
Sequential Sparse NMF

Vamsi K. Potluru∗ Sergey M. Plis Barak A. Pearlmutter

Vince D. Calhoun Thomas P. Hayes

April 1, 2011

Abstract

Nonnegative Matrix Factorization (NMF) is a stan-
dard tool for data analysis. An important variant
is the Sparse NMF problem. A natural measure of
sparsity is the L0 norm, however its optimization is
NP-hard. Here, we consider a sparsity measure lin-
ear in the ratio of the L1 and L2 norms, and propose
an efficient algorithm to handle the norm constraints
which arise when optimizing this measure. Although
algorithms for solving these are available, they are
typically inefficient. We present experimental evi-
dence that our new algorithm performs an order of
magnitude faster compared to the previous state-of-
the-art.

1 Introduction

Quite a few problems in machine learning and signal
processing can be cast as Nonnegative Matrix Fac-
torizations (NMF) which is a special case of low rank
approximations. In NMF, given a nonnegative m×n
matrix X, we want to approximate it with a product
of two nonnegative matrices W,H of sizes m× r and
r × n respectively:

X ≈WH. (1)

The nonnegative constraint on matrix H makes the
representation a convex combination of features given
by W. NMF can result in a parts-based representa-
tion and is usually different from other factorization

∗Dept. of Computer Science, UNM, New Mexico, USA.

Email: ismav@cs.unm.edu

techniques which result in more holistic representa-
tions (e.g. Principal Component Analysis (PCA) and
Vector Quantization (VQ)). Also, it can be applied to
a wide range of nonnegative data for instance image
data (Lee and Seung, 1999), biomedical data (Kim
and Park, 2007) and text-mining data (Lee and Se-
ung, 1999).

The nonnegative decomposition is in general not
unique (Donoho and Stodden, 2004) and can hamper
interpretation of the estimated factors. Also, the fac-
tors may not be parts-based if, for example, the data
resides well inside the positive orthant. To address
these issues sparseness constraints have been added
to the NMF problem. This leads to the Sparse NMF
problem (SNMF).

In section 3, we present our new algorithm to solve
the SNMF problem as posed by Hoyer (2004). Im-
plementation details are discussed in section 4. We
compare with the algorithm proposed in Hoyer (2004)
to demonstrate the effectiveness of our approach and
present the results in section 5. Many formulations
for SNMF have been proposed and we discuss them
in the related work section 6. Section 7 contains con-
clusions and future work.

2 Preliminaries

In this section, we give an introduction to the NMF
and SNMF problems. Also, we discuss some widely
used algorithms from the literature to solve them.
Note that we use subscripts to denote column in-
dices and superscripts for row indices. When applied
to matrices, we get column vectors or row vectors
respectively. Simultaneous application gives us the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297030015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

corresponding element of the matrix.

2.1 NMF

Lee and Seung (2001) described simple multiplicative
updates for W and H corresponding to Frobenius
norm of the representation error. The NMF objective
is :

min
W,H

1

2
‖X−WH‖2F

s.t.W ≥ 0,H ≥ 0 (2)

The multiplicative updates of Lee and Seung (2001)
are:

W←W ⊙ XH⊤

WHH⊤
, (3)

H← H⊙ W⊤X

W⊤WH
, (4)

where ⊙ represents element-wise Hadamard product,
and division and ≥ are also element-wise. It should
be noted that the NMF objective to be minimized is
convex in either W or H but not in both. Lee and
Seung (2001) also proved that when the algorithm
iterates using the updates (3) and (4), the objective
is monotonically non-increasing while satisfying the
nonnegative constraints automatically. In practice,
a small number is added to the denominator in the
updates to avoid division by zero.
Besides multiplicative updates, other methods

have been proposed to solve the NMF problem such
as projected gradient (Lin, 2007) and block pivot-
ing (Kim and Park, 2008).

2.2 Sparse NMF

Hoyer (2004) extended NMF to include sparsity con-
straints on one or both of the matrix factors. Sparse-
ness(sp) is defined as follows according to Hoyer:

sp(x) =

√
s− ‖x‖1/‖x‖2√

s− 1
(5)

where the vector x is of size s. The sparseness func-
tion sp is a surrogate function of the the L0 norm.

Note that L0 is not a true norm. This can be gen-
eralized to matrices of size m × n by defining it to
be sparsity of all its elements when expanded out as
a vector of size mn. The range of the function sp is
zero to one. If the sparseness function evaluates to
zero, it means that all the elements are non-zero. If it
is one, then only one element is non-zero. The Sparse
NMF problem (Hoyer, 2004) is as follows:

min
W,H

1

2
‖X−WH‖2F

s.t.W ≥ 0,H ≥ 0

sp(Wj) = α, ∀j ∈ {1, · · · , r}
sp(Hi) = β, ∀i ∈ {1, · · · , r} (6)

where we also allow for either of the sparsity con-
straints to be inactive but not both.

In addition to the new SNMF formulation, Hoyer
(2004) also gave a gradient descent algorithm called
Nonnegative Matrix Factorization with Sparseness
Constraints(NMFSC) to solve problem (6). Multi-
plicative updates were used for optimizing the uncon-
strained matrix factor. Heiler and Schnörr (2006)
proposed a new algorithm which also solved this
problem by sequential cone programming and utilized
general purpose solvers like MOSEK.

3 The Sequential Sparse NMF

Algorithm

We present our algorithm which we call Sequential
Sparse NMF(SSNMF) as follows:

First, we consider a problem of special form in sec-
tion 3.1 which turns out to be the core routine of our
algorithm and give an efficient, as well as an exact
algorithm to solve it.

Second, we give routines to solve subproblems of
the SNMF problem based on previous work. This
includes the multiplicative updates routine from Lee
and Seung (2001).

Third, we give the complete SSNMF (Algorithm 5)
to solve SNMF based on the previous two steps.

2

3.1 Sparse-opt

Let us consider the following problem :

max
y≥0

b⊤y s.t. ‖y‖1 = k, ‖y‖2 = 1 (7)

where the length of vector b is m.

Consider the following permuted problem :

max
x≥0

a⊤x s.t. ‖x‖1 = k, ‖x‖2 = 1 (8)

where a = sort(b). By the structure of the permuted
problem, it is clear that there is a transition point p =
p∗ such that all the elements of vector x to the right
of index p are zero and the rest positive. Also, we
can get the solution y for problem (7) from solution
x of the permuted problem (8) by a permutation.

The Lagrangian of the permuted problem is :

max
x,µ,λ

a⊤x+ µ

(

m
∑

i=1

xi − k

)

+
λ

2

(

m
∑

i=1

x2
i − 1

)

Setting the derivatives of the Lagrangian to zero, we
get:

ai + µ+ λxi = 0, ∀i ∈ {1, 2, · · · , p}
m
∑

i

xi = k

m
∑

i

x2
i = 1

xi = 0, ∀i ∈ {p+ 1, · · · ,m}

By applying the Cauchy-Schwartz inequality on the
vector x, we have p ≥ k2. We propose a new algo-
rithm called Sparse-opt to solve this problem(Algo-
rithm 1). Hoyer (2004) also considered this problem
and gave a heuristic to solve it which we will hence-
forth refer to as the Projection-heuristic.

Algorithm 1 Sparse-opt(b, k)

1: Input: Vector b and sparsity k.
2: Set a = sort(b) and get the mapping π such that

ai = bπ(i) and aj > aj+1 for all valid i, j.
3: Compute values of µ(p), λ(p) and obj(p)) for p

from ⌈k2⌉ to m as follows:

λ(p) = −

√

p
∑

i a
2
i − (

∑

i ai)
2

(p− k2)

µ(p) = −
∑

i ai
p
− k

p
λ(p)

obj(p) =
−λ(p+ k) +

∑

i ai
p

4: Find the p for which the value of obj which is the
largest and call it p∗.

5: Set xi = −ai+µ(p∗)
λ(p∗) , ∀i ∈ {1, · · · , p∗} and to zero

otherwise.
6: Generate solution such that yπ(i) = xi.
7: Output: Vector y

3.2 SSNMF

The SNMF problem (6) can also be rewritten as the
following:

min
W,H

1

2
‖X−WDH‖2F

s.t.W ≥ 0,H ≥ 0,D ≥ 0

sp(Wj) = α, ∀j ∈ {1, · · · , r}
sp(Hi) = β, ∀i ∈ {1, · · · , r} (9)

where D is a r × r diagonal matrix. We use the new
formulation to additionally constrain the L2 norms
of the columns of matrix W if its sparsity value is
given. Similarly, we constrain the rows of matrix H

to be 1 if its sparsity value is given. This scaling is
absorbed by the matrix diagonal D. Since, scaling
is one the properties satisfied by the Hoyer’s sparsity
criterion (Hurley and Rickard, 2009), we can use our
formulation of SNMF and give a solution to Prob-
lem (6).

The core multiplicative updates routine for solv-
ing the NMF problem proposed by Lee and Seung

3

(2001) is given in Algorithm 2. This essentially is a
multiplicative update algorithm for solving the NNLS
problem with multiple right-hand sides. Also, the
multiplicative update rule for the diagonal matrix de-
rived by Ding et al. (2006) is given in Algorithm 3.
Algorithm 3 and algorithm 2 can be sped up by pre-
computing the matrix products which are unchanged
during the iterations. Consider the objective in prob-
lem 9 for a column j of the matrix W while fixing
the rest of the elements of matrices W,H,D :

f(Wj) =
1

2
g‖Wj‖2 + u⊤Wj

for fixed quantities g,u. The optimization problem
is given by:

min
Wj≥0

f(Wj) s.t. ‖Wj‖2 = 1, ‖Wj‖1 = k (10)

This reduces to the problem we considered in sec-
tion 3.1. We update the columns of the matrix fac-
tor W sequentially as shown in Algorithm 4. Algo-
rithm 4 combined with algorithms 1, 2 and 3 gives
us SSNMF to solve SNMF(Algorithm 5). We call it
sequential for we update the columns one at a time
unlike the batch manner adopted by NMFSC.

Algorithm 2 mult(X,W,H,maxiter)

Input: Matrices X,W,H and positive number
maxiter

for iter = 1 to maxiter do

H = H⊙ W
⊤
X

W⊤WH
.

end for

Output: Matrix H.

Algorithm 3 multD(X,W,H,D,maxiter)

Input: Matrices X,W,H,D and positive number
maxiter

for iter = 1 to maxiter do

D = D⊙ W
⊤
XH

W⊤WDHH⊤

end for

Output: Matrix D.

Algorithm 4 spar(X,W,H, k,maxiter)

Input: Matrices X,W,H, positive numbers
maxiter and sparsity k.
C = −XH⊤ +WHH⊤

G = HH⊤

for iter=1 to maxiter do

for i =1 to r do

Uj = Cj −WjG
j
j

t = Sparse-opt(−Uj , k).
C = C+ (t−Wi)G

i

Wi = t.
end for

end for

Output: Matrix W.

4 Implementation Issues

We describe some of the modifications to the ssnmf
algorithm proposed in the previous section.

4.1 Random order of updates

Instead of updating the columns in a sequential order,
we propose to use random permutations.

4.2 Incorporating faster solvers

We use multiplicative updates for a fair compari-
son with NMFSC. However, there have been few im-
proved solvers since them, for example Lin (2007),
Kim and Park (2008). We can plug in these solvers
pretty easily to solve parts of the SNMF problem
when we don’t have sparsity constraints on one of
the factors.

4.3 Convergence

Wemeasure objective values at the end of an iteration
and terminate when relative change in objective value
between iterations is less than a pre-defined tolerance
value.

4

Algorithm 5 ssnmf(X, r, α, β,maxiter)

1: Input: Matrix X, rank r, number of iterations
maxiter and sparsity values k, l.

2: InitializeW,D andH as follows: If sparsity value
α is given, generate a positive random vector v

of size m and obtain z = Sparse-opt(v, k) where
k =

√
m −

√
m− 1α (from equation (5)). Use

the solution z and its random permutations to
initialize matrix W. Similarly, initialize the ma-
trix H. If the sparsity value is not given, just
initialize the matrix to uniformly random entries
in [0, 1]. Set D to be the identity matrix of size
r × r.

3: repeat

4: { Update W}
5: if Sparseness constraints apply then

6: W = spar(X,W,DH, k,maxiter)
7: else

8: Wt = mult(X⊤,H⊤D,W⊤,maxiter)
9: W = Wt⊤

10: end if

11: {Update D}
12: if Sparsity on both factors then
13: D = multD(X,W,H,D,maxiter)
14: end if

15: {Update H }
16: if Sparseness constraints apply then

17: Ht = spar(X⊤,H⊤,DW⊤, l,maxiter)
18: H = Ht⊤

19: else

20: H = mult(X,WD,H,maxiter)
21: end if

22: until convergence
23: Output: Matrices W,D,H.

5 Experiments

In this section, we compare SSNMF with NMFSC.
Experiments report reconstructive error instead of
objective value for convenience of display. All of our
experiments were run on a 2.8Ghz machine with the
number of threads set to one. Our algorithm SSNMF
was implemented in Matlab similar to NMFSC.

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Dimension of the problem

M
ea

n
ru

nn
in

g
tim

e
in

 s
ec

on
ds

Sparse−opt vs Projection−heuristic

Figure 1: Running times(lower values are better) for
Sparse-opt(shown in red circles) vs the Projection-
heuristic(shown in blue pluses) for random problems
of size 2i ∗ 50. The x-axis plots the dimension of the
problem i ranges from 100 to 212∗100 while the y-axis
has the running time in seconds.

5.1 Comparing Performances of Core

Updates

First, we compare our Sparse-opt algorithm with
the Projection-heuristic (Hoyer, 2004). To do this,
we generate 40 random problems with sparsity con-
straint being uniformly random in [0, 1] for a fixed
dimension. Also, the input vector is generated by
taking uniform random samples from [0, 1]. We con-
sider dimensions 2i ∗ 100 where i takes integer values
from 0 to 12.

The mean values of the running times for Sparse-
opt and the Projection-heuristic for each dimension
are plotted in Figure 1.

5.2 Datasets

For comparing the performance of SSNMF with
NMFSC, we consider the following 2 real-world
datasets:

1. CBCL face dataset consists of 2429 im-
ages of size 19 × 19 and can be ob-
tained at http://cbcl.mit.edu/cbcl/

5

software-datasets/FaceData2.html.

2. ORL dataset consists of 400 images of
size 112 × 92 and can be obtained at
http://www.cl.cam.ac.uk/research/dtg/

attarchive/facedatabase.html.

5.3 Comparing Overall Performances

To ensure fairness, we removed logging information
from NMFSC code (Hoyer, 2004) and only computed
the objective every 20 iterations. The parameter
maxiter was set to 10 in SSNMF. Also, we used the
objective value in SSNMF as a stopping criterion for
NMFSC. We set the number of outer iterations for
SSNMF to be 25 as termination condition for all the
experiments.
We applied SSNMF and NMFSC on the CBCL

face dataset. We use the same preprocessing as done
in Hoyer (2004). Rank was set to 49 in both the
algorithms. The results are shown in Table 1.
Similarly, we ran SSNMF and NMFSC on the ORL

face dataset. The rank was fixed at 25 in both the
algorithms. The results are shown in Table 2.
Also, we compare the effect of switching the solver

in our SSNMF algorithm. We use the algorithm
from Lin (2007) and call the resulting algorithm
SSNMF+Lin. Similarly, we replace the Sparse-opt
routine in our algorithm by the Projection-heuristic
of NMFSC and call the resulting algorithm SS-
NMF+Proj . The results of running these modified
algorithms on the ORL face dataset is shown in Ta-
ble 3.

6 Related Work

In this paper we derive an algorithm for the SNMF
problem as formulated in Hoyer (2004). Other SNMF
formulations include Hoyer (2002),L0-constrained
NMF (Mørup, Madsen, and Hansen, 2008), Kim and
Park (2007) and Pascual-Montano et al. (2006).
First, we would like to note that the sparsity mea-

sure used in this paper has all the desirables proper-
ties as discussed extensively in the paper by Hurley
and Rickard (2009) except for cloning. This is not
an issue for us since the dimensions are fixed in our

optimization problem and hence we do not have a
problem with the measure not satisfying the cloning
property. L1 measure satisfies only one of the 6 prop-
erties given by Hurley and Rickard (2009) namely
’rising tide’. The measure used in Kim and Park
(2007) is based on L1 norm. The properties satisfied
by the measure in Pascual-Montano et al. (2006) is
unclear because of the implicit nature.

Secondly, the sparsity in both Pascual-Montano et
al. (2006) and Kim and Park (2007) use an implicit
measure for sparsity. The sparsity measure consid-
ered in this paper enables us to handle sparsity ex-
plicitly.

Thirdly, Pascual-Montano et al. (2006) claim that
the SNMF formulation Hoyer (2004) doesn’t capture
the variance in the data. We would like to argue that
the experiments and the conclusions thereby reached
were biased. The sparsity was set on both the matrix
factors unlike Pascual-Montano et al. (2006) which
has a single sparsity parameter. A fairer comparison
would be to set sparsity on one of the factors in Hoyer
(2004) and let the other factor compensate to explain
the data.

We were unable to compare with the algorithm
in Heiler and Schnörr (2006) for the code is not pub-
licly available. However, we believe that the special-
ized algorithm we developed should be faster than the
general purpose solvers used in Heiler and Schnörr
(2006).

7 Conclusions and Future

Work

We have proposed a new efficient algorithm to solve
the SNMF problem. Experiments demonstrate the
effectiveness of our approach on real datasets of prac-
tical interest. Our algorithm is faster over a range of
sparsity values and does especially better when the
sparsity is higher. Also, we have proposed an exact
algorithm to solve the sparsity constraint unlike the
heuristic in Hoyer (2004). Also, experiments show it
to be atleast as fast as the heuristic in practice. The
speed up is because of the sequential nature of the
updates as opposed to the batch approach of Hoyer

6

Sparsity 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

SSNMF(seconds) 35.44 35.29 35.26 35.33 35.25 36.21 37.66 38.12 36.33 36.07

NMFSC(seconds) 152.97 195.14 299.74 424.96 411.05 369.65 488.44 652.25 741.14 911.80

Ratio 4.32 5.53 8.50 12.03 11.66 10.21 12.97 17.11 20.40 25.28

Reconstruction Error 5.35 5.32 5.29 5.31 5.33 5.36 5.44 5.51 5.69 6.04

Table 1: Running times(seconds), reconstruction error and corresponding sparsity parameters are shown for
the two algorithms for the ORL faces dataset. We used multiplicative updates for updating H to ensure
fairness in comparison with Hoyer’s algorithm. First our algorithm was run and the resulting objective value
was used as a stopping criterion for the Hoyer’s algorithm to ensure we have the same objective value.

Sparsity 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

SSNMF(seconds) 6.10 6.06 5.94 5.99 6.03 5.97 6.11 5.99 5.89 5.83

NMFSC(seconds) 45.00 42.66 52.35 46.12 56.37 59.70 71.54 79.69 81.91 129.40

Ratio 7.38 7.04 8.82 7.70 9.35 10.00 11.70 13.30 13.91 22.17

Reconstruction Error 57.91 55.07 52.33 50.32 48.33 46.84 45.12 43.92 42.57 41.52

Table 2: Running times(seconds), reconstruction error and corresponding sparsity parameters are shown for
the two algorithms for the CBCL faces dataset. We used multiplicative updates for updating H to ensure
fairness in comparison with Hoyer’s algorithm. First our algorithm was run and the objective value was used
as a stopping criterion for the Hoyer’s algorithm to ensure we have the same objective value.

(2004).

Our approach can also be potentially applied to
other NMF variants which include an additional term
in the objective. For example, we could use the
framework in this paper to solve the SNMF problem
as posed in Hoyer (2002). Also, we can potentially
extend this approach to solve sparse versions of semi-
NMF and convex NMF as well as the sparse Tensor
extensions of NMF .

Acknowledgement

The first author would like to acknowledge the sup-
port from NIBIB grants 1 R01 EB 000840 and 1 R01
EB 005846. The second author was supported by
NIMH grant 1 R01 MH076282-01. The latter two
grants were funded as part of the NSF/NIH Collabo-
rative Research in Computational Neuroscience Pro-
gram.

7

Sparsity 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

SSNMF(seconds) 35.44 35.29 35.26 35.33 35.25 36.21 37.66 38.12 36.33 36.07

SSNMF+Lin(seconds) 15.85 17.41 18.68 19.98 21.33 22.97 24.05 25.41 26.90 28.25

SSNMF+Proj(seconds) 36.70 37.02 37.58 42.68 39.76 38.94 39.50 41.01 42.02 43.45

Table 3: Running times(seconds) and corresponding sparsity parameters are shown for SSNMF and modified
versions of it on the ORL faces dataset. Reconstruction error is ensured to be the same or better for the
modified algorithms.

References

Ding, C.; Li, T.; Peng, W.; and Park, H. 2006.
Orthogonal nonnegative matrix t-factorizations for
clustering. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge

discovery and data mining, KDD ’06, 126–135.
New York, NY, USA: ACM.

Donoho, D., and Stodden, V. 2004. When does non-
negative matrix factorization give a correct decom-
position into parts? In Thrun, S.; Saul, L.; and
Schölkopf, B., eds., Advances in Neural Informa-

tion Processing Systems 16. Cambridge, MA: MIT
Press.

Heiler, M., and Schnörr, C. 2006. Learning sparse
representations by non-negative matrix factoriza-
tion and sequential cone programming. Journal of
Machine Learning Research 7:2006.

Hoyer, P. O. 2002. Non-negative sparse coding. In
Neural Networks for Signal Processing, 2002. Pro-

ceedings of the 2002 12th IEEE Workshop on, 557–
565.

Hoyer, P. O. 2004. Non-negative matrix factorization
with sparseness constraints. J. Mach. Learn. Res.

5:1457–1469.

Hurley, N., and Rickard, S. 2009. Comparing mea-
sures of sparsity. IEEE Trans. Inf. Theor. 55:4723–
4741.

Kim, H., and Park, H. 2007. Sparse non-negative ma-
trix factorizations via alternating non-negativity-
constrained least squares for microarray data anal-
ysis. Bioinformatics 23(12):1495–1502.

Kim, J., and Park, H. 2008. Toward faster nonneg-
ative matrix factorization: A new algorithm and
comparisons. Data Mining, IEEE International

Conference on 0:353–362.

Lee, D. D., and Seung, H. S. 1999. Learning the
parts of objects by non-negative matrix factoriza-
tion. Nature 401(6755):788–791.

Lee, D. D., and Seung, S. H. 2001. Algorithms for
non-negative matrix factorization. In NIPS, 556–
562.

Lin, C.-J. 2007. Projected gradient methods for
nonnegative matrix factorization. Neural Comp.

19(10):2756–2779.

Mørup, M.; Madsen, K. H.; and Hansen, L. K. 2008.
Approximate l0 constrained non-negative matrix
and tensor factorization. In ISCAS, 1328–1331.

Pascual-Montano, A.; Carazo, J.; Kochi, K.;
Lehmann, D.; and Pascual-Marqui, R. 2006. Non-
smooth nonnegative matrix factorization (nsnmf).
Pattern Analysis and Machine Intelligence, IEEE

Transactions on 28(3):403 –415.

8

