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1. Introduction

According to Koch (2004), the ultimate goals in studying consciousness
are first, to understand the neural mechanisms that underlie personal
experiences, and, second, to develop techniques for quantifying this
process objectively in humans and animals. In recent years there have been
numerous attempts to address consciousness following the “formalise and
quantify” approach advocated by Koch (e.g. Baars, 2007; Dennett, 1991,
Hameroff, 1998). Progress is promised by new techniques in neuroscience
which allow precise neural correlates of cognition to be isolated (Aru,
Bachmann, Singer & Melloni, 2012; Koubeissi et al., 2014). And yet, no
matter how closely neural activity is scrutinized, science seems to get no
closer to unravelling the mystery of how such activity is transformed into
first person experiences. Strawson (2011), for example, describes Dennett’s
attempts to objectify the subjective element of consciousness as “the
craziest claim that has ever been made in the history of human thought”.

Some philosophers, sensing the depth of the problem, have suggested that
the explanatory gap between subjective consciousness and the objective
world is insurmountable (e.g. Chalmers, 1996; McGinn, 1991), which
leaves little to say that could be informative. However, this resignation
towards naturalistic dualism is not one we support. In this article we make
the link with algorithmic information theory (AIT), a field of mathematics
which focuses specifically on the limits of representation. We argue
that discoveries in AIT can provide a structure which allows a deeper
perspective on the problem of consciousness.

2. Algorithmic Information Theory

In 1936 Church and Turing, building on Godel’s work, clarified the concept
of universal computation. In brief, the idea is that recursive symbol
manipulation is so powerful that any effective method can be expressed in
terms of an algorithm specified for a single universal machine: instructions
and data can be stored in the same format, thus enabling the concept of
a stored-program computer. This idea also implies that it is possible for
humans to appreciate, indeed precisely define, the existence of problems



Understanding Consciousness as Data Compression 65

whose solutions cannot be reached by any effective method.

In practice, because these results concern Platonic ideals (i.e. involving
infinite computational resources of space and time), we do not witness
direct implications of uncomputability in everyday life. However, a field
called algorithmic information theory (AIT), pioneered by Solomonoff,
Kolmogorov and Chaitin in the 1960s, focuses on the interaction between
the finite world of objective description and Church and Turing’s idea
of uncomputable problems. According to Chaitin, AIT is “the result of
putting Shannon’s information theory and Turing’s computability theory
into a cocktail shaker and shaking vigorously” (Calude, 2013). Whereas
information theory can be regarded as a theory of communication,
AIT might be regarded as a theory of ‘representability’, addressing the
relationship between information and computation that underpins systems
of representation.

A remarkable result in AIT is the identification of a universal lower semi-
computable semi-measure. A semi-measure is a function that provides a
distribution for the set of all strings, such that the sum comes to less than 1.
A semi-computable function is one that can only be computed from a single
direction by successive increasing approximations (see Li & Vitanyi, 2013).
For example, as we continue to compute the output, our upper bound gets
lower and lower, bringing us closer and closer to the right answer. And yet,
we can never complete the computation: even if we have not managed to
bring the upper bound down any further for a very long time, we can never
rule out the possibility that further computation will cause it to drop again.
Thus, a function which is only semi-computable reflects a process that is
inexhaustibly difficult: we continue to get closer and closer without ever
getting there for sure.

The existence of a universal lower semi-computable semi-measure entails
that there is a function for assigning probabilities to strings that is universal,
insofar as it predicts just as well as any other such semi-measure, up to a
multiplicative constant. In other words, there exists an ultimate notion of
‘difficulty’, one that dominates all other possible definitions.

As it happens, there are multiple different ways in which this same
mathematical object arises, suggesting that “the captured notion has
an inherent relevance that transcends the realm of pure mathematical
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abstraction” (Li & Vitanyi, 2013). Perhaps the most intuitive of these is the
idea of data compression. When we reduce the size of a file by pulling out
patterns, the file gets smaller and smaller. However, we can never terminate
the process and say “this is as small as it gets”, because we can never
successfully run all of the programs that might pull out another pattern.
Some of the programs we’re checking will be ones that never halt, but
we have no way of separating them from the set of programs which will
successfully halt after a very long time. Data compression is as difficult
a process as we can define. At the limit it is uncomputable, and the closer
we get to that limit, the more difficult it becomes to identify any further
redundancy (Chaitin, 2006).

2.1 Applications of data compression

Due to its universality, data compression lends itself to a range of
theoretical applications, such as providing the grounding for the idealized
theory of inductive inference developed by Solomonoff in the 1960s (see
Li & Vitanyi, 2013; Rathmanner & Hutter, 2011). The fundamental premise
of this theory concerns the connection between likelihood and parsimony
(Chater & Vitanyi, 2003). Solomonoff (1964) assigns universal a priori
probabilities to hypotheses based on the length of their shortest descriptions,
and then updates these weights following Bayes’ theorem to make optimal
predictions. This idea can be interpreted as a formalisation of Occam’s
razor, the idea that, all being equal, simple theories should be preferred
because they are more likely (Chater & Brown, 2008). Kirchherr, Li and
Vitanyi (1997) argue that it successfully ties up “a couple of millennia of
philosophy”.

According to Rathmanner and Hutter (2011), “Solomonoff created a
completely general theory of inductive inference. Subsequent developments
have shown that his system solves many of the philosophical and statistical
problems that plague other approaches to induction. In the same/similar
sense as classical logic solves the problem of how to reason deductively,
Solomonoff solved the problem of how to reason inductively.”

While Solomonoff induction serves as the gold standard to aim for, its
semi-computability means that it can only be approximated in practice (see
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Hutter, 2007). Minimum description length (MDL) modelling (Rissanen,
1978) provides a more practical means of reaching an inference, restricting
the set of allowed codes, and identifying the best hypothesis as the one
that provides the greatest compression of the data. Vitanyi and Li (2000)
show that, in general, “data compression is almost always the best strategy,
both in model selection and prediction...the better a theory compresses
the data concerning some phenomenon under investigation, the better we
have learned, generalized, and the better the theory predicts unknown
data”. All successful predictive systems, including plants and animals,
are approximations of an ideal data compressor. As an expression of the
ultimately difficult process, data compression allows us to formalise the
foundations of prediction, explanation, communication, and language
itself. And thus, we argue, it must be able to tell us something about
consciousness.

2.2 Data Compression as understanding

At first blush the concept ‘data compression’ seems esoteric, a niche idea
related to information storage in computer science. However, we can
see that the concept runs much deeper. Data compression occurs when
information is bound together through the identification of shared patterns.
For example the sequence 4, 6, 8, 12, 14, 18, 20, 24... can be simplified as
the description “odd prime numbers +1”. The latter representation is shorter,
hence we can say that it has been ‘compressed’. Following Occam’s razor,
the elegance and concision of this representation suggests that it is the true
underlying pattern which governs the sequence. Someone who manages to
identify this pattern might claim to have ‘understood’ the sequence, because,
with high probability, they can predict the numbers that follow.

Data compression is not just something that happens when files are
reduced in size on a computer. Because of its connection to induction
and prediction, compression can be viewed as providing reliable proof
of understanding. According to Chaitin (2006), “A useful theory is a
compression of the data; compression is comprehension”. The higher the
level of compression that is achieved, the better a system’s predictions will
be, and the greater the extent to which it can be said to ‘understand’ the
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data.

Despite the universality and utility of this mathematical concept, many
remain unaware of it. According to Rathmanner and Hutter (2011):
“Although it achieves excellent theoretical results and is based on solid
philosophical foundations, the requisite technical knowledge necessary for
understanding this framework has caused it to remain largely unknown and
unappreciated in the wider scientific community...”

In the following sections we explore the idea that it may prove fruitful to
regard consciousness in terms of a system’s capacity to compress data (i.e.
to comprehend; to predict; to do what is ultimately difficult). We begin by
looking at the question of intelligence, before turning to the combination
problem and, finally, the hard problem of subjective experience.

3. Intelligence as compression

Intuitively, there appears to be a relationship between intelligence and
consciousness. Animals that pass the mirror self-recognition test, such as
elephants, chimps, bonobos, orang-utans, dolphins and killer whales, are
among those we consider the most intelligent. Quantifying intelligence
might thus be viewed as the first hurdle that any account of consciousness
should clear. As we will see, this is something that data compression
achieves very convincingly.

Based on the principle of data compression, an enhanced version of the
Turing test for machine intelligence (Turing, 1950) has been established
for which the challenge is to compress, to the greatest extent possible, 100
megabytes of textual information drawn from Wikipedia (see Hutter prize;
Legg & Hutter, 2007). Hutter (2009) clarifies: “This compression contest
is motivated by the fact that being able to compress well is closely related
to acting intelligently, thus reducing the slippery concept of intelligence to
hard file size numbers. In order to compress data, one has to find regularities
in them, which is intrinsically difficult. So compressors beating the current
“dumb” compressors need to be smart(er).”

Hutter (2009) also explains why data compression should be regarded
as a universal measure of intelligence: “Intelligence has many faces, like
creativity, solving problems, pattern recognition, classification, learning,
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induction, deduction, building analogies, optimization, surviving in an
environment, language processing, knowledge, and many more. A formal
definition incorporating all or at least most aspect of intelligence is difficult
but not impossible. Informally, intelligence is an agent’s ability to achieve
goals in a wide range of environments...One can prove that the better you
can compress, the better you can predict; and being able to predict [the
environment| well is key for being able to act well.”

A potential flaw of the Turing test is that a program might pass the
test simply by exploiting weaknesses in human psychology. If a given
system passes the test, we cannot be sure if it was because of the quality
of the responses or the gullibility of the judge (French, 2012). Hutter’s
compression test, by contrast, is more reliable because, at the limit, data
compression is uncomputable, and the closer you get, the harder it becomes.

A 100MB Wikipedia file will contain many complex patterns that
represent a broad spectrum of human thinking. Seeking to compress
Wikipedia is equivalent to designing an algorithm that can write new
Wikipedia pages, ones which fit seamlessly with the rest of encyclopaedia
(see Li & Vitanyi, 2013). These arguments reinforce the suitability of the
Hutter prize as a reliable measure for quantifying intelligence, and its
putative status as an Al-complete challenge.

3.1 Arguments that data compression is not intelligent

There are several intuitive criticisms that spring to mind regarding the
compression-based approach to modelling human cognition. One is that
the human brain does not compress information in the same manner that
a computer program archives data. For example, people are forgetful, they
‘chunk’ information together and only remember those details perceived
as important. Unlike off-the-shelf compressors, humans do very poorly at
reproducing text verbatim, yet are much better at recalling general ideas,
which can be conveyed in different words (e.g. Schacter, Guerin & Jacques,
2011). In other words, an important aspect of human intelligence is knowing
what to forget and when to forget it.

As it turns out, such arguments are not relevant. A file that is compressed
in a lossy fashion can be viewed as a string that has been separated into
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two components, noise and signal, or alternatively, data and program. The
process of separating these two, and identifying what information can be
safely forgotten, requires lossless data compression. As stated by Hutter
(2009): *“ lossless compression is still the right way to go ...noise does not
at all harm the strong relation between compression and understanding /
intelligence / predictability”.

Another common objection to the compression-based approach is that
“while humans are better than computers at speech recognition, language
translation, reading, answering questions, etc., humans cannot compress
text efficiently” (Mahoney, 2009). Granted, machines appear better suited to
pulling patterns out of data than humans. Off-the-shelf compressors, such
as Lempel-Ziv, can quickly take gigabytes of data and compress them down
to a fraction of their original size. However, in this case computers are using
weak modelling and very fast deterministic computation (i.e. brute force) to
pull ahead of humans.

Machines are faster, they are cheaper, more reliable, more durable, they
can hold greater memory. These attributes give them a short-term edge.
However, in the longer run, humans have the ability to discover alternative
mechanisms for performing the same task even more quickly. Any machine
that implements a hard-coded data compression program, no matter how
fast, is going to eventually be defeated by humans, since the latter can
always innovate a superior compression algorithm.

Ultimately, compressing text is not just about brute force speed.
Computer programs struggle to identify the underlying meaning of the
text and hence require longer descriptions to encode it, while people are
very good at identifying patterns that link words and sentences together.
As a result, humans can do better than machines at the Hutter compression
test. Shannon’s (1951) estimate for the entropy of English suggests that
the 100MB of data used for the Hutter Prize could be compressed down to
12 MB by a human, if they spent enough time at the task. In contrast, the
highest level of compression that has been achieved to date by any program,
with a €50,000 prize on offer from Hutter, is 15.9 MB (Hutter, 2009).
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3.2 Compression and cognition: empirical evidence

In order to thrive in an uncertain environment, organisms must be able to
anticipate future events. AIT tells us that the more efficiently an organism
can compress its experiences, the more accurate its predictions will be
(Vitanyi & Li, 2000). As a result, organisms have evolved brains which are
prodigious compressors of information: compressing sensory information
provides them with an understanding of their environment, allowing them
to optimize their decision making.

Research in the area of artificial intelligence and cognitive science is
increasingly identifying data compression as a key organisational principle.
Schmidhuber (1992) pioneered the idea of using predictive coding to
allow recurrent neural networks to compress observation streams, an
early precursor of what has since evolved into the idea of very deep
learning machines (see Schmidhuber, 2013). Wolff (1993) identified a link
between cognition and AIT, pointing out that the storage and processing
of information in computers and brains, from the recognition of objects
to the use of natural language, can be understood in terms of information
compression.

Chater and Vitanyi (2003) have argued that data compression should be
considered as a unifying principle in cognitive science. They suggest that
much of perception, learning and high-level cognition involves finding
‘sensible’ patterns in data. It is the simplicity, or parsimony, of these patterns
which supports their predictive power.

Schmidhuber (2006, 2009) proposes data compression as the simple
principle which explains essential aspects of subjective beauty, novelty,
surprise, interestingness, attention, curiosity, creativity, art, science, music
and jokes. He argues that data becomes temporarily interesting once an
observer learns to predict (i.e. compress) it in a better way, making it
subjectively simpler and more ‘beautiful’. From this perspective, curiosity
can be viewed as the desire to create and discover patterns that allow for
compression progress, with the level of interestingness being related to
the effort required. According to Schmidhuber, this drive for compression
motivates exploring infants, mathematicians, composers, artists, dancers
and comedians, as well as artificial systems.
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In a similar vein, both Maguire et al.’s (2013) theory of subjective
information and Dessalles’ (2011) simplicity theory view data compression
as a key explanative construct in the phenomenon of surprise. When people
experience a stimulus which is expected to be random, yet turns out to be
compressible, a surprise response is triggered by the brain. Unanticipated
compressibility suggests the existence of a previously undetected pattern,
resulting in an urgent representational updating process. Maguire et al. (2013)
suggest that people often rely on compressibility rather than probability to
judge likelihood and make decisions in real world situations.

Adopting the perspective of the mind as a compressor, Gauvrit, Zenil
and Tegnér (2015) connect AIT to experimental observations in the areas
of working memory, probabilistic reasoning and linguistic structures. They
argue that the concepts of data compression and algorithmic complexity
provide an important normative tool which can shed light on a broad range
of cognitive processes, from language use to the interpretation of EEG and
fMRI data. Zenil, Marshall and Tegnér (2015) also show that algorithmic
complexity can be used to validate results from the behavioural analysis of
animals, including foraging communication by ants, flight patterns of fruit
flies, and tactical deception and competition strategies in rodents.

Casali et al. (2013) suggest that a signature of conscious processing lies
in the complexity of brain activity patterns distributed among interacting
cortical areas. They perturbed the cortex of various subjects with
transcranial magnetic stimulation to engage distributed interactions in the
brain, and then compressed the spatiotemporal patterns of the electrocortical
responses using Lempel-Ziv to quantify their algorithmic complexity.
The compression measure was found to reliably discriminate levels of
consciousness during wakefulness, sleep, anaesthesia and minimally
conscious states.

In sum, there is growing empirical evidence that intelligent behaviour and
cognition can be modelled in terms of data compression carried out by the
brain. But what of first-person experiential consciousness? In the following
section we propose that, like intelligence, unitary behaviour can be viewed
in terms of data compression. Specifically, we propose that a system’s
behaviour is interpreted as unified when it performs sophisticated data
compression that is difficult to reverse.
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4. The Combination Problem as Compression

Subjective experience seems to carry the qualitative characteristic of being
unified and singular, a property which is at odds with the reducibility of the
physical world. How can the brain, whose processing is clearly distributed,
give rise to a consistently integrated perspective? As articulated by James
(1890): “Take a sentence of a dozen words, and take twelve men and tell
to each one word. Then stand the men in a row or jam them in a bunch,
and let each think of his word as intently as he will; nowhere will there be
a consciousness of the whole sentence.” We propose that combination is
manifested, not by any local physical convergence or supernatural process,
but through the process of data compression.

Research in neuroscience has shown that information in the brain is
encoded in a highly compressed state (Rolls & Treves, 2011). When the
brain compresses information in this way, it is binding data together through
the identification of shared patterns that were originally dispersed in space
and time. The process of grouping and encoding these patterns yields
computational results which reflect a ‘coming together’ of information. We
will now explore the idea that the interpretation of a system as being unified
is a characterisation of its processing as being computationally difficult to
reverse and disintegrate.

4.1 United through cooperation

The reproductive success of an organism is dependent on cooperation
between all of its constituent components, leading to a form of compression
which unites data distributed across space and time. For instance, it does
not make sense for an organism’s legs to maintain independent agendas.
Because the interests of both legs are intimately bound, it is more productive
for them to cooperate with each other in achieving a single set of objectives
(e.g. walking). Accordingly, the brain sources sensory information from
all over the body and unites it through compression, thereby optimising
predictive accuracy for the organism as a whole. Tactile information from
every limb is compressed alongside visual information from the eyes and
aural information from the ears, giving rise to a form of understanding that
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is centralised and representative of the organism’s experiences as a singular
unit. The resulting decisions of the organism also appear centralised: to the
external observer it seems as if the organism’s body is being ‘controlled’ by
a single entity.

The success of an organism also depends on cooperation through time.
Accordingly, the response it exhibits to a sensory stimulus depends not just
on its immediate processing, but also on its memories. Patterns in a current
stimulus are matched against patterns distilled from historical stimuli,
leading to a form of understanding that combines not only distributed
sensory organs but also an organism’s past and present states (see Maguire
& Maguire, 2010).

If the behaviour of a system is too complex to be broken down, then
the only way to predict its actions is to treat it as a unified system. Thus,
when data compression is sufficiently sophisticated so as to be irreversible
in practice, it forces external observers to adopt the intentional stance
(see Dennett, 1991), and treat the system as if it was enjoying unitary
experiences (see Bringsjord & Zenzen, 1997).

The adoption of the intentional stance clearly does not apply to off-the-
shelf compressors. These compression schemes, such as Lempel-Ziv, are
trivially reversible. Similarly, a robot that optimizes its behaviour using a
unsophisticated compression algorithm can have its various information
sources ‘unbound’ and analysed separately. The most accurate predictions
of a robot’s behaviour are achieved when it is viewed as a mechanical
automaton without any singular perspective. Thus, we do not regard robots
as conscious.

Leibniz expressed a similar sentiment back in 1686, with his famous
image of the mill: Consciousness, he said, ”cannot be explained on
mechanical principles, that is, by shapes and movements. Imagine that there
is a machine whose structure makes it think, sense and have perception.
Then we can conceive it enlarged, so that we can go inside it, as into a
mill. Suppose that we do: then if we inspect the interior we shall find there
nothing but parts which push one another, and never anything which could
explain a conscious experience” (Strawson, 2011).

Leibniz’s thought experiment centres around disintegration: the idea of
reducing a supposedly conscious system into separate components, and then
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inspecting those components individually. In contrast, our proposal is that
conscious systems are precisely those whose sophisticated data compression
precludes such a deconstruction, preventing us from seeing them in terms
of separate machine-like components.

According to our perspective, the dividing line between conscious and
automatic behaviour is one of complexity. The binding of information
is not something that takes place in any absolute sense, it is instead
interpreted as having taken place relative to the difficulty of predicting a
system’s behaviour. In the case of humans, and other intelligent creatures,
the sophistication of the data compression carried out is too complex to
reverse in practice, hence we are forced to adopt the intentional stance. We
regard a system as conscious only when it becomes too complex, and thus
unprofitable, to regard it as an automaton.

4.2 Integrated information theory

The above account of binding through data compression bears close
resemblance to Tononi’s integrated information theory, which also construes
consciousness in terms of sophisticated information processing (Tononi,
Sporns & Edelman, 1994; Tononi, Edelman & Sporns, 1998; Tononi, 2004,
2008, 2012, 2015). Tononi proposes that consciousness can be quantified in
terms of the complexity of a system’s organisational structure, specifically
its capacity to ‘integrate’ information.

According to Tononi (2008), what we mean when we say that the human
brain produces consciousness is that it integrates information deeply,
thus producing behaviour that is hard to reduce back into its original
informational constituents. Tononi (2008) explains the foundations of his
theory through two thought experiments, which we adapt below. The first
thought experiment establishes the requirement for a conscious observation
to generate information. The second establishes the requirement for a
conscious observation to be incorporated with previous memories, hence
generating integrated information.
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4.2.1 Requirement 1: Generating information

Imagine that a factory producing scented candles invests in an artificial
smell detector. The electronic nose is used for sampling the aroma of the
candles passing on the conveyor belt below and directing them to the
appropriate boxes. Let’s suppose that the factory is currently producing two
flavours of scented candle: lemon and lavender. In this case the detector
only needs to distinguish between two possible smells.

A batch of lemon scented candles is passed underneath and the sensor
flashes /emon. Can we say that the detector has actually experienced the
smell of lemon? Clearly it has managed to distinguish lemon from lavender,
but this does not guarantee that it has experienced the full aroma that
humans appreciate. For example, it may be the case that the electronic nose
is latching onto a single molecule that separates the two scents, ignoring all
other aspects. The distinction between lemon and lavender is a binary one,
and can thus be encoded by a single bit. In contrast, humans can distinguish
more than 10,000 different smells detected by specialized olfactory receptor
neurons lining the nose. When humans identify a smell as /emon, they are
generating a response which distinguishes between 10,000 possible states,
yielding log, 10, 000 = 13.3 bits of information.

Tononi’s (2008) first thought experiment highlights the idea that the
quality of an experience must be expressed relative to a range of alternative
possibilities. For instance, if the whole world was coloured the same shade
of red, the act of labelling an object as ‘red’ would be uninformative.
Descriptions of experiences must be situated within a context where they
discriminate among many alternatives (i.e. they must generate information).

4.2.2 Requirement 2: Generating integrated information

Tononi’s (2008) second thought experiment establishes that information
alone is not sufficient for conscious experience. Information must also be
integrated.

Imagine that the scented candle factory enhances the electronic nose so
that now it can distinguish between 1 million different smells, beyond even
human ability. Can we now say that the detector is truly smelling lemon
when it outputs lemon, given that it is producing more information than
a human? What is the difference between the detector’s experience and
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human experience?

Like the human nose, the electronic nose uses specialized olfactory
receptors to diagnose the signature of the scent, and then looks up this
signature in a database to identify the appropriate response. However, each
smell is responded to in isolation of every other. The exact same response to
a lemon scent would occur even if the representations of the other 999,999
smells were deleted from the database. The factory might as well have
purchased a million independent smell detectors and placed them together
in the same room, with each unit independently recording and responding
to the candles on the conveyor belt. An unintegrated set of responses does
not yield a subjective experience. To bind the repertoire, the system must
generate integrated information. Somehow, the response to the smell of
lemon must be encoded in terms of its relationship with all other possible
experiences.

4.3 Consciousness as integrated information

Inside the human nose there are different receptors which are specialized to
respond to particular smells. This process of detection is not itself integrated.
For example, with selective damage to certain olfactory receptors, a person
could conceivably lose their ability to smell lemon while retaining their
ability to smell lavender. It is only when a smell signal affects cognition that
it becomes integrated.

According to Tononi’s (2008) theory, when we perceive lemon the effect
that it has on our brain is integrated across many aspects of our memory,
in a way that external observers find hard to disentangle. Let’s consider, for
example, a subject who has just experienced the smell of lemon. According
to the integrated information theory, the changes caused by her olfactory
experience are not localized to any one part of her brain, but are instead
widely dispersed and inextricably intertwined with all the rest of her
memories, making them extremely difficult to reverse. As a result, it would
prove very difficult to operate on this subject’s brain and eliminate her
recent memory without affecting anything else.

In contrast, deleting the same experience from the memory of an
artificial smell detector would be easy. Somewhere inside the system is
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a database with discrete variables used to maintain the detection history.
These variables can simply be edited to erase a particular memory. The
information generated by the electronic nose is not integrated. It does not
influence the subsequent information that is generated. It lies isolated,
detached and dormant.

4.4 Quantifying integration using edit difficulty

Like our theory of binding through data compression, Tononi’s (2008)
integrated information theory implies that people attribute consciousness
to systems whose processing is complex and hard to reverse. Schmidhuber
(2014) is critical of the theory’s lack of parsimonious elegance. He suggests
that a simpler and more general view would be to express consciousness
as a feature that emerges naturally from data compression during problem
solving. However, Maguire et al. (2014) show that, for information
lossless processes, Tononi’s quantification of integration is equivalent to
data compression. Both of these theories are, in essence, saying the same
thing. They view consciousness, not as an objective phenomenon which
can be analysed independently of the world, but as a quantification of the
sophistication of an information processor relative to its environment.

Building on the convergence between integration and data compression,
we propose the formal notion of ‘edit difficulty’ to quantify consciousness.
Edit difficulty expresses how deeply a given stimulus has been integrated
within a set of memories through data compression. For example, it
expresses the difficulty a neurosurgeon would face in seeking to edit a
given memory within someone’s brain. The more compressed the memory,
the more sophisticated the predictions it supports, and the more difficult it is
to edit.

Consider, for example, the case of an uncompressed data file featuring
complex patterns, such as the 100MB Wikipedia file used in the Hutter
test. In its original state, every bit has independent significance: if we
destroy 10% of the data, we lose at most 10% of the Wikipedia file. In
contrast, when the same file is compressed to the limit, each bit in the final
representation is fully dependent on every other bit for its significance.
Wiping out the first bit would corrupt everything, leaving only a 50%
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chance of getting all the bits right and a 50% chance of getting them all
wrong: there would be no way of guessing whether the first bit was a 1 or
a 0, because both guesses would make just as much sense. In this instance,
the significance of the first bit has been totally integrated with all of the
other bits through the process of data compression; there is no remaining
redundancy.

Imagine now seeking to edit the first word in a Wikipedia page that has
been compressed like this. Where is this word encoded in the compressed
file? There is no easily delineated set of bits which corresponds to the first
word and nothing else. Instead, the whole set of data has been integrated,
with every bit from the original file depending on all the others. To discern
the impact that the first word has had on the compressed encoding, the
compression scheme would have to be completely reversed. There are no
shortcuts. Hence, we can see that the more that data is compressed, the
more difficult it becomes to edit.

To formalise this idea we consider a stimulus, first in its raw unintegrated
state, and second, encoded in its integrated state. The level of integration is
equivalent to the difficulty of identifying the raw information and editing it
within its integrated state.

In the following definition z and f{(z) are the raw stimulus and the
encoded stimulus respectively. We consider the difficulty of editing z
into z’, for example, editing the smell of lemon to turn it into the smell of
lavender. If this operation is performed on a raw, unintegrated dataset, then
the task is straight-forward: the bits that differ are simply altered. Consider,
however, the challenge for the neurosurgeon operating on a subject’s brain.
If the stimulus has not been widely integrated, then the neurosurgeon can
concentrate on a single localised area of the brain. The encoding will be
overt, reflecting the original unintegrated format in which the information
was originally transmitted. However, if the stimulus has been successfully
integrated then its encoding will be widely distributed, with effects on all
kinds of other memories, making it effectively impossible to isolate and
edit. The edit difficulty is so great that the subject’s current brain state is
largely useless for identifying a target edited brain state.

We quantify the integration of an encoding process operating on a
stimulus as the minimum informational distance between the current state
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and any possible edited state. If every edited state is completely unrelated to
the current one, then the integration is 1; if there exists an edited state which
is only trivially removed from the current one, the integration is 0.

Formally, the edit difficulty of f for stimulus z is a number between 0 and
1 that measures the level of integration of f{(z). It is measured by looking
at all strings z” similar to z, and finding the one that minimizes the ratio of
length of the shortest description of f{z) given f{(z") to the length of shortest
description of f{z). The smallest ratio obtained is the edit difficulty. Since
the numerator is always positive and less or equal to the denominator, the
edit difficulty is between 0 and 1.

In the following definition, C(x) is the length of the shortest program x*
such that a universal Turing machine U on input x* outputs x. Thus, C(x) is
the amount of algorithmic information contained in x. For two strings x, y
the conditional Kolmogorov complexity C(x | y) of x given y is the size of
the shortest program p such that U on input p, and provided y as an extra
input, outputs x.

Let f: {0,1}* — {0,1}* be a 1-1 function. The edit difficulty of f for
stimulus z is the smallest number of bits needed to produce f{z) given the
description of f{z"), where z’ is a stimulus similar to z, which has been
edited in some way. The value is normalised by dividing it by the length of
the shortest description of f{z), i.e.

ed (z) :min{c(fcg(zj)[(j)gzl)):z #z,C(z|z")<log|z|}

4.5 On the computability of integration

The above formalisation of edit difficulty captures the essence of Tononi’s
integrated information theory in an intuitive and parsimonious manner.
Tononi (2008) views information as integrated when “it is not decomposable
into a collection of causally independent parts”, which is exactly what edit
difficulty measures. Furthermore, when edit difficulty is high, the whole
necessarily contains more information than any of its minimal parts, since
none of those parts considered in isolation is sufficient for editing any
memories. This matches Tononi’s (2008) idea that integrated information is
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“the amount of information generated by a complex of elements, above and
beyond the information generated by its parts”.

What kind of systems can integrate information in this way? We now
prove an interesting result, namely that there is no computable function
that can integrate information to even the slightest degree: the process of
irreversible information binding is not one that can be objectively described.

In the following proof a function is said to be integrating so long as its
edit difficulty is bounded away from zero for all its inputs.

Definition 1 4 /-1 function f is integrating if there exists € > 0 such that
Sfor all inputs z, ed(z) > €.

The following result shows that no integrating function can be computed.
In fact, even partial computable functions (that may not halt on all inputs)
fail to compute an integrating function.

Theorem 1 Let f be an integrating function and let ¢ be a partial
computable function with infinite domain. Then ¢ fails to compute f on its
domain, i.e. there exists a string x such that o(x) halts but p(x) # f(x).

Proof. By contradiction, let f, ¢ be as above and suppose ¢ computes
f on its domain. Let € > 0 be such that the edit difficulty of f exceeds
€ on every input. Since ¢ is partial computable, its domain dom(p) is a
computably enumerable set. Without loss of generality we can assume we
have a computable enumeration of it, where exactly one string enters the
enumeration at each stage s. Consider the following partial computable
function w(x) which searches for the (unique if it exists) # and minimal s
such that ¢(u) halts after s steps of computation and ¢(u) = x. If u is found,
get v, that is, the string enumerated in dom(gp) at stage s (if v = u get the
next string in the enumeration), and output ¢(v). This ends the description
of y.

If x is in the range of ¢, i.e. x = p(u) = f(u) for some unique u, then w(x)
halts and outputs ¢(v) = f(v) for some v, and we have C(f(v) | f(v)) < a,
where a is a constant independent of u, v.

Similarly, using a simpler version of y one can show that C(v | u) < a.
Thus
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ed (< CUMII@)  a
PUTC(fv) T C(f)

because C(v | u) < a <log |v| if x is chosen such that the corresponding f{(v)
is large enough, and thus a/C(f(v)) < € which contradicts the assumption
that the edit difficulty of f exceeds €.

This result establishes that efforts to formalise and quantify the process
of integration are misguided. As soon as we understand the mechanisms
by which information is combined together, we gain the ability to reverse
that process, thus breaking the spell of integration. Returning to Leibniz’s
example, as soon as we can explain a process in terms of a mechanical
model, we can enter it as into a mill, and see that there is nothing integrated
about it. The systems that can integrate information are strictly those whose
nature precludes us from identifying any formal model.

Given our definition of integration, we are left with two options. We must
abandon either 1) the idea that people enjoy integrated consciousness, or 2)
that our language is strong enough to express consciousness objectively.

4.6 Evidence from neuroscience

Recent results in neuroscience seem to suggest that memories are indeed
open to editing. For example, Ramirez et al. (2013) successfully created a
false memory by optogenetically manipulating memory engram-bearing
cells in the hippocampus, leading mice to show increased freezing in a
context where a foot shock was never delivered. This result suggests that it
is possible to generate an internally represented and behaviourally expressed
fear memory via artificial means. On the other hand, Graff et al. (2014)
showed the reverse, that it is possible to attenuate remote memories of fear
in mice by using a HDAC2-targeting inhibitor during the reconsolidation
process that is initiated upon memory recall.

The key question when it comes to integrated information is the
specificity with which human memories could potentially be edited. For
example, it is always possible to ‘edit’ someone’s knowledge by hitting
them over the head with a hammer. What is not clear is whether one
specific memory can be successfully disentangled or separated from all
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other memories and edited in isolation. Can you be made to believe that
your toothbrush is green instead of blue, without affecting anything else
you know?

If it turns out that people’s memories can be torn apart and manipulated
at will to any level of specificity, then the human mind would really be no
different to an artificial smell detector. In such a case, not only would the
motivation for adopting the intentional stance be vitiated, it would also
imply that we could no longer trust the reliability of our own memories,
thus eliminating any possible grounding for objectivity.

4.7 Scramble-in, scramble-out

Our tentative suggestion that the brain carries out irreversible data
compression raises some intriguing questions regarding how and where this
feat might be achieved. Somewhere, brain processes must feature intractable
complexity, which has the effect of binding information together.

When stimuli are picked up by the brain they enter at disintegrated
locations. For example, visual stimuli enter through the optic nerve and are
processed initially by the primary visual cortex. When a visual stimulus is
encoded in the occipital lobe it clearly has not yet been integrated with the
rest of cognition. Stanley, Li and Dan (1999), for instance, analysed an array
of electrodes embedded in the thalamus lateral geniculate nucleus area of
a cat and were able to decode the signals to generate watchable movies of
what the cat was observing.

Similarly, the initiation of action must be localised in particular areas of
the motor cortex which control the relevant muscles. Because this readiness
potential must detach from the rest of cognition, it is no longer integrated.
For example, following up on Libet’s original experiments, Soon et al. (2008)
demonstrated that, by monitoring activity in the frontopolar prefrontal
cortex, they could predict a participant’s decision to move their right or left
hand several seconds before the participant became aware of it.

However, assuming people’s behaviour is irreversibly integrated, then
somewhere between the stimulus entering the brain and a decision to act
leaving the brain, there must be a point where the information cannot
be fully disentangled from the rest of cognition. At some point between
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perception and action, the contents of cognition are effectively entangled
into a unified, complex whole and cannot be separated, thereby forcing the
adoption of the intentional stance. We label this idea ‘scramble-in, scramble-
out’ to reflect the irreversible integration and disintegration that must occur.

The aspects of cognition that have been clarified by neuroscience so far
tend to involve processing before scramble-in or after scramble-out. For
example, it is well established that the occipital lobe is involved in visual
processing or that the prefrontal cortex encodes future actions before
they are performed. These components are modular in that they have
specialized, encapsulated, evolutionarily developed functions. However,
somewhere between input and output there must also be a binding process
of integration that no modelling can disentangle.

Fodor (2001) summarizes as follows: “Local mental processes appear to
accommodate pretty well to Turing’s theory that thinking is computation;
they appear to be largely modular...By contrast, what we’ve found out about
global cognition is mainly that it is different from the local kind...we deeply
do not understand it”.

5. Subjective Experience as Compression

In summary, we have proposed that the behaviour of a system appears
unitary when the data compression it carries out is so sophisticated that
it forces the external observer to adopt the intentional stance. And yet
this theory does not seem to offer a complete account of consciousness.
Consciousness is not merely something we attribute as external observers.
Intuitively, it is not simply a matter of behaviour. Instead, we feel
consciousness personally. The aspects of consciousness we have addressed
so far, namely intelligence and information binding, neglect the crucial
subjective aspect of consciousness.

It seems possible to conceive of a sophisticated artificial compressor that
compresses large amounts of current and historical data in parallel, though
without experiencing the same form of awareness that humans are familiar
with. In this section we explore the idea that the compression carried out by
the brain is likely to have an additional ingredient which sets it apart from
insentient compression systems, namely that of socially motivated self-
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modelling.
5.1 Self-compression

According to Dunbar and Shultz (2007), intelligence was selected for, not
by the need for technical competence, but by the computational demands
of living in large, complex societies. When we watch other individuals, we
realise that their behaviour reflects deep and complex patterns (a property
known in AIT as logical depth, see Bennett, 1995). Rather than simply
cataloguing and memorising every action they perform, we can instead
posit the more succinct hypothesis of a concise ‘self” which motivates these
actions (the intentional stance). By maintaining this theory of selfhood we
can compress the behaviour of others and thus make accurate predictions as
to how they will behave in different contexts.

But the behaviour of other humans also has another component, namely
that they react to you, the observer. In order to best predict and manipulate
the behaviour of others, it pays to maintain a model of one’s own self (see
Friston & Frith, 2015). Indeed, this was exactly the approach adopted by
Schmidhuber (1990) for developing a very deep learning machine. His
system consisted of two recurrent neural networks, one for modelling the
history of actions and perceptions, and the other a reinforcement learner
that used the compressed self-model to plan and maximize success, “thus
showing a rudimentary form of self-introspective behaviour” (Schmidhuber
1991; see also Schmidhuber, 2015, for a review of how mirror neurons
can be explained as by-products of history compression). According to
Halligan and Oakley (2015), people have a psychological predisposition to
anthropomorphise their own behaviour, the evolutionary advantage being
that it “enables the development of adaptive strategies such as predicting
the behaviour of others, which could be beneficial to species survival”.

Consider the following thought experiment: you are stranded on a
desert island with one other person. Is it possible to conceive of her as a
philosophical zombie without subjective experience? When you observe
her behaviour you seek to compress it, to model her and anticipate what
she will do next. You immediately appreciate that her behaviour is logically
deep: there are patterns in it, but it proves infeasible to reduce those patterns
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down to a set of independent rules. Furthermore, you realise that she is
responding to your attempts at modelling. She is observing you observing
her observing you. To be able to cope with this recursion you must maintain
a model of your own actions, compressing your own behaviour to anticipate
her responses. In effect, modelling this other is so difficult that it forces you
to become aware of yourself as an independent entity. And still you cannot
manage to disintegrate her behaviour. The optimal strategy you can adopt
is to treat her as a unified, integrated whole and yourself as well. In other
words, her behaviour exhibits a level of data compression so profound, it
forces you to adopt the intentional stance and model both you and her as
conscious entities.

We propose that this ‘understanding of the self” is a requirement for
accurately modelling and predicting the complex behaviour of others
(see Hesslow, 2002; Humphrey, 2006; Metzinger, 2004). If an individual
lived in complete isolation within a simple environment, there would be
no motivation for maintaining such a model. It is only when people are
embedded in a complex competitive social environment that the goal
of interacting with others requires them to anthropomorphise their own
actions. This recursive modelling gives rise to an understanding of selthood,
an appreciation of the first-person experiential self.

5.2 Limitations of scientific objectivity

We are still left with a difficult question: why should science struggle to
account for this subjective, personal aspect of experience? Examples of
subjective qualia include the pain of a toothache, the taste of sweetness,
or the perceived redness of an apple. Despite their personal vividness,
such experiences seem to defy objective, reducible description. How could
subjective qualia be useful for predicting the behaviour of others, when
they completely evade scientific description?

In seeking to answer such a question, we are pushing up against the limits
of our existing framework for objectivity, so the reader should be warned
that what follows is unavoidably speculative. We propose that, rather than
reflecting a mystery of consciousness, the difficulty of providing a formal
account of qualia instead reflects a limitation in the descriptive power of
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scientific language. Science is a tool, designed by people, which facilitates
communication in the absence of personal interaction. The language of
science allows scholars to engage with each other’s work, despite being
widely distributed through both space and time (hence Newton’s quip of
“standing on the shoulders of giants” - without having had to meet them all
in person).

A universal language of this type depends on abstraction away from
any idiosyncratic, personal theories, which might depend on local
understandings within a specific social community. The discipline is
interested in identifying what stands as the case for all humans, no matter
who they are, where they are, or what they have previously experienced.
Accordingly, it describes objects in terms of measurement standards which
are engineered to ensure agreement between humans. These standards are
linked to globally accessible natural phenomena which are as incompressible
(i.e. unpredictable, inexplicable, random) as possible (e.g. atomic decay).
Disagreements and misinterpretations arise when different observers
identify different patterns in the same object. The more irreducible scientific
standards are, the less scope there is for deviations in interpretation, and the
more stable a platform they provide for measurement.

The strength of the scientific standards maintained by the Bureau
International des Poids et Mesures (BIPM) is sufficient for disintegrating
many environmental phenomena. However, like their predecessors, such
the Krypton-86 metre standard, the current definitions of length of time
will eventually be replaced by superior ones, which are even less resistant
to compression (see Tal, 2011). The fact that BIPM standards can be
recognized as having been superseded implies that there must exist a more
fundamental standard, an even harder compression problem, relative to
which the limitations of current standards can be exposed.

For instance, how do we know for sure that the speed of light in a vacuum
is indeed ‘constant’? What evidence do we have for its stability? Simply
asserting the claim by fiat is of no use. Stability arises instead from the
knowledge that many people have tried to find predictable variance in the
speed of light and, so far, failed. In other words, the test that measurement
standards have passed, allowing them to be consecrated at the heart of the
objective scientific perspective, is that of resisting compression by a large
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group of well-motivated people. The scientific perspective ultimately relies
on a social standard.

We propose that compressing human behaviour is the ultimately hard
problem on which language, measurement and representation are founded.
Anticipating and manipulating the behaviour of others is the hardest
possible challenge humans face. The social prediction game provides the
most inexhaustible source of complexity, and, as such, provides the most
stable, incorruptible, immutable grounding for expressing what is and what
is not the case.

5.3 On the predictive value of qualia

According to Dennett (1991), qualia are commonly regarded as ineffable
(cannot be communicated), intrinsic (do not relate to anything) and private;
positing their existence serves no purpose. And yet, if qualia were truly
beyond representation in any language, how would we remember them? If
memories of qualia could not be recorded in some way, then experiencing
a feeling would always seem novel and arbitrary, as if it was being
experienced for the very first time. In contrast, we remember what seeing
red feels like. We know intuitively when a current subjective experience of
red matches a previous subjective experience of red.

Dennett’s view is based on the idea that science is capable of expressing
everything that can be objectively demonstrated. Yet even the BIPM does
not hold such a radical view. For example, the BIPM accepts that existing
standards will eventually be objectively superseded, even though the
manner in which this will be demonstrated is beyond the expressive power
of our current scientific framework (see Tal, 2013, 2014). In other words,
the BIPM implicitly accepts that there are objective phenomena which are
currently beyond science, and that perhaps may always remain beyond
science.

From the scientific perspective, it appears as if a philosophical zombie,
without any subjective experiences, could act exactly the same as a human
(see Chalmers, 1995). However, we suggest that qualia are not genuinely
inefficacious. Instead, their efficacy is too sophisticated to be identified by
science.
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We propose that qualia are idiosyncratic community-maintained theories
that facilitate the compression of human behaviour. Although they are
easily expressed in the local language of the social prediction game, they
cannot be expressed in the weaker global language of science. For instance,
the scientific description of red is the element of the experience that can be
communicated to all humans regardless of their personal experiences (see
Jackson, 1986). In contrast, the qualitative description of red is the element
of the experience that can only be described relative to immersion within a
particular social context.

Science can only describe the features of a stimulus that humans could,
in principle, agree on without ever meeting each other face to face. In
contrast, a tightly-knit community of humans enjoy a much more nuanced
understanding of agreement, grounded in their everyday interactions. Thus,
although science is an excellent tool for communicating over distances, it
does not necessarily represent the final word in objectivity.

The so-called explanatory gap (Levine, 1983) between scientific
description and qualia arises because science seeks to abstract away
from the local contexts which define human life, towards a more neutral
‘objective’ perspective, which, in exchange for greater limpidity, sheds its
ability to make accurate predictions about human behaviour. Anticipating
and manipulating the behaviour of others requires immersion in a
community, embodied social interactions, as well as sharing human fears
and aspirations. In short, it requires the maintenance of qualia.

Although these ideas are undeniably speculative, they do make a
prediction which is open to empirical verification. If our view is valid, and
the compression of human behaviour provides the deeper fundamental
grounding for the shallower scientific perspective, then science should not
be able match human intuition at predicting the behaviour of others.

6. Conclusion

Conscious experience does not seem anything like data compression. When
we think of data compression we think of simple programs that are used to
reduce the size of computer files. It does not seem that programs of this sort
could experience anything. Indeed, it is hard to accept that consciousness



90 Maguire, Moser, and Maguire

could be expressed in terms of information processing at all. However, this
superficial understanding of data compression is misrepresentative.

Data compression does not merely quantify processor speed or memory
capacity. Instead, it addresses something far more fundamental, namely
the ultimate limits of formal systems and objective representation. The
more powerful and deeper the language of a system, the greater the
compression that it can achieve. At the limit, compressing a piece of
data down to its shortest program coincides with defining one’s own
language. It is this ultimate and universal hardness which underlies data
compression’s suitability as a framework for expressing the hard problem
of consciousness.

Unlike other natural phenomena which can be addressed from an
‘objective’ perspective, we have proposed that consciousness is a language-
complete problem, that is, one equivalent in difficulty to formalising the
foundations of language itself. Rather than getting closer to unravelling the
mystery, we are instead led to question the structure of our representations
and the reliability of our objective knowledge. Thus, consciousness becomes
a question of information, computation and complexity, not a question of
physics and chemistry.

It may even be a mistake to regard consciousness as a problem. A
problem is a situation that can be investigated, that might feasibly yield
a solution. In contrast, we have suggested that exhaustively predicting
human behaviour is so very hard that it represents, not a question to be
resolved, but the reliable foundation of understanding relative to which all
other objective standards are calibrated. Hence, rather than untangling the
complexity of the mind, the exploration of consciousness may merely lead
to the identification of stronger standards for describing the external world.
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