions returned by the Google 

search. 

Stage 2: Sense Identification 

The second stage of the ICON model aims to simulate the 

processes by which people derive a semantic gist for the 

constituent nouns prior to integration. In the case of a 

combination, the opposite constituent represents the 

strongest constraint on interpretation. Accordingly, the input 

for the second stage of ICON is a pair of nouns, and the 

output is a pair of senses representing their semantic gists. 

ICON uses the WordNet lexical database to assign word 

senses. Although WordNet information might not be 

adequate for assigning relations to combinations (cf. Cater 

and McLoughlin, 2000), it is better suited to discriminating 

between word senses, since dissimilar senses tend to 

combine with dissimilar sets of words (e.g. bat cave, bat 

handle). Senses in WordNet are numbered, generally 

according to frequency. This means that the sense number 

of a word has no semantic significance. For example, the 

artefact sense for bat is 3 while the artefact sense for racket 
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is 4. These sense numbers have no significance outside the 

synset to which they relate and cannot be generalised in any 

way. Our solution to this problem is to generate all the 

possible sense permutations for a noun-noun compound and 

then compare these possibilities with a training set in order 

to ascertain which has the most merit.  

Combinations in the training set were obtained from two 

sources. From the BNC we selected a random set of 300 

combinations with between 10 and 100 occurrences. This 

frequency criterion was observed in order to ensure that 

combinations would be relatively familiar (and thus context-

independent) but not to the point of being lexicalised. In 

order to compensate for the abstractness of these terms, we 

also included a selection of 100 non-lexicalised, non-

idiosyncratic participant-generated combinations. An 

independent judge selected the most appropriate sense for 

each of the nouns in the 400 combinations. The sense 

selection algorithm follows the same principles as Kim and 

Baldwin’s (2005) model for relation selection. The modifier 

and head of the input combination are compared against the 

400 combinations in the training set. A similarity rating is 

calculated using Seco, Veale and Hayes’s (2004) WordNet 

similarity metric, which takes into account the most specific 

common abstraction between two WordNet synsets. The 

similarity value is calculated for the first words and the 

second words separately and then multiplied, in recognition 

of the fact that the semantic significance of a combination is 

interactional as opposed to additive. We also included an 

additional component which considers the frequency and 

dominance of the potential word senses based on the 

Senseval frequencies provided in WordNet. All sense 

permutations are ranked according to these measures and 

the one with the highest overall confidence value is selected 

as the most likely. These senses are then passed to the third 

stage of the model.   

Relationship Identification 

The third stage of ICON reflects the idea that people’s 

awareness of productive combinational patterns allows them 

to constrain their interpretation so that irrelevant features of 

the constituent nouns are not activated. This stage represents 

the initial integration of both constituents, taking into 

account the constraints imposed by the combinational 

syntax. For example, people will realise that a combination 

of type [substance – artefact] (e.g. plastic chair) is likely to 

involve a <made of> type relation before retrieving the 

precise features of the constituent concepts. ICON’s third 

stage takes in two words and their pre-selected WordNet 

senses as input and outputs a relational label representing 

how the interaction of the gist of the constituent nouns 

initially constrains the overall interpretation of the phrase. 

Diagnostic WordNet Patterns 

WordNet contains information which is useful for 

identifying certain patterns of combinations. For example, 

the position of a concept in the lexical hierarchy can allow 

accurate inferences regarding animacy, concreteness, 

abstractness or, for instance, membership of location, time 

period and substance categories. Consequently, WordNet 

data is successful in identifying relations associated with 

such concepts (e.g. <located>, <during>). Machine learning 

techniques work optimally when the noise in the data is 

minimal. It is therefore important to ensure that all of the 

variables included in a model are diagnostic of the output. 

Accordingly, we sought to identify the subset of WordNet 

information that is most diagnostic of relation use. Maguire, 

Maguire and Cater (2008) demonstrated that the influence 

of a combination’s constituents on the interpretation process 

is interactional: the effect of a particular modifier or head is 

very much dependent on the opposite constituent. In 

addition, Maguire, Wisniewski and Storms (2007) found 

that, taken together, the general categories of the modifier 

and head nouns are often diagnostic of a relation. Based on 

a thorough analysis of the 400 combinations in our training 

set, we identified 24 diagnostic modifier-head WordNet 

patterns exhibiting broad coverage (e.g. [time – event], 

[solid – object], [agent – object]).  

Paraphrase Data 

Although WordNet data is useful for predicting some 

relations, others involve aspects of conceptual content 

which are not reflected in the organisation of the hierarchy 

(e.g. size, shape, appearance etc.). The limited success of 

models based solely on hierarchical data emphasises that 

other sources of information are required in order to 

accurately model the interpretation process (Cater & 

McLoughlin, 2000). In light of this, ICON supplements 

statistical WordNet-based data with combination paraphrase 

frequencies harvested from the Web. The Web as a corpus 

has the benefit of being broad, extensive and easily 

available, and thus represents a very practical and useful 

source of information for minimally supervised linguistic 

models. Rather than needing to specify exactly what 

knowledge people are sensitive to during the interpretation 

process, paraphrase frequency data represents the 

cumulative influence of such knowledge. For example, in 

order to ascertain the probability of the <about> relation for 

penguin film, ICON takes into account the number of hits 

garnered for the paraphrase “a film about penguins”. 

The accuracy of the paraphrasing technique depends on 

using paraphrases that introduce as little noise as possible. 

Unfortunately, Web searches are inherently noisy. 

Punctuation is ignored and part of speech information is not 

available. While it is straightforward to generate 

paraphrases with a high true positive rate, it is more difficult 

to reduce the number of false positives. Even if a paraphrase 

only produces inappropriate high frequencies very 

occasionally, this can still impact the reliability of the data 

when the intended relation is itself infrequent. For example, 

paraphrases involving the preposition with provide a high 

number of hits for combinations involving the <has feature> 

relation (e.g. “table with a drawer” – 652, “clock with a 

pendulum” – 4,820). Intuitively, such paraphrases should 

provide a lower number of hits for combinations that do not 
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involve this relation (e.g. “clock with a kitchen” – 3). 

However, when considering a large sample of combinations, 

false positives become apparent (e.g. “table with a garden” – 

36,400, “clock with a metal” – 11,900). While the design of 

paraphrases in previous studies has been guided by the ratio 

of false negatives to true positives (i.e. the ability of the 

paraphrase to detect a relation), this ratio is of far less 

concern as it reflects the scope of a paraphrase, not its 

reliability. In contrast, even a relatively low number of false 

positives can reduce the informativeness of paraphrase 

frequencies to the level of random noise. In light of this, we 

subjected our candidate paraphrases to rigorous testing in 

order to establish their diagnosticity. This process revealed 

four particularly salient problems affecting the reliability of 

paraphrase frequencies. 

 

Long-range Dependencies Often the nouns contained in 

a paraphrase are not the arguments of the relationship being 

described. For example, the sentence “a lack of money 

caused the family to beg” provides an inappropriate hit for 

the paraphrase “money caused the family”. 

Compound Truncations Even when a paraphrase 

represents a genuine relationship between two noun 

concepts, the first and last nouns may be part of compounds 

which have been truncated. For example, a search for the 

paraphrase “college has a treatment” might be carried out to 

obtain information regarding the likelihood of the <has> 

relation. Unfortunately, sentences such as “college has a 

treatment room” or “college has a treatment facility” 

provide inappropriate hits. 

Ambiguous Connectives Individual prepositions often 

suggest different relations in different circumstances. For 

example, the preposition about is strongly associated with 

the <topic> relation (e.g. “magazine about sports”). 

However, in some cases, the same preposition can be used 

to denote dispersal in a general area (e.g. “cloud about the 

mountain”). 

Context-Specific Relationships Even when a paraphrase 

hit is genuine and error free, the relationship expressed 

between the two concepts might be a context-specific one 

which does not apply to any other context. For example, the 

sentence “he put the magazine in the car” does not indicate 

the existence of a particular type of magazine found in cars.  

 

In order to mitigate the sources of noise highlighted above 

and improve the reliability of the data, we sought an optimal 

set of paraphrases through a process of trial and error. 

Potential paraphrase templates were identified and used to 

obtain frequency information. Subsequently, this was 

analysed for reliability and the paraphrases were refined so 

as to reduce the influence of noise. In order to boost the 

diagnosticity of our paraphrases, we included verbs in as 

many paraphrases as possible (e.g. located in and found in, 

as opposed to the preposition in by itself) and made use of 

delimiting words such as the and that. In total, we 

developed 14 paraphrase templates to provide accurate 

information on the appropriateness of the various relations 

in the taxonomy for a given combination. 

Another problem facing paraphrase models is that of data 

sparseness. Paraphrases for uncommon combinations (e.g. 

banana phone, giraffe race) yield fewer genuine hits, thus 

increasing the influence of false positives. In addition, the 

more obvious the relationship between two concepts, the 

less likely it is to be explicitly paraphrased (e.g. “jar made 

of glass” has a hit count of 811 while “lamp made of glass” 

has a hit count of 3,730). In light of this, an extra 

generalisation component is incorporated into ICON to 

compensate for combinations of low frequency. 

This generalisation component works by identifying 

common combinations in the BNC which are as similar as 

possible to the input combination. It assumes that 

combinations above a critical level of similarity are likely to 

use the same relation (e.g. plastic cup, metal spoon). 

Paraphrase frequencies are then obtained for the similar 

BNC examples, augmenting the data set and mitigating the 

effect of noise. In filtering the BNC’s combinations, the 

generalisation component initially considers any nouns 

contained in the first level of WordNet hyponyms for both 

modifier and head and then continues to extend the depth of 

the search into the hyponym tree at the same rate for both 

constituents until all such possibilities have been 

considered. A match is returned whenever a BNC 

combination is identified which involves a modifier and 

head within the limits of the current search space. If the 

required number of examples is not found then the search 

space is extended to include the subtrees of the modifier and 

head’s direct hypernyms and finally the subtree of the 

grandparent hypernyms. If this still fails to yield the 

required examples then the search is terminated at this point. 

Any combinations exhibiting a greater dissimilarity are less 

likely to use the same relation as the original combination. 

Combining the Data 

The paraphrase data constitute 14 separate numerical 

variables, each representing the ratio between the log of the 

paraphrase hit count and the log of the combination hit 

count. This information, together with the single nominal 

WordNet variable, forms a 15-dimensional vector for each 

combination. These data are intended to represent the 

experiential knowledge which people use to constrain the 

interpretation of a combination based on the activation of 

generalised properties of the modifier and head. 

ICON analyses the data from the various sources in order 

to ascertain the extent to which an input combination is 

indicative of a particular relation. First, a Support Vector 

Machine (SVM) is used to train the model. The training set 

involves the same 400 representative combinations used in 

Stage 2, each with the correct relation provided. ICON then 

uses this data to make predictions for each input 

combination and its generalized examples retrieved from the 

BNC. A set of relation probabilities is generated for each 

combination. Finally, the relation probabilities for each of 

the related group of combinations are averaged to yield a set 
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of generalised probabilities. The relation with the highest 

average probability is then outputted as the most likely 

relation for the input combination. The associated 

probability provides a measure of the model’s confidence 

that the chosen relation is the correct one. 

Results 

In order to evaluate the performance of a computational 

model, its output must be compared against pre-defined 

correct outputs as well as with human performance at the 

same task. Because of the range of participant-derived data 

available to us from previous experiments,  we used Gagné 

and Shoben’s (1997) Experiment 1 stimuli in evaluating 

ICON’s performance. For these combinations we were able 

to obtain average participant response times, plausibility and 

familiarity judgments, subjective and objective ambiguity 

ratings and also a set of 16 different interpretations for each 

combination. Gagné and Shoben’s combinations exhibit 

considerable variability in plausibility, lexicalisation and 

ambiguity (e.g. plastic toy versus cooking treatment), 

allowing ICON’s performance to be tested for a broad range 

of inputs of varying difficulty.  

Based on preliminary analyses, the intermediate 13-

relation taxonomy was adopted as the most reliable output 

of Stage 3. We found that this taxonomy provided the 

optimal compromise between coverage and specificity, 

maximizing the accuracy of the model. Subsequently, 

WordNet data and paraphrase frequencies were obtained for 

the 57 combinations in the test set. The generalisation 

component was used to obtain five similar examples (when 

possible) for each of the stimuli. In total, lexicalised 

definitions were obtained for seven of the combinations and 

the dominant word senses were identified for 46 of the 57 

combinations. Based on this output from Stage 2, a total of 

251 similar examples were retrieved from the BNC, yielding 

an average of 4.4 similar examples per input combination. 

Paraphrase hit count ratios were obtained for these 

combinations and these data were added to the test set. The 

SVM algorithm was then applied, yielding 13 relation 

probability values for each combination in the training set. 

These were then averaged between the input combinations 

and their similar examples to produce 57 sets of values. 

Finally, the relation obtaining the highest average 

probability was chosen in each case. 

The ambiguity of Gagné and Shoben’s (1997) materials 

meant that in many cases there was no single correct 

interpretation (e.g. college treatment). In order to 

appropriately assess ICON’s performance, we compared the 

relations selected by the model with the interpretations 

produced by participants in Maguire, Cater and 

Wisniewski’s (2006) experiment. For each combination, we 

identified the proportion of participant interpretations that 

involved ICON’s choice of relation. On average, the 

baseline dominant interpretation was used by 74.7% of 

participants (SD = 22.4%). The model’s output relation was 

on average used by 45.8% of participants (SD = 39.5%). 

The agreement between the model’s selection and the 

participants’ selection varied from between 100% for 

combinations like mountain bird, office plant and student 

equipment to 0% for incorrectly interpreted combinations 

such as servant language (<topic>), music album 

(<predicative>) and flower toy (<for>). Some of the 

relations outputted by ICON were intuitively plausible but 

were unsupported by participant interpretations. For 

instance, the combination college headache was plausibly 

interpreted by ICON as using the <located> relation, yet 

was never interpreted in this way by the participants in 

Maguire et al.’s (2006) study. Of the 57 combinations, 32 

were interpreted by ICON using the dominant relation, 14 

using a subdominant relation and 11 involved relations that 

were unsupported by any of the participants’ interpretations.  

In general, the similar examples retrieved for the 57 test 

combinations were appropriate. The main sources of error in 

our model were therefore due to over-generalisation of the 

WordNet data and to the inaccuracy and sparseness of the 

Web paraphrase frequencies. For example, the combination 

water bird was inaccurately interpreted by ICON as using 

the <for> relation. The five similar examples retrieved for 

water bird included salt fish, water fish, water weed, water 

flower and water snake. Intuitively these combinations are 

all suggestive of the <located> relation. However, not one 

of them was interpreted in this way by ICON. First, the 

modifier water does not fall into any of our WordNet 

categories (only solids are included as substances). Second, 

the paraphrase hit counts for these combinations are low, 

since these organisms <live in> rather than being <located 

in> water. As a result, spurious paraphrase hits resulted in 

misleading probabilities (e.g. “…fish used for salt rich diet 

feeding studies…”). This example demonstrates how ICON 

struggles to identify relations that are even slightly 

idiosyncratic, since these are not detectable with regular 

WordNet patterns or standard paraphrases. The inaccuracy 

of our model highlights the difficulty of using a limited 

number of discrete variables to represent the extensive range 

of knowledge which people bring to bear on the 

interpretation process. It also reveals the pitfalls associated 

with adopting a rigid relation selection process as the basis 

for interpretation. The fact that people do not experience the 

same difficulty in interpreting combinations with unusual 

relations indicates that they do not group relations into a 

limited number of discrete categories. 

In order to ascertain whether ICON provides any insight 

regarding the cognitive processes involved in combination 

interpretation, we correlated the output variables with the 

participant-derived measures relating to ease of 

interpretation. The confidence values outputted from Stage 

2 and Stage 3 did not correlate significantly with any of the 

participant-derived variables. In other words, the cases 

which ICON found difficult to interpret did not correspond 

with the cases that people found more difficult to interpret. 

Many of Gagné and Shoben’s (1997) unambiguous 

combinations were easily interpreted by ICON (e.g. plastic 

toy), but the model ran into difficulty with irregular 

interpretations (e.g. water bird). Because the information 
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that people can avail of is far more extensive than that 

represented in our model, its failings are simply an artefact 

of its design and consequently are not reflected in the 

participant-derived variables.  

We found that the overall similarity of the generalised 

BNC examples (a measure we term ‘regularity’) was 

significantly correlated with response time, r = -.30, p < .01 

and plausibility, r = .34, p < .05. Because this regularity 

measure is determined by the range of combinations present 

in the BNC, it is unaffected by the choice of input data (i.e. 

diagnostic WordNet patterns and paraphrase templates). The 

finding that regularity is correlated with ease of 

interpretation supports our idea that generalised information 

is used to initially constrain the interpretation process and 

suggests that people are sensitive to the way in which 

general word categories tend to combine. For example, a 

combination like frog tail initially seems plausible and 

suggests the <is part of> relation because it conforms to a 

regular pattern (i.e. [animal – body part]) shared by many 

other combinations (e.g. dog tail, frog leg etc.).  

General Discussion 

A significant limitation of our model is that its fails to 

implement the simulation and integration stages of the 

interpretation process (cf. Figure 1). As a result, the 

interpretation that ICON produces is simply a propositional 

label. In reality, this is a very poor reflection of the detailed 

representations that combinations are intended to elicit. 

Most of the variability in ease of interpretation is likely to 

be manifested in these latter stages when a situated 

simulation must be instantiated (cf. Barsalou, 2003). 

Therefore, no matter how perfect the knowledge used in 

modelling the initial three stages, we would still not obtain a 

strong correlation with ease of interpretation.  

Linguistic modelling has been slow to take into account 

the embodied approach. Since differences in ease of 

interpretation are most likely to be manifested at the stage 

when modality-specific information is invoked, any model 

which claims to accurately reflect such differences must be 

viewed sceptically. Current knowledge bases simply do not 

contain the kind of information which would allow these 

kinds of cognitive processes to be accounted for. The result 

is that much of the information that is brought to bear in 

interpreting a combination cannot easily be modelled 

computationally without resorting to a task-specific hand-

tailored knowledge base. While heuristics such as 

paraphrase frequencies can be used to implicitly detect noun 

properties, this approach will inevitably fall short because it 

fails to appreciate the underlying cause: words evoke 

detailed mental representations. 

Conclusion 

We have provided a computational model which performs 

reasonably accurately in ascribing combinations to a limited 

taxonomy of relations. However, the performance of the 

model does not correspond with human performance. One 

of its most significant limitations is that it is based solely on 

word-level statistics and hence does not take into account 

modality-specific conceptual knowledge. In addition, 

ICON’s performance highlights that rigid adherence to a 

limited relation taxonomy is unrealistic and unsatisfactory. 

Although this can simplify the modelling process, people do 

not select from among a limited set of relations, nor do they 

explicitly represent such relations. The extensive variety of 

rich interpretations that can be produced for a combination 

emphasises the fact that the processes involved in language 

interpretation are often not amenable to such 

simplifications. In conclusion, our research on conceptual 

combination has highlighted the fact that language cannot 

be divorced from the embodied cognitive processes which 

inspire it. Accordingly, the challenge for future research in 

this area is to investigate exactly how conceptual knowledge 

is represented. Only then will an accurate model of 

conceptual combination be possible. 
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